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On Certain Classes of Algebras
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Sugiura [4] and Jόichi [_2~] have studied the classes (A\ (Ak\ &>2 and
(AJ) of Lie algebras. In this paper we define these as well as some other
classes for general nonassociative algebras and obtain a characterization of
alternative algebras over a field of characteristic zero belonging to any one of
these classes. Incidentally, we obtain certain results which include striking
improvements of earlier ones due to Sugiura (loc. cit.) and Jδichi (loc. cit.).

1. In what follows, A is a finite-dimensional nonassociative algebra over
a field F and LX(RX) denotes the left (right) multiplication by x in A. The
classes mentioned at the outset are defined as follows:

DEFINITION 1.1. A is said to be an (X)-algebra, where (X) is any one of
(A), (A'\ (Ak)k>2, (A'k)k>2, (Bk)k>2, (5ί)*>2, (AJ), (AL\ (JBJ, (BL\ according as
the corresponding property (X) given below is satisfied (x, y, z, t in A):

(A)

(A')

{Λk)k>2

(A'h)k>2

(Bk)k>2

y=0 and (zt)t

x(x y) = 0 = ( yx)x =Φ x y= 0 = yx

= 0 and Rk

y

= 0 and

(X) holds for all k>2,(X)=(Ak\Wh\(Bk\ or (Si).

REMARK 1. The properties (A\ (Ak\ stated above may be further
weakened by considering just the left or right multiplications independently.
(This weakening has, of course, no significance for commutative or anticom-
mutative algebras.) The resulting concepts of right (^4)-algebra, left (Ay
algebra, and (J)-algebra would then be distinct, (e.g.), the algebra A with
basis u, v: u2 = v2 = vu = 0; uv = u, is a right (J)-(also right (̂ 2)-) algebra but
not a left (^)-(or left (A2)-) algebra, i.e., not an (^)-(or (A2)-) algebra.

The following chart indicates the connections among the properties men-
tioned in Definition 1.1.
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4 4 4 2

ϊ1 4
if t

Among the properties stated in Definition 1.1,
and (Ak)&(A'k\ when the algebra A is commutative or anticommutative, in
particular, when A is a Lie algebra. On the other hand, the properties are
distinct for general algebras. For instance, {A) is distinct from (A'\ (e.g.),
the algebra A with basis u,v: u2 = v, v2 = uv = 0, vu = — u is not an (J)-algebra,
but is an (Af)-2λgehτ%,. For an algebra which is a right (^ί)-algebra, but not
an (^0-algebra, we have the example cited in Remark 1.

In the case of alternative algebras, we can supplement, as follows, the
implications in the above chart.

PROPOSITION 1.2. For an alternative algebra, any property in each one of
the following families is equivalent to any other in the same family.

(i) (Ak)k>2ΛAJ) (ϋ) (A'k)k>2,(AL) (iii) (5ί)*>2, ( # . ) .

PROOF. We only give the proof in the case when A is a (l^)-algebra,
leaving other similar proofs. After the implications in the above chart, we
need only show that an alternative (.B^-algebra A is also a (i?^)-algebra for
all k. Suppose jLJ = 0 = yRk

x for some x, y in A, and let t be an integer such
that 2* is greater than k. Then γL2

x

t = 0 = γRf; by biassociativity property
(see [3] for this and related concepts) of the alternative algebra, yL^1 = 0 =
yRx2*. Thus j(LJC2«-i)2 = 0 = y(Rx2i-i)2. Hence, by (^)-property, yLx2*-i=0 =
yRx2t-κ We can repeat this argument to show that yLx2 = 0 = yRx2 and ulti-
mately yLx = 0 = yRx, or that A is a (i?^)-algebra.

We note that any subalgebra of an (A)-, (Af)- or (2?^)-algebra is evidently
of the same type. We also have the

PROPOSITION 1.3 (cf. Q2, Proposition 2]). Let B be an ideal of an algebra
A. Then

(i) if A is an (Ak+ι) (respectively (Ar

k+^-algebra, then B is an (Ak) (re-
spectively (Afy-algebra;

(ii) for B contained in the annihilator ideal 1= {x e A \ xy=0 = yx for all
y in A}, if A is an (Ak+ι) (respectively (^+i) , (B'k+1))-algebra, then A/B
is an (Ak) (respectively (Af

k), (Bfy-algebra. On the other hand, if A is an (A)-
algebra, A/B is also an (A)-algebra.

