On the Decomposition of a Linearly Connected Manifold with Torsion.

Michihiko Kikkawa
(Received February 13, 1969)

§ 1. Introduction

Let M be a differentiable manifold with a linear connection, and let Φ_{x} be the homogeneous holonomy group at a point $x \in M$. If the tangent vector space at x is decomposed into a direct sum of subspaces which are invariant under Φ_{x}, then by the parallel displacements along curves on M, parallel distributions are defined on M corresponding to those subspaces. If M is a Riemannian manifold and its connection is Riemannian, then by the de Rham decomposition theorem ($[7]$ or [4] p. 185) the above parallel distributions are completely integrable and, at any point, M is locally isometric to the direct product of leaves through the point. Moreover, if M is simply connected and complete, it is globally isometric to the direct product of those leaves (see also [7] or [4] p. 192).

The above local and global decomposition theorems of de Rham are generalized to the case of pseudo-Riemannian manifold by $\mathrm{H} . \mathrm{Wu}([9])$. On the other hand, in [2], S. Kashiwabara generalized the global decomposition theorem to the case of linearly connected manifold without torsion, under the assumption of local decomposability.

In the present paper, a linearly connected manifold with torsion will be treated and a condition of local decomposition will be given in terms of curvature and torsion (Theorem 1). Next, in §4, the results will be applied to a reductive homogeneous space with the canonical connection of the second kind, using the notion of algebra introduced by A. A. Sagle in [8].

Finally, in §5, we shall remark about the decomposition of a local loop with any point in M as its origin ([3]), corresponding to the local decomposition of the linearly connected manifold M.

The author wishes to express his hearty thanks to Prof. K. Morinaga for his kind suggestions and encouragement during the preparation of this paper at Hiroshima University.

§ 2. Integrability of parallel distributions

Let (M, ∇) be a connected differentiable manifold with a linear connection, where V means the covariant differentiation of the connection. The curvature tensor R and the torsion tensor S are defined by the formulas:

$$
\begin{align*}
& R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z \tag{2.1}\\
& S(X, Y)=\nabla_{X} Y-\nabla_{Y} X-[X, Y] \tag{2.2}
\end{align*}
$$

for vector fields X, Y and Z on M.
Definition 1. For a subspace T_{x}^{\prime} of the tangent vector space $T_{x}(M)$ at x, the torsion tensor S is said to be inducible to T_{x}^{\prime} at x if $S_{x}\left(X_{x}, Y_{x}\right) \in T_{x}^{\prime}$ for any X_{x} and Y_{x} in T_{x}^{\prime}. When $T_{x}(M)$ is decomposed into a direct sum of complementary subspaces T_{x}^{\prime} and $T_{x}^{\prime \prime}$, the torsion S is said to be completely inducible with respect to the direct sum if S is inducible to each of T_{x}^{\prime} and $T_{x}^{\prime \prime}$, and $S_{x}\left(X_{x}, Y_{x}\right)=0$ for $X_{x} \in T_{x}^{\prime}$ and $Y_{x} \in T_{x}^{\prime \prime}$. The complete inducibility of torsion with respect to a direct sum of finite number of subspaces will be defined similarly. The torsion S is said to be inducible or completely inducible to distributions if it is so at every point in M.

If, at a point x_{0} in M, a subspace $T_{x_{0}}^{\prime}$ of the tangent vector space $T_{x_{0}}(M)$ is invariant under the homogeneous holonomy group $\Phi_{x_{0}}$, the parallel displacements along curves joining x_{0} to all points of M define a parallel distribution T^{\prime} on M. In fact the result of parallel displacement of $T_{x_{0}}^{\prime}$ to a point x is independent of the choice of curves from x_{0} to x.

Proposition 1. A parallel distribution T is completely integrable if and only if the torsion tensor S is inducible to T.

Proof. Let Y be a vector field in T. Since T is parallel, $\nabla_{X} Y$ also belongs to T for any vector field X on M. Hence for any pair of vector fields X, Y in T, vector fields $\nabla_{X} Y$ and $\nabla_{Y} X$ belong to T. Now, from (2.2) the bracket [$X, Y]$ of X and Y in T belongs to T if and only if $S(X, Y)$ belongs to T.

Proposition 2. Let T^{\prime} be a completely integrable parallel distribution on M, and N be a leaf (maximal integral manifold) of T^{\prime}. Then N is a totally geodesic submanifold of (M, ∇). Moreover, (M, ∇) induces a linear connection ∇^{\prime} on N whose curvature tensor R^{\prime} and torsion tensor S^{\prime} are tensors induced naturally in N from R and S respectively.

