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§ 1. Introduction

Let M be a differentiable manifold with a linear connection, and let @,
be the homogeneous holonomy group at a point x € M. If the tangent vector
space at x is decomposed into a direct sum of subspaces which are invariant
under @,, then by the parallel displacements along curves on M, parallel dis-
tributions are defined on M corresponding to those subspaces. If M is a
Riemannian manifold and its connection is Riemannian, then by the de Rham
decomposition theorem ([7] or [ 4] p. 185) the above parallel distributions are
completely integrable and, at any point, M is locally isometric to the direct
product of leaves through the point. Moreover, if M is simply connected and
complete, it is globally isometric to the direct product of those leaves (see also
[7T]or[4]p. 192).

The above local and global decomposition theorems of de Rham are gene-
ralized to the case of pseudo-Riemannian manifold by H. Wu ([9]). On the
other hand, in [ 27, S. Kashiwabara generalized the global decomposition the-
orem to the case of linearly connected manifold without torsion, under the
assumption of local decomposability.

In the present paper, a linearly connected manifold with torsion will be
treated and a condition of local decomposition will be given in terms of cur-
vature and torsion (Theorem 1). Next, in §4, the results will be applied to a
reductive homogeneous space with the canonical connection of the second kind,
using the notion of algebra introduced by A. A. Sagle in [ 87].

Finally, in §5, we shall remark about the decomposition of a local loop
with any point in M as its origin ([ 3]), corresponding to the local decomposi-
tion of the linearly connected manifold M.

The author wishes to express his hearty thanks to Prof. K. Morinaga
for his kind suggestions and encouragement during the preparation of this
paper at Hiroshima University.

§ 2. Integrability of parallel distributions

Let (M, 7) be a connected differentiable manifold with a linear connection,
where  means the covariant differentiation of the connection. The curvature
tensor R and the torsion tensor S are defined by the formulas:
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(21) R(X, Y)ZZ VX VyZ— VY VXZ— V[X,y]Z

(2.2) S(X, V)="rxY — Py X—[X, Y]
for vector fields X, Y and Z on M.

DeriniTion 1. For a subspace T of the tangent vector space T,.(M) at x,
the torsion tensor S is said to be inducible to T, at x if S.(X,, Y,) € T, for any
X.and Y, in T,. When T.(M) is decomposed into a direct sum of comple-
mentary subspaces 7, and T, the torsion S is said to be completely inducible
with respect to the direct sum if S is inducible to each of T; and T:’, and
S.(X,, Y,)=0for X, e T;and Y, € T:’. The complete inducibility of torsion
with respect to a direct sum of finite number of subspaces will be defined
similarly. The torsion S is said to be inducible or completely inducible to
distributions if it is so at every point in M.

If, at a point x, in M, a subspace T of the tangent vector space T, (M)
is invariant under the homogeneous holonomy group @, , the parallel displace-
ments along curves joining x, to all points of M define a parallel distribution
T on M. In fact the result of parallel displacement of T} to a point x is
independent of the choice of curves from x, to x.

Prorosition 1. A parallel distribution T is completely integrable if and
only if the torsion tensor S is inducible to 7.

Proor. Let Y be a vector field in 7. Since T is parallel, FxY also be-
longs to T for any vector field X on M. Hence for any pair of vector fields
X, Y in T, vector fields /xY and FyX belong to 7. Now, from (2.2) the bracket
[X,Y]of Xand Y in T belongs to T if and only if S(X, Y') belongs to T.

ProrosiTioN 2. Let 7’ be a completely integrable parallel distribution
on M, and N be a leaf (maximal integral manifold) of 77. Then N is a totally
geodesic submanifold of (M, ). Moreover, (M, F) induces a linear connection
7’ on N whose curvature tensor R’ and torsion tensor S’ are tensors induced
naturally in IV from R and S respectively.

Proor. A geodesic which passes through a point x in IV and is tangent
to IV at x has its tangent vectors in the parallel distribution 7”. Since Nis a
leaf of T through x, this geodesic is a curve in N([47], p. 86). Hence by defi-
nition N is a totally geodesic submanifold of M. Next, let X, Y be tangent
vector fields on N. If X, =<0, denote by t(s) the parallel displacement of
vectors along a trajectory c(s) of X in a neighborhood of xo=c(0) in N. Since
any vector obtained by parallel displacement of a tangent vector of N also is
tangent to N, t(s)™' Y, is contained in 7, (N). Thus we can define an oper-
ation /' by the formula:

