
HIROSHIMA MATH. J.
1 (1971), 177-226

Semί-Infinίte Programs and Conditional

Gauss Variatίonal Problems

Maretsugu YAMASAKI

(Received September 11, 1971)

§1. Introduction

Let X and Fbe real linear spaces which are in duality with respect to a
bilinear functional ((, ))i and let Z and W be real linear spaces which are in
duality with respect to a bilinear functional ((, ))2. Denote by w(X, Y) the
weak topology on X. An infinite linear program for these paired spaces is a
quintuple (A, P, Q, j 0 , *o) In this quintuple, A is a linear transformation
from X into Z which is w(X, Y) — w{Z, W) continuous, P is a convex cone in
X which is w(X, Γ)-closed, Q is a convex cone in Z which is w(Z, JF)-closed,
yoeY and z0 € Z are fixed elements. One of the basic problems in the theory
of-linear programming is to determine the value M of the program defined
by

where

S={xeP; Ax-zoeQ}.

In this paper, we use the convention that the infimum and the supremum on
the empty set φ are equal to + oo and — oo respectively.

The dual problem is to determine the value M* defined by

where
+; yo-A*weP+}.

Here A* denotes the adjoint transformation of A, i.e., A* is the linear trans-
formation from W into Y which is w(W, Z)—w(Y, X) continuous and satisfies
the relation

for all x e X and w e W and P+ and Q+ are defined by

Y; ((*, y ) ) i ^ 0 for all xeP},



178 Maretsugu YAMASAKI

Q+ = {w£ W\ (0, w))2^0 for all zβQ}.

K. S. Kretschmer [8] investigated the following two problems :
(i) the existence of xeS or w e S * which satisfies M=((x, yo))i or

(ii) relations between values M and Jlf *.
An snswer to problem (ii) is called a duality theorem. Some of the results
in [8] have been further generalized by many mathematicians, for instance
see R. Van Slyke and R. Wets [14] and M. Yamasaki [16; 17].

We say that an infinite linear program (A, P, Q, γθ9 z0) is a regular semi-
infinite linear program in the case where Zand ίFare ^-dimensional Euclidean
spaces, ((, ))2 is defined by the usual inner product, Q = {0}, z0 = (cu , cn) e Rn

and

Ax = (((x, j i ) ) i , ..-, ( O , yn))ι)

for all x€X, where j z , f = l, , n, are fixed elements of Y. We shall be con-
cerned with problems (i) and (ii) for regular semi-infinite linear programs in
this paper.

For later use, we shall consider in § 2 a slightly more generalized semi-
infinite program than the regular semi-infinite linear program defined above.
Several types of semi-infinite linear programs were discussed by A. Charnes,
W.W. Cooper and K. 0. Kortanek [4], R.J. Duffin and L. A. Karlovitz [5],
R. J. Duffin [6] and K. Isii [7].

The conditional Gauss variational problem (= CGVP) investigated by
M. Ohtsuka [9] may be regarded as a semi-infinite program with a nonlinear
objective function. More precisely, let K be a compact Hausdorff space,
{gk; k = l9 -•-, n} be a set of real-valued continuous functions on K, {ck; k =
1, . . , n} be a set of real numbers and let G and —/ be lower semicontinuous
functions on KxK and K respectively which take values in ( — oo5 +oo],
Denote by ER the totality of non-negative Radon measures μ on K such that

(μ, μ)=\\G(u, v)dμ(u)dμ(v) <oo.

CGVP is the problem to determine the value V defined by

V= inf {(μ, μ)-2i\)fdμ;μeEκ({gk}, {ck})}9

where

Eκ({gk}> {ck}) = iμeEκ;^gkdμ = ck for each k}.

Let μ* eEκ- {gk\ λ = l, •• , n} is called μ*-independent in [9] if there exists



Semi-Infinite Programs and Conditional Gauss Variational Problems 179

a set {μk; k = l, •• , n} of non-negative measures such that μ* — μk is a non-
negative measure on K for each k and det (\gjdμk)φ0. One of our aims is
to study the roles of this independence condition in the theory of semi-infinite
programming. We shall discuss in § 4 Ohtsuka's independence condition in
a more general form than the original one. By applying the results in § 4
to CGVP, we shall improve in § 8 some of the results in [9] relating to CGVP.

A superfeasibility condition will be introduced in § 5. This notion is
closely related to the one investigated in [6]. A potential-theoretic semi-
infinite linear program will be given in § 6 as an example of a regular semi-
infinite linear program. Our aim in § 6 is to give an answer to the problem
raised in connection with CGVP in [10] and remarked in [16], p. 354. Some
gaps between equality constraints and inequality constraints will be clarified
there. In § 7, we shall be interested in the problem how the values of regular
semi-infinite linear programs change with {y*}. Analogous problems were
studied in [9] and [18].

We shall discuss CGVP in a slightly more generalized form than the
above in § 8. The existence of optimal solutions for CGVP will be studied
in § 9. We shall consider the value V of CGVP as a function of z = (cι, • •-, cn)
in § 10 and § 11. We shall examine the continuity of V(z) and compute the
directional derivatives of V(z) by making use of Ohtsuka's independence con-
dition. It must be noted that CGVP is a generalization of a classical quadra-
tic program with linear constraints. Therefore some of the results in § 8
and § 10 may be regarded as new results for an indefinite quadratic program.

The author wishes to express his deepest gratitude to Professor M.
Ohtsuka for many valuable suggestions and discussions during the prepara-
tion of this paper.

§ 2. Semi-infinite programs

We begin with the definition of a semi-infinite program. Let X be a real
linear space and Rn be the ^-dimensional Euclidean space. Two ^-dimensional
Euclidean spaces are always considered to be in duality with respect to the
bilinear functional ((, ))2 defined by the usual inner product, i.e.,

((z ( 1 >, z ^ ) ) 2 = t * ψ z ? f o r *<*> = (*<*>, -.., *<*>)
i = l

(A = l, 2). Let P be a convex cone in X, {/*•(»; ί = l, •••, n} be a set of finite
real-valued additive and positively homogeneous functions on P, f(x) be a
finite real-valued function on P which is convex and positively homogeneous,
and let z0 be a fixed element of Rn. Let A be the transformation from P
into Rn defined by
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A semi-infinite program is defined as follows:
(I) Determine

M=inί{f(x); xβS},

where

S={xeP; Ax = z0}.

As a dual program, we consider the following problem:

(II) Determine

where

S* = {weRH;((Ax,w))2<*f(χ) for all xβP}.

It is easily seen that problem (I) includes the regular semi-infinite linear
program defined in § 1, by taking

/ ( * ) = ( ( * , j o ) ) i , / ,•(*) = ( ( * , y . ) ) i ( i = l , - • • , * ) •

For later use, we introduce some notations. Denote by So and SJ the
sets of optimal solutions for problems (I) and (II):

Let Ro be the set of non-negative real numbers and denote by C° the interior
of a set C in Rn unless otherwise stated.

We shall utilize the following separation theorems:

PROPOSITION 1.1) Let C be a closed convex cone in Rn and v be an element
of Rn such that υ £ C. Then there exists w^Rn such that

for all z^C.

PROPOSITION 2.2) Let C be a convex cone in Rn such that CφRn and υ be
a boundary point of C. Then there exists a non-zero w£Rn such that

((V,W))2=O <;((*, W))2

1) [1], p. 73, Proposition 4.

2) [1], p. 77, Exercise 4.
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for all zeC.

§ 3. Duality theorems

We have

THEOREM 1. It is always valid that M*<,M.

PROOF. By our convention, we may suppose that Sφφ and S*Φφ. Let
x £ S and w 6 S*. Then we have

w))2 = ((z0, w))2,

and hence M*<,M.
Let us define the set H in Rn x R by

H={(Λx,r + f(x)); x βP and r £ i?0}

We proved in

THEOREM 2.3) Assume that the set H is closed. If either M or M* is
finite, then M=M* and Soφφ.

We shall prepare

LEMMA 1. Assume that the value M is finite. Then there is a nonzero
(w, s)£Rnx R such that s^>0 and

w))2 = 0<: rs +((*, w))2

for all (z, r) ζH. If s>0, then it is valid that M=M* and —w/s 6 S*.

PROOF. It is clear that iΠs a convex cone in Rn+1, HφRn+ι and (z0, M)
is a boundary point of H. By means of Proposition 2, there exists a nonzero
O, s)eRnxR such that

for all (z, r)eH. Since (0, r)eH for all r6i?0, we see that $;>0. Let us
consider the case where s>0. Writing w— —w/s, we have

= 0^r-((z, w))2

for all 0, r) € #. Since {Ax, f(x)) e H for all x e P, we conclude that M> e 5*
and

3) [17], Theorems 2 and 3. Cf. [16], p. 334, Lemma 3.
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by Theorem 1. Hence M=M* and w e SJf.

LEMMA 2. Assume that the interior A(P)° of A(P) is nonempty and
vβA(P)°. If (0, w))2 = 0 and ((Ax, w))2^0 for all xβP, thenw = O.

PROOF. For any zeRn, there is t>0 such that v±tzeA(P)°. Let xλ

and χ2 be elements of P which satisfy Axι = v + tz and Ax2 = v — tz. Then it
follows that

so that (0, w))2 = 0. By the arbitrariness of z, we conclude that w = 0.
We have

THEOREM 3. Assume that z0 6 A(P)° and that the value M is finite. Then
it is valid that M=M* and S$

PROOF. There exists a nonzero (w9 s)eRnxR such that s ;> 0 and Ms +
0>o, w))2=0<,rs + ((z, w))2 for all (*, r)eH by Lemma 1. If 5 = 0, then we
have ((*<,, w))2 = 0<.((Axy w))2 for all Λ G P , and hence w = 0 by Lemma 2. This
is a contradiction. Thus we have s>0. Our assertion follows from Lemma 1.

By applying Kretschmer's duality theorem to the regular semi-infinite
linear program, we have

PROPOSITION 3.4) Let (A, P, Q, y0, *o) be a regular semi-infinite linear
program and denote by s( F, X) the Mackey topology on Y. If the s( F, X)-
interior (P+)° of P+ is nonempty and there isw£Rn such that y0 — A*w G (P+)°,
then the set H is closed.