Proof. A geodesic which passes through a point x in N and is tangent to N at x has its tangent vectors in the parallel distribution T^{\prime}. Since N is a leaf of T^{\prime} through x, this geodesic is a curve in $N([4]$, p. 86). Hence by definition N is a totally geodesic submanifold of M. Next, let X, Y be tangent vector fields on N. If $X_{x_{0}} \neq 0$, denote by $\tau(s)$ the parallel displacement of vectors along a trajectory $c(s)$ of X in a neighborhood of $x_{0}=c(0)$ in N. Since any vector obtained by parallel displacement of a tangent vector of N also is tangent to $N, \tau(s)^{-1} Y_{c(s)}$ is contained in $T_{x_{0}}(N)$. Thus we can define an operation ∇^{\prime} by the formula:

$$
\begin{equation*}
\left(\nabla_{x}^{\prime} Y\right)_{x_{0}}=\lim _{s \rightarrow 0} \frac{1}{s}\left(\tau(s)^{-1} Y_{c(s)}-Y_{x_{0}}\right) \tag{2.3}
\end{equation*}
$$

for any vector fields $X\left(X_{x_{0}} \neq 0\right)$ and Y on N, and by setting $\left(\nabla_{X}^{\prime} Y\right)_{x_{0}}=0$ for $X_{x_{0}}=0$. Then ∇^{\prime} defines a linear connection on N. In fact, let ($u^{1}, u^{2}, \ldots, u^{n}$, u^{n+1}, \ldots, u^{m}) be a system of coordinates valid in a neighborhood V of x_{0} in M such that $u^{n+1}=0, \ldots, u^{m}=0$ define N in a neighborhood of x_{0} and (u^{1}, \ldots, u^{n}) is a system of coordinates in a neighborhood U of x_{0} in N. Then the second term of (2.3) has an expression

$$
\begin{equation*}
\left(\frac{d Y^{a}}{d s}+\Gamma_{b c}^{a} \frac{d c^{b}}{d s} Y^{c}\right)_{s=0}\left(\frac{\partial}{\partial u^{a}}\right)_{x_{0}}, \quad 1 \leqq a, b, c \leqq n \tag{2.4}
\end{equation*}
$$

in the local coordinates, where $\Gamma_{j k}^{i}$'s are the coefficients of given connection expressed in $V\left([1]\right.$, p. 41). From (2.4) we see that the operation $\nabla^{\prime}: \mathfrak{X}^{\prime} \times \mathfrak{X}^{\prime} \rightarrow \mathfrak{X}^{\prime}$ satisfies the conditions of covariant differentiation on N, where \mathfrak{X}^{\prime} denotes the module of vector fields on N. For any vector fields X, Y on N, if we choose vector fields X^{*}, Y^{*} on M which coincide with X, Y respectively on an open subset U of N, we have $\left(\nabla_{X^{*}} Y^{*}\right)_{x}=\left(\nabla_{X}^{\prime} Y\right)_{x}$ at each point x in U. Therefore, from (2.1) and (2.2), the curvature R^{\prime} and the torsion S^{\prime} of (N, ∇^{\prime}) are equal to the tensors induced naturally by restricting R and S to N respectively.

§ 3. Decomposition of linearly connected manifolds

Let $\left(M^{\prime}, \nabla^{\prime}\right)$ and ($\left.M^{\prime \prime}, \nabla^{\prime \prime}\right)$ be connected manifolds each of which has a linear connection. We choose a covering of $M=M^{\prime} \times M^{\prime \prime}$ by coordinate neighborhoods adapted to the direct product, that is, each coordinate neighborhood U is a direct product of coordinate neighborhoods U^{\prime} in M^{\prime} and $U^{\prime \prime}$ in $M^{\prime \prime}$ with a system of coordinates (${ }^{\prime} u^{1},{ }^{\prime} u^{2}, \ldots,{ }^{\prime} u^{a}, \ldots,{ }^{\prime} u^{m^{\prime}},{ }^{\prime \prime} u^{1}, \ldots,{ }^{\prime \prime} u^{\alpha}, \ldots,{ }^{\prime \prime} u^{m^{\prime \prime}}$) where (' u^{a}) and (${ }^{\prime \prime} u^{\alpha}$) are systems of local coordinates on U^{\prime} and $U^{\prime \prime}$ respectively and $m^{\prime}=\operatorname{dim} M^{\prime}, m^{\prime \prime}=\operatorname{dim} M^{\prime \prime}$.

We shall define a linear connection on M by associating a family of functions $\Gamma_{(U)}=\left\{\Gamma_{j k}^{i}\left({ }^{\prime} u^{a},{ }^{\prime \prime} u^{\alpha}\right)\right\}$ with each adapted coordinate neighborhood U as follows

$$
\begin{align*}
& \Gamma_{b c}^{a}\left({ }^{\prime} u,{ }^{\prime \prime} u\right)={ }^{\prime} \Gamma_{b c}^{a}\left({ }^{\prime} u\right) \quad \text { for } \quad 1 \leqq a, b, c \leqq m^{\prime} \text {, } \tag{3.1}\\
& \Gamma_{j k}^{i}\left({ }^{\prime} u,{ }^{\prime \prime} u\right)={ }^{\prime \prime} \Gamma_{\beta \gamma}^{\alpha}\left({ }^{\prime \prime} u\right) \text { for } 1 \leqq \alpha, \beta, \gamma \leqq m^{\prime \prime} \text {, and } i=m^{\prime}+\alpha \text {, } \tag{3.2}\\
& j=m^{\prime}+\beta, \quad k=m^{\prime}+\gamma, \\
& \Gamma_{j k}^{i}\left({ }^{\prime} u,{ }^{\prime \prime} u\right)=0 \text { for the rest, } \tag{3.3}
\end{align*}
$$