23) LY =lim - (e(5) Yooy Vi)
s—0
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for any vector fields X(X,,#0) and Y on N, and by setting (P Y),,=0 for
X,,=0. Then 7’ defines a linear connection on N. In fact, let (u', u? ..., u”,
u™1, ..., u™) be a system of coordinates valid in a neighborhood 7 of x, in M
such that u”"'=0, ..., u™=0 define N in a neighborhood of x, and (u?, ..., u”)
is a system of coordinates in a neighborhood U of x, in N. Then the second
term of (2.3) has an expression

a b
@4 (G teve) () 1seboesn,
in the local coordinates, where I'¢,’s are the coefficients of given connection
expressed in V' ([17], p. 41). From (2.4) we see that the operation /' : ¥’ x X' ¥’
satisfies the conditions of covariant differentiation on NN, where X’ denotes the
module of vector fields on N. For any vector fields X, Y on N, if we choose
vector fields X*, Y* on M which coincide with X, Y respectively on an open
subset U of N, we have (Fx:Y*),=F%Y), at each point x in U. Therefore,
from (2.1) and (2.2), the curvature R’ and the torsion S’ of (i, F'") are equal to
the tensors induced naturally by restricting R and S to N respectively.

§ 8. Decomposition of linearly connected manifolds

Let (M, ") and (M"”, F"") be connected manifolds each of which has a
linear connection. We choose a covering of M=M' x M" by coordinate neigh-
borhoods adapted to the direct product, that is, each coordinate neighborhood
U is a direct product of coordinate neighborhoods U’ in M’ and U” in M” with
a system of coordinates ("', ‘u?, ..., ‘u® ..., ‘W™, "ul, ..., "u, ..., "u™") where
('u®) and (“u*) are systems of local coordinates on U’ and U” respectively and
m'=dim M, m"=dim M".

We shall define a linear connection on M by associating a family of func-
tions I"gy={I"i,('u® ""u*)} with each adapted coordinate neighborhood U as
follows

(8.1) Iy Cu, "u)="T'5,('u)  for 1=a,b, c=m/

3.2) Ii(u, "u)="TIg,""u) for 1<a, B,r<m”, and i=m'+a,
j=m'+B, k=m'+7,

(3.3) I ('uy "u)=0 for the rest,

where "¢ ,('u)’s (resp. ""I'%,("u)’s) are the coefficients of the connection on M
(resp. M'") with respect to the local coordinates (‘u?) (resp. ("u%)). If U=
Ux U’ and V=V'x V" are coordinate neighborhoods adapted to the direct
product and if they have common points, two families 7"y and 7"y are related
to each other in the law of transformation of coefficients of a linear connec-
tion;
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(3.9) If="35 0w oul 00" p,

ihe1 0v? 0v” ou’ T WUk

m/+m// 2 i 17
+ Z 0u46v lgp,q,rgm'—l—m”-

i=1 6’1}"81}’ Ou" ’

Thus a linear connection is defined on M= M x M".

DeriniTiON 2. The product manifold M=M'x M’ with the linear con-
nection defined above will be called the affine product of (M, ") and (M"”, 7'

2.

Tueorem 1. Let (M, F) be a connected differentiable manifold with a
linear connection. Suppose that the homogeneous holonomy group @,, leaves
complementary subspaces T; and T;/ of the tangent space at x, invariant and
denote by 7" and T” the corresponding parallel distributions. If (1) the cur-
vature R satisfies R(X, Y)=0 for X € 7" and Y€ T", (2) the torsion S is com-
pletely inducible to these distributions, then 77 and 7" are both completely
integrable, and at each point of M, (M, V) is locally affinely isomorphic to the
affine product of (M', V") and (M”, F'") where M’ (resp. M"") is a leaf of T (resp.
T"") with the connection ¥’ (resp. F’") induced naturally from (M, F).

Proor. Since the torsion S is inducible to 77 and 7", these distributions
are completely integrable (Proposition 1), and every leaf M’ (resp. M") of T’
(resp. T") has a naturally induced connection (Proposition 2). Let x, be any
point in M and assume that M’ and M” contain x, in common. There exists
a coordinate neighborhood U’ in M’ (resp. U” in M"") with a system of coordi-

nates (u', u?, ..., u% ..., u”) (resp. (u™*, ..., u®, ..., u” ")) such that U’ x U”
is diffeomorphic to a neighborhood U of x, in M and that <£~1, e %, ey
0 0 0

6_3W> and <%m1—, s g 0u""+"’”> form local bases for 7" and 7" re-

spectively if we choose (u?, .-, u? ..., u™, u™**, ..., u™*"") as local coordinates
in U. Denote by I'*,(u’) (h, i, j, k=1,2, ..., m’+m"”) the coefficients of the
connection with respect to the above coordinates in U. In the rest of the
proof we shall adopt notational conventions of indices as 1<{a, b, c, -.-<<m’;

m+1=a, B, 71, -=m'+m'" and 1=4, j, k, ---<m’+m".

