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§1. Introduction

Let X and Y be real linear spaces which are in duality with respect to a
bilinear funectional ((,)); and let Z and W be real linear spaces which are in
duality with respect to a bilinear functional ((,));. Denote by w(X, Y) the
weak topology on X. An infinite linear program for these paired spaces is a
quintuple (4, P, Q, yo, z0). In this quintuple, 4 is a linear transformation
from X into Z which is w(X, Y)—w(Z, W) continuous, P is a convex cone in
X which is w(X, Y)-closed, Q is a convex cone in Z which is w(Z, W)-closed,
yo€ Y and z, € Z are fixed elements. One of the basic problems in the theory
of -linear programming is to determine the value M of the program defined
by

M= inf {((x, y0))1; x € S},
where
S={x€P; Ax—z,€Q}.

In this paper, we use the convention that the infimum and the supremum on
the empty set ¢ are equal to + oo and — oo respectively.
The dual problem is to determine the value M* defined by

M*= sup{((z0, w))z; wE S*},
where
S*={weQ"; yo—A*we P*}.

Here 4* denotes the adjoint transformation of A4, i.e., 4* is the linear trans-
formation from W into Y which is w(W, Z)—w(Y, X) continuous and satisfies
the relation

((Ax: w))2=((x, A*w))l
for all x € X and we W and P* and Q* are defined by
Pr={yeY; ((x, ¥))1=0 for all x€ P},
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Q"'={we W; ((z, w); =0 for all z€Q}.

K. S. Kretschmer [ 8] investigated the following two problems:
(i) the existence of x€S or we S* which satisfies M=((x, y,)): or
M*=((z0, w))2,

(ii) relations between values M and M*.

An snswer to problem (ii) is called a duality theorem. Some of the results
in [8] have been further generalized by many mathematicians, for instance
see R. Van Slyke and R. Wets [14] and M. Yamasaki [16; 17].

We say that an infinite linear program (4, P, Q, yo, zo) is a regular semi-
infinite linear program in the case where Z and W are n-dimensional Euclidean
spaces, ((, ) is defined by the usual inner product, Q={0}, zo=(cy, ---, ¢») € R”
and

Ax:(((x’ yl))h Tty ((x’ 9’"))1)

for all x € X, where y;, i=1, ..., n, are fixed elements of Y. We shall be con-
cerned with problems (i) and (ii) for regular semi-infinite linear programs in
this paper.

For later use, we shall consider in § 2 a slightly more generalized semi-
infinite program than the regular semi-infinite linear program defined above.
Several types of semi-infinite linear programs were discussed by A. Charnes,
W.W. Cooper and K. O. Kortanek [47], R.J. Duffin and L. A. Karlovitz [5],
R.J. Duffin [6] and K. Isii [7].

The conditional Gauss variational problem (= CGVP) investigated by
M. Ohtsuka [9] may be regarded as a semi-infinite program with a nonlinear
objective function. More precisely, let K be a compact Hausdorff space,
{g; k=1, ..., n} be a set of real-valued continuous functions on K, {c;; k=
1, ..., n} be a set of real numbers and let G and —f be lower semicontinuous
functions on Kx K and K respectively which take values in (—oo, +oo7].
Denote by Ex the totality of non-negative Radon measures x on K such that

(s ) ={{6u, D)dp@)dp) <oo.
CGVP is the problem to determine the value 7 defined by
V= inf {(s, ,u)—2gfd,u:; pEE({ g}, {exb},
where
Ex({g:}s {Ck}):{[bEEK;ngd[b:Ck for each k}.

Let p*€Eg. {gi; k=1, ..., n} is called p*-independent in [9] if there exists
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a set {ux; k=1, ..., n} of non-negative measures such that p*—u, is a non-
negative measure on K for each £ and det ( S gidpwr)#+0. One of our aims is

to study the roles of this independence condition in the theory of semi-infinite
programming. We shall discuss in § 4 Ohtsuka’s independence condition in
a more general form than the original one. By applying the results in § 4
to CGVP, we shall improve in § 8 some of the results in [97] relating to CGVP.

A superfeasibility condition will be introduced in § 5. This notion is
closely related to the one investigated in [6]. A potential-theoretic semi-
infinite linear program will be given in § 6 as an example of a regular semi-
infinite linear program. Our aim in § 6 is to give an answer to the problem
raised in connection with CGVP in [107] and remarked in {167, p. 354. Some
gaps between equality constraints and inequality constraints will be clarified
there. In § 7, we shall be interested in the problem how the values of regular
semi-infinite linear programs change with {y;}. Analogous problems were
studied in [97] and [187].

