Notes on Derivations of Higher Order

Shizuka Satô

(Received March 5, 1969)

Let R and S be commutative rings and assume that S is an R-algebra. Let D be a derivation of S over R. Then the power $\Delta=D^{n}$ is an R-linear endomorphism of S satisfying the following condition:

$$
\text { (*) } \Delta\left(x_{1} x_{2} \cdots x_{n+1}\right)=\sum_{s=1}^{n}(-1)^{s-1} \sum_{i_{1}<\cdots<i_{s}} x_{i_{1}} \cdots x_{i_{s}} \Delta\left(x_{1} \cdots \hat{x}_{i_{1}} \cdots \hat{x}_{i_{s}} \cdots x_{n+1}\right)
$$

for any $x_{1}, x_{2}, \ldots, x_{n+1}$ in S. The property (*) is used to define the notion of a derivation of order n by H. Osborn ([3]). In this note we shall prove some properties of such derivations. In the last part we shall show the following: Let S be a field finitely generated over a subfield R. Then the set of ordinary derivations of S / R is characterized as the set of n-th order derivations D satisfying the condition that $D(x)=D(y)=0$ implies $D(x y)=0$.

1. Let R be a commutative ring with identity 1 and let S be an R-algebra. An R-endomorphism of S is called a derivation of order n of S / R, if D satisfies the following identity:

$$
D\left(x_{1} \cdots x_{n+1}\right)=\sum_{s=1}^{n} \sum_{i_{1}<\cdots<i_{s}}(-1)^{s-1} x_{i_{1} \cdots x_{i_{s}}} D\left(x_{1} \cdots \hat{x}_{i_{1}} \cdots \hat{x}_{i_{s}} \cdots x_{n+1}\right)
$$

for any $x_{i} \in S$.
From the definition it follows easily that $D(r)=r D(1)=0$ for any $r \in R$.
First we show that the notion of n-th order derivation has a close connection with that of the higher derivations in the sense of F. K. Schmidt (cf. [1]).

Proposition 1. Let $D=\left(D_{0}, D_{1}, \ldots, D_{r}\right)$ be a higher derivation of rank r (or of infinite rank) of S / R into S. Then $D_{m}(0<m \leqq r)$ is a derivation of order m.

Proof. For any set of elements x_{1}, \ldots, x_{m+1} of S, we have

$$
\begin{aligned}
& \sum_{s=1}^{m} \sum_{i_{1}<\cdots<i_{s}}(-1)^{S+1} x_{i_{1}} \cdots x_{i_{s}} D_{m}\left(x_{1} \cdots \hat{x}_{i_{1}} \cdots \hat{x}_{i_{s}} \cdots x_{m+1}\right) \\
& \quad=\sum_{s=1}^{m} \sum_{\substack{i_{1}<\cdots<i_{s}, i_{j} \neq i_{s+k} \\
i_{s+1}<\cdots<i_{m+1}}}^{S+1} x_{i_{1}} \cdots x_{i_{s}}\left(\sum D_{v_{s+1}}\left(x_{i_{s+1}}\right) \ldots D_{v_{m+1}}\left(x_{i_{m+1}}\right)\right) .
\end{aligned}
$$

The coefficient of $x_{i_{1}} \ldots x_{i_{s}} D_{v_{s+1}}\left(x_{i_{s+1}}\right) \ldots D_{v_{m+1}}\left(x_{i_{m+1}}\right)$ is

$$
(-1)^{s+1}+(-1)^{s}\binom{s}{1}+\cdots+\binom{s}{s-1}=1-(1-1)^{s}=1
$$

while

$$
D_{m}\left(x_{1} \cdots x_{m+1}\right)=\sum_{m=\nu_{1}+\cdots+\nu_{m+1}} D_{v_{1}}\left(x_{1}\right) \ldots D_{v_{m+1}}\left(x_{m+1}\right) .
$$

