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§ 1. Introduction

Let M be a differentiable manifold with a linear connection, and let Φx

be the homogeneous holonomy group at a point % e M. If the tangent vector
space at x is decomposed into a direct sum of subspaces which are invariant
under Φx, then by the parallel displacements along curves on M, parallel dis-
tributions are defined on M corresponding to those subspaces. If M is a
Riemannian manifold and its connection is Riemannian, then by the de Rham
decomposition theorem (Q7] or [_4Γ\ p. 185) the above parallel distributions are
completely integrable and, at any point, M is locally isometric to the direct
product of leaves through the point. Moreover, if M is simply connected and
complete, it is globally isometric to the direct product of those leaves (see also
[7] or [4] p. 192).

The above local and global decomposition theorems of de Rham are gene-
ralized to the case of pseudo-Riemannian manifold by H. Wu ([9]). On the
other hand, in [2], S. Kashiwabara generalized the global decomposition the-
orem to the case of linearly connected manifold without torsion, under the
assumption of local decomposability.

In the present paper, a linearly connected manifold with torsion will be
treated and a condition of local decomposition will be given in terms of cur-
vature and torsion (Theorem 1). Next, in §4, the results will be applied to a
reductive homogeneous space with the canonical connection of the second kind,
using the notion of algebra introduced by A. A. Sagle in [8].

Finally, in § 5, we shall remark about the decomposition of a local loop
with any point in M as its origin (£3]), corresponding to the local decomposi-
tion of the linearly connected manifold M.

The author wishes to express his hearty thanks to Prof. K. Morinaga
for his kind suggestions and encouragement during the preparation of this
paper at Hiroshima University.

§ 2. Integrability of parallel distributions

Let (ikf, V) be a connected differentiable manifold with a linear connection,
where V means the covariant differentiation of the connection. The curvature
tensor R and the torsion tensor S are defined by the formulas:
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(2.1) R(X, Y)Z= Fx VYZ- VY FXZ- FLX}Y1Z

(2.2) S(X, Y)= FXY- FFX-[X, F ]

for vector fields X, Y and Z on M.

DEFINITION 1. For a subspace Tx of the tangent vector space TX(M) at #,
the torsion tensor S is said to be inducible to Tx at A; if S*(X*5 Yx) e ϊ^ for any
X* and Y* in T .̂ When TX(M) is decomposed into a direct sum of comple-
mentary subspaces Tx and 7^', the torsion S is said to be completely inducible
with respect to the direct sum if S is inducible to each of Tx and T'x', and
SX(XX, Yx) = 0 for X, e Γί and Γ, e Tx\ The complete inducibility of torsion
with respect to a direct sum of finite number of subspaces will be defined
similarly. The torsion S is said to be inducible or completely inducible to
distributions if it is so at every point in M.

If, at a point x0 in M, a subspace TXQ of the tangent vector space TXo(M)
is invariant under the homogeneous holonomy group Φx^ the parallel displace-
ments along curves joining x0 to all points of M define a parallel distribution
T on M. In fact the result of parallel displacement of TXQ to a point x is
independent of the choice of curves from x0 to x.

PROPOSITION 1. A parallel distribution T is completely integrable if and
only if the torsion tensor 5 is inducible to T.

PROOF. Let Y be a vector field in T. Since T is parallel, FXY also be-
longs to T for any vector field X on M. Hence for any pair of vector fields
X, Y in T, vector fields FXY and FYX belong to T. Now, from (2.2) the bracket
[X, Γ ] of X and Y in T belongs to T if and only if 5(X, Y) belongs to T.

PROPOSITION 2. Let T be a completely integrable parallel distribution
on M, and N be a leaf (maximal integral manifold) of T\ Then N is a totally
geodesic submanifold of (M, F). Moreover, (Af, F) induces a linear connection
Fx on iV whose curvature tensor Rf and torsion tensor S' are tensors induced
naturally in JV" from R and S respectively.