The proof of Proposition 1.3 is similar to that of the result referred to
against it and is omitted.

PROPOSITION 1.4 (cf. Q2, Corollary to Proposition 4]). Let A be an algebra
such that A = AιQ)A2(B (BAr for ideals A{ of A. Then A is an (A)-(respec-



On Certain Glasses of Algebras 227

tively (Af)-, (Ak)-, (Af

k)-, (Br

k)-) algebra if and only if each Ai(i = l9 2, ..., r) is

respectively so.

PROOF. We give only the proof for the case when A is an (^)-algebra,
leaving similar proofs for the rest. Let x be in Ai such that Rk

x = 0 on Ai.
Since Rx is already 0 on Aj(jφί\ Rx = 0 on A, so that by {A^-property of
A, Rx = 0. Similarly for the left multiplications. Thus Ai is an (^)-algebra.

Conversely, suppose Ai are (^)-algebras. Let for an x = xι + x2A \-χr in
A, Rk

x = 0. Thus, for y = y i + y2 + ••• + yr in A, ( 7 1 + 7 2 + ••• + yr)Rk

x = 0, or

yιR*Xl + j2Rk

X2+ • •• + yrRXr = 0;by ( ^ - p r o p e r t y in A{, RXί = 0 (ί = l , 2, ..., r), i.e.,

yRχ = ΣyiRχi

:=Q a n d -R* = 0, since y{ are arb i t rary in A{. Hence A is an

( ^ - a l g e b r a .

2. In this section we generalize certain results of Jόichi [2] and Sugiura
The generalization, in fact, comprises of extending their results to more

general algebras, and in some cases simultaneously removing the restriction
that the base field is of characteristic zero.

For an ideal B of an algebra A, we define Bω = B, B™ = BωBω, •-, and
inductively B(n+1) = B(n)B(n\ where, for subspaces CΊ, C2 of A, CλC2 denotes the
subspace of A generated by all elements of the form xλx2 for x{ in C, (ι = l, 2).
B is said to be solvable in case there exists an integer n such that B(n) = 0.
The set /of all absolute divisors of zero in A, viz., {x e A\xy= yx = 0 for all
7 in A}, is an ideal of A and is called the annihilator ideal of A. A is said
to be a zero algebra if ^4(2) is the zero ideal.

PROPOSITION 2.1 (cf. [4, Proposition 4]). Any solvable (Ά)-algebra A is a
zero algebra.

PROOF. Suppose A(1\ A(2\ ..., A(k\ ... is the derived series of A. Let n
be the integer such that A(n)Φ0, A(n+1) = 0. If 71 = 1, there is nothing to prove.
Hence, let n be greater than 1. Then we have A(n\A(n-1)A(n~1)) = 0 =
(A{n~ι)A{n~ι)) A{n\ Since A(n) is contained in A{n~ι\ A(n\Ain)A(n-1)) = 0 =
(A{n-ι)A{n))A{n\ Consequently, for x in A(n\ 7 in A{n~ι\ x(xy) = 0 - (yx)χ.
But, by (J')-property, ^ 7 = 0 = 7*, i. e., A{n)A{n~ι) = 0 = ^ (*-1 )^ ( > l ), or
^(*-l)(^(»-l)^(ι.-l)) = 0 = (A(n-l)A(n-l)^A(n-l)t A g a i n ? for ^ t Jn ^f(«-D? ί ( ^ ) = Q

= (zt)t. Then, by (^O-P^operty, tz = 0 = zt. In other words, Ain) = A{n-λ)Ain~ι)

= 0, a contradiction. We should therefore have n = l, in which case A is a
zero algebra.

COROLLARY 2.2. Any solvable ideal B of an (A')-algebra A is contained in
the annihilator ideal I of A.

PROOF. B, which is a subalgebra of an (^0-sdgebra, is itself an (Ar)-
algebra. By Proposition 2.1, B is a zero algebra. Consequently, B being an
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ideal of A, for x in B and y in A, x(xy) = 0—(yχ)x. Then, by (^0-property

Xy=0= yx. In other words, B is contained in /.

COROLLARY 2.3. The solvable radical (maximal solvable ideal) of an (Ά)-
algebra A is the annihilator ideal of A.

For the proof of Corollary 2.3, it suffices to observe that the annihilator
ideal of an algebra is a solvable ideal.