We shall discuss CGVP in a slightly more generalized form than the
above in § 8. The existence of optimal solutions for CGVP will be studied
in § 9. We shall consider the value 7 of CGVP as a function of z=(cy, ---, ¢,)
in § 10 and § 11. We shall examine the continuity of 7(z) and compute the
directional derivatives of 7 (z) by making use of Ohtsuka’s independence con-
dition. It must be noted that CGVP is a generalization of a classical quadra-
tic program with linear constraints. Therefore some of the results in § 8
and § 10 may be regarded as new results for an indefinite quadratic program.

The author wishes to express his deepest gratitude to Professor M.
Ohtsuka for many valuable suggestions and discussions during the prepara-
tion of this paper.

§2. Semi-infinite programs

We begin with the definition of a semi-infinite program. Let X be a real
linear space and R” be the n-dimensional Euclidean space. Two n-dimensional
Euclidean spaces are always considered to be in duality with respect to the
bilinear functional ((,)), defined by the usual inner product, i.e.,

7
(D, 2@)a= DaPz for sO=(fp, - 2i¥)

(k=1,2). Let P be a convex cone in X, {fi(x); i=1, ..., n} be a set of finite
real-valued additive and positively homogeneous functions on P, f(x) be a
finite real-valued function on P which is convex and positively homogeneous,
and let z, be a fixed element of R”. Let 4 be the transformation from P
into R” defined by

Ax=(f1(x), -, fulx)),
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A semi-infinite program is defined as follows:
(I) Determine
M= inf{f(x); x € S},
where
S={x€P; Ax=1z0}.
As a dual program, we consider the following problem:
(II) Determine
M*= sup{((z0, w))2; we€ S*},
where

S*={weR"; (4x, w)):< f(x) for all x € P}.

It is easily seen that problem (I) includes the regular semi-infinite linear
program defined in § 1, by taking

f(x):(<x> yO))b fz(x>:((xa yt))l (l:]-) ) n)

For later use, we introduce some notations. Denote by S, and S¥ the
sets of optimal solutions for problems (I) and (II):

So={x€S; M= f(x)},
St={we §*; M*=((z0, w))2}.

Let R, be the set of non-negative real numbers and denote by C° the interior
of a set C in R” unless otherwise stated.
We shall utilize the following separation theorems:

ProrositioN 1.7 Let C be a closed convex cone in R" and v be an element
of R" such that v¢ C. Then there exists w e R" such that

(v, w))2 <O=((2, w))

Sforall z€C.

ProrosiTioN 2.2  Let C be a convex cone in R” such that C*=R" and v be
a boundary point of C. Then there exists a non-zero w € R” such that

(v, )2 =0=((2, w))2

1) [1], p. 73, Proposition 4.
2) [1], p. 77, Exercise 4.
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Sorall zeC.

§3. Duality theorems

We have
Tueorem 1. It is always valid that M* << M.

Proor. By our convention, we may suppose that S=~¢ and S*=~¢. Let
x€Sand we S*. Then we have

[ (%) = ((4x, w))2=((20, w))2,

and hence M* < M.
Let us define the set H in R” X R by

H={(Ax,r+ f(x)); x € Pand r € Ro}.
We proved in [17]

Tueorem 2.9  Assume that the set H s closed. If either M or M* is
finite, then M=M* and S,=~¢.
We shall prepare

Lemma 1. Assume that the value M is finite. Then there is a nonzero
(w, s) € R X R such that s =0 and

Ms+((z0, w))2=0=1s +((z, w))2
for all (z,r)eH. If s>0,then it is valid that M=M* and —w/s € S§.

Proor. It is clear that H is a convex cone in R"*', H=+ R"*! and (z,, M)
is a boundary point of H. By means of Proposition 2, there exists a nonzero
(w, s) € R" X R such that

Ms+ ((zo0, w)2=0=rs +((z, w))2

for all (z, )€ H. Since (0, r)€ H for all r€ R,, we see that s—=0. Let us
consider the case where s>0. Writing o= —w/s, we have

M—((z0, ))2=0=r—((2, ®))>

for all (z,r)€ H. Since (4x, f(x)) € H for all x € P, we conclude that w € S*
and

3) [17], Theorems 2 and 3. Cf. [16], p. 334, Lemma 3.
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M* =M= ((z0, @))2 = M*

by Theorem 1. Hence M=M* and @< S¥.

Lemma 2. Assume that the interior A(P)° of A(P) is monempty and
ve A(P)°. If ((v, w)):=0 and ((4Ax, w)),=>0 for all x € P, then w=0.