Hence D_{m} is a derivation of order m.
Proposition 2. A derivation D of order $n-1$ is a derivation of order n.
Proof. For any set of elements $x_{1}, x_{2}, \ldots, x_{n+1}$ of S, we have

$$
\begin{aligned}
D\left(x_{1} \cdots x_{n+1}\right)= & \sum_{i=1}^{n-1} x_{i} D\left(x_{1} \cdots \hat{x}_{i} \cdots x_{n-1} x_{n} x_{n+1}\right)+x_{n} x_{n+1} D\left(x_{1} \ldots x_{n-1}\right) \\
& +\sum_{s=2}^{n-1} \sum_{i_{1}<\cdots<i_{s} \leq n-1}(-1)^{s+1} x_{i_{1}} \cdots x_{i_{s}} D\left(x_{1} \ldots \hat{x}_{i_{1}} \cdots \hat{x}_{i_{s}} \cdots x_{n} x_{n+1}\right) \\
& +\sum_{s=2}^{n-1} \sum_{i_{1}<\cdots<i_{s} \leq n-1}(-1)^{s+1} x_{i_{1}} \cdots x_{i_{s-1}} x_{n} x_{n+1} D\left(x_{1} \ldots \hat{x}_{i_{1}} \cdots \hat{x}_{i_{s-1}} \cdots x_{n-1}\right) \\
= & \sum_{s=1}^{n-1} \sum_{i_{1}<\cdots<i_{s+1}}(-1)^{s+1} s x_{i_{1} \cdots x_{i_{s+1}}} D\left(x_{1} \cdots \hat{x}_{i_{1}} \cdots \hat{x}_{i_{s+1}} \cdots x_{n+1}\right),
\end{aligned}
$$

while

$$
\begin{aligned}
& \sum_{s=1}^{n} \sum_{i_{1}<\cdots<i_{s}}(-1)^{s+1} x_{i_{1}} \cdots x_{i_{s}} D\left(x_{1} \cdots \hat{x}_{i_{1}} \cdots \hat{x}_{i_{s}} \cdots x_{n+1}\right) \\
& =\sum_{i=1}^{n+1} x_{i} D\left(x_{1} \cdots \hat{x}_{i} \cdots x_{n+1}\right)+\sum_{s=2}^{n} \sum_{i_{1}<\cdots<i_{s}}(-1)^{s+1} x_{i_{1}} \cdots x_{i_{s}} D\left(x_{1} \cdots \hat{x}_{i_{1}} \cdots \hat{x}_{i_{s}} \cdots x_{n+1}\right) \\
& =\sum_{s=1}^{n-1} \sum_{i_{1}<\cdots<i_{s+1}}(-1)^{s+1}(s+1) x_{i_{1}} \cdots x_{i_{s+1}} D\left(x_{1} \cdots \hat{x}_{i_{1}} \cdots \hat{x}_{i_{s+1}} \cdots x_{n+1}\right) \\
& \quad+\sum_{s=2}^{n} \sum_{i_{1}<\cdots<i_{s}}(-1)^{s+1} x_{i_{1} \cdots x_{i_{s}}} D\left(x_{1} \cdots \hat{x}_{i_{1}} \cdots \hat{x}_{i_{s}} \cdots x_{n+1}\right) \\
& =\sum_{s=2}^{n} \sum_{i_{1}<\cdots<i_{s}}(-1)^{s+1} s x_{i_{1}} \cdots x_{i_{s+1}} D\left(x_{1} \cdots \hat{x}_{i_{1}} \cdots \hat{x}_{i_{s+1}} \cdots x_{n+1}\right) .
\end{aligned}
$$

Hence $D\left(x_{1} \cdots x_{n+1}\right)=\sum_{s=1}^{n} \sum_{i_{1}<\cdots<i_{s}}(-1)^{s+1} x_{i_{1} \cdots x_{i_{s}}} D\left(x_{1} \cdots \hat{x}_{i_{1}} \cdots \hat{x}_{i_{s}} \cdots x_{n+1}\right)$, i. e., D is a derivation of order n.