PROOF. A geodesic which passes through a point x in TV and is tangent
to N at x has its tangent vectors in the parallel distribution T. Since N is a
leaf of T through x9 this geodesic is a curve in iV([4], p. 86). Hence by defi-
nition N is a totally geodesic submanifold of M. Next, let X, Γ be tangent
vector fields on N. If X* 0 ^0, denote by r(s) the parallel displacement of
vectors along a trajectory c(s) of X in a neighborhood of 0̂ = ^(0) in N. Since
any vector obtained by parallel displacement of a tangent vector of N also is
tangent to iV, t(sy1Yc(s) is contained in TXQ(N). Thus we can define an oper-
ation F/ by the formula:

(2.3) ( r n ^
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for any Vector fields X(X*0=^0) and Y on TV, and by setting (Px Γ)*0 = 0 for
XXQ = 0. Then V' defines a linear connection on TV. In fact, let (u1, u2, •••, un,
un+1, ..., um) be a system of coordinates valid in a neighborhood V of x0 in M
such t h a t w*+1 = 0, •••, um = 0 define TV in a neighborhood of x0 and (u1, , un)
is a system of coordinates in a neighborhood U of Λ;0 in TV. Then the second
term of (2.3) has an expression

(2.4) f^l+Γa Λsί.γΛ fd
\ as bc as /s=o\ vu

in the local coordinates, where Γj^'s are the coefficients of given connection
expressed in F ( [ l ] , p. 41). From (2.4) we see that the operation V': X' x £'->9£'
satisfies the conditions of covariant differentiation on TV, where ϋ1 denotes the
module of vector fields on TV. For any vector fields X, Y on TV, if we choose
vector fields X*, Γ* on M which coincide with X, Y respectively on an open
subset f/of TV, we have (Pχ*Y*)χ = (FχY)x at each point x in U. Therefore,
from (2.1) and (2.2), the curvature Rf and the torsion Sr of (TV, V') are equal to
the tensors induced naturally by restricting R and 5 to TV respectively.

§ 3. Decomposition of linearly connected manifolds

Let (M\ Vf) and (M'\ V") be connected manifolds each of which has a
linear connection. We choose a covering of M=M' x Jlf" by coordinate neigh-
borhoods adapted to the direct product, that is, each coordinate neighborhood
U is a direct product of coordinate neighborhoods U' in M and U" in M" with
a system of coordinates ( V , V , ..., 'ua, ••, 'um\ "u1, •••, "ua, ..., / /^w") where
(^α) and ( " O are systems of local coordinates on Uf and U" respectively and
711' = dim M\ /Ti'^dim M".

We shall define a linear connection on M by associating a family of func-
tions Γ(U)={Γί

jk{
rua, "ua)} with each adapted coordinate neighborhood U as

follows

(3.1) Γa

hc(!u,"u) = 'Γa

he(!u) for l^a,b,c^m',

(3.2) Γ}Λ(^, / /iί)= /T? 7( / /tt) for l<za9β,r^m", and i = ^

j=m'+β9 k = mr+γ,

(3.3) Γ ^ C M , / / ^)-0 for the rest,

where TJ c (^) ' s (resp. /Tgγ(
//^)'s) are the coefficients of the connection on M

(resp. Mff) with respect to the local coordinates ('ua) (resp. ("ua)). If U=
V x V" and V— V x V" are coordinate neighborhoods adapted to the direct
product and if they have common points, two families Γφ) and Γ(y) are related
to each other in the law of transformation of coefficients of a linear connec-
tion;
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p _mψ" duJ duk QVP i

* (V)nr Z-l s\ π ~π r ~ ^ T •*• (77) i

Thus a linear connection is defined on M=M xM'r.

DEFINITION 2. The product manifold M=M'xM" with the linear con-
nection defined above will be called the affine product of (M\ F') and (Λf", F")

([2]).