where ${ }^{\prime} \Gamma_{b c}^{a}\left({ }^{\prime} u\right)$'s (resp. ${ }^{\prime \prime} \Gamma_{\beta \gamma}^{\alpha}\left({ }^{\prime \prime} u\right)$'s) are the coefficients of the connection on M^{\prime} (resp. $M^{\prime \prime}$) with respect to the local coordinates (' u^{a}) (resp. (" u^{α})). If $U=$ $U^{\prime} \times U^{\prime \prime}$ and $V=V^{\prime} \times V^{\prime \prime}$ are coordinate neighborhoods adapted to the direct product and if they have common points, two families $\Gamma_{(U)}$ and $\Gamma_{(V)}$ are related to each other in the law of transformation of coefficients of a linear connection;

$$
\begin{align*}
\Gamma_{(V) q r}^{p}= & \sum_{i, j, k=1}^{m^{\prime}+m^{\prime \prime}} \frac{\partial u^{j}}{\partial v^{q}} \frac{\partial u^{k}}{\partial v^{r}} \frac{\partial v^{p}}{\partial u^{i}} \Gamma_{(U) j k}^{i} \tag{3.4}\\
& +\sum_{i=1}^{m^{\prime}+m^{\prime \prime}} \frac{\partial^{2} u^{i}}{\partial v^{q} \partial v^{r}} \frac{\partial v^{p}}{\partial u^{i}}, \quad 1 \leqq p, q, r \leqq m^{\prime}+m^{\prime \prime}
\end{align*}
$$

Thus a linear connection is defined on $M=M^{\prime} \times M^{\prime \prime}$.
Definition 2. The product manifold $M=M^{\prime} \times M^{\prime \prime}$ with the linear connection defined above will be called the affine product of $\left(M^{\prime}, \nabla^{\prime}\right)$ and ($M^{\prime \prime}, \nabla^{\prime \prime}$) ([2]).

Theorem 1. Let (M, ∇) be a connected differentiable manifold with a linear connection. Suppose that the homogeneous holonomy group $\Phi_{x_{0}}$ leaves complementary subspaces $T_{x_{0}}^{\prime}$ and $T_{x_{0}}^{\prime \prime}$ of the tangent space at x_{0} invariant and denote by T^{\prime} and $T^{\prime \prime}$ the corresponding parallel distributions. If (1) the curvature R satisfies $R(X, Y)=0$ for $X \in T^{\prime}$ and $Y \in T^{\prime \prime}$, (2) the torsion S is completely inducible to these distributions, then T^{\prime} and $T^{\prime \prime}$ are both completely integrable, and at each point of $M,(M, \nabla)$ is locally affinely isomorphic to the affine product of $\left(M^{\prime}, \nabla^{\prime}\right)$ and $\left(M^{\prime \prime}, \nabla^{\prime \prime}\right)$ where $M^{\prime}\left(\right.$ resp. $\left.M^{\prime \prime}\right)$ is a leaf of T^{\prime} (resp. $\left.T^{\prime \prime}\right)$ with the connection ∇^{\prime} (resp. $\nabla^{\prime \prime}$) induced naturally from (M, ∇).

Proof. Since the torsion S is inducible to T^{\prime} and $T^{\prime \prime}$, these distributions are completely integrable (Proposition 1), and every leaf M^{\prime} (resp. $M^{\prime \prime}$) of T^{\prime} (resp. $T^{\prime \prime}$) has a naturally induced connection (Proposition 2). Let x_{0} be any point in M and assume that M^{\prime} and $M^{\prime \prime}$ contain x_{0} in common. There exists a coordinate neighborhood U^{\prime} in M^{\prime} (resp. $U^{\prime \prime}$ in $M^{\prime \prime}$) with a system of coordinates $\left(u^{1}, u^{2}, \ldots, u^{a}, \ldots, u^{m^{\prime}}\right)\left(\operatorname{resp} .\left(u^{m^{\prime}+1}, \ldots, u^{\alpha}, \ldots, u^{m^{\prime}+m^{\prime \prime}}\right)\right)$ such that $U^{\prime} \times U^{\prime \prime}$ is diffeomorphic to a neighborhood U of x_{0} in M and that $\left(\frac{\partial}{\partial u^{1}}, \ldots, \frac{\partial}{\partial u^{a}}, \ldots\right.$, $\left.\frac{\partial}{\partial u^{m^{\prime}}}\right)$ and $\left(\frac{\partial}{\partial u^{m^{\prime}+1}}, \ldots, \frac{\partial}{\partial u^{\alpha}}, \ldots, \frac{\partial}{\partial u^{m^{\prime}+m^{\prime \prime}}}\right)$ form local bases for T^{\prime} and $T^{\prime \prime}$ respectively if we choose ($u^{1}, \ldots, u^{a}, \ldots, u^{m^{\prime}}, u^{m^{\prime}+1}, \ldots, u^{m^{\prime}+m^{\prime \prime}}$) as local coordinates in U. Denote by $\Gamma_{j k}^{h}\left(u^{i}\right)\left(h, i, j, k=1,2, \ldots, m^{\prime}+m^{\prime \prime}\right)$ the coefficients of the connection with respect to the above coordinates in U. In the rest of the proof we shall adopt notational conventions of indices as $1 \leqq a, b, c, \ldots \leqq m^{\prime}$; $m^{\prime}+1 \leqq \alpha, \beta, \gamma, \cdots \leqq m^{\prime}+m^{\prime \prime}$ and $1 \leqq i, j, k, \cdots \leqq m^{\prime}+m^{\prime \prime}$.