Since V o 630 belong to 77, all coefficients of the type I'¢,(u’) vanish and
Qub
I'tg’s similarly vanish. By the assumption (2) we have
0 0 _
(3.5) V%E o _VazaTa G =0.

On the other hand since the distributions 7" and 7" are parallel, 7 o '_6% is
ou®

in 7" as long asLa isin 77, and 7 Lais in 7" simultaneously with _0a_
ou 5z OU ou
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Therefore, from (3.5) we have 7, 6_02‘: Vs 0

Ju® au ou«x aua

=0, which gives I't,=1"%,

=0and I'5,=I%,=0.
By the assumption (1), R(%a, %) =0, from which we have 5871" % (u)=0
u
and 5%& I'¢,(u’)=0. From the definition of connection on a leaf M’, we have

I (u?)="T"" (u®) on M’ where the coefficients of the connection ' on M’ are
denoted by 'I'?,(u®). Similarly we have I'0s(u’)="T%(u% on M’, where
"I"Bs(u*)’s are coefficients of the connection 7’/ on M".

After all, we can conclude that (M, F) is locally affinely isomorphic to the
affine product of (M’, F’) and (M", F’") by the diffeomorphism of U onto U’ x U".

Remark. From the definition of the affine product (Definition 2), it is
clear that the conditions (1) and (2) are necessary for (M, F) to be locally af-
finely isomorphic at each point to an affine product of leaves of parallel
distributions containing the point.

DeriniTION 8. A linearly connected differentiable manifold (M, ) is said
to be locally reductive if the curvature tensor R and the torsion tensor S are
both parallel with respect to the connection, i. e., FR=0 and FS=0.

CoroLrLArRY. Let (M, F) be a connected differentiable manifold with a
linear connection which is locally reductive. Suppose that, at a point x, in
M, the following conditions are satisfied:

(1) The tangent space T,, to M is decomposed into a direct sum of
subspaces invariant under the homogeneous holonomy group, such as T, =
Ti+ T4 s

(2) R.(X,Y)=0 for XeT; and YeTj;

(3) S., is completely inducible (Definition 1) with respect to the direct
sum.

Then any point of M has a neighborhood which is locally affinely isomor-
phie to an affine product of locally reductive spaces.

Proor. If 7S=0, we have Si(cX,, Y, )=rS,(X,, Y,) for any X, and
Y., in T, (M), where t is the parallel displacement of tangent vectors along a
curve starting at x, and ending to any point » in M. Hence S, is inducible
to the tangent subspace T,=tT; at x if S,, is inducible to the subspace T7,
at x,. Complete inducibility at any point x follows similarly. In the same
way, if VTR=0 we have R.(cX,, vY, ) Z, =t(R. (X, Y:)Z:). Hence R(T;,
T:')=0 at any point » if and only if R(T%, T%)=0, where R(T;, T: )= {R.(X,
Y); Xe T;and Ye T;'}. Therefore the corresponding parallel distributions
T and T" satisfy the conditions (1) and (2) in Theorem 1, and any point in
M has a neighborhood which is locally affinely isomorphic to the affine product
of leaves M" and M" of T” and T respectively. Since FR=0and FS=0on M,
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the naturally induced tensors R’ and S’ (resp. R” and S”) are also parallel
with respect to the induced connection on M’ (resp. M”).

Tueorem 2. Let (M, F) be a connected and simply connected differen-
tiable manifold with a complete linear connection. Then under the assump-
tions same as in Theorem 1 we have the global affine isomorphism of (M, F)
to the affine product of (M, ') and (M", F"").

For the proof, see [2]. In [2] a global decomposition of a linearly con-
nected manifold without torsion has been treated and it is also valid in our
case.

§ 4. Application to reductive homogeneous spaces®.

DeriniTiON 4. A homogeneous space G/H of a connected Lie group G is
called reductive if the following condition is satisfied; in the Lie algebra & of
G there exists a subspaces I such that & is decomposed into a direct sum
S=M+9 and ad(H)M M, where O is the subalgebra of & corresponding to
H.