THEOREM 1. Let (Λf, V) be a connected difFerentiable manifold with a
linear connection. Suppose that the homogeneous holonomy group ΦXQ leaves
complementary subspaces TXQ and T'x[ of the tangent space at x0 invariant and
denote by T and T" the corresponding parallel distributions. If (1) the cur-
vature R satisfies R(X, Y) = 0 for l e T and Ye T'\ (2) the torsion S is com-
pletely inducible to these distributions, then T and T" are both completely
integrable, and at each point of M, (M, V) is locally affinely isomorphic to the
affine product of (ikΓ, V) and (M'\ V") where M (resp. M") is a leaf of r (resp.
T") with the connection V (resp. F") induced naturally from (M5 F).

PROOF. Since the torsion S is inducible to T and Γ", these distributions
are completely integrable (Proposition 1), and every leaf M! (resp. M") of V
(resp. T") has a naturally induced connection (Proposition 2). Let Λ;0 be any
point in M and assume that M and M" contain x0 in common. There exists
a coordinate neighborhood U' in Mr (resp. ί7//r in Mπ) with a system of coordi-
nates (u\ u\ ..., u\ ..., Mm/) (resp. ( ί^ / + \ ..., ί̂ Λ

5 ..., ^w / + w / /)) such that Ux Uff

is diffeomorphic to a neighborhood 17 of x0 in M and that 1-=-^ ... r̂—̂  ...

—w ) and ( -^-wxr ^ a ^ m'+m") form local bases for V and T" re-
du J \σu ι' ' σu ' ou /
spectively if we choose (u\ ••, ua, ..., um\ um/Jrl, ..., z^w/+w//) as local coordinates
in U. Denote by Γh

jk{uι) (A, ί, /, & = 1, 2, ..., m' + m") the coefficients of the
connection with respect to the above coordinates in Z7. In the rest of the
proof we shall adopt notational conventions of indices as l<^α, ό, c, ...< 7̂7τ/;

Since ^_a_^-^ belong to T\ all coefficients of the type Γ%c(uι) vanish and

Γίβ's similarly vanish. By the assumption (2) we have

(3.5) V^__ d

 a - F_Θ_
 d

 a = 0.

On the other hand since the distributions T and Ύ" are parallel, V 9 -^—- is

in Γ" as long as^—Έ is in Γ77, and V 9 -^^ i s in Γ7 simultaneously with -^-^-.
υu -^c σu σu
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Therefore, from (3.5) we have V3_~ά- = Fa - ^ = 0, which gives Γb

aa = Γb

aa

By the assumption (1), R(~, J-Z) = 0, from which we have^d-aΓ%7(u')=0, JZ) = 0, from which we have^-a

and -—- Γa

bc(uι) = 0. From the definition of connection on a leaf M\ we have
(j U

Γb

cd(ui)=/Γb

cd(ua) on M where the coefficients of the connection V on M are
denoted by Tb

cd(ua). Similarly we have Π?s(ui) = /Tξδ(ua) on Λf", where
/T^δ(wα)'s are coefficients of the connection V" on M".

After all, we can conclude that (M, V) is locally affinely isomorphic to the
affine product of (AT, Γ) and (M\ V") by the diffeomorphism of 17 onto Ur x Ό".

REMARK. From the definition of the affine product (Definition 2), it is
clear that the conditions (1) and (2) are necessary for (M, V) to be locally af-
finely isomorphic at each point to an affine product of leaves of parallel
distributions containing the point.

DEFINITION 3. A linearly connected differentiate manifold (M, V) is said
to be locally reductive if the curvature tensor R and the torsion tensor S are
both parallel with respect to the connection, i. e., FR = 0 and FS=0.

COROLLARY. Let (M, V) be a connected differentiate manifold with a
linear connection which is locally reductive. Suppose that, at a point x0 in
M, the following conditions are satisfied:

(1) The tangent space TXQ to M is decomposed into a direct sum of
subspaces invariant under the homogeneous holonomy group, such as TXQ =

° (2)0'RXQ(X, F ) = 0 for XeTH and YeT'x'o;
(3) SXQ is completely inducible (Definition 1) with respect to the direct

sum.
Then any point of M has a neighborhood which is locally affinely isomor-

phic to an affine product of locally reductive spaces.