Since $\nabla_{\frac{\partial}{\partial u^{\nu}}} \frac{\partial}{\partial u^{c}}$ belong to T^{\prime}, all coefficients of the type $\Gamma_{b c}^{\alpha}\left(u^{i}\right)$ vanish and $\Gamma_{\alpha \beta}^{b}$'s similarly vanish. By the assumption (2) we have

$$
\begin{equation*}
\nabla_{\frac{\partial}{\partial u^{a}}} \frac{\partial}{\partial u^{\alpha}}-\nabla_{\partial}^{\partial u^{\alpha}} \frac{\partial}{\partial u^{a}}=0 . \tag{3.5}
\end{equation*}
$$

On the other hand since the distributions T^{\prime} and $T^{\prime \prime}$ are parallel, $\nabla_{\frac{\partial}{\partial u^{a}}} \frac{\partial}{\partial u^{\alpha}}$ is in $T^{\prime \prime}$ as long as $\frac{\partial}{\partial u^{\alpha}}$ is in $T^{\prime \prime}$, and $\nabla_{\frac{\partial}{\partial u^{\alpha}}} \frac{\partial}{\partial u^{a}}$ is in T^{\prime} simultaneously with $\frac{\partial}{\partial u^{a}}$.

Therefore, from (3.5) we have $\frac{\nabla_{\partial}}{\partial u^{a}} \frac{\partial}{\partial u^{\alpha}}=\frac{\nabla_{\partial}}{\partial u^{\alpha}} \frac{\partial}{\partial u^{a}}=0$, which gives $\Gamma_{a \alpha}^{b}=\Gamma_{\alpha a}^{b}$ $=0$ and $\Gamma_{a \alpha}^{\beta}=\Gamma_{\alpha a}^{\beta}=0$.

By the assumption (1), $R\left(\frac{\partial}{\partial u^{a}}, \frac{\partial}{\partial u^{\alpha}}\right)=0$, from which we have $\frac{\partial}{\partial u^{a}} \Gamma_{\beta \gamma}^{\alpha}\left(u^{i}\right)=0$ and $\frac{\partial}{\partial u^{\alpha}} \Gamma_{b c}^{a}\left(u^{i}\right)=0$. From the definition of connection on a leaf M^{\prime}, we have $\Gamma_{c d}^{b}\left(u^{i}\right)=^{\prime} \Gamma_{c d}^{b}\left(u^{a}\right)$ on M^{\prime} where the coefficients of the connection ∇^{\prime} on M^{\prime} are denoted by ' $\Gamma_{c d}^{b}\left(u^{a}\right)$. Similarly we have $\Gamma_{\gamma \delta}^{\beta}\left(u^{i}\right)={ }^{\prime \prime} \Gamma_{\gamma \delta}^{\beta}\left(u^{\alpha}\right)$ on $M^{\prime \prime}$, where ${ }^{\prime \prime} \Gamma_{\gamma \delta}^{\beta}\left(u^{\alpha}\right)$'s are coefficients of the connection $\nabla^{\prime \prime}$ on $M^{\prime \prime}$.

After all, we can conclude that (M, ∇) is locally affinely isomorphic to the affine product of $\left(M^{\prime}, \nabla^{\prime}\right)$ and $\left(M^{\prime \prime}, \nabla^{\prime \prime}\right)$ by the diffeomorphism of U onto $U^{\prime} \times U^{\prime \prime}$.

Remark. From the definition of the affine product (Definition 2), it is clear that the conditions (1) and (2) are necessary for (M, ∇) to be locally affinely isomorphic at each point to an affine product of leaves of parallel distributions containing the point.

Definition 3. A linearly connected differentiable manifold (M, ∇) is said to be locally reductive if the curvature tensor R and the torsion tensor S are both parallel with respect to the connection, i. e., $\nabla R=0$ and $\nabla S=0$.