Let XxR and YxR be in duality with respect to the bilinear functional
((,)) defined by

(((*, r), ( j , *))) = ((*, y))ι + rs

for all O, r) e X x R and ( j , s) e Fx R and let G be the set in Fx R defined
by

, r-((z0, w))2; u>eRn, yβP+ and r€R0}.

The dual statement of Theorem 2 is as follows:

PROPOSITION 4.5) Let (A, P, (?, y0, z0) be a regular semi-infinite linear

4) [8], p. 236, Corollary 3.1.
5) [8], Theorem 3 and [16], Theorem 8*.
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program and assume that the set G is w(Yx R, X x R)-closed. If either M or
M* is finite, then M — M^ and S$Φφ.

We shall prove

PROPOSITION 5. The following condition (F) implies that the set G is
w(YxR, XxR)-closed:

(F) The relations — A*w^P+ and (Oθ5 w))2^0 imply that w = 0.

PROOF. Let {(ya, ra); aeD} be any net in G which w{Yx R, XxR)-con-
verges to (y, r) e Yx R. Then there exists wa e Rn such that

ya — A*waeP+ and ra^ — ((z0, wa))2-

Let us put

I u;| =(*? + -+*2) 1 / 2 for w = (su...,sn)eRn.

Suppose that {| wa \ a e D} is unbounded. Then there exists a subnet
{wa aeDι} of {wa aeD} s u c h t h a t | w a \ ->oo a l o n g Dlu W r i t i n g va=wa/\wΛ\,
we can find a subnet {va a G D2} of {υa a e Dx} which converges to v e Rn,
since {weRn; \ w | = 1} is compact. Then we have | v \ = 1,

-((^o, v))2= l im[-((z 0, v«))2]

^ lim rj I wa I =0,

((*, ^*»))i= lim((*, ^*»β))i= lim((*, A*wa)\/\wa\

^ lim ((*, yβ))i/ | w β | = 0
«eP2

for all Λ; e P. Thus we have

I v I = 1, ((^o, tθ)2 ̂  0 and - AH e P\

which contradicts condition (F). Therefore {| wa \ a e D} is bounded and we
may suppose that {wa aeD} converges to w by choosing a subnet if neces-
sary. Then we see easily that

y—A*ioeP+ and τ\> —

and hence (y, r) e G. Namely the set G is w( Yx R, Xx i?)-closed.

PROPOSITION 6. It is valid that z0 e A(P)° if and only if Sφφ and con-
dition (F) is fulfilled.

PROOF. Assume that zoeA(P)° and that -A*weP+ and ((*<>, w)>2^0.
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There is x € P such that Ax = z0. It follows that

Denoting v = — w, we have ((*<>, v))2 = 0 and ((Ax, v))2^0 for all x e P, so that
v = 0 by Lemma 2. Therefore w = 0 and condition (F) is satisfied. Next as-
sume that Sφφ and condition (F) is satisfied. Suppose that z0 is a boundary
point of A(P). Then there exists a nonzero w£Rn such that

(Oo, w))2 = 0^>((Ax, w))2

for all x6Pby Proposition 2. It follows that — A*W€LP + and ((zo, ^))2=0,
so that w=0 by condition (F). This is a contradiction. Therefore *0 is not
a boundary point of A(P). Since *0 6 A(P\ we conclude that z0 e A(P)°.

COROLLARY. / / z0 e A(P)°, then the set G is w( Yx R, Xx R)-dosed.
This is an improvement of Proposition 7 in H16].

§ 4. An independence condition

We introduce

DEFINITION 1. Let x e P. We say that {/,,; / = 1, , n} is Λ -independent
if there exists a set {xj; y = l, •••, n} in P called a system of components of x
such that x — XjeP for each/ and

det (/,<*,)) =£0,

where det(αz y) means the determinant of a matrix (α/y).
We have

THEOREM 4. Assume that x€Sand {/,-; ΐ = l, •••, rc} is x-independent.
Then it is valid that z0 6 A(P)°.

PROOF. Let {xj; y = l, , ^} be a system of components of x. Suppose
that z0 £ A(P)°. Then z0 is a boundary point of A(P), since 2r0 € ^4(P). By
means of Proposition 2, there is a nonzero w = (wu •• , wn)eRn such that

for all x e P. From £ — #/ € P and xj e P for each y, it follows that

0<((Axh w))2<z(iAx, w))2 = ((z0, w))2 = 0.

Thus we have

n

w))2= Σ
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for each j . Since det(fi(xj))ΦO, we conclude that Wi — 0 for each i, i.e., w — Q.
This is a contradiction. Therefore we have z0 G A(P)°.

By Theorems 3 and 4, we have

C O R O L L A R Y . Assume that x£S and {/,-; i = l , •••, ra} i s x-independent.
If the value M is finite, then M=M* and S$φφ.

We shall prove

THEOREM 5. Assume that z0 € A(P)°. Then there exists x G S such that
{/,-; ί = l , , rc} is x-independent.

P R O O F . Since z0 e A{P)°, there exists a set {^ y = l , •••, n} of points in
such t h a t

n n

* o = Σ a>jZj with αy>0 and 2 αy = l?
y=i y=i

and {*y; y = l, •••, ^} is linearly independent. There is XJ^P such that
Axj = Zj for each j . Let us take

χ= Σ ajχj
y=i

Then we see easily t h a t ^ e 5 and {ay^y;y = l , •-, n} is a system of com-
ponents of x. Namely {/f ; i = l, ..., 7i} is ^-independent.

An essential role of our independence condition in the theory of semi-
infinite programming is given by

THEOREM 6. Assume that x 6 50 and {/t ί = 1, , n} is x-independent and
that f is additive. Then the set S J consists of only one point w = (wu , wn)

and {wi\ ί = l, ••-, n} is the solution of the equations

(1) Σwifi(xj)=f(xj\
ί = l

where {xj ; j = 1, , n} is a system of components of x.

PROOF. It is clear that SfΦφ by the corollary of Theorem 4. Let w =
(wu ..-, wn) be any element of SJ. Then it is valid that

Taking a system of components {xj; y = l , ••-, n} of £, we have

((̂ Λy, W))2<,f(xj\

{{A{x - xj\ w))2<,f{x - xj) =f(χ)-f(xj\

so that
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f(χj) =
 ((AXJ, w))2= Σwifiixj)-

Namely {w{ ί = 1, . , n } is the solution of the equations (1). Since det ι
ΦO, the solution of the equations (1) is uniquely determined, so that S$
consists of only one point.

REMARK 1. The set SJ may contain more than one point if we change
the condition x € So for the condition x £ S in Theorem 6. This is shown by
Example 5 in § 6 below.

§ 5. A superfeasibility condition

We are concerned with the regular semi-infinite linear program defined
in § 1 in this section.

DEFINITION 2. We say that a regular semi-infinite linear program (A, P,
Q, y0? *o) is superfeasible if there exists xe S such that ((#, y))i>0 for all
yeP+Γ\A*(W\ yφO.

In connection with condition (F) in § 3, we consider the following con-
dition (SF):

(SF) The relations -A*weP + and ((*0, w ) ) 2 ^ 0 imply that A*w = 0.
It is obvious that condition (F) implies condition (SF). If {y* ; &' = 1, •••, n} is
linearly independent, then conditions (F) and (SF) are equivalent.

We shall prove

PROPOSITION 7. A regular semi-infinite linear program (A, P, Q, j 0 , *o)
is superfeasible if and only if Sφφ and condition (SF) is fulfilled.

PROOF. Assume that {A, P, Q, yo> *o) is superfeasible and that — A*w eP+

and ((*o> w))2ί>0. There exists x eP such that Ax = z0 and ((#, y))i>0 for
all y e P+ Γ\ A*( W), yφ 0. If A*w φ 0, then it follows that

This is a contradiction. Therefore A*w = Q and condition (SF) is satisfied.
On the other hand, assume that Sφφ and condition (SF) is fulfilled. Suppose
that (A, P, Q, yθ5 *o) is not superfeasible. Then for any x e S there exists
jeP+Γ\A*(W) such that γφO and ((#, y))1 = 0. Let us choose we W satis-
fying y= — A*w eP+. It is valid that

((*o, w))2 = ((Ax, f*0)2 = ((*, ^*ι*;))i = - ( ( * , y))i = 0,

so that A*w=0 by condition (SF). This is a contradiction. Therefore
(A9 P, Q, jo, ZQ) is superfeasible.
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{yi; ί = l, •••, n} is called ^-independent for x GP if the set {/*•; ί = l, , n}
of functions defined by /»•(#) = ((#, y, ))i f° r each i is 3t-independent. It is
easily seen that {y, ; i = 1, , zz,} is linearly independent whenever there ex-
ists x eP such that {y{\ ϊ = l, •••, n} is ^-independent.

By means of Theorems 4 and 5, Propositions 6 and 7 and the above ob-
servation, we have

THEOREM 7. Consider a regular semi-infinite linear program (A, P, Q,
yθ5 *o) and assume that {yι\ ί = l, ••, n} is linearly independent. Then the
following statements are equivalent:

(a) zoeA(P)°.
(b) There exists x e S such that {y{\ i = l, •••, n} is x-independent
(c) Sφφ and condition (F) is satisfied.
(d) Sφφ and condition (SF) is satisfied.
(e) (A, P, Q, y0, zo) is super feasible.
We shall prove

THEOREM 8. Assume that a regular semi-infinite linear program (A, P,
(?> jo5 *o) is superfeasible and that the value M is finite. Then it is valid that
M=M* and S$φφ.