Corollary. A derivation of order n of S / R is also a derivation of order n^{\prime} for any $n^{\prime} \geqq n$.

Let D be a derivation of order n of S / R. For every $x \in S$, we shall introduce a new R-linear mapping D_{x} of S defined by

$$
D_{x}(y)=D(x y)-x D(y)-y D(x) .
$$

It is easily seen that D is an ordinary derivation if and only if $D_{x}=0$ for every $x \in S$. More generally we have the

Theorem 1. If D is a derivation of order n of S / R, then D_{x} is a derivation of order $n-1$ for $x \in S$. Conversely if D_{x} is a derivation of order $n-1$ of S / R for every $x \in S$, then D is a derivation of order n.

Proof. Let D be a derivation of order n of S / R. Then, for any set of elements x_{1}, \ldots, x_{n+1} of S, we have

$$
\begin{aligned}
& D_{x_{1}}\left(x_{2} \cdots x_{n+1}\right) \\
& \quad=D\left(x_{1} \cdots x_{n+1}\right)-x_{1} D\left(x_{2} \cdots x_{n+1}\right)-x_{2} \cdots x_{n+1} D\left(x_{1}\right) \\
& =\sum_{i=2}^{n+1} x_{i} D\left(x_{1} \cdots \hat{x}_{i} \cdots x_{n+1}\right)+\sum_{s=2}^{n-1} \sum_{i_{1}<\cdots<i_{s}}(-1)^{s+1} x_{i_{1} \cdots x_{i_{s}}} D\left(x_{1} \cdots \hat{x}_{i_{1}} \cdots \hat{x}_{i_{s}} \cdots x_{n+1}\right) \\
& \quad+\sum_{i=2}^{n+1}(-1)^{n+1} x_{1} \cdots \hat{x}_{i} \cdots x_{n+1} D\left(x_{i}\right)+\left\{(-1)^{n+1}-1\right\} x_{2} \cdots x_{n+1} D\left(x_{1}\right) \\
& =\sum_{s=1}^{n-1} \sum_{i_{1}<\cdots<i_{s}}(-1)^{s+1} x_{i_{1} \cdots x_{i_{s}}} D_{x_{1}}\left(x_{2} \cdots \hat{x}_{i_{1}} \cdots \hat{x}_{i_{s}} \cdots x_{n+1}\right) .
\end{aligned}
$$

Therefore $D_{x_{1}}$ is a derivation of order $n-1$.
Conversely, let D_{x} be a derivation of order $n-1$ for any $x \in S$. By definition of $D_{x_{1}}$, we have