Corollary. Let (M, ∇) be a connected differentiable manifold with a linear connection which is locally reductive. Suppose that, at a point x_{0} in M, the following conditions are satisfied:
(1) The tangent space $T_{x_{0}}$ to M is decomposed into a direct sum of subspaces invariant under the homogeneous holonomy group, such as $T_{x_{0}}=$ $T_{x_{0}}^{\prime}+T_{x_{0}}^{\prime \prime}$;
(2) $R_{x_{0}}(X, Y)=0$ for $X \in T_{x_{0}}^{\prime}$ and $Y \epsilon T_{x_{0}}^{\prime \prime}$;
(3) $S_{x_{0}}$ is completely inducible (Definition 1) with respect to the direct sum.

Then any point of M has a neighborhood which is locally affinely isomorphic to an affine product of locally reductive spaces.

Proof. If $\nabla S=0$, we have $S_{x}\left(\tau X_{x_{0}}, \tau Y_{x_{0}}\right)=\tau S_{x_{0}}\left(X_{x_{0}}, Y_{x_{0}}\right)$ for any $X_{x_{0}}$ and $Y_{x_{0}}$ in $T_{x_{0}}(M)$, where τ is the parallel displacement of tangent vectors along a curve starting at x_{0} and ending to any point x in M. Hence S_{x} is inducible to the tangent subspace $T_{x}^{\prime}=\tau T_{x_{0}}^{\prime}$ at x if $S_{x_{0}}$ is inducible to the subspace $T_{x_{0}}^{\prime}$ at x_{0}. Complete inducibility at any point x follows similarly. In the same way, if $\nabla R=0$ we have $R_{x}\left(\tau X_{x_{0}}, \tau Y_{x_{0}}\right) \tau Z_{x_{0}}=\tau\left(R_{x_{0}}\left(X_{x_{0}}, Y_{x_{0}}\right) Z_{x_{0}}\right)$. Hence $R\left(T_{x}^{\prime}\right.$, $\left.T_{x}^{\prime \prime}\right)=0$ at any point x if and only if $R\left(T_{x_{0}}^{\prime}, T_{x_{0}}^{\prime \prime}\right)=0$, where $R\left(T_{x}^{\prime}, T_{x}^{\prime \prime}\right)=\left\{R_{x}(X\right.$, $Y) ; X \in T_{x}^{\prime}$ and $\left.Y \in T_{x}^{\prime \prime}\right\}$. Therefore the corresponding parallel distributions T^{\prime} and $T^{\prime \prime}$ satisfy the conditions (1) and (2) in Theorem 1, and any point in M has a neighborhood which is locally affinely isomorphic to the affine product of leaves M^{\prime} and $M^{\prime \prime}$ of T^{\prime} and $T^{\prime \prime}$ respectively. Since $\nabla R=0$ and $\nabla S=0$ on M,
the naturally induced tensors R^{\prime} and S^{\prime} (resp. $R^{\prime \prime}$ and $S^{\prime \prime}$) are also parallel with respect to the induced connection on $M^{\prime}\left(\right.$ resp. $\left.M^{\prime \prime}\right)$.

Theorem 2. Let (M, ∇) be a connected and simply connected differentiable manifold with a complete linear connection. Then under the assumptions same as in Theorem 1 we have the global affine isomorphism of (M, ∇) to the affine product of $\left(M^{\prime}, \nabla^{\prime}\right)$ and $\left(M^{\prime \prime}, \nabla^{\prime \prime}\right)$.

For the proof, see [2]. In [2] a global decomposition of a linearly connected manifold without torsion has been treated and it is also valid in our case.

§ 4. Application to reductive homogeneous spaces ${ }^{1)}$.

Definition 4. A homogeneous space G / H of a connected Lie group G is called reductive if the following condition is satisfied; in the Lie algebra (5) of G there exists a subspaces \mathfrak{M} such that $\mathbb{C S}^{5}$ is decomposed into a direct sum $\mathfrak{B}=\mathfrak{M}+\mathfrak{F}$ and $\operatorname{ad}(H) \mathfrak{M} \subset \mathfrak{M}$, where $\mathfrak{S c}$ is the subalgebra of \mathfrak{E} corresponding to H.

Let $M=G / H$ be a reductive homogeneous space with a fixed Lie algebra decomposition $\mathfrak{B}=\mathfrak{M}+\mathfrak{K}$ (direct sum), and let V denote the canonical connection (of the second kind in the sense of Nomizu [6]). The connection ∇ is G invariant on M whose curvature tensor R and torsion tensor S are parallel on M. Let π denote the natural projection of G onto M. By identifying \mathfrak{M} with the tangent space at the origin $x_{0}=\pi(e)$ (e is the identity of G), we have

$$
\begin{align*}
& R_{x_{0}}(X, Y)=\operatorname{ad}\left(-[X, Y]_{\mathfrak{g}}\right) \tag{4.1}\\
& S_{x_{0}}(X, Y)=-[X, Y]_{\mathfrak{M}} \tag{4.2}
\end{align*}
$$

for any X, Y in \mathfrak{M}, where $[X, Y]_{5}$ and ${\underset{\mathfrak{S}}{3}}^{[} X, Y]_{\mathfrak{M}}$ denote the \mathfrak{S}-component and the \mathfrak{M}-component of the bracket with respect to the direct sum $\mathfrak{G}=\mathfrak{M}+\mathfrak{C}([6]$ Theorem 10. 3).