PROOF. In the case where {j,; £ = 1, ..., n} is linearly independent, our
assertion follows from Theorems 3 and 7. We consider the case where
{yi\ ί = l, •••, n} is linearly dependent. We may assume that {y%\ i = l, -,p}
(l<^p<n) is linearly independent and

P
yp+j= Σ djiji with aji€R

i = l

for each j , l^j^n —p. Then we have

P

cp+j — Σ ctjid l ^ j ^ n —p,

so that

M= inf{((*, y o )) i ;*eS'} ,

where

Let Γ be the linear transformation from X into Rp defined by

and set z'Q = (cu •••, ̂ ) . Then we have A*(Rn)=T*(Rp) by the above ob-



188 Maretsugu YAMASAKI

seravation. It follows that the regular semi-infinite linear program ( Γ, P,
{0}, jo, z'o) is superfeasible. Therefore there exists r = (ru • ••, rp)eRp such
that

P P

M= Σ ciTi and γ0- Σ riyieP+.
ί = l ι = l

Writing w = (ru •••,/>, 0, •••,0)65", we see t h a t zz>eS* and M = ( O 0 , w>))2.
This completes t h e proof.

§ 6. Potential-theoretic semi-infinite linear programs

As an example of a regular semi-infinite linear program, we shall give a
potential-theoretic linear program.

Let K be a compact Hausdorff space, M(K) be the totality of Radon me-
asures on K of any sign, M+(K) be the subset of M(K) which consists of non-
negative measures, C(K) be the totality of finite real-valued continuous func-
tions on K and C+(K) be the subset of C(K) which consists of non-negative
functions. It is easily seen that M(K) and C(K) are real linear spaces which
are in duality with respect to the bilinear functional ((, ))i defined by

^du for vβM(K) and fβC(K).

Let us take

X=M(K\ Y=C(K), P=M+(K\ γ i = gieC(K) (ί = 0, 1, ..., n\

and call the regular semi-infinite linear program (A, P, (?, yθ5 *o) the potential-
theoretic semi-infinite linear program. We note that the notion of v-inde-
pendence of {gv; i = l, ..., n} (veM+(K)) coincides with the one introduced
by Ohtsuka [9].

We shall discuss the question whether the condition that M is finite and
<2r0>0, i.e., c, >0(ι = l, •••, n), plays an essential role for problems (i) and (ii)
in § 1 or not. This problem was raised in connection with the conditional
Gauss variational problem in [10] and remarked in C16], p. 354.

We have examples which show respectively

1. M is finite and 50 =φ.
2. Mis finite and S*=φ.
3. -oo<M*<M<oo.
4. M* is finite and S$=φ.

EXAMPLE 1. Let K be the Alexandroff one point compactification {TV, α}
of the discrete space N of all natural numbers. Let us take
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It is easily seen that M=0 and S0=φ.

EXAMPLE 2. Let K={N9 a}, ci = c2 = l,

It is easily verified that Af=l. If w = (ri, r2) 6 5*, then

- 1 / Λ + Π / Λ 2 ^ 0 (nβN, nφΐ)

so that oo > n ^ Λ (τι =2, 3, ..). This is a contradiction. Therefore 5*

EXAMPLE 3. Let K={N, a}, ci = c2 = l,

Then we have M*=O<1 = M. In fact, it follows from v 6 5 that

»ι+Σvn/n = l and Σ
»=2

where vw = v({τι})^0 and Vα: = v({α})^0. We have easily that vi = l, vw = 0
(Λ=^=1) and Vα^O, and hence M=l. On the other hand, we derive from
w = (rur2)eS* that

^ and ri/

It follows that ((*<,, w))2=ri + r2 ^ 0 . Since (0, 0) € 5*, we conclude that M* =0.

EXAMPLE 4. Let K = {N, α}, ci = C2 = l,
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First we show that ikf*=O. If w = (ru r2) € 5*, then

so that M* <; 0. Define w(k) = (r[k\ r2
k)) e R2 by

r[k)=k and r2
k) = -

Then we have w(k) G S* and

Letting λ->oo5 we conclude that M* = 0. Next we show that S$=φ. Suppos-
ing the contrary, we can find w = (ru r2) G R2 such that

Γ l + Γ2 = 0 and

It follows that

and hence

for all n£N. This is a contradiction. Therefore S$=φ.

REMARK 2. In Examples 2, 3 and 4, {gi, g2} is not ^-independent for
any v 6 5.

Some of the examples in [jQ, [_5J, [βj and Q14] show the duality gaps in
semi-infinite linear programming problems. However none of them satisfy
our assumption that M is finite and zo>O.

Next we are concerned with Remark 1 in § 4.

EXAMPLE 5. Let K={N,a}, cι = l/3, c2 = l/4, and let {gi, g2} be the
same as in Example 3. Define g0 by

If v e 5, then it is valid that
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OO OO

a= Σ Vn/n, b= Σ »n

where vn is the same as in Example 3. We have

M= i

Denote by eu the unit point measure at u eK. Since ε3 e S, we have M=0.
If v G 50, then vi = v2=0, so that

V3 + 3α = l and

It follows that

and hence vw=0(ra^>4). Therefore S0 = {ε3 + tεa; teRoy and {gu ^2} is not
v-independent for any » e So. Let us consider ϊ=eι/12 + e2/2. Then it is
valid that »eS and {#i5 g2y is ^-independent. We can easily verify that

Namely S$ contains more than one point. We observe that

= {(ru r2); 0^r 1 ? 2

Now we apply Theorem 2 and Proposition 3 to our problem. Since
s(C(K), M(K)) coincides with the topology induced by the norm | | / | | = sup
{I/O) I; uβKy on C(K) (cf. [2]) and the s(C(K\ M(K))-interior (P+)° of
P + = C+(K) is equal to the set {feC(K);f>0 on K}5 we have

THEOREM 9. / / the value M is finite and gi > 0 on K for some ί(ί = 0, 1, •,

7i), then M=M* and Soφφ.

PROOF. I t is enough to show t h a t there exists w = (wi, ••-, wn) 6 Rn such

t h a t

go— Σ Wigi>0 on K.
i = l

This is easily verified if any one of g{ belongs to (P+)°.
We remark that the assumptions in Theorem 9 do not always imply that

. This is shown by

EXAMPLE 6. Let K={N, α}, cι = c2 = l,
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gl(n)=3/(2-l/n\ gl(a)

It is easily seen that S=S0= {(2/3)εα}5 since gi(n)<g2(n) for all n eN and

gι(a) = g2(a). It follows from Theorem 9 that M=M* = 2/3. We show that
S$=φ. Suppose that w=(wu w2) is an element of S$. Then we must have

for all neN. This is impossible, since

for sufficiently large n. Therefore S$=φ.

REMARK 3. Example 6 shows a gap between equality constraints and
inequality constraints in semi-infinite linear programs. Let us recall the
potential-theoretic linear program in [16] which are concerned with the
problems to determine the values M and M* defined by

M= inf {(0*, go))i;μeS}9 M*= sup{((*<» w)hι we 3*},

where

S={μeM+(K); Aμ-zoeRSh 5* = {u>eR"0; go-Λ*weC+(K)}.

It was proved in H16] that M=M* and there exist μeS and we 3* such
that M = ((μ, go))i and M* = ((z0, w))2 whenever zo>O, gi>0 on K for some
i (ί = 0, 1, .-., n) and M is finite.

§ 7. Change of extremal values

We shall be concerned with the problem how the value of a regular
semi-infinite linear program {A, P, Q, j θ 5 z0) in § 1 changes as {y{} changes.
Recall that Q = {0} as agreed in § 1. Ohtsuka discussed an analogous problem
related to the conditional Gauss variational problem ( [9], p. 228). We refer
to [18] for another analogous problem.

Let {y{jk)} be a sequence in Y which w(Y, X)-converges to y{ for each
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i (i=0, 1, .., n). Let us put

Mk = inf{((*,

= ((*, j ^

\w\=(wl+ ~+wΐ)112 for w = (wu ...,wn)eR\

We shall prove

THEOREM 10. Assume that zo^A(P)° and that M is finite. Then it is

valid that lim Mk<,M.

PROOF. By choosing a subsequence if necessary, we may assume from
the beginning that Mk > — °o for all k and that lim Mk exists and lim Mk > — °o.

First we observe that M=M* and S$ Φφ by Theorem 3. We show that

(2) A(P)°C\JAk{P)
k=m

oo

for all 77i. Let z £ \J Ak(P). Then * is a boundary point or an exterior point

of Ak{P) for each &, m<^k<oo. By making use of Propositions 1 and 2, we
can find w(k) e Rn such that

|tι;<*>|=l and ((z,w^))2^:((Akx,w^))2

for all x e P. We may suppose that {w{k)} converges to w. It follows t h a t

|fl>| = 1 and ((z, w))2^((Ax,

for all Λ; e P. Since P is a cone, we have

and -

Taking i; 6 5*, we see that v + tw e 5* for all t e Ro. Suppose that z 6 A(P)
and let us consider
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Λf*(z)= sup{((2r,iι;))2;tι;€5*}.

Then we have by Theorem 1

z, w))2

for all t e Ro, and hence (0 , w))2 = 0. By means of Lemma 2 we conclude that
w = 0, which is a contradiction. Therefore z £ A(P)° and the relation (2) is
established. Suppose that Ak(P)°=φ for all A;, k^>m. Then Ak(P) is con-
tained in a hyperplane6) and μ(Ak(P)) = 0 for each k, k^>m, where μ denotes
Lebesgue's outer measure in Rn. It follows from (2) that

which is a contradiction. Therefore Ak(P)°Φφ for some k^>m. By the
arbitrariness of m, we may suppose that Ak(P)°Φφ and z0 e Ak(P)° for each
L There exists w(k) e Rn by Theorem 3 such that

Mk=Mt = ((z0,w^))2 and y{

o

k)-A*w^eP+.

We show that {| w(k) \} is bounded. Supposing the contrary, we may consider
that \w(k)\-+oo as &->oo. Writing vik)=w(k)/\w(k)\, we may assume that
{vik)} converges to v. Then we have

((so, v))2= li

((*, A*ϋ))ι= Σ v,dχ, J.O)i= Hm Σ v?K(χ, y\u))i
< = 1 * - ~ j = l

= lim ((*, A*kv
w))^ lim ((*, ylk))W\w(k)\ = 0

for all Λ ; € P , and hence —A*veP+. Taking we 5*, we have w + tve S* and

for all t eR0. It follows that ((z0, 2>))2=0 and i) = 0 by Lemma 2. This con-
tradicts | v | = l . Therefore {|^(Aί)|} is bounded and we may suppose that
{w{k)} converges to w Then it is easily seen that w e S* and

lim Mk= lim j|f£ = ((*<,, ^ ) ) 2 ^ M * ^ M .