$$
\begin{aligned}
& D\left(x_{1} \cdots x_{n+1}\right)=D_{x_{1}}\left(x_{2} \cdots x_{n+1}\right)+x_{1} D\left(x_{2} \cdots x_{n+1}\right)+x_{2} \cdots x_{n+1} D\left(x_{1}\right) \\
& =\sum_{s=1}^{n-1} \sum_{i_{1}<\cdots<i_{s}}(-1)^{s+1} x_{i_{1} \cdots x_{i_{s}}} D_{x_{1}}\left(x_{2} \cdots \hat{x}_{i_{1}} \cdots \hat{x}_{i_{s}} \cdots x_{n+1}\right) \\
& \quad+x_{1} D\left(x_{2} \cdots x_{n+1}\right)+x_{2} \cdots x_{n+1} D\left(x_{1}\right) \\
& =\sum_{s=1}^{n-1} \sum_{i_{1}<\cdots<i_{s}}(-1)^{s+1} x_{i_{1} \cdots x_{i_{s}}} D\left(x_{1} x_{2} \cdots \hat{x}_{i_{1}} \cdots \hat{x}_{i_{s}} \cdots x_{n+1}\right) \\
& \quad+\sum_{s=1}^{n-1} \sum_{i_{1}<\cdots<i_{s}}(-1)^{s+2} x_{1} x_{i_{1}} \cdots x_{i_{s}} D\left(x_{2} \cdots \hat{x}_{i_{1}} \cdots \hat{x}_{i_{s}} \cdots x_{n+1}\right) \\
& \quad+\sum_{s=1}^{n-1}(-1)^{s+2}\binom{n}{s} x_{2} \cdots x_{n+1} D\left(x_{1}\right)+x_{1} D\left(x_{2} \cdots x_{n+1}\right)+x_{2} \cdots x_{n+1} D\left(x_{1}\right) \\
& =\sum_{i=1}^{n+1} x_{i} D\left(x_{1} \cdots \hat{x}_{i} \cdots x_{n+1}\right)+\sum_{s=1}^{n-1} \sum_{i_{1}<\cdots<i_{s}}(-1)^{s+1} x_{i_{1} \cdots x_{i_{s}}} D\left(x_{1} x_{2} \cdots \hat{x}_{\left.i_{1} \cdots \hat{x}_{i_{s}} \cdots x_{n+1}\right)}\right. \\
& \quad+\sum_{s=1}^{n-1} \sum_{i_{1}<\cdots<i_{s}}(-1)^{s+2} x_{1} x_{i_{1}} \cdots x_{i_{s}} D\left(x_{2} \cdots \hat{x}_{i_{1}} \cdots \hat{x}_{i_{s}} \cdots x_{n+1}\right) \\
& \quad+(-1)^{n+1} x_{2} \cdots x_{n+1} D\left(x_{1}\right) \\
& =\sum_{s=1}^{n} \sum_{i_{1}<\cdots<i_{s}}(-1)^{s+1} x_{i_{1} \cdots x_{i_{s}}} D\left(x_{1} \cdots \hat{x}_{i_{1}} \cdots \hat{x}_{i_{s}} \cdots x_{n+1}\right) .
\end{aligned}
$$

Therefore D is a derivation of order n.

Pṛoposition 3. Let Δ, D be derivations of order r, s respectively of S / R. Then we have the identity

$$
\begin{equation*}
(\Delta D)_{x}=\Delta D_{x}+\Delta_{x} D+\Delta_{D(x)}+\Delta(x) D+D(x) \Delta \tag{1}
\end{equation*}
$$

Proof. For any $y \in S$, we have by the definition

$$
\begin{aligned}
& (\Delta D)_{x}(y)=\Delta D(x y)-x \Delta D(y)-y \Delta D(x) \\
& \Delta_{x}(D(y))=\Delta(x D(y))-x \Delta D(y)-D(y) \Delta(x) \\
& \Delta_{D(x)}(y)=\Delta(y D(x))-y \Delta D(x)-\Delta(y) D(x) \\
& \Delta\left(D_{x}(y)\right)=\Delta D(x y)-\Delta(x D(y))-\Delta(y D(x)) .
\end{aligned}
$$

From these formula we easily arrive at the conclusion.
Proposition 4. If Δ, D are derivations of order r, s of S / R respectively, then ΔD is a derivation of order $r+s$ of S / R.

Proof. It is trivial that ΔD is an R-enomorphism of S. We shall prove the proposition by the induction on $r+s$. When $r=s=1$, this is immediate from proposition 3. Every member of the right hand side of (1) is a derivation of order $\leqq r+s-1$ by induction assumption. Therefore, by Theorem 1, ΔD is a derivation of order $r+s$.