We shall define two mappings $([8]) \varphi(X, Y)=-[X, Y]_{m}$ and $h(X, Y)=$ $-[X, Y]_{\mathfrak{\xi}}$ for any X, Y in \mathfrak{M}. The mapping φ is an anti-symmetric and bilinear binary operation on \mathfrak{M} which defines an algebra (\mathfrak{M}, φ). The subalgebra \mathfrak{M}^{\prime} of \mathfrak{M} is said to be simple if $\varphi\left(\mathfrak{M}^{\prime}, \mathfrak{M}^{\prime}\right) \neq 0$ and \mathfrak{M}^{\prime} has no proper ideal of \mathfrak{M}^{\prime}. The subalgebra \mathfrak{M}^{\prime} is said to be semi-simple if it is a direct sum

$$
\begin{equation*}
\mathfrak{M}^{\prime}=\mathfrak{M}_{1}+\mathfrak{M}_{2}+\cdots+\mathfrak{M}_{p} \quad \text { (direct sum) } \tag{4.3}
\end{equation*}
$$

of ideals $\mathfrak{M}_{i}(i=1,2, \ldots, p)$ each of which is simple.
If \mathfrak{M}^{\prime} is semi-simple with direct sum decomposition (4.3) into simple ideals, then $\varphi\left(\mathfrak{M}_{i}, \mathfrak{M}_{i}\right) \subset \mathfrak{M}_{i}$ and $\varphi\left(\mathfrak{M}_{i}, \mathfrak{M}_{j}\right)=0$ for $i \neq j$, and since $S_{x_{0}}(X, Y)=\varphi(X, Y)$

[^0]the torsion S is completely inducible with respect to the decomposition (4.3) of the tangent subspace at x_{0} (by identifying \mathfrak{M}^{\prime} with $d \pi_{e}\left(\mathfrak{M}^{\prime}\right)$).

On the other hand, for two subalgebras \mathfrak{M}^{\prime} and $\mathfrak{M}^{\prime \prime}$ of \mathfrak{M}, if we set $\mathfrak{D}\left(\mathfrak{M}^{\prime}\right.$, $\left.\mathfrak{M}^{\prime \prime}\right)=\left\{\operatorname{ad} h(X, Y) ; X \in \mathfrak{M}^{\prime}, Y \in \mathfrak{M}^{\prime \prime}\right\}, \mathfrak{D}(\mathfrak{M}, \mathfrak{M})$ can be regarded as the holonomy algebra of (M, ∇) since $R_{x_{0}}(X, Y)=$ ad $h(X, Y)$ for any X, Y in \mathfrak{M}. Therefore, if $M=G / H$ is simply connected, the subalgebra \mathfrak{N}^{\prime} of \mathfrak{M} is $\mathfrak{D}(\mathfrak{M}, \mathfrak{M})$-invariant if and only if the tangent subspace $d \pi_{e}\left(\mathfrak{M}^{\prime}\right)$ is invariant under the connected homogeneous holonomy group at x_{0}.

Theorem 3. Let $M=G / H$ be a simply connected reductive homogeneous space of a connected Lie group G with a fixed Lie algebra decomposition $\mathbb{B}=$ $\mathfrak{M}+\mathfrak{F}$. Suppose that:
(1) The algebra (\mathfrak{M}, φ) is a direct sum of the subspace $\mathfrak{M}_{0}=\{X \epsilon \mathfrak{M}$; $\varphi(X, \mathfrak{M})=0\}$ and a semi-simple subalgebra \mathfrak{M}^{\prime} which is decomposed into a direct sum of simple ideals as (4.3).
(2) $\mathfrak{D}\left(\mathfrak{M}_{i}, \mathfrak{M}_{j}\right)=0 \quad$ for $\quad i \neq j$.
(3) Each subspace $\mathfrak{M}_{i}(i=0,1,2, \ldots, p)$ is $\mathfrak{D}(\mathfrak{M}, \mathfrak{M})$-invariant.

Then (M, ∇) is globally affinely isomorphic to an affine product of a locally affine symmetric space M_{0} and locally reductive spaces $M_{1}, M_{2}, \ldots, M_{p}$.

Proof. By identifying \mathfrak{M} with the tangent space at $x_{0}=\pi(e)$, the assumptions (1), (2) and (3) correspond to those in Corollary to Theorem 1 respectively. In fact, as mentioned above, (1) and (3) are equivalent to the corresponding conditions of complete inducibility of the torsion and holonomy invariance of the subspaces respectively. The condition (2) implies that ad $h(X, Y)=0$ for $X \in \mathfrak{M}_{i}$ and $Y \in \mathfrak{M}_{j}(i \neq j)$, which is equivalent to $R_{x_{0}}\left(\mathfrak{M}_{i}, \mathfrak{M}_{j}\right)=0$ for $i \neq j$.