This completes the proof.

The inequality lim Mk ^ M is not always valid if we omit the condition

z0 € A(P)° in Theorem 10. This is shown by

6) Cf. [1], p. 54, Exercise 9, a).
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EXAMPLE 7. Let X=Y=R2, P = Rl (the positive orthant of R2), zQ =
( i , i ) e * 2 ,

yi*} = 70 = (1,1/4),

yi*} = yi = (1,1/2),

yi» = (l, 1/2 + 1/*), y2 = (1,1/2),

((*> J ) ) I = ^I5I + Γ252 for x = (ru r2) and y=(sχ, s2).

Then we have

5={(r l5 r2); n ^ O , r 2 ^ 0 ,

so that Mk = l>l/2 = Mfor all A.
The inequality Km Mk^M is not always valid even if M is finite and

zo € A(P)°. This is verified by

EXAMPLE 8. Let X, F, P and (( , ))i be the same as in Example 7 and let

J o — JO —V1) U Λ

Then we have

) = {(ri, r2); rx^O, r 2^0,

so that M̂  = 0 < l = Mfor all k.
We have

T H E O R E M 11 . Let Y be a normed space with a norm \\ \\ and X be the
strong dual of Y. Assume that \\y™ — y;||—•() a s &—•oo for each Ϊ ( Ϊ = 0 , 1, ••, n)
and that xk e S{

o

k) for each k. If {\\xk\\}7) is bounded, then ] i m Mk^M holds.

PROOF. Since {xk} is relatively w(X, F)-compact (C2], p. 112, Proposi-

7) For x e X, || x I is defined by
I * I = s u p { | ( ( * , r ) ) i l ; r e
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tion 1 ), we may assume from the beginning that {xk}w(X, Γ)-converges to x
and lim Mk exists by choosing a subsequence if necessary. We have

for each ί and k. Since {||#*||} is bounded, we have

for each i. Since ((xk9 y\k)))ι — ci (i = l, • •-, n) for all k, we have ((#, J I ) ) 1 = C,
for each z, i.e., x e 5. For z=0, it is valid that

l imM A = lim ((χk, yok)))ι = ((%> 7o))i^Λ^

This completes the proof.

§8. Conditional Gauss variational problem

In the rest of this paper, we shall study the conditional Gauss variational
problem which is slightly diffrent from the problem considered in [9J. Note
that we shall change some notations in the preceding sections.

Let Ω be a locally compact Hausdorff space and G be a Borel measurable
function on ΩxΩ which takes values in ( — 00, +00]. We assume that
G(u9 v)=G(v, u) for all u, v e Ω and G is bounded below on every compact set.
Such a function G is called a kernel. A non-negative Radon measure μ with
compact support Sμ will be called simply a measure hereafter. Denote by
M+(Ω) the totality of measures on Ω. Given μ, »ζ.M+(Ω), we define G(u, μ)
and (»9 μ) by

G(u, μ) = \G(u, v)dμ(v),

iy>9 μ)=\G(u, μ)dι>(u)9

and call them the potential of μ and the mutual energy of μ and v respect-
ively. We call (μ9 μ) simply the energy of μ. Denote by E the set of measures
with finite energy.

We shall say that a property holds n. e. ( = nearly everywhere) on a set
B CΩ if it holds on B' such that B'CB, μ(K) = 0 for all compact sets KCB-B'
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and μ e E. A kernel G is termed to be of positive type or positive semi-
definite if

for all μ, v€E. In case g and h are extended real-valued functions on Ω
which are μ-summable for all μeE,we set

at points u where g(u)=h(u) = oo or g(u)=h(u)— — oo.
Let B be a set in Ω which is measurable with respect to every μ eE and

satisfies the condition that E'BΦ{0}, where

Let / and gk, A = l, , n, be real-valued functions on B which are μ-summable
for every μeEB and let {ck; ifc = l, ..., n) be a set of real numbers. For sim-
plicity, we shall write

A mutual energy (μ, ») can be written as <G( , μ\ v}.
We shall consider the following class of measures:

S=Ef

B{{gk), {ck}) = {μeEB; <gk, μy = ck for each k}.

We are interested in the problem of minimizing the expression (Gauss in-
tegral)

= (μ, μ)-2ζf, μ>

for μeS. Denote by V the value of this preblem, i.e.,

V= inί{I(μ);μeS}.

This is called the conditional Gauss variational problem.
In the case where G = 0, B is a compact set K, f and gk are finite real-

valued continuous functions, the above problem was discussed as a potential-
theoretic semi-infinite linear program in § 6.

Ohtsuka [βj investigated the above problem in the case where G is lower
semicontinuous and / is not necessarily ^-summable for every μ e EB.

Let us define So by
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In case Soφφ, it is clear by our assumption for / that V is finite. We shall
utilize the transformation A from EB into Rn defined by

Writing zo = (cu ..., cΛ), we have

Thus the conditional Gauss variational problem may be regarded as a semi-
infinite program with a nonlinear objective function I(μ). It must be obser-
ved that E'B is not necessarily a convex set and that I(μ) is not always a con-
vex function on EB even if EB is a convex set.

We shall prove

THEOREM 12. Assume that EB is convex and that μ* € 50. / / z0 6 A(E'B)°,
then there exists w = (ru •••, rn)^Rn such that

(3) (K;μ>*)-f^tτkgk n.e.onB,

(4) G(.,μ*)-f^k±rkgk μ*-a.e.,

(5)

//, in addition, G and —f are lower semicontinuous, / < ° ° and each gk

is finite valued and continuous on B, then

(6) G(.,μ*)-f^±jkgk onSμ*Γ\B.

PROOF. From our assumption that EB is convex, it follows that S is
convex. Let v e S and t e Ro with 0 < t < 1. Then t» + (l — t)μ* e S and

so that

ί(2-ί)/(A**)^2ί(l-0 (A**, V) + * 2 / 0 0

Dividing both sides by ί and letting ί-^0,we obtain
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Thus we have

<G( , , * * ) - / , μ*>^<G(', μ*)-f, »>

for all v 6 S. Writing go=G( , μ*)—f, we have

(7) M=ζg0, μ*}=min {<#,, y>; „ e S},

(8) V=(g0, /,*>-</, A»*>.

In order to apply Theorem 3 in § 3, let us choose

X=M+(Ω)-M+(Ω), P=E'B, Z= W=R\

fi(») = (gh y> ( ι = l , ••-, n\

/ω=<#>,»>.
Since ^ 0 ^ A(E'B)° by our assumption, there exists w = (ru •-, r«) such t h a t

(9)

for all ι̂  e EB and

(10)

by Theorem 3. To prove the relation (3), we set

N={ueB;go(u)-

If we deny (3), then we can find a compact set J£o and a measure VQ€LE such
that KQCN and v>o(̂ o)>O. Let vι be the restriction of v0 onto ίΓ0 Then

and

which contradicts (9). Therefore the relation (3) is valid.
From (7) and (10), it follows that

(11) <ίo,A**> = <

We obtain (4) from (3) and (11).
Assume that G and — / are lower semicontinuous, f<°° and each gk is

finite valued and continuous. Let us put

n

h = go~ Σ
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We may suppose that μ*Φ0. If there were a point u0 e Sμ*r\B at which
Λ(^o)>O, then h(u)>0 on B in a neighborhood of u0 by the lower semicon-
tinuity of h. Since h^>0 n.e. on B by (3) and μ*φθ, we have <Λ, /**>>0,
which contradicts (4). Therefore A^O on Sμ*ΓλB. This completes the
proof.

We have by (8) in the above proof

COROLLARY. It is valid that

V=I(μ*)= Σ Ctrt-<f, μ*> = 2 Σ Ckrk-(μ*, μ*).

REMARK 4. E'B is convex if and only if (μ, v) is finite for all μ , v £EB.
It is clear that Ef

B is convex whenever G is of positive type or G is bounded
on B x B.

For μ* e So, we denote by S$(μ*) the set of points w which satisfy the
relations (3) and (4). Note that the relation (5) follows from (3) and (4) and
that the equality in the corollary of Theorem 12 holds for every w 6 S$(μ*)
with w = (ru ..., rΛ).

Let μξiEB. We say that {gk; k = l, •••, n} is /^-independent if there ex-
ists a set {μk; k = l, ••-, n) of measures in M+(Sμ) such that μ — μk€iM+(Sμ)
for each & and det «gy, /AA» Φ 0, where

The set {μk; k = l, •••, ra} is called a system of components of μ. A system
n

of components {^ λ = l, ..., zz} of ̂  is called to he full it μ= Σ μ-k> In this
case we say that μ has a full system of components.

For μeE,we define C[_μ*~] by

Ctμ} = {veM+(Sμ)\ μ-»βM+(Sμ)}.

It is clear that CCμϋ is convex and contains 0 and μ.
We shall prove

LEMMA 3. It is valid that C\iμ~]CE.

PROOF. Since K=Sμ is compact, there is a number b such that GJ>έ on
by our assumption. Let v e CQ^]. Then we have μ — »e M+(K) and

on K, so that

O^U P)-bμ(K)v(K)^(μ, μ)-bμ(K)2<oo.

Since (/̂ , v) = (v, μ) by our assumption, we have
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0^(iΛ v)-bv(K)2<s(v9 μ)-bμ(K)»(K)<oo9

and hence v e E.

COROLLARY. Let μ eE'B and {μk\ k = l, ..., n} be a system of components

of μ. Then μk 6 EB and μ — μk€i Ef
B for each k.

We have

PROPOSITION 8. Assume that E'B is convex and that /** G So. If {gk\ k = l,
• ••, n} is μ*-independent, then S$(μ*) consists of only one point «&(/**) = (ri, •••,

rn). If {μk;k = l, ..., n} is a system of components o//x*3 then {r; ; / = 1, ••-, n}

is the solution of the equations

(12) Σ rKgj, μky = <G(; μ*)-f, μk>.