Proor. For any z€ R”, there is >0 such that v+iz€ A(P)°. Let x;
and x, be elements of P which satisfy 4x,=v-+¢z and Ax,=v—tz. Then it
follows that

0=((4x1, w))2=1((z, w))2,
0=((4x2, w)2=—1t((z, )2,

so that ((z, w)).=0. By the arbitrariness of z, we conclude that w=0.
We have

TueOREM 3. Assume that zo € A(P)° and that the value M is finite. Then
it is valid that M=M* and SF==¢.

Proor. There exists a nonzero (w, s) € R” x R such that s=0 and Ms+
(20, w)):=0=<rs+((z, w)); for all (z,r)€H by Lemma 1. If s=0, then we
have ((zo, w));=0<((Ax, w)); for all x € P, and hence w=0 by Lemma 2. This
is a contradiction. Thus we have s>0. Our assertion follows from Lemma 1.

By applying Kretschmer’s duality theorem to the regular semi-infinite
linear program, we have

ProrosiTion 8.9 Let (A4, P, Q, yo, z0) be a regular semi-infinite linear
program and denote by s(Y, X) the Mackey topology on Y. If the s(Y, X)-
interior (P*)° of P* is nonempty and there is w € R” such that y,— A*w € (P*)°,
then the set H s closed.

Let Xx R and Yx R be in duality with respect to the bilinear functional
((,)) defined by

(((, ), (s D=, y)1+7s

for all (x,r)€X xR and (y, s)€ Yx R and let G be the set in Yx R defined
by

G={(4*w+y, r—((z0, w))2; wER", y€P" and r € Ro}.
The dual statement of Theorem 2 is as follows:

ProrositioN 4.2 Let (A, P, Q, yo, z0) be a regular semi-infinite linear

4) [8], p. 236, Corollary 3.1.
5) [8], Theorem 3 and [16], Theorem 8*.
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program and assume that the set G is w(Y x R, X X R)-closed. If either M or
M* is finite, then M =M* and SF=~¢.
We shall prove

Prorosition 5. The following condition (F) implies that the set G is
w(Yx R, XX R)-closed :
(F) The relations — A*we P+ and ((z4, w)); =0 imply that w=0.

Proor. Let {(y., ro); a€ D} be any net in G which w(Y % R, X X R)-con-
verges to (y, r)€ Yx R. Then there exists w, € R” such that
¥o—A*w, € P and ro=— (20, wa))2-

Let us put
|lw| =(s3++s2)Y2 for w=(sy, .-, s,) €ER".
Suppose that {|w,|; @€ D} is unbounded. Then there exists a subnet
{wy; a € D} of {w,; «€ D} such that |w,|—>oo along D,. Writing v,=w./ | we|,
we can find a subnet {v.; € D;} of {v.; ®€ D;} which converges to v € R",
since {w€ R”; |w| =1} is compact. Then we have |3| =1,
—((z0, )2 = lim [— (20, va))2]= lim [~ (o, wa)2 )/ |
<limr,/|wg| =0,
aeD;
((x> A*ﬁ))lz lim ((x, A*va))lz lim ((.’X‘, A*wa))l/lwa‘
aeD; aED;
= lim ((x, ya))1/|wa| =0
aeD;
for all x€P. Thus we have
|o] =1, ((20, )):=0 and — 4*v € P*,

which contradicts condition (F). Therefore {|w,|; « € D} is bounded and we
may suppose that {w.; @€ D} converges to @ by choosing a subnet if neces-
sary. Then we see easily that

y—A*we P+ and r=—((zo, @))2,
and hence (y, r) €G. Namely the set G is w( Y x R, X x R)-closed.

ProrosiTioN 6. It is valid that z,€ A(P)° if and only if S~¢ and con-
dition (F) is fulfilled.

Proor. Assume that zo€ A(P)° and that —A*we P* and ((z¢, w)): =0.
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There is x € P such that Ax =z, It follows that
0= ((z0 w))2=((4%, w));=((%, A*w)) =<0.

Denoting v= —w, we have ((zy, v)): =0 and ((Ax, v)).=0 for all x € P, so that
v=0 by Lemma 2. Therefore w=0 and condition (F) is satisfied. Next as-
sume that S=~¢ and condition (F) is satisfied. Suppose that z, is a boundary
point of A(P). Then there exists a nonzero we R” such that

(20, w))2=0=((4x, w)):

for all x € P by Proposition 2. It follows that — A*we P* and ((zy, w)),=0,
so that w=0 by condition (F). This is a contradiction. Therefore z, is not
a boundary point of A(P). Since z,€ A(P), we conclude that z, € A(P)°.