Since $\nabla R=0$ and $\nabla S=0$ on M, Corollary of Theorem 1 implies that there pass through x_{0} the leaves $M_{0}, M_{1}, \ldots, M_{p}$ of distributions obtained by parallel displacement of the subspaces $\mathfrak{M}_{0}, \mathfrak{M}_{1}, \ldots, \mathfrak{M}_{p}$ respectively and that M is locally affinely isomorphic to the affine product $M_{0} \times M_{1} \times \cdots \times M_{p}$. Since each $M_{i}(i=0,1,2, \ldots, p)$ has a connection induced naturally from the canonical connection ∇ on M, its curvature and torsion are both parallel on M_{i}, in particular, M_{0} has zero torsion by the definition of the subspace M_{0}, i. e., M_{0} is a locally affine symmetric space. Since the canonical connection of a reductive homogeneous space is complete, we have a global decomposition of ($G / H, \nabla$) by Theorem 2.

Remark. In the Theorem 3, if the condition (3) is replaced by (3') each \mathfrak{M}_{i} is ad (\mathfrak{C})-invariant, then (M, ∇) is locally affinely isomorphic to an affine product of reductive homogeneous spaces $M_{i}=G_{i} / H(i=0,1, \ldots, p)$ with canonical connections, where G_{i} is a connected subgroup of G corresponding to Lie subalgebra $\mathscr{A}_{i}=\mathfrak{M}_{i}+\mathfrak{K}_{2}$.

In fact, since ad (\mathfrak{C}) contains $\mathfrak{D}(\mathfrak{M}, \mathfrak{M}),\left(3^{\prime}\right)$ implies (3). Moreover, under the assumption (3^{\prime}) it is easy to see that $\mathscr{H}_{i}=\mathfrak{M}_{i}+\mathscr{S}_{2}$ is a Lie subalgebra of $\mathbb{C S}$.

Since H is connected $M_{i}^{\prime}=G_{i} / H$ is well defined and reductive. Each locally reductive space $M_{i}(i=0,1, \ldots, p)$ obtained in Theorem 3 has the same curvature and the torsion at x_{0} as those of M_{i}^{\prime} at the origin, with respect to the canonical connection. Therefore, M_{i} and M_{i}^{\prime} are locally affinely isomorphic to each other at their origin ($[5]$ p. 62). For any point x in M, there exists a local affine isomorphism of (M, ∇) which sends x to x_{0}. Thus, for any point x in M, there exists a local affine isomorphism of some neighborhood of x to a neighborhood of the origin of affine product $M_{0}^{\prime} \times M_{1}^{\prime} \times \cdots \times M_{p}^{\prime}$.

§ 5. Some remarks about local loops

Any point p of a linearly connected manifold M has a neighborhood U in which a binary operation f_{p} can be defined so as to form a local loop $\mathcal{L}\left(U, f_{p}\right)$ ([3]). The binary operation f_{p} is defined as follows; let U be a normal neighborhood in which two points are joined by one and only one geodesic arc and let x and y be any two points of U, then there exist the unique geodesic arc $x(t)(0 \leqq t \leqq a)$ in U joining $p=x(0)$ to $x=x(a)$ and the unique geodesic arc $y(s)$ ($0 \leqq s \leqq b$) joining $p=y(0)$ to $y=y(b)$ (parameters are all affine). Let X_{p} be the vector tangent to $x(t)$ at p and X_{y} be the vector obtained by the parallel displacement of X_{p} to y along the arc $y(s)$, then we have the unique geodesic arc $z(t)\left(0 \leqq t \leqq a^{\prime}\right)$ in U starting from y and tangent to X_{y}. If $z(t)$ can be defined for $t=a$, we define $f_{p}(x, y)=z(a)$ and call it the product of x and y in U with respect to the origin p.

The product operation f_{p} defines a differentiable local loop $\mathcal{L}\left(U, f_{p}\right)$ on U, that is, (1) for any point x in U if we define $\rho_{x}(y)=f_{p}(x, y)$ and $\lambda_{x}(y)=f_{p}(y, x)$ ($y \in U$), each of ρ_{x} and λ_{x} is a local diffeomorphism of a neighborhood of p onto a neighborhood of x; (2) $f_{p}(p, x)=f_{p}(x, p)=x$ for any $x \in U$, i. e., p is the unit.

The associative law does not hold in general.
Let T be a parallel distribution on M and suppose that the torsion tensor is inducible to T, then by Proposition $1 T$ is completely integrable. Let N be the maximal integral manifold of T containing p, then there exists a normal neighborhood U^{\prime} of p in N (with respect to the naturally induced connection ∇^{\prime}) which is contained in the connected component of $N \cap U$, where U is the underlying neighborhood of a local loop $\mathcal{L}\left(U, f_{p}\right)$. The local loop $\mathcal{L}\left(U^{\prime}, f_{p}^{\prime}\right)$ is thereby defined in (N, ∇^{\prime}).