We remark that Sugiura's arguments in the proof of his result referred
to against Proposition 2.1, are valid only for Lie algebras, and use the restric-
tion of zero characteristic on the base field heavily. We observe that a
weakening of the hypothesis of Proposition 2.1 may not be possible. More
explicitly, a solvable right (^)-algebra need not be a zero algebra, as the ex-
ample of a right (y4)-algebra (which is also a non-(^')-algebra) given in Re-
mark 1, shows.

We recall now that an algebra A is said to be nilpotent if there exists
a fixed integer n such that all products of n elements of A are zero irrespec-
tive of how they are associated |ΊΓ]. For such algebras we have the follow-
ing

PROPOSITION 2.4 (cf. Q2, Theorem l(a)]). If A is a nilpotent algebra
over afield F, then the properties ( A 2 \ • ••, ( A k \ • ••, (AJ), ( A \ ( A r

2 \ • ••, (A'k\ ...,
(AL), (A'), ( B ' 2 \ ••-, ( B ' k \ •••, (BL) are all equivalent to the property that A is a
zero algebra.

PROOF. If A is a zero algebra, it is evidently an (^)-algebra. After this,
in view of the relations indicated by the chart in Section 1, it remains to show
that a nilpotent (^O-algebra is a zero algebra. Let then A be a nilpotent
(^0-algebra, and A1 = Ai A2 = AA, ..., An = {An-1A9 AΆι~1}, .... A being nil-
potent, there exists an integer n such that AnΦ09 An+1 = 0. Then AnA = 0
= AAn; in particular, A(An-1A) = 0 = (AAn-1)A9 i.e., for x in An~\ AL2

x = 0 = AR2

x.
By (.40-property, LX = O = RX, or An-1A = 0 = AAn'\ In other words An = 0,a.
contradiction to our assumption. As in the proof of Proposition 2.1, this
contradiction leads to the conclusion that A is a zero algebra.

COROLLARY 2.5. A nilpotent ideal B of an (A'3)-algebra A is contained in
the annihilator ideal I of A.

PROOF. B, which is an ideal of an (^Q-algebra, is itself an (^Q-algebra,
by Proposition 1.3(i). Hence, by Proposition 2.4, B is a zero algebra, i.e., for
x in B, y in A, x(χγ) = 0=(yx)x; L2

x = 0 = R2

x. Since an (^40-algebra is also
(^0, this means that LX = O = RX. In other words, B is contained in the an-
nihilator ideal of A.

COROLLARY 2.6. The nilradical (maximal nilpotent ideal) of an (AQ-
algebra A, whenever it exists, is precisely the annihilator ideal I of A.
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COROLLARY 2.7. The radical of a Jordan (A3)-άlgebra A (the maximal
solvable, or nilpotent ideal of A (see [3])) is precisely the annihilator ideal I of
A.

The essential part of Corollary 2.7 holds for another class of algebras,
namely, the algebras in which the derived series of an ideal consists of ideals
we have

PROPOSITION 2.8. Let B be a solvable ideal of an (A3)-algebra A such that
the derived series of B consists of ideals of A. Then, B is contained in the
annihilator ideal I of A.

PROOF. Let B be a solvable ideal such that B(k) are ideals of A. Let
B(n)φ0, B(n+1) = 0. Then B(n)B(n) = 0, so that B(n)(B(n)A) = 0 = (AB(n))B(n\ since
B(n) is an ideal of A. For % in B{n\ this means that L2

x = 0 = R2

x, and by (A3)-
property, LX = O = RX, i.e., B(n)A = 0 = AB(n\ Hence (B(n-ι)B(n~ι))A = 0 =
A(B(n-1)B{n-1)); B(n-1\B(n-1)B(n~1)) = 0 = (B(n-1)B(n-1))B(n-1\ Since B(n~l) is an
ideal of A, this means that ^ - ^ ( ^ ^ ( ^ ^ ^ ^ ^ O ^ ^ ^ - 1 ) ) ^ - 1 ^ - 1 ^
Hence, for x in i?(w~υ, L3

x = 0 = R3

x, and by (^Q-property, LX = O = RX, i.e.,
B{n-ι)A = Q = AB{n-ι\ In particular, B(n) = B(n-1)B(n~1) = 0, a contradiction to
our assumption. Thus B(2) = 0. Now, for x in B, AR2

X = (ARX)RX<^ BRX = O.
Similarly AL2

x = 0. Since an (^-algebra is also an (^0-algebra, this means
that AB = BA = 0; thus B is contained in the annihilator ideal /of A.