PROOF. Since 5J(// *) is the set of optimal solutions for the dual problem
of the problem determining the value M defined by (7) in Theorem 12, our
assertion is an immediate consequence of Theorem 6 in § 4.

Without using a duality theorem, Ohtsuka proved the following result.
Here we review his proof for completeness.

PROPOSITION 9.8) Assume that μ* e So and that {μk\ fc = l , •••, n} is a

system of components of μΛ Let {ry; ; = 1, •••, n} be the solution of the equa-

tions

(13) . Σ θ <#;, μky = <G(; μ*)-f,

Then it is valid that

(14) G(;μ*)^f+Σrkgk n.e.onB,

(15) G( , μ*)<f+ Σjkgk μh-a.e.

for each k.

PROOF. Let v be any measure of EB and {tk\ λ = l, , n} be the solution
of the equations

n

(16) k^Sg

With a positive parameter ί, we set

8) [9], p. 213, Theorem 2.1.
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Since (μ*-t Σ tkμk)-(l-t Σ \tk\)μ*e M+(Sμ*\ μ(t) is a measure for
fc= 1 b — 1

sufficiently small t. In case (μ*9 v) is finite, we have μ(t) € 5 by (16) and
/(/A*)= V<, I(μ(t)) for sufficiently small 12>0. Thus we have

dl(μ(t))O ^ ^ λ ^ z ^ = 2<C( , /z.*), v - Σ **/**>-2</, v - Σ

Substituting (13) and (16), we obtain

= Σ «* Σ
Λ=I y=i

= Σ o Σ <gy, μk>tk= Σ o<^y, y>.
y=i Λ=I y=i

Namely we have

(17) <G(., /»*), y > ^ < / + Σ rjgj, »>.

This inequality is obvious in case (μ*, v) = c>o? so that (17) holds for all
It is clear that (14) follows from (17).

Integrating (14) with respect to μk, we obtain

<G( , μ*\ μk>><f, μk>+ Σ Γjζgj, W > .

By this relation and (13), we conclude (15).
In this result, E'B is not assumed to be convex. However {rk} seems to

depend on both μ* and {μ>k} Writing v= Σ μ-k, we see that μ*φ\> in general

and that

*» v-a.e.
k=l

by the relation (15). Therefore we may regard Theorem 12 and Proposition
8 as a partial generalization of Proposition 9. In order to generalize Proposi-
tions 8 and 9, we prepare

LEMMA 4. Let μ*eS and assume that {gk k = 1, ..., n} is μ*-independent.
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Then μ* has a full system of components.

PROOF. Denote by Q(μ*) the convex cone generated by A(C[_μ*~J), i.e.,
zeQ(μ*) if and only if there exist v e C[JL&*] and teR0 such that z = tAv.
We first show that z0 eQ(μ*)°. Supposing the contrary, we see that z0 is a
boundary point of (?(/**)> since μ* e C[/**I] and Aμ* = z0. There exists a non-
zero w = (wί9 , wn) by Proposition 2 such that

for all zeQ(μ*). Let {μk; k = l, • ,n} be a system of components of μΛ
From μk e CQ&*] and μ* — μu € CH/>6*] for each &, it follows t h a t

= ((Aμk9 w))2= ΣΣ

Since det ((gj, μky)φ0, we conclude t h a t Wj = 0 for eachy. This is a con-
tradiction. Therefore zoeQ(μ*)°. There exist a set {vk; k = l9 ••-, τi} of
measures of C ^ * ] ] and a set {sΛ; A = l, •••, n} of s tr ict ly positive n u m b e r s
such t h a t {Avk; k = l> ••, n} is linearly independent and

In the case where s0 = Σ ^ ^ l , we have

β= ΣskvkeS and » = μ*-peM+(Sμ*).Σ

Choosing μ* = skvk + v/n for each A;, we see that {μ% A = l, , ra} is a
full system of components of μ-*. In the case where s o > l , l e t ^ s put tk = sk/s0

n

for each & and consider μo= Σ ί̂ ^̂  Then />60 6 CEA6*!! a n ( i Aμo = zo/so. Tak-

ing vo = />&* — μoeM+(Sμ*) and μt = tkuk + vo/n9 we have

/>&*= Σ ^ a n d
^ 1

In order to prove that {μf; A = l, , τι} is a full system of components of μ*,
it is enough to show that det(<(gy, />&J»^0, or equivalently, {Aμ%; k = l9 •• , π,}
is linearly independent. Suppose that

Σ

Then it follows that

0= Σ
k=l j=l

= Σ bktkAvk + (l-l/s0) Σ 5*̂ *̂ Σ
k=l k=l j=
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n n

k=l j=l

Since {̂ 4̂ ;̂ A = l, •••, n} is linearly independent, we have

Σ
y i

or equivalently

Σ
y=i

for each A. We can easily conclude from this relation that Σ δ* = 0 and hence

bk = 0 for each k. Namely {Aμf; k = l, ..., n} is linearly independent. This
completes the proof.

We shall prove

THEOREM 13. Assume that μ.*ES0 and that {gk; A = l, , n} is />&*-
independent Then S*(// *) consists of only one point ©(/**) = (ri, , rw). / /
{/**; A = l , •-., τi} i s a system of components of /**, ί/^e^ {r ; ; y = l , •••, n} is the
solution of the equations (12). It is valid that

= ((*0,fl>0**)))2-</, **>

PROOF. Let {μ>£ A = l, , n} be a full system of components of μ* and

d e f i n e {r};j=l, ••-, n} b y

y=i

It follows from Proposition 9 that

(18) C( , / * * ) ^ / + Σ r y f l n.e.oni?,
y ~ i

(19) GC μ^^f+tjjgj μ*-Λ.e

n

since μ*= Σ μ t Therefore w = (ru ..., r,)e50*(/»*) and F = /(/**) = ((20,

3
Σ
3</, ,**>=2(3o, » ) ) 2 - ( / * * , /**)• If w=(«i, •••, sM)€5*(/.*), then

Σ Sjζgj, μt> = <G(; μ*)-f, μt>= Σ rj
y=i y=i

so that
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Since det «gy, μ*y)φ09 we have w = w. Namely £*(/**) consists of only one
point. Let {μk; λ = l, • •-, n} be a system of components of μΛ Then we have
(12) by (18) and (19). This completes the proof.

THEOREM 14. Assume that G is of positive type and that μ* and v* are
elements of 50. Then it is valid that S*(μ*) = S$(v*).

PROOF. From /(/**) = /(^*) = V and (/** + j/*)/2 6 5, it follows that

and hence (/** — v*, /** — v*)<ΞO. Since G is of positive type, we have (μ* — y*,
^ * - y*) = 0 and G( , /̂ *) - G( , v*) n.e. in ΰ . Consequently (/**, A6*) = (/Λ*3 y*) =
(y*, y*) and </, /**> = </, ^*>. Assume that fl> = (ri, ..., rw) e Sf(^*). By the
above observation, we see that

n.e. on

Σ rkck

n n

Σ r Λ < ^ , ι̂ *> = < Σ

and hence

t v*-a.e.,t
so that M)€5J(y*). Therefore S£(/**) C SJ (y*) Since the discussion is
symmetric, we have SJ(y*)CS*(/**) and hence 5f (/A*) = SJ(I ;*) .

COROLLARY. Assume that G is of positive type and let μ* and y* be ele-
ments of So. If {gk\ A = l, , n} is μ*-independent and v*-independent, then
it is valid that ϊv(μ*) = w(v*).

This is an improvement of Theorem 2. 3 in p)] . We observe that
Theorem 14 and its corollary are not always valid if G is not of positive type.
This is shown by

EXAMPLE 9.9) Let Ω = B= {uu u2}, gi(u>i) =
/ ( u 2 ) = 2 and G be given by

9) [9], p. 254, Example 2.
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G(uu ui) = l, G(uu u2) = G(u2, UΊ)

It is clear that μeE=E'B if and only if μ = χιεUl + χ2εU2 with 0<J#i, x2<°o.
Our problem is to minimize

subject to

or equivalently to minimize

subject to

It is easily seen that S0 = {2εUl, 2εu}. Let us take μ* = 2εUl and v*=2ε«2.
Obviously {gi} is /^*-independent and t»*-independent and G is not of positive
type. By Theorem 13, we have M>(/**) = 1 and w(i>*) = 2. Namely S$(μ*)Φ

We have

THEOREM 15. Assume that G is of positive type and that μ* 6 S and
w = 0i, -..,rn)eRn satisfy the relations

G( , μ)-f>Σrkgk n.e. on B,

<G(;μ*)-f,μ*>= Σ rkCk.

Then it is valid that /(/**)= V, i.e., μ* e So.

PROOF. Let p be any element of 5. Then we have

20**, v) = 2<G( 5 μ*\ v>^2</5 v> + 2

Since G is of positive type, we have
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JO**)^/(/**) + 0**-v, A * * - V ) ^ / ( » )

This completes the proof.

§ 9 Existence of optimal solutions

We shall discuss the existence of measures μ € S such that V= I(μ). It
is rather difficult to find conditions which ensure the existence under general
circumstances as in § 8. So we shall limit ourselves to the special case in
which B = K is a compact set, G is lower semicontinuous, / is upper semicon-
tinuous and / < °° on K and each gk is finite valued and continuous on K.
This restriction will be preserved in the rest of this paper.

The topology on M+(K) induced by the weak topology w(M(K), C(K))
is called the vague topology (cf. § 6 for the definition of M(K\ M+(K) and
C(K)). We say that a set HCM+(K) is vaguely bounded if sup{/*(JO; μ e

We shall use the following two facts which are well-known in potential
theory.

PROPOSITION 10.10) Any vaguely bounded set H is relatively compact in
M+(K) with respect to the vague topology.

PROPOSITION I I . 1 1 } The mutual energy (μ, v) is lower semicontinuous on
M+(K)xM+(K) with respect to the vague topology.