Corollary. If D is an ordinary derivation, D^{n} is a derivation of order n.
2. Let S be an R-algebra as before and let φ be the homomorphism of the ring $S \otimes_{R} S$ into S defined by $\varphi\left(\sum x \otimes y\right)=\sum x y$. Let us set $J=\operatorname{Ker}(\varphi)$. We shall endow on $S \otimes_{R} S$ an S-module structure by $a(x \otimes y)=a x \otimes y$. Then the mapping $\delta^{(n)}$ of S into $\Omega_{R}^{(n)}(S)=J / J^{n+1}$ such that $\delta^{(n)}(x)=\{$ the class of $1 \otimes x-x \otimes 1$ modulo $\left.J^{n+1}\right\}$ is an n-th order derivation of S into $\Omega_{R}^{(n)}(S)$. It is known that $\Omega_{R}^{(n)}(S)$ has the universal mapping property with respect to n-th order derivations of S / R (cf. [3]), and is called the module of n-th order (Kähler) differentials.

We shall denote by $\mathscr{D}_{R}^{(n)}(S)$ the left S-module consisting of n-th order derivations of S / R. From the universal mapping property of $\Omega_{R}^{(n)}(S)$, it follows that $\mathscr{D}_{R}^{(n)}(S)$ is isomorphic to $\operatorname{Hom}\left(\Omega_{R}^{(n)}(S), S\right)$ (cf. [3]).

Proposition 5. Let P, Φ be two fields such that $P>\Phi$ and P is finitely generated over Φ. Then P is separably algebraic over Φ if and only if $D_{\infty}^{(n)}(P)=0$ for some $n>0$.

Proof. It is well known that P is separably algebraic over Φ if and only if $\Omega_{\oplus}^{(1)}(P)=J / J^{2}=0$ (cf. [2]). On the other hand, $J=J^{2}$ if and only if $J=J^{n+1}$ for some $n>0$. Hence, P is separably algebraic over Φ if and only if $\Omega_{\varnothing}^{(n)}(P)=0$ for some $n>0$. Since P is a field, $\Omega_{\phi}^{(n)}(P)=0$ if and only if $\mathscr{D}_{\phi}^{(n)}(P)=0$.

Let us denote by $C^{(n)}$ the set of elements D of $\mathscr{D}_{\mathscr{D}}^{(n)}(P)$ such that $D(x)=$ $D(y)=0$ implies $D(x y)=0$. Obviously we have $\mathscr{D}_{\oplus}^{(1)}(P) \subset C^{(n)}$ for all $n>0$.

Theorem 2. Let $P=\Phi\left(\xi_{1}, \ldots \xi_{m}\right)$ be a field finitely generated over Φ. Then $C^{(n)}=D_{\emptyset}^{(1)}(P)$ for all $n>0$. Namely, $\mathscr{D}_{\emptyset}^{(1)}(P)$ is characterized as the set of elements D of $\mathscr{D}_{\phi}^{(n)}(P)$ such that $D(x)=D(y)=0$ implies $D(x y)=0$.

Proof. We consider a homomorphism

$$
f: C^{(n)} \longrightarrow P^{m}=\underbrace{P \oplus \cdots \oplus P}_{m}
$$

defined by $f(D)=\left(D\left(\xi_{1}\right), \ldots, D\left(\xi_{m}\right)\right)$. Then f is injective. In fact, let $D \epsilon$ Ker (f). If $D(x)=D(y)=0$, we have $D(x+y)=0$ and $D(x y)=0$ by the hypothesis on $C^{(n)}$. Hence to show that D is a zero map it suffices to prove that $D(x)=$ $D(y)=0$ implies also $D\left(\frac{x}{y}\right)=0(y \neq 0)$. Let us set $\alpha=\frac{x}{y}$. Then we see immediately that $0=D\left(y^{n} \alpha\right)=(-1)^{n-1} y^{n} D(\alpha)$. Hence $D(\alpha)=0$. Thus $C^{(n)}$ is isomorphic to a subspace of P^{m}, and $s=\operatorname{dim}_{p} C^{(n)} \leqq m$. Let D_{1}, \ldots, D_{s} be a base of $C^{(n)}$ over P. And we set $\alpha_{i}=f\left(D_{i}\right)(1 \leqq i \leqq s)$. The set $\left\{\alpha_{i}\right\}(1 \leqq i \leqq s)$ generates $\operatorname{Im}(f)$. Hence $\left\{\alpha_{i}\right\}(1 \leqq i \leqq s)$ is a base of $\operatorname{Im}(f)$. We set