PROOF. If F S = 0 , we have Sx(rXXo, VYXQ) = TSXQ(XXQ, YXQ) for any XXQ and

YXQ in TXQ(M\ where r is the parallel displacement of tangent vectors along a
curve starting at χ0 and ending to any point x in M. Hence Sx is inducible
to the tangent subspace Tx = t TXQ at x if S*o is inducible to the subspace T'XQ

at x0. Complete inducibility at any point x follows similarly. In the same
way, if FR = 0 we have RX(VXXQ, tYXo)rZXo = r(RXo(XXo, YXQ)ZXQ). Hence R(T'X,

Γί0 = 0 at any point x if and only if R(ΓXo, Γίo') = O, where R(ΓX, T'x')= {Rχ(X,
Y); Xe Tx and Ye T'x'}. Therefore the corresponding parallel distributions
T and T" satisfy the conditions (1) and (2) in Theorem 1, and any point in
M has a neighborhood which is locally affinely isomorphic to the affine product
of leaves M and M" of T and T'r respectively. Since PR = 0 and FS=0 on M,
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the naturally induced tensors Rr and 5' (resp. R" and S") are also parallel
with respect to the induced connection on M! (resp. M").

THEOREM 2. Let (M, V) be a connected and simply connected differen-
tiable manifold with a complete linear connection. Then under the assump-
tions same as in Theorem 1 we have the global affine isomorphism of (Λf, F)
to the affine product of (M', Γ) and (M", V"\

For the proof, see Q2]. In [2~] a global decomposition of a linearly con-
nected manifold without torsion has been treated and it is also valid in our
case.

§ 4. Application to reductive homogeneous spaces1^

DEFINITION 4. A homogeneous space G/H of a connected Lie group G is
called reductive if the following condition is satisfied in the Lie algebra © of
G there exists a subspaces 9ft such that © is decomposed into a direct sum
© = 5Dΐ + Φ and ad(/Γ)9ft C 2ft> where φ is the subalgebra of © corresponding to
H.

Let M=G/Hbe a reductive homogeneous space with a fixed Lie algebra
decomposition ©=9ft + ξ> (direct sum), and let V denote the canonical connec-
tion (of the second kind in the sense of Nomizu \J5Γ\). The connection V is G-
invariant on M whose curvature tensor R and torsion tensor S are parallel on
M. Let π denote the natural projection of G onto M. By identifying 9ft with
the tangent space at the origin xo = π(e) (e is the identity of G), we have

(4.1) ^ 0 ( X , F ) = a d (

(4.2) S^η-K

for any X, F in 9ft, where [X, F]§ and;[X, YJm denote the φ-component and
the 9Ji-component of the bracket with respect to the direct sum ©=2Jί + ξ> (Q6]
Theorem 10. 3).

We shall define two mappings ([8]) φ(X, F ) = - [ X , YJm and A(X, Y)=
— |~X, F]$ for any X, F i n 501. The mapping #? is an anti-symmetric and bi-
linear binary operation on 9ft which defines an algebra (9ft, φ). The sub-
algebra 9ft7 of 9ft is said to be simple if φQΰl', 9ft') ^ O and 9ft' has no proper
ideal of 50Zr. The subalgebra 51ft7 is said to be semi-simple if it is a direct sum

(4.3) 9ft'=9fti + 9ft2 + + 2JΪ, (direct sum)

of ideals 9ft/ (ι = l, 2, . . , p) each of which is simple.
If 9ft' is semi-simple with direct sum decomposition (4.3) into simple ideals,

then φ(<mi9 9ft, )C9ft; and <pQUlh 9fty) = 0 for iφj, and since S*0(X, F)=<?(X, F)

1) For the details of reductive homogeneous space, see Nomizu [6] or Lichnerowicz [5] p. 48.
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the torsion 5 is completely inducible with respect to the decomposition (4.3)
of the tangent subspace at x0 (by identifying 9ft' with dπβ($SV)).