CorOLLARY. If zo€ A(P)°, then the set G is w(Y X R, X x R)-closed.
This is an improvement of Proposition 7 in [16].

§4. An independence condition

We introduce

DeriniTiON 1. Let x € P. We say that {f;;i=1, ..., n} is x-independent
if there exists a set {x;; j=1, ..., n} in P called a system of components of x
such that x —x; € P for each ;j and

det(fi(%,)) 70,

where det (a;;) means the determinant of a matrix (a;;).
We have

TueoreM 4. Assume that x€ S and {fi; i=1, .., n} s Z-independent.
Then it is valid that zo € A(P)°.

Proor. Let {x;; j=1, ..., n} be a system of components of z. Suppose
that z, ¢ A(P)°. Then z, is a boundary point of A(P), since z,€ A(P). By
means of Proposition 2, there is a nonzero w=(w, ---, w,) € R" such that

((z0, )2 =0 = ((4x, w))2
for all x€P. From x—x;€ P and x; < P for each j, it follows that
0=<((4xj, w)): = (4%, w))2=((z0, w))2=0.

Thus we have

0=((4xj, w))z= é]l w; fi(x;)
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for each j. Since det(fi(x;))+0, we conclude that w;=0 for each i, i.e., w=0.
This is a contradiction. Therefore we have z, € A(P)°.
By Theorems 3 and 4, we have

CoroLLARY. Assumethat x€ S and {f;;i=1, ..., n} 1is x-independent.
If the value M is finite, then M=M* and ST =+¢.

We shall prove

THEOREM 5. Assume that zo € A(P)°. Then there exists x €S such that
{fi;i=1, ..., n} 1s x-independent.

Proor. Since zo € A(P)°, there exists a set {z;; j=1, ..., n} of points in
A(P) such that

z0= 3 a;z; with ¢;>0 and . ¢;=1,
i=1 =1

and {z;; j=1, ..., n} is linearly independent. There is x;€P such that
Ax;=z; for each j. Let us take
x= Zn: a;x;.
i=1

Then we see easily that x€ S and {a;x;; j=1, ..., n} is a system of com-
ponents of x. Namely {f;; i=1, ---, n} is z-independent.

An essential role of our independence condition in the theory of semi-
infinite programming is given by

THEOREM 6. Assume that x € Soand {f;; i=1,...,n} is -independent and
that f is additive. Then the set S§ consists of only one point w=(wi, -, wy)
and {w;; i=1, ..., n} is the solution of the equations

€Y é}l wifi(x;)=f(x;),

where {x;; j=1, ..., n} is a system of components of x.

Proor. It is clear that S¥=~¢ by the corollary of Theorem 4. Let w=
(wy, ---, w,) be any element of S¥. Then it is valid that

S (@) =((20, w))2=((4%, w))3.
Taking a system of components {x;; j=1, ..., n} of x, we have
((4xj, )= f (x;),

((AE —x;), )= f (% — ;)= f (%) — f (%)),
so that
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Fla=((dy, w)o= Sunf ().

Namely {w;;i=1,...,n} is the solution of the equations (1). Since det ( fi(x;))
=0, the solution of the equations (1) is uniquely determined, so that S¥
consists of only one point.

Remark 1. The set S§¥ may contain more than one point if we change
the condition z € S, for the condition z € S in Theorem 6. This is shown by
Example 5 in § 6 below.

§5. A superfeasibility condition

We are concerned with the regular semi-infinite linear program defined
in § 1 in this section.

DeriniTioN 2. We say that a regular semi-infinite linear program (4, P,
Q, o, z0) is superfeasible if there exists z € S such that ((x, )).>0 for all
y EPTNAX(W), y#0.

In connection with condition (F) in § 8, we consider the following con-
dition (SF):

(SF) The relations — A*we P* and ((z9, w)); =0 imply that 4*w=0.
It is obvious that condition (F) implies condition (SF). If {y;;i=1, ..., n} is
linearly independent, then conditions (F') and (SF) are equivalent.

We shall prove

ProrosiTion 7. A regular semi-infinite linear program (A, P, Q, yo, 20)
18 superfeasible if and only if S++¢ and condition (SF) is fulfilled.

Proor. Assume that (4, P,Q, yo, z,) is superfeasible and that — A*we P*
and ((zo, w))2==0. There exists z € P such that 4z =z, and ((%, )):1>0 for
all ye PPNAX(W), y50. If A*w=~0, then it follows that

0<((&, —4*w)r=—((4%, w))>=—((20, w))2=0.