$$
A=\left(\begin{array}{ccc}
D_{1}\left(\xi_{1}\right) \cdots \cdots D_{1}\left(\xi_{m}\right) \\
\vdots & \vdots \\
D_{s}\left(\xi_{1}\right) \cdots \cdots & D_{s}\left(\xi_{m}\right)
\end{array}\right)
$$

The rank of A is s. Therefore we may assume

$$
\left|\begin{array}{cc}
D_{1}\left(\xi_{1}\right) \cdots \cdots & D_{1}\left(\xi_{s}\right) \tag{**}\\
\vdots & \vdots \\
D_{s}\left(\xi_{1}\right) \cdots \cdots & D_{s}\left(\xi_{s}\right)
\end{array}\right| \neq 0 .
$$

Let E be $\Phi\left(\xi_{1}, \cdots, \xi_{s}\right)$ and let Δ be an element of $C^{(n)}$ satisfying $\Delta(E)=0 . \quad \Delta$ can be written as a linear combination of D_{i} over P, i. e., $\Delta=\sum_{i=1}^{s} a_{i} D_{i}\left(a_{i} \in P\right)$.

$$
\sum_{i=1}^{s} a_{i} D_{i}\left(\xi_{j}\right)=\Delta\left(\xi_{j}\right)=0 \quad \text { for } \quad j=1,2, \ldots, s
$$

By (${ }^{* *)}, a_{i}=0$ for $i=1,2, \ldots, s$, i. e. $\Delta=0$. Hence derivations of order n of P / E contained in $C^{(n)}$ is only 0 , and $\mathscr{D}_{E}^{(1)}(P)=0$. Therefore P is separably algebraic over E. Conversely, let F be a field $\Phi\left(\xi_{i_{1}} \cdots \xi_{i_{t}}\right)\left(1 \leqq i_{1}<\cdots<i_{t} \leqq m\right)$ such that P is separably algebraic over F. We shall consider a map $g: \mathscr{D}_{\boldsymbol{\theta}}^{(n)}(P) \longrightarrow P^{t}$ defined by $g(D)=\left(D\left(\xi_{i_{1}}\right), \ldots, D\left(\xi_{i_{t}}\right)\right)$. g is a P-linear mapping. As above, if $D \in C^{(n)}$ and $D\left(\xi_{i_{j}}\right)=0$ for $j=1,2, \cdots, t$, then $D(F)=0$. Hence D is a derivation of order n of P over F. Since P is separably algebraic over $F, D=0$ on P. Therefore g is an isomorphism of $C^{(n)}$ into P^{t}, and $s=\operatorname{dim}_{p} C^{(n)} \leqq t$. Thus the
dimension of $C^{(n)}$ over P is equal to the smallest number t such that P is separably algebraic over $\Phi\left(\xi_{i_{1}} \ldots \xi_{i_{t}}\right)$. On the other hand, it is well known that the dimension of $\mathscr{D}_{\varnothing}^{(1)}(P)$ has the same property ([1], Chap. IV, Th. 16). Therefore $\mathscr{D}_{\oplus}^{(1)}(P)=C^{(n)}$ for all $n>0$.

Acknowledgement. The author wishes to express his hearty thanks to Professor Y. Nakai for his valuable suggestions.

References

[1] N. Jacobson, Lectures in Abstract Algebra, Vol. III, Van Nostrand, 1964.
[2] Y. Nakai, On the theory of differentials in commutative rings, J. Math. Soc. of Japan 13 (1961), 63-84.
[3] H. Osborn, Module of Differentials I. Math. Annalen 170 (1967), 220-244.
Ôita University