We shall prove

LEMMA 5.12) Assume that V is finite. Let {μm} be a sequence in S such
that I(μm) tends to V as m-+oo. Then {μm} is vaguely bounded whenever any
one of the following conditions is satisfied:

( C l ) #0= Σ gk>0 onK.

(C. 2) gk>0 on K for some k.
(C. 3) G is of positive type and / >0.
(C. 4) (μ, μ)^>0for all μβEr

κ and /9 = sup{/(ιO; ueK}<0.
(C. 5) c(K)= inf i(μ, μ)

PROOF. Let us put ak= min {gk(u)\ u eK} (k = 0, 1, ..., n). From con-
dition (C. 1), it follows that αo>O and

Γ n Γ n

aoμm(K)<;\godμm = Σ \gkdμm= Σ ck
J k=ιJ k=ι

10) Gf. [9], p. 187, Proposition 3 and [3].

11) Cf. [9], p. 187, Proposition 4.

12) Gf. [15], Lemma 3.
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From condition (C. 2), it follows that ak>0 and

From condition (C. 4), it follows that

Assume condition (C. 5). For any μmφ0, let us put vm = μm/μm(K). Then we
have vm(K) = l and

, »m)<,(μm μm)/μm(K)2,

so that

I(μm) ^ c(K)μm(Kf - 2βμm(K).

Therefore {μm(K)\ is bounded. Finally we assume condition (C. 3). Then

V^ I((μm + μp)/2) = JOO/2 + Kμp)/2 ~ (μm - μp, μm ~

so that

(μ m-μp, μm

Therefore {(μm, μm)} is bounded, i.e., 0<,(μm μm)<,b<oo. Suppose that
{μm(K)\ is not bounded. Then we may assume that μm(K) tends to oo with
m. Writing vm = μm/μm(K), we can find a vaguely convergent subsequence of
{»m} by Proposition 10. Denote it again by {vm} and let v0 be the vague
limit. Then we have

Hm (um vm)^ lim b/μm(K)2 = 0.

Since G is of positive type, we have

0 <s (̂ o ± tμm, Po ± tμm) = ± t(v0, μm) + t2(μm μm)

for all ί > 0 . Dividing both sides by t and letting £—•(), we have
for all m. Furthermore we have

=\im ck/μm(K) =
Tϊi—*oo

for each k. Therefore μm + mv0 G 5 and

= I(μm) — 2m\fd\>Q.
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Letting m,->co? we arrive at a contradiction, since / > 0 on K and vo(K) = l.
Thus {μm(K)} is bounded.

THEOREM 16. Assume that V is finite. If any one of conditions (C. 1)-
(C. 5) is fulfilled, then there exists μ G S such that V= /(μ )

PROOF. Let {μm} be a sequence in S for which I(μm) tends to V as
7π-̂ oo. Assume any one of conditions (C. 1)-(C. 5). Then {μm} is vaguely
bounded by lemma 5 and contains a vaguely convergent subsequence by Pro-
position 10. Denote it again by {μm} and let μ0 be the vague limit. Then
we have

) = \im\gkdμm = ck for each A,

- ° ° < (μ oj μ o ) ^ 1™ (μm, μm)= 1™

by Proposition 11, where β = sup{/(u); u eK}. Therefore μ0 e S. Since f is
upper semicontinuous, we have

lim \fdμm<; \fdμθ9

so that

r

V= lim I(μm)^> lim (μm μm) - 2 lim \ fdμm

Thus we have V= I(μ0). This completes the proof.

REMARK 5. Ohtsuka [9~] called the conditional Gauss variational problem
the ft-dimensional problem in the case where K consists of mutually disjoint
compact sets Kk9 & = 1, •-, n, gk>0 on Kk and ^ = 0 on Kj(jφk).

It is clear that condition (C. 1) is satisfied for the ^-dimensional problem.
An existence theorem for the ^-dimensional problem was established in [9J
(p. 219, Theorem 2. 6) without the assumption that V is finite.

Let μe S and denote by μk the restriction of μ onto Kk. Then <gy, μky
= 0 if jφk and (gk, /χ ̂ > = c^^0. Thus we have

d e t « & ,

I n c a s e c A > 0 f o r a l l k, {gk;k = l, . . . , « } i s / / . - i n d e p e n d e n t a n d {μk; k = l, •••, n}
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is a full system of components of μ.

§ 10. Some properties of V(z)

We shall study the change of the value V of the conditional Gauss varia-
tional problem when G,/and {gk; A = l, ,n} are fixed b u t * = (ci, .-.,cn)eRn

changes. Let us put

S(z)={μeEκ; Λμ = z},

where

Eκ = {μeE;SμCK}=E'κ.

We shall examine the continuity of V(z) and compute the directional deriva-
tives of V(z).

In the case where {μ*; i = l, ••.,«} is a full system of components of

μ* e S(zo\ we define D(zo) = D(zo; {μ%}) by

D(zo) = D(zo; {μt})={ Σ tkΛμΐ; tkβR0 (A = l, ..., n)},
k=l

which is the polyhedral cone generated by {Aμf; A = l, •••, n}. It is clear
that D(zo) is a neighborhood of z0 (cf. the proof of Lemma 4).

We shall prove

THEOREM 17. Assume that Eκ is convex. Then V(z) is upper semicon-
tinuous in A(EK)°.

PROOF. Let zoeA(Eκ)°. We show that Tim V(z^)<V(z0) for any
sequence {z(p)} of points in A(EK)° which converges to z0. For any number
a with V(zo)<a, there exists μ<eS(z0) such that I(μ)<a. Since z0 is an in-
terior point of A(EK) and Eκ is convex, there exists μ e S(zQ) such that
{gk; k = l, •-, n} is //-independent by Theorem 5 in § 4. Writing μ*=εμ +
(l — ε)μ with 0<ε<l , we see that {gk; Jc = l, ..., n} is μ*-independent, so that
there exists a full system of components {μ*; k = l, .., zι} of μ* by Lemma 4.
Let {z(p)} be any sequence of point in A(EK)° which converges to z0. We
may suppose that z(p) e D(z0 {/**}) for all p. Namely we have
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It is valid that v(p) = Σ tf μt e S(z(p)) and
k l

( ) Σ f?Kμ%μt)Σ
j,k=l k=l

Since {Aμ%; & = 1, ..., n} is linearly independent and

n

Z0= Σ Aμf,
k = l

we have lim t{

k

p) = 1 for each k and

ΠE Γ(^>)^lim /(v(ί>)= Σ (/*?, /4)-2 Σ </,

= I(μ*) =I(eμ + (l-ε)μ)

= εl(β) + (l-έ) I(μ)-ε(l-έ) (μ-p, μ-fi).

Letting ε -^ 0, we have

ϊϊϊn V(z

By the arbitrariness of α, we obtain the desired inequality.
Similarly we can prove

PROPOSITION 12. If there exists μ*€S0(z0) such that {gk; λ = l, , n} is
μ*-independent, then V(z) is upper semicontinuous at z0.

We have

LEMMA 6. Let {z{p)} be a sequence of points in A(EK) which converges to

ZQ 6 A(Eκ) and let μp € S0(z
(p)). If μp converges vaguely to μ* and lim V(z(p))

ρ—*°°

<,V(zo), then it is valid that μ* e S0(z0) and lim V(z(p))= V(z0).

P R O O F . Let z

(p) = (c[p\ •-, c{p)) and zo = (cu . .., cn). Then we have

for each k and

Tίin [Γ(z ( ί )) + 20μp(K)l <; V(zo) + 2βμ*(K)<
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by Proposition 11 and our assumption, where β = sup{f(u);u eK}. Thus we
have /** e S(z0) and

}
/>-*OO

Hence V(zo)=I(μ*) and μ* e S0(z0).

THEOREM 18. Let z0 e A(EK) and assume that for any sequence {z(p)} of
points in A(EK) which converges to zQ there exists a sequence {μp} of measures
such that μp 6 S0(z(p)) and {μp} is vaguely bounded. Then V(z) is lower semi-
continuous at z0.

PROOF. Suppose that V(z) is not lower semicontinuous at z0. Then
there exists a sequence {z(p)} of points in A(EK) such that z(p)^»z0 as p->oo
and

(20) lim V(z<»)<V(z0).
p-*oo

There exists a sequence {μp} of measures such that μp e S0(z(p)) and {μp} is
vaguely bounded by our assumption. To save notation, we assume that μp

converges vaguely to μ*. It follows from Lemma 6 that lim V(z(p))= V(z0),
which contradicts (20). Therefore V(z) is lower semicontinuous at z0.

Let us consider the following two conditions:
(H. 1) V(z) is finite whenever S(z)Φφ.
(H. 2) 5(0) is vaguely bounded.

It is clear that condition (H. 2) is equivalent to condition 5(0)= {0}.
We have

LEMMA 7. Assume condition (H. 2). Let {z(p)} be a sequence of points in
A(EK) which converges to some z0 e Rn and let μp e S(z(p)). Then {μp} is va-
guely bounded.

PROOF. Supposing the contrary, we may assume that μp(K)^>oo as
p-+oo by choosing a subsequence if necessary. Writing vp = μp/μp(K\ we can
find a vaguely convergent subsequence of {vp}. Denote it again by {vp} and
let v be its limit. Then we have v(K) = l and

<#, ΰ}= lim<^, μpy/μP(K)= lim cψ/μp(K) = Q

for each k, where z<p) = (c[p), ••-, c[p)). Namely Av = 0 and tv e 5(0) for all
t e Ro, which contradicts condition (H. 2). Therefore {μp} is vaguely bounded.

COROLLARY 1. If condition (H. 2) is fulfilled, then S(z) is vaguely bounded
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for every z G Λ{EK) and A(EK) is closed.
It is clear that any one of conditions (C. 1) and (C. 2) in § 9 implies con-

dition (H. 2).
By the same argument as in the proof of Theorem 16, we have

COROLLARY 2. Assume condition (H. 2). Then SQ(z)Φφ for every

Noting that / is μ-summable for all μ e Eκ by our assumption, we see
that condition (H. 2) implies condition (H. 1).