On the other hand, for two subalgebras 9ft' and 2ft" of 9ft, if we set ®(9ft',
9ft") = {ad h(X, Y); Xe 9ft7, Ye 9ft"}, ®(9ft, 9ft) can be regarded as the holonomy
algebra of (M, V) since RXQ(X9 Γ ) = ad h(X9 Y) for any X, Fin 9ft. Therefore,
if M=G/H is simply connected, the subalgebra 9ft' of 9ft is S)(9ft, 9ft)-invariant
if and only if the tangent subspace dπe{Sΰlr) is invariant under the connected
homogeneous holonomy group at x0.

THEOREM 3. Let M=G/Hbe a simply connected reductive homogeneous
space of a connected Lie group G with a fixed Lie algebra decomposition ©=
9ft+ξ>. Suppose that:

(1) The algebra (9ft, φ) is a direct sum of the subspace 9ft0 = {X e 9ft
φ(X9 9ft) = 0} and a semi-simple subalgebra 9ft' which is decomposed into a
direct sum of simple ideals as (4.3).

(2) ®(9ft, , 3fty) = 0 for iψj.
(3) Each subspace 9ft* (ί = 0, 1, 2, ..., p) is ®(9ft, 9ft)-invariant.
Then (M9 F) is globally afRnely isomorphic to an affine product of a locally

affine symmetric space Mo and locally reductive spaces Mί9 M2, •••, Mp.

PROOF. By identifying 9ft with the tangent space at x0 = 7r(e), the assump-
tions (1), (2) and (3) correspond to those in Corollary to Theorem 1 respec-
tively. In fact, as mentioned above, (1) and (3) are equivalent to the corre-
sponding conditions of complete inducibility of the torsion and holonomy
invariance of the subspaces respectively. The condition (2) implies that ad
h(X, Γ) = 0 for Xe 9ft, and Ye 9ft, (ίφj)9 which is equivalent to RxβSli9 2fty) = 0
for iφj.

Since FR = 0 and FS=0 on M9 Corollary of Theorem 1 implies that there
pass through x0 the leaves Mo, Mu .., Mp of distributions obtained by parallel
displacement of the subspaces 9ft0, 9fti, , 9ft̂ , respectively and that M is lo-
cally affinely isomorphic to the affine product Mo x Mi x x Mp. Since each
Mt{i = 09 1, 2, .. , p) has a connection induced naturally from the canonical con-
nection V on Af, its curvature and torsion are both parallel on Af, , in particular,
Mo has zero torsion by the definition of the subspace 9ft0, i. e., Mo is a locally
affine symmetric space. Since the canonical connection of a reductive homoge-
neous space is complete, we have a global decomposition of (G/H, V) by The-
orem 2.

REMARK. In the Theorem 3, if the condition (3) is replaced by (3') each
9ft/ is ad (φ)-invariant, then (M, V) is locally affinely isomorphic to an affine
product of reductive homogeneous spaces Mi — Gi/H (ί = 0, 1, ••, p) with ca-
nonical connections, where G, is a connected subgroup of G corresponding to
Lie subalgebra @, =2ft/ + φ.

In fact, since ad (φ) contains ®(9ft, 9ft), (3') implies (3). Moreover, under
the assumption (30 it is easy to see that @z =9ftί + £> is a Lie subalgebra of @.
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Since H is connected Mi=G{/H is well defined and reductive. Each locally
reductive space Mi(ί = 0, 1, • ••,/>) obtained in Theorem 3 has the same cur-
vature and the torsion at x0 as those of M\ at the origin, with respect to the
canonical connection. Therefore, Λf, and M\ are locally affinely isomorphic to
each other at their origin (\ΊΓ\ p. 62). For any point x in Λf, there exists a
local affine isomorphism of (Λf, V) which sends % to x0. Thus, for any point
x in M, there exists a local aifine isomorphism of some neighborhood of x to
a neighborhood of the origin of affine product MJxMfx x Mp.