COROLLARY 2.9 (cf. [2, Theorem 1 (b)]). A solvable ideal of a Lie (A3)-
algebra is contained in the center of the Lie algebra.

COROLLARY 2.10. The radical of a Lie (A3)-algebra is precisely its center.

COROLLARY 2.11. The radical of an alternative (associative) (A3)-algebra
A is precisely its annihilator ideal.

Corollary 2.11 can be derived either from Proposition 2.8, using the fact
that the derived series consists of ideals, or from Corollary 2.6, noting that
the radical of an alternative algebra is also its maximal nilpotent ideal (see
[β~]). On the other hand, Corollary 2.7 relating to Jordan algebras (whose
derived series in general does not consist of ideals) and falling in the class of
these two results, rests on the equivalence of solvability and nilpotency for a
Jordan algebra over a field of characteristic Φ2 (see [βj).

It is evident from the proof of Proposition 2.8, that the replacement of
the hypothesis of property (A3) in that proposition by that of property (A'2)
does not seem to be possible for general algebras (see [2, Section 3]). How-
ever, in the case of alternative algebras, Proposition 1.2 and Corollary 2.11
establish the validity of Proposition 2.8 for an (^Q-algebra. We thus have

LEMMA 2.12. The radical (maximal nilpotent ideal) of an alternative (Af

2)-
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algebra is precisely its annihilator ideal.

Before concluding this section and passing on to the application of Lem-
ma 2.12 in the proof of the main theorem of this paper in Section 3, we
consider a power-associative (A)- or {A')- or (i^)-algebra A with radical R
(maximal nilideal of A). For % in R, xn = 0 for some n. By repeated applica-
tion of (Ά)-Qτoveτty we deduce that Λ; 2=0 for every % in R. Let x, y be in
R. Then (x-\-y)2 = 0 implies xy-\-yχ = 0. Hence, when A is a commutative
power-associative (A')-(heτe, (B'k) = (A) = (Af)) algebra over a field Fof charac-
teristic =/=2, xγ—0 for x, y in R. Since x in R, y in A imply xy in R, this
means χ(χ y) — 0 and by (^-property, x y=0. Hence, the radical R is the anni-
hilator ideal JΞ= {X C A \ xy=0 for all y in J}, since / is a nilideal. This result,
which is of the same type as Corollaries 2.7, 2.11 or Lemma 2.12, can be re-
formulated as follows: A commutative power-associative (A)-algebra without
absolute divisors of zero is semi-simple. However, there are semisimple com-
mutative power-associative algebras which are not (^)-algebras, e.g., the
simple Jordan algebra, got by introducing the Jordan multiplication χoy=
xy+ yx/2 in a full matrix algebra of order n>l over a field F. (See also
Section 3.)

3. We first obtain (Theorem 3.1) a characterization of semisimple alter-
native (^0-algebras, which eventually leads to the main characterization
theorem (Theorem 3.2). Any such algebra A is a direct sum of ideals A{

(ΐ = l, 2, ..., r), which are simple as algebras [3, Theorem 3.12]. By Proposi-
tion 1.4, At are (.^-algebras. Further, Ai, which is a simple alternative
algebra, is either an associative algebra, or an alternative non-associative
division algebra, over its center, or the vector-matrix algebra of Zorn (i.e.,
the split Cayley algebra with divisors of zero) [3, pp. 52-57]. First, when
Ai is a simple associative algebra, it is a full matrix algebra of order m over
an associative division algebra A [1, p. 39]. If τι, > l , and if e is the identity
of D%, the matrix Eί2 with e at the (l,2)-th entry and 0 elsewhere, is such that
£?2 = 0, E12φO, i.e., LE^ = 0 = RE^9 but LEχι9 REl2φ0 (Z, R denote the left, right
multiplications in A{\ since A{ contains an identity, Eϊ2φQ implies that L#125

RE12ΦQ)- Hence A{ is not an (^0-algebra, a contradiction. Consequently,
rii = l, i.e., Ai is a division algebra. Since a division algebra is evidently an
(^^-algebra, A{ is a division algebra over the base field F, in this case. Se-
condly, alternative non-associative division algebras are Cayley-Dickson (divi-
sion) algebras over their centers (see [β, Theorem 3.17]), and being division
algebras they are also (^O-algebras. Lastly, the vector-matrix algebra is an
algebra which is not even (Ar

2). This assertion follows from the fact that
the existence of a nonzero element x in an alternative algebra with identity,
such that χ2 = 0, implies that the algebra cannot be an (^^-algebra. From
these observations we now have



On Certain Classes of Algebras 231

THEOREM 3.1. An alternative algebra is a semisimple (A2)-algebra iff it is
the direct sum of ideals which are either associative division algebras or Cayley-
Dickson division algebras over their centers.