Proposition 3. The local loop $\mathcal{L}\left(U^{\prime}, f_{p}^{\prime}\right)$ is a local subloop of $\mathcal{L}\left(U, f_{p}\right)$.
Proof. Let x and y be two points in $U^{\prime} \subset U$ and let $x(t)(0 \leqq t \leqq a)$ and $y(s)(0 \leqq s \leqq b)$ be geodesic arcs in U joining p to x and y respectively. Since T is parallel any geodesic in (M, ∇) tangent to N at a point is a geodesic in (N, ∇^{\prime}) and the parallel displacement of a vector in $T_{p}(N)$ with respect to ∇^{\prime} coincides with one with respect to ∇, along any curve in N. Therefore,
$f_{p}^{\prime}(x, y)^{\prime}=f_{p}(x, y)$ if both sides are defined.
Theorem 4. Let T^{\prime} and $T^{\prime \prime}$ be complementary parallel distributions on a linearly connected manifold (M, ∇) and let $\mathcal{L}\left(U, f_{p}\right)$ be a local loop in M with origin p. Suppose that the conditions (1) and (2) in theorem 1 are satisfied, then $\mathcal{L}\left(U, f_{p}\right)$ is locally isomorphic to the direct product of local loops $\mathcal{L}\left(U^{\prime}, f_{p}^{\prime}\right)$ and $\mathcal{L}\left(U^{\prime \prime}, f_{p}^{\prime \prime}\right)$ where U^{\prime} and $U^{\prime \prime}$ are normal neighborhoods of p with respect to ∇^{\prime} and $\nabla^{\prime \prime}$ respectively introduced on the integral manifolds of T^{\prime} and $T^{\prime \prime}$ containing p.

Proof. By the above Proposition, local loops $\mathcal{L}\left(U^{\prime}, f_{p}^{\prime}\right)$ and $\mathcal{L}\left(U^{\prime \prime}, f_{p}^{\prime \prime}\right)$ can be defined with respect to ∇^{\prime} and $\nabla^{\prime \prime}$ respectively, and they are local subloops of $\mathcal{L}\left(U, f_{p}\right)$. Without loss of generality, we can suppose that $U^{\prime} \times U^{\prime \prime}$ is affinely isomorphic to U and that they are coordinate neighborhoods such as considered in the proof of Theorem 1. Then any geodesic arc $x(t)(0 \leqq t \leqq a)$ in U is represented by ($x^{\prime}(t), x^{\prime \prime}(t)$) in $U^{\prime} \times U^{\prime \prime}$ where $x^{\prime}(t)$ (resp. $x^{\prime \prime}(t)$) is a geodesic in $U^{\prime}\left(\right.$ resp. $\left.U^{\prime \prime}\right)$ with respect to $\nabla^{\prime}\left(\right.$ resp. $\left.\nabla^{\prime \prime}\right)$, and a parallel vector field $X(t)$ on the geodesic $x(t)$ is represented by $\left(X^{\prime}(t), X^{\prime \prime}(t)\right)$ where $X^{\prime}(t)$ (resp. $\left.X^{\prime \prime}(t)\right)$ is the parallel vector field along $x^{\prime}(t)$ (resp. $x^{\prime \prime}(t)$). In fact the above facts are clear at a glance of corresponding equations in local coordinates by taking account of the condition that the coefficients $\Gamma_{j k}^{i}$ of ∇ containing some distinct sort of indices vanish. Therefore, identifying U with $U^{\prime} \times U^{\prime \prime}$ by the affine isomorphism we have $f_{p}(x, y)=\left(f_{p}^{\prime}\left(x^{\prime}, y^{\prime}\right), f_{p}^{\prime \prime}\left(x^{\prime \prime}, y^{\prime \prime}\right)\right)$ for two points $x=\left(x^{\prime}, x^{\prime \prime}\right)$ and $y=\left(y^{\prime}, y^{\prime \prime}\right)$ in U, if the left or the right side of the equation is defined.

References

[1] S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, 1962.
[2] S. Kashiwabara, On the Reducibility of an Affinely Connected Manifold, Tôhoku Math. J., 8 (1956) 13-28.
[3] M. Kikkawa, On Local Loops in Affine Manifolds, J. Sci. Hiroshima Univ., Ser. A-I, 28 (1964), pp. 199-207.
[4] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Interscience, 1963.
[5] A. Lichnerowicz, Géométrie des Groupes de Transformations, Dunod, 1958.
[6] K. Nomizu, Invariant Affine Connections on Homogeneous Spaces, Amer. J. Math., 76 (1954), 33-65.
[7] G. de Rham, Sur la Réductibilité d'une Espaces de Riemann, Comm. Math. Helv., 26 (1952), 328-344.
[8] A. A. Sagle, On Anti-commutative Algebras and Homogeneous Spaces, J. Math. and Mech., 16 (1967), 1381-1393.
[9] H. Wu, On the de Rham Decomposition Theorem, Illinois J. Math., 8 (1964), 291-311.
Department of Mathematics
Shimane University

[^0]: 1) For the details of reductive homogeneous space, see Nomizu [6] or Lichnerowicz [5] p. 48.