§ 5. Some remarks about local loops

Any point p of a linearly connected manifold Λf has a neighborhood £/ in
which a binary operation /^ can be defined so as to form a local loop M(U, fp)
([3]). The binary operation fp is defined as follows let U be a normal neigh-
borhood in which two points are joined by one and only one geodesic arc and
let x and y be any two points of U, then there exist the unique geodesic arc
χ(t) (0 £S 12S α) ίn ^ joining p = #(0) to # = #(α) and the unique geodesic arc y(s)
(^^s^b) joiningp= y(0) to y= y(b) (parameters are all affine). Let Xp be
the vector tangent to x(t) at p and Xy be the vector obtained by the parallel
displacement of Xp to y along the arc y(s\ then we have the unique geodesic
arc z(t) ( O ^ ί ^ α O in U starting from y and tangent to Xy. If z(t) can be
defined for t = a, we define//^, y) = z(a) and call it the product of x and j in
U with respect to the origin p.

The product operation fp defines a differentiate local loop J2(U, fp) on U,
that is, (1) for any point x in U iί we define px(y)=fP(χ, y) and λx(y)=fp(y, x)
(ye U\ each of p* and λx is a local diffeomorphism of a neighborhood of p onto
a neighborhood of x (2) ///?, χ)=fp(χ, p) = χ for any Λ; e U, i. e., p is the unit.

The associative law does not hold in general.

Let T be a parallel distribution on Λf and suppose that the torsion tensor
is inducible to Γ, then by Proposition 1 T is completely integrable. Let N be
the maximal integral manifold of T containing />, then there exists a normal
neighborhood U' of p in N (with respect to the naturally induced connection
V) which is contained in the connected component of NΓ\U, where U is the
underlying neighborhood of a local loop J2(U, fp). The local loop M(U\ fp) is
thereby defined in (JV, FQ.

PROPOSITION 3. The local loop MJJ\ fp) is a local subloop of M(U9 fp).

PROOF. Let x and j b e two points in U'C U and let x(t) (0<,t<,a) and
y(s) (0<Ls<Lb) be geodesic arcs in U joining p to x and y respectively. Since
T is parallel any geodesic in (Λf, V) tangent to N at a point is a geodesic in
(ΛΓ, V) and the parallel displacement of a vector in TP(N) with respect to
Vr coincides with one with respect to F, along any curve in N. Therefore,
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fp(x9 y)=fp(x9 y) if both sides are defined.

THEOREM 4. Let T and T" be complementary parallel distributions on
a linearly connected manifold (M, V) and let J2(U9 fp) be a local loop in M with
origin p. Suppose that the conditions (1) and (2) in theorem 1 are satisfied,
then M(U9 fp) is locally isomorphic to the direct product of local loops Jl(JJ\ fp)
and MJJ'\ f'p) where V and Ό" are normal neighborhoods of p with respect
to V and V" respectively introduced on the integral manifolds of T and T"
containing p.

PROOF. By the above Proposition, local loops M(U\ fp) and MJJ'\ fp') can
be defined with respect to V and V" respectively, and they are local subloops
of M(U,fp). Without loss of generality, we can suppose that Uf x V" is af-
finely isomorphic to U and that they are coordinate neighborhoods such as
considered in the proof of Theorem 1. Then any geodesic arc x(t) (0<Jί<Ξα)
in U is represented by (χ'(t\ χff(t)) in U x U" where x'(t) (resp. χ"(i)) is a
geodesic in U' (resp. U") with respect to V (resp. V"\ and a parallel vector
field X(t) on the geodesic x(t) is represented by (X'(t\ X"(t)) where X'(t) (resp.
X"(t)) is the parallel vector field along x\t) (resp. xrf(t)). In fact the above
facts are clear at a glance of corresponding equations in local coordinates by
taking account of the condition that the coefficients Γ)k of V containing some
distinct sort of indices vanish. Therefore, identifying U with Ur x V" by the
affine isomorphism we have fp(χ, y) = (f'p(%\ y'\ f'p'(χ/'> y")) f° r ^ w o points
x = (x\ x") and y=(y', y") in £/, if the left or the right side of the equation
is defined.
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