We have

PROPOSITION 13. Assume condition (H. 2). Then V(z) is lower semicon-
tinuous in Rn.

PROOF. Observing that A(EK) is closed and V(z) = °° for all z £ A(EK),
our assertion follows from Theorem 18 and Lemma 7.

PROPOSITION 14. Let z0 G A(EK). Assume that V(z) is upper semicon-
tίnuous at z0 and condition (H. 1) is satisfied. If any one of conditions (C. 4)
and (C. 5) is fulfilled, then V(z) is continuous at z0.

PROOF. Let {z(p)} be any sequence of points in A(EK) which converges
to *o. We see that So(z™)φφ by Theorem 16. Taking μpeS0(z(p)\ we have
either

or

V(Z^) = I(μp) ^ c{K)lμp{K)J - 2βμp{K)

by conditions (C. 4) or (C. 5) (cf. the proof of Lemma 5). If {μp} is not va-
guely bounded, then we have

oo = fiϋϊ V(z^)<; V(ZO) < oo
P-+OO

by the above observation and our assumption. This is absurd. Therefore
{μp} is vaguely bounded and V(z) is lower semicontinuous at z0 by Theorem
18, so that V{z) is continuous at z0.

Summing up the above results, we have

THEOREM 19. Let zo^A(Eκ)
c'. Assume either that Eκ is convex or thai

there exists μ* € S0(z0) such thai {gk; & = 1, , n} is μ*-independent. If con-
dition (H. 1) and any one of conditions (H. 2), (C. 4) and (C. 5) are fulfilled,
then V(z) is finite-valued and continuous at z0.

We shall prove
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THEOREM 20. Let z0 6 A(EK)° and assume that there exists μ* € S0(z0) such
that {gk; & = 1, • , n} is μ*-independent. Then it is valid that

— V(zo + εx)_V(zo)

£o ε

for every x e Rn.

PROOF. Let {μf; k = l, ,n} be a full system of components of μΛ
There exists ε0 such that zo + εχ eD(z0; {μf}) for all ε, 0 < ε < ε 0 . It is valid
that

Σ

Σύ€)μt

so that

V(z0 + ex) - Γ(so) ̂  K»(£)) -

From the relation

Σ

we see that lim t{
k
€) = 1 and lim (t{

k

ε) — l)/ε = yk for each &, where {yk} are

defined by

Σ

It follows that

Σ ( y j y d (μf, μ t ) Σ
»« — 1 « — 1

n> 2
k = l'

2ΣykΣ %(/**) <β>, ^f>
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This completes the proof.
In order to compute the directional derivatives of V(z), we prepare

LEMMA 8. Let {z(p)} be a sequence of points in A(EK)° which converges to
z0 and let μ(p) e S0(z(p)). Assume that lim V(z(p))=V(z0) and that μ(p) has a

full system of components {μ1^; k = l, • •, n} such that μ{

k

p) converges vaguely
to μ% as p-+ oo for every k and dβί«gy, μf}) =7̂ 0. Then it is valid that

n

μ*= Σμ>*

lim iϋ(μ(p)) =

y lim (μ(p\ μ<») - (/,*, μ*),
P^oo

lim </,^>> = </,/**>.
P^oo

PROOF. It follows from Lemma 6 that μ* € S0(z0). It is valid that

by Proposition 11 and that

ΠΞ Σ <C( , A* ( Λ )-/, MiΛ > = Π
k

= Σ <G( , At*)-/, μt>
k=l

by our assumption that lim V(z(p))= V(z0). Thus we have
P-+°O

lim <G( , μ^)-f, μί»>
p-+°°

for each A:. From the relation

and our assumption that μ(

k

p) converges vaguely to μt for each k and det
«gy, /x^»=7^0, it follows that lim Wj(μ(p))=rj exists for each j and {r; ;y = l ? . . . ,

7i} is the solution of the equations
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= <G( , μ*)-f, μf>,Σ

and hence r; =#>//**) by Theorem 13. Therefore lim w(μ(p)) = w(μ*). It is

valid that

lim (μ<>\ μ(p)) = lim [2((z<*>, w(μ(p)))2- V(z(p))J
p—>oo p—*°o

= 2((*o, «>(/**)))2-^(*θ) = (/**, /**),

lim </, /»<«> = lim £((*<

This completes the proof.

COROLLARY. Under the same assumptions as in Lemma 8, we have

lim
P-+00

for every j and k.
Let x £ Rn, χφθ. We say that z0 6 Rn is an x-regular point of F(^) if

the following properties (D. 1) and (D. 2) are fulfilled:
(D.I) There exists μ*eS0(z0) such that {gk; & = 1, ••-, n} is />&*-

independent.
(D. 2) For any sequence {z(p)} of points in the segment L(z0; χ) =

{zo + ex; 0 < ε < ε 0 } contained in A(EK)° which converges to z0, there exist a
measure μ(p)e S0(z(p)) and a full system of components {μ{

k

p)l A = l, •••, n} of
(̂/») for every p such that

lim |
'P^oo

and {/χ(/>)} is vaguely bounded.
Denote by Soi(z) the set of measures μβ S0(z) such that {gk; k = l, ..., rc

is /^-independent and put

a(z; x)= inf{((Λ;, w(μ)))2; μeSoi(z)}.

We shall prove

THEOREM 21. Assume that z0 is an x-regular point of V(z). Then it is
valid that

(21) Hm
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PROOF. Let {ε̂ ,} be any sequence of numbers such that εo>εp>ep+i>O
and lim εp = 0. Let us put z(p) = z0 + εpx. There exist μ(p) e S0(z(p)) and a full

system of components {μ\p) k = 1, .., n} of fJ
p) such that lim | det«g>, μ\p)» \ >0

and {μ-(p)} is vaguely bounded. In order to establish (21), we may assume
that μ {

k

p) converges vaguely to μ$ for each k. Then μ(p) converges vaguely
n

to μ*= Σ μ* Since Soi(zo)φφ by our assumption, it is valid that lim

V(z(p))<;V(zo) by Proposition 12. Thus we have μ.* E 50(^0) and lim F"(z(/?))

= V(z0) by Lemma 6. {//f; 4 = 1/..., τι} is a full system of components of μ*,
since we have

| d e t « & , ^ ί » | = lim | d e t « ^ , ^ » | >0.

Denote by Dp the set D(z(p); {μι

k

p)}). We show that there exists p0 such
that z0 GDp for all p, p^>po. If we suppose the contrary, we see that z0 Φ Dp

for infinitely many p. In case z0 i Dp, there exists v{p) G Rn such that | v(p:> \ — 1
and

(22)

for all * β Dp by Proposition 1. It follows from (22) that

(23) 0 ̂  {{Λμγ\ v<»))2 = Σ vfKgh μϊP)>
j = ι

for each k. By choosing a subsequence if necessary, we may assume that v(p)

converges to v. We have by (23) that

It follows from (22) that

lim (Oo, v(ί>)))2 = (Oo, »))2 = Σ «Agh /**>

n n

Σ
ii

n

= Σ Σ t>y

so that

for each 4. Since det(<(g/, /Λ*)>)=^0, we conclude that v = 0, which contradicts
I v I = 1. Consequently z0 G Z)̂  for all p ^>p0. It follows that
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and

Z0= Σ
k = l

The measure v(p) = Σ 4 V f belongs to S(zQ\ so that

Since lim Aμ{

k

p) = Aμ^ for each h and zo= Σ ^μ*> we see that lim t{

k

p) = l and

lim [1 — tl

k

p)j/ep = yk for each yfc, where {yΛ} is defined by Σ ykAμ% = x. By

means of the corollary of Lemma 8, we have

P-+00

= . Σ (j/+y*)0^, ^ ) - 2 Σ
j t k— 1 k — 1

= 2 Σ <G( , /**)-/, ^?> J* =
^ 1

^ 2α(z0; x).

By the arbitrariness in choosing subsequences of {μ{

k

p)}9 we have

lim n
P-+00 Sp

By the arbitrariness of {ε̂ ,}, we complete the proof.
By Theorems 20 and 21, we have

THEOREM 22. Assume that z0 is an x-regular point of V(z). Then it is
valid that

lim

In the case where the set {tv(μ); μe Soi(zo)} consists of only one point,
we can compute the partial derivatives of V(z) at z0 by Theorem 22.

We shall study the notion that z0 is an ^-regular point of F(z). We can
easily verify that every zQeA(Eκ)° is an x-regular point of V(z) for all
x9 xφO, in the case where the problem is ^-dimensional in Ohtsuka's sense
(cf. Remark 5 in § 9).

We shall prove
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PROPOSITION 15. Assume that gk^O on K for each k, that condition (H. 2)
is fulfilled and that there is a neighborhood U of z0 such that UCA(EK) and
Soi(z) = So(z) for all zeU. Then z0 is an x-regular point of V(z) for all
x, xφO.

We need some preparations for the proof of this proposition. The
assumptions in Proposition 15 persist in the rest of this section except in
Proposition 16 below.

It is valid that A(Eκ)CRnQ and that * = (*!, •••, zn)eA(Eκ)° implies zk>0
for each k, since gk^0 on K for each k. Let μ* e Soi(z) and denote by Q(μ*)
the convex cone generated by A(C[μ*J) (cf. the proof of Lemma 4) and by ek

the point of Rn whose y-th coordinate is equal to 0 if j φk and 1 if j = k.
Define d(μ*; z) by

(* = 1, • ••, ή)}.

Since z is an interior point of Q(μ*), d(μ*; z)>0.

LEMMA 9. Let F be a nonempty compact set contained in U. Then it is
valid that

d(F) = mΐ{mt{d(μ; z); μeS0(z)}; z€F}>0.