Theorem 3.1 is essentially, the assertion that the only alternative semi-
simple (^40-algebras are the ones which are direct sums of ideals, which are
alternative division algebras.

Now, let A be an alternative (J^-algebra over a field of characteristic
zero. Then, by Lemma 2.12, the radical R of A is precisely the annihilator
ideal /of A. We can appeal to the Wedderburn factor theorem for alterna-
tive algebras (see Q3, Theorem 3.18]) to get A as the direct sum of / and a
semisimple subalgebra B. I being the annihilator ideal of A, B is actually
an ideal of A, so that A is the direct sum of ideals / and B. Hence, by Pro-
position 1.4, B will be an (^0-algebra, s o that we can appeal to Theorem 3.1
to obtain

THEOREM 3.2. An alternative algebra over a field F of characteristic zero
is an (A2)-algebra iff it is a direct sum of a zero ideal, and ideals which are
(alternative) division algebras over F.

Since an alternative algebra which is a direct sum of division algebras
and a zero ideal is a priori an (^)-algebra, we can replace (A2)- in the state-
ment of Theorem 3.2 by (Ak)-, (A^)-, (A'k)~, (AL)-, (#0-, (BL)-, (Ay, or (A)-, in
view of the chart of Section 1. We have incidentally proved

THEOREM 3.3. For an alternative algebra over afield of characteristic zero,

the properties (A2\ ..., (Ak), ..., (AJ), (A'2\ ..., (A'k\ ..., (AL\ (B'2\ ..., (B'k), ...,

(BL\ (A) and (A') are all equivalent.

REMARKS, (i) In view of Theorem 3.1, all the properties defined in Sec-
tion 1 are equivalent for semisimple alternative algebras over afield of arbitrary
characteristic.

However, it is interesting to note that the equivalence of properties (Ak\
(A'k) for a semisimple associative algebra A can be established directly as fol-
lows (without appealing to the classification of simple associative algebras as
in the proof of Theorem 3.1): For this, it suffices to show, in view of Pro-
position 1.2, and the chart in Section 1, that for a semisimple associative al-
gebra, (A ̂ -property implies (^2)-property. To this end, we note that in an
associative algebra A, Iι = {x \x γ=0 for all y in A} is a characteristic right
ideal of A and hence is a characteristic ideal of A it is also solvable. Con-
sequently, when A is semisimple, lλ is the zero ideal. Let L2

x = 0 for an x in
A. Since 7i = 0 and L2

X = LX2, x

2 = 0. Therefore L2

x = Lx2 = 0 = Rx2 = R2

x. By

(J^-property, LX = O = RX. Similarly when R2 = 0 for a y in A, Ry = 0 — Ly. In
other words, A is an (v42)-algebra.

(ii) When the algebra in the hypothesis of Theorem 3.2 is associative,
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the division algebras in the conclusion of the same theorem will be associative
ones.

We conclude with an analogue of Theorem 3.2 for a Jordan (^)-algebra
over a field of characteristic zero. In this case, the radical is, by Corollary
2.7, the annihilator ideal. Further, the Wedderburn factor theorem for a
Jordan algebra over a field of zero characteristic (see [3, pp. 106-107]) enables
us to deduce that a Jordan (^)-algebra ^ (for &>3) is the direct sum of its
annihilator ideal /, and a semisimple ideal B = A2, such that B is an (Ak)-
algebra. Since B is a semisimple algebra, its annihilator ideal is the zero
ideal, i.e., {x e B\Lx=Rx = 0} (L\ R' are the left = right multiplications in
B) =0. Since B is an (^)-algebra, this nieans that there exists no element
x in B such that Lk

x = 0 (L, the left multiplication in A). We have thus proved

PROPOSITION 3.4 (cf. [2, Theorem 3]). A Jordan algebra A over a field of
characteristic zero is an (Ak)-algebra for k^S, iff it is either a zero algebra or
is a direct sum of its annihilator ideal and the semisimple ideal A2 such that
there exists no non-zero x in A2 with Lk

x = Q.

The present version of this paper owes a great deal to the suggestions
and encouragement of Professor S. Togo to whom the author is beholden.
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