Let M=G/H be a reductive homogeneous space with a fixed Lie algebra
decomposition =M+ H (direct sum), and let F denote the canonical connec-
tion (of the second kind in the sense of Nomizu [6]). The connection ¥ is G-
invariant on M whose curvature tensor R and torsion tensor S are parallel on
M. Let 7 denote the natural projection of G onto M. By identifying 9% with
the tangent space at the origin xo=r(e) (e is the identity of G), we have

(4. R.(X, Y)=ad (—[X, Y])
(4'2) Sxo(Xa Y)= _[X, Y]sm

for any X, Y in I, where [ X, Y |5 and;[ X, Y J» denote the $-component and
the M-component of the bracket with respect to the direct sum =M+ H (6]
Theorem 10. 3).

We shall define two mappings ((8]) ¢(X, Y)=—[X,Y ] and A(X, Y)=
—[X, Y], for any X, Yin M. The mapping ¢ is an anti-symmetric and bi-
linear binary operation on 9 which defines an algebra (I, ¢). The sub-
algebra 9 of M is said to be simple if (P, WM)=£0 and NV has no proper
ideal of 9. The subalgebra M is said to be semi-simple if it is a direct sum

4.3) W=+ P+ -+ D, (direct sum)

of ideals M; (=1, 2, ..., p) each of which is simple.
If 9V is semi-simple with direct sum decomposition (4.3) into simple ideals,
then (M, M) CW; and (M, M;)=0 for i=~j, and since S, (X, YV)=¢(X,Y)

1) For the details of reductive homogeneous space, see Nomizu [6] or Lichnerowicz [5] p. 48.
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the torsion S is completely inducible with respect to the decomposition (4.3)
of the tangent subspace at x, (by identifying I’ with dz . (O")).

On the other hand, for two subalgebras I’ and M of M, if we set DV,
M N={ad (X, Y); X € W, Y e WM"}, DM, IN) can be regarded as the holonomy
algebra of (M, V) since R, (X, Y)= ad i(X, Y)for any X, Yin 9. Therefore,
if M=G/H is simply connected, the subalgebra %’ of M is DM, M)-invariant
if and only if the tangent subspace dn () is invariant under the connected
homogeneous holonomy group at x,.

TueoreMm 3. Let M=G/H be a simply connected reductive homogeneous
space of a connected Lie group G with a fixed Lie algebra decomposition &=
M+9. Suppose that:

(1) The algebra (I, ¢) is a direct sum of the subspace My={X € W;
(X, M)=0} and a semi-simple subalgebra M’ which is decomposed into a
direct sum of simple ideals as (4.3).

(2) @(gﬁ” gﬁj)ZO for L#]

(3) Each subspace M; (=0, 1, 2, ..., p) is DM, M)-invariant.

Then (M, V) is globally affinely isomorphic to an affine product of a locally
affine symmetric space M, and locally reductive spaces M, M, --., M,.

Proor. By identifying 9t with the tangent space at x,=7(e), the assump-
tions (1), (2) and (3) correspond to those in Corollary to Theorem 1 respec-
tively. In fact, as mentioned above, (1) and (3) are equivalent to the corre-
sponding conditions of complete inducibility of the torsion and holonomy
invariance of the subspaces respectively. The condition (2) implies that ad
WX, Y)=0 for X € M; and Y € M, (i=~)), which is equivalent to R, (M;, M;)=0
for i=j.

Since FR=0 and FS=0 on M, Corollary of Theorem 1 implies that there
pass through x, the leaves M, My, ..., M, of distributions obtained by parallel
displacement of the subspaces My, My, --., M, respectively and that M is lo-
cally affinely isomorphic to the affine product M, x M, x --- x M,. Since each
My(i=0,1, 2, ..., p) has a connection induced naturally from the canonical con-
nection F on M, its curvature and torsion are both parallel on M;, in particular,
M, has zero torsion by the definition of the subspace I, i. e., M, is a locally
affine symmetric space. Since the canonical connection of a reductive homoge-
neous space is complete, we have a global decomposition of (G/H, V) by The-
orem 2.

Remark. In the Theorem 3, if the condition (3) is replaced by (3") each
M; is ad (D)-invariant, then (M, F) is locally affinely isomorphic to an affine
product of reductive homogeneous spaces M;=G;/H (i=0, 1, ..., p) with ca-
nonical connections, where G; is a connected subgroup of G corresponding to
Lie subalgebra &;=9;+ .