PROOF. Suppose that d(F) = 0. Then there exist z(p) e F and μ(p) e 50(^(/)))
such that d(μ(p) z(p)) < 1/p. We may suppose that z(p) converges to z e F and
that there is i such that z(p) + (l/p)ei £ Q(μ(p)) for all p. There exists v(p) e Rn

such that I v(p) \ = 1 and

for all u e Q(μ(p)) by Proposition 1. It follows that

(24) Σvfgk^O on Sμ(p\
k=l

We may assume that μ(p) converges vaguely to μ* (cf. Lemma 7) and that
v(p) converges to v. It is valid that μ* e S0(z) by Theorem 19 and Lemma 6
and that | v \ = 1 and

n

< Σ vkgk, μ*y = ((z, v))2= lim ((z(p) + (l/p)ei, v(p)))2<L0.
k=l />->«>

It follows from (24) that

n

Σ ΰkgk^iv on Sμ .

n

Thus we have Σ vkgk = 0 on 5/x*. Since μ* e So(z) = Soi(z), there exists a

system of components {μ%\ λ = l, ..., ra} of μ*. We have
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Σ v^gj, μ-ty = o,Σ

and hence vk = 0 for each 4, since det«gv, μ.Jf»#O. This contradicts | ί) | =1.
Therefore d(F)>0.

Let F be a compact neighborhood of z0 such that FC U and let r0 be a
number such that 0<r0<d(F). For zGF and //G50(z), there exist a set
{j;*; 4 = 1, ..., π,} of measures in C[μ*] and a set {rk; 4 = 1, • •, ra} of strictly-
positive numbers such that

and vk(K) = μ*(K)/n

for each 4. Define {sk} by

n

z=Σχ

It is clear that

for each A: with z = (zu , 2rw). Let us put ak = rksk and αo— Σ ak Since

g * ̂  0 for each 4 and μ * — ŷ  6 M+(iΓ), we have ^4μ* — Avk e R% and

w n n

— Σ

and hence α0 ̂  1. Let us define μ% by

— Σ

Since {̂ t>#; 4 = 1, •••, 71} is linearly independent, we see that {μ*; 4 = 1, ..., n}
is a full system of components of μ* (cf. the proof of Lemma 4). We call
this a normalized full system of components of μ*.

PROOF OF PROPOSITION 15: There exists ε0 such that L(z0 x) is contained
in the above F. Let {z(p)} be any sequence of points in L(z0; x) which con-
verges to z0. We take μ(/>) £ 50(z(/))) and a normalized full system of com-
ponents {μi^; 4 = 1, •••, n} of μ(^}, i.e.,

Σ

~rk sk 3 ao — ZJ
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We show first that r(p) = 2 r^} is bounded. Supposing the contrary, we may

assume that rf}—>oo as p-+oo for some i. Since {μ(ί)} is vaguely bounded by
Lemma 7, we may also assume that μ(p) and v\p) converge vaguely to μ* and
vf respectively. Then it is valid that μ* e S0(z0) and μ*(K)>0, so that

v*(K)= lim vf](K)= lim

We have

This contradicts condition (H. 2). Therefore {r(p)} is bounded. Now we
prove that lirn |det«g y, μ

{

k

P)y)\ >0. Supposing the contrary, we may con-

sider that μ{

k

p) converges vaguely to μ% for each k and lim det«gy, ^ i/>)» = 0,
by choosing subsequences if necessary. We may also assume that \>\p) con-
verges vaguely to v% and that rk

p) converges to rk for each k. It is valid that

n

l i m 4 ~ sk = ck/(r0+ Σi Cj)<> ZQ = ( c i , •••, c » )
/>^°o y = i

ife, vf(X") = μ*(K)/n.

It is clear that rk>0 and 5^>0 for each k. We have

lim ak

p)=rksk = ak, lim α ^ = Σ
p-+°o p-+<*> k=l

Namely {/̂ J; 4 = 1, •••, 71} is a normalized full system of components of /**, so
that det(<̂ gy, μfy)φθ. This contradicts our assumption that

det«gy, μ t» = lim det«^ y, μ^y) = 0.

This completes the proof.
In the case where the problem is rc-dimensional in Ohtsuka's sense, it is

valid that So(z) = Soi(z) for all z 6 Λ(EK)°. If S(z) consists of only one point
for all z€A(Eκ), then So(z) = Soi(z) for all zeA(Eκ)° by Theorem 5 in § 4.

We have
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PROPOSITION 16. Let z0 e A(EK)° Assume that gk^O on K for each k,
that condition (H. 2) is fulfilled and that Soi(zo) = S0(z0). Then S%(zo) = {w(μ);
μ £ S0(z0)} is a compact set. If we further assume that S0(z0) is convex, then
SQ(Z0) is connected.

PROOF. Since d({z0})>0 by Lemma 9, we can define for μeS0(zQ) a
normalized full system of components of μ with a number r0 such that 0 < r 0

<d({z0}) (cf. the proof of Proposition 15). Let {μ(p)} be any sequence of
measures in S0(z0) and {μ{p)l k = l, ..., n} be a normalized full system of com-
ponents of /x(/)). If μψ converges vaguely to μf for each k, then we see by
the same argument as in the proof of Proposition 15 that det(<(gy, μ%y)φθ.
By this fact and Lemma 8, it can be shown that S$(z0) is closed. We show
that S*(*o) is bounded. Supposing the contrary, we can find a sequence {μ(p)}
of measures in S0(z0) such that \w(μω)\->°o as/?-»oo and

where {μip); k = l9 •••, n} is a normalized full system of components of μ(p).
Writing v(p) = w(μ(p))/\ιv(μ(p))\, we may assume that v{p) converges to v and
that μ{

k

p) converges vaguely to μf by Lemma 7. We have

where β= sup{/(α); ueK} and b= inf{G(u,u'); (u, u')€KxK}. Since
S0(z0) is vaguely bounded, it is easily seen by the above relations that
{<G( , μ(p))-f, μ\p)y} is bounded. Thus we have

and hence v = 0, since det«gy, μ*y)φθ. This contradicts |z)| = 1 . Therefore
5^(z0) is bounded.

Next we show that S$(z0) is connected whenever S0(z0) is convex. For
any μ™ e S0(z0)(p = 1, 2) and t e R with 0 ̂  ί ^ 1, we have μ* = tμ(1) + (1 - t)μ{2)

€ 5o(-2To) by our assumption. Let {μip); A = l, ..., τι} be a normalized full sys-
tem of components of μ(p) for p = l9 2 and set μf = tμi

k

1) + (l — t)μi

k

2) for each A:.
Then {/>6j; k = l, , ^} is a full system of components of μ*. We have

for/? = l, 2 and
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Σ Wj(μ*Kgj, μV = <G( , μ*)-f, μt>.

It is valid that

, μ*)-f, μ

= y Σ Dwj(μW) + (1 -ί)%(/ 2 ) ):<gi, μt> + t(X-t)ak,

where

Namely we have

n

Σ C ^ CA6*) — t

Define q = (qu •••>?«) b y

- Σ ®j(μW) <gj, μl2)>~ Σ

= t(l-t)ak.

Σ qKg.
3 = 1

It follows that

for all ί, 0 ̂  ί ̂  1. Since w(t^l) + (1 - ί)^(2)) e 5*(z0) and the right side of (25)
represents a curve connecting w>(μ(1)) and w(μ(2)), we conclude that 5^(z0) is
connected.

This is a generalization of Theorem 2. 9 in

§ 11. The case where G is of positive type

We continue the study of V(z) under an additional condition on the
kernel G. We shall prove

THEOREM 23. Assume that G is of positive type and that condition (H. 1)
is fulfilled. Then V(z) is finite-valued and convex on A(EK) and V(z) = oo
outside A(EK).
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PROOF. Let z(k)€A(Eκ) (& = 1, 2) and teR,Q<,t<:i. For any ε>0?

there is μk e S(z(k)) such that V(z(k))> I(μk)-ε (i = l, 2). It follows that

By the arbitrariness of ε, we have

r ( ^ ( 1 ) + ( l - ί> ( 2 )) ̂  ί r (* c l ) )+(i -

It is clear that S(z)=φ if and only if z £ A(EK). In this case we have V(z) = oo
by our convention.

On account of this fact, we can apply the general results concerning
convex functions in [1], [12] and [13] to the study of V(z). In the rest of
this section, we always assume that G is of positive type and that condition
(H. 1) is fulfilled.

By a well-known result ([1], p. 92, Corollaire 2 of Proposition 2), we see
that V(z) is continuous in A(EK)°. However V(z) is not always continuous
at boundary points of A(EK). This is easily verified by Example 3 in § 6.

Let xβRn,χφ0 and z0 e A(EK)°. Define DV(z0) and V'(zo;x) as follows:

>((z-zo, w))2 for all z

The existence of V'(z0; x) follows from the convexity of V(z). It is valid
that

Vf(z0; x)= sup i((x, w))2; weDV(z0)}

(cf. [12], Theorem 3).
We shall determine DV(z0) explicitly. For μ*eS0(z0), let SJO**; z0) be

the set of w G Rn which satisfies the relations (3) and (4) in Theorem 12 with
*o = (ci, ..-, cn). It is valid that SJO**; zo) = S$(»*; z0) for ^*, »*€S0(z0) by
Theorem 14.

We have

THEOREM 24. Assume that z0E A(EK)° and S0(z0)Φφ. Then it is valid
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that

for any μ* € S0(z0).

PROOF. We first assume that μ*eS0(z0) and we S$(μ*; z0). Let
z e A(EK). For any ε>0, there is v e S(z) such that V(z) + ε>I(v). Integrat-
ing both sides of (3) by v, we obtain

Since (//.*, /**) = </, /χ*> + ((^0? «0)2, we have

= (v, »)~(μ*,

By the arbitrariness of ε, we have

for all zeA(Eκ), and hence 2weDV(z0). Next we assume that 2weDV(z0)
and /χ*€ SoĈ o). Let y be any element of Eκ and set z — Av. For any ίGi?
with 0 < ί < l , we have

((t(z - so), 2z^))2 ̂  r ( ί

Dividing both sides by ί and letting t -> 0, we obtain

or equivalently

μ*)-f~ Σ Wkgk, V>^<G(.? / .* )-/- Σ Wkgk, μ*>,
k=l k=l

where w = (wi, , wn). From this relation, we can easily conclude that
S$(μ*; ZQ). This completes the proof.
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COROLLARY. V(Z0; X) = sup{2(O, IV))2; weS$(μ*; z0)}.
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