In fact, since ad () contains DN, M), (3) implies (8). Moreover, under
the assumption (8') it is easy to see that &;=9;+ 9 is a Lie subalgebra of &.
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Since H is connected M;=G;/H is well defined and reductive. Each locally
reductive space M(i=0, 1, ..., p) obtained in Theorem 3 has the same cur-
vature and the torsion at x, as those of M at the origin, with respect to the
canonical connection. Therefore, M; and M; are locally affinely isomorphic to
each other at their origin (5] p. 62). For any point x in M, there exists a
local affine isomorphism of (M, V) which sends x to x,. Thus, for any point
x in M, there exists a local affine isomorphism of some neighborhood of x to
a neighborhood of the origin of affine product Mg x M]x --- x Mj,.

§ 5. Some remarks about local loops

Any point p of a linearly connected manifold M has a neighborhood U in
which a binary operation f, can be defined so as to form a local loop A(U, f,)
([3]). The binary operation f, is defined as follows; let U be a normal neigh-
borhood in which two points are joined by one and only one geodesic arc and
let x and y be any two points of U, then there exist the unique geodesic arc
x(¢) (0=t =a) in U joining p=x(0) to x = x(a) and the unique geodesic arc y(s)
(0 =s5=b) joining p= y(0) to y= y(b) (parameters are all affine). Let X, be
the vector tangent to x(¢) at p and X, be the vector obtained by the parallel
displacement of X, to y along the arc y(s), then we have the unique geodesic
arc z(¢) (0=t =4a’) in U starting from y and tangent to X,. If z(¢) can be
defined for :=a, we define f,(x, y)=z(a) and call it the product of x and y in
U with respect to the origin p.

The product operation f, defines a differentiable local loop (U, f,) on U,
that is, (1) for any point x in U if we define 0.(y)=/f,(x, y)and 2.(y)=f4(y, x)
(y€ U), each of o, and 4, is a local diffeomorphism of a neighborhood of p onto
a neighborhood of x; (2) f,(p, x)=f4(x, p)=x for any x € U, i. e., p is the unit.

The associative law does not hold in general.

Let T be a parallel distribution on M and suppose that the torsion tensor
is inducible to T, then by Proposition 1 T is completely integrable. Let N be
the maximal integral manifold of T containing p, then there exists a normal
neighborhood U’ of p in N (with respect to the naturally induced connection
7’) which is contained in the connected component of NN\U, where U is the
underlying neighborhood of a local loop (U, f,). The local loop AU, f};) is
thereby defined in (&, 7’).

ProrosiTion 3. The local loop AU, f}) is a local subloop of AU, f,).

Proor. Let x and y be two points in U'CU and let x(z) (0=¢=c) and
¥(s) (0 =5 <_b) be geodesic arcs in U joining p to x and y respectively. Since
T is parallel any geodesic in (M, V) tangent to IV at a point is a geodesic in
(N, 7') and the parallel displacement of a vector in 7,(N) with respect to
P’ coincides with one with respect to F, along any curve in N. Therefore,
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Fi(xy P=Ff4(x, y) if both sides are defined.

TueoreMm 4. Let 77 and 77 be complementary parallel distributions on
a linearly connected manifold (M, ) and let L(U, f,) be a local loop in M with
origin p. Suppose that the conditions (1) and (2) in theorem 1 are satisfied,
then A(U, f,) is locally isomorphic to the direct product of local loops A(U", f7)
and A(U", f,") where U’ and U” are normal neighborhoods of p with respect
to '/ and 7" respectively introduced on the integral manifolds of 77 and 7"
containing p.

Proor. By the above Proposition, local loops A(U", f3)and L(U", f}) can
be defined with respect to /' and " respectively, and they are local subloops
of AU, f,). Without loss of generality, we can suppose that U'x U” is af-
finely isomorphic to U and that they are coordinate neighborhoods such as
considered in the proof of Theorem 1. Then any geodesic arc x(z) (0=t <a)
in U is represented by (x'(¢), x”(¢)) in U’ x U” where x'(z) (resp. x'(z)) is a
geodesic in U’ (resp. U”") with respect to V' (resp. V"), and a parallel vector
field X(¢) on the geodesic x(z) is represented by (X'(z), X”'(¢)) where X'(¢) (resp.
X"(¢)) is the parallel vector field along x'(z) (resp. x”(¢)). In fact the above
facts are clear at a glance of corresponding equations in local coordinates by
taking account of the condition that the coefficients /7%, of / containing some
distinct sort of indices vanish. Therefore, identifying U with U’ x U” by the
affine isomorphism we have f,(x, y)=(f(x', ¥'), f3'(x”, ¥")) for two points
x=(x', ") and y=(y', ") in U, if the left or the right side of the equation
is defined.
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