This is a contradiction. Therefore 4*w=0 and condition (SF) is satisfied.
On the other hand, assume that S=~¢ and condition (SF) is fulfilled. Suppose
that (4, P, Q, yo, z0) is not superfeasible. Then for any x & S there exists
yEPT*NA*(W) such that y==0 and ((x, ¥)):=0. Let us choose w€& W satis-
fying y=—A*we P*. It is valid that

((z0, w))2=((4%, )2 =((&, 4*w))1=—((&, P =0,

so that A*w=0 by condition (SF). This is a contradiction. Therefore
(4, P, Q, yo, z0) is superfeasible.
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{yi;i=1,...,n} is called z-independent for x € P if the set {f;;i=1,-..,n}
of functions defined by fi(x)=((x, y;)): for each i is z-independent. It is
easily seen that {y;; i=1, ..., n} is linearly independent whenever there ex-
ists x € P such that {y;; i=1, ..., n} is x-independent.

By means of Theorems 4 and 5, Propositions 6 and 7 and the above ob-
servation, we have

Tueorem 7. Consider a regular semi-infinite linear program (A, P, Q,
Yo, Z0) and assume that {y:; i=1, ..., n} 1is linearly independent. Then the
following statements are equivalent:

(a) zo€ A(P)°.

(b)  There exists x € S such that {y;; i=1, ..., n} is x-independent.

(¢) S=~¢ and condition (F) is satisfied.

(d) S==¢ and condition (SF) is satisfied.

(e) (4, P, Q, yo, zo) 18 superfeasible.

We shall prove

TueoreMm 8. Assume that a regular semi-infinite linear program (A, P,
Q, ¥o, 20) 18 superfeasible and that the value M is finite. Then it is valid that
M=M* and S¥=g.

Proor. In the case where {y;; i=1, ..., n} is linearly independent, our
assertion follows from Theorems 3 and 7. We consider the case where
{y;;i=1, ..., n} is linearly dependent. We may assume that {y;; i=1, ..., p}
(1=<p<n) is linearly independent and

Vo4i= iél ajiy; with a¢; €R
for each j, 1< j<n—p. Then we have

ers= Bawes 1= j<n—p,
so that

M= inf {((x, yo))1; x € S},
where
S'={x € P; (%, y)h=c, L=<i = p}.
Let T be the linear transformation from X into R? defined by

Tx:(((-x, yl))b ERRD) ((x’ yp))l)
and set z;=(ci, ---, ¢;). Then we have A*(R")=T*(R’) by the above ob-
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seravation. It follows that the regular semi-infinite linear program (T, P,
{0}, o0, 2¢) is superfeasible. Therefore there exists ¢=(ry, .-, r,) € R? such
that

» ?
M= Z Cir; and Yo— Zriyi€P+.
i=1 i=1

Writing =@y, -+, 75, 0, ---, 0) ER”, we see that we S* and M=((z,, @)):.
This completes the proof.

§6. Potential-theoretic semi-infinite linear programs

As an example of a regular semi-infinite linear program, we shall give a
potential-theoretic linear program.

Let K be a compact Hausdorff space, M (K ) be the totality of Radon me-
asures on K of any sign, M*(K) be the subset of M (K) which consists of non-
negative measures, C(K) be the totality of finite real-valued continuous func-
tions on K and C*(K) be the subset of C(K) which consists of non-negative
functions. It is easily seen that M(K) and C(K) are real linear spaces which
are in duality with respect to the bilinear functional ((, )), defined by

(v, f))lzg fdy for ye M(K) and f € C(K).

Let us take
X=M(K), Y=C(K), P=M*(K), y;=g € C(K) (i=0, 1, ..., n),

and call the regular semi-infinite linear program (4, P, Q, y,, o) the potential-
theoretic semi-infinite linear program. We note that the notion of p-inde-
pendence of {g;; i=1, ..., n} (v€M*(K)) coincides with the one introduced
by Ohtsuka [97].

We shall discuss the question whether the condition that M is finite and
20>0, ie, ¢;>0(=1, ..., n), plays an essential role for problems (i) and (ii)
in § 1 or not. This problem was raised in connection with the conditional
Gauss variational problem in [107] and remarked in [167], p. 354.

We have examples which show respectively

1. M is finite and S,=¢.

2. M is finite and S*=¢.

3. —co<M*<M< oo,

4. M* is finite and SF=¢.

Exampre 1. Let K be the Alexandroff one point compactification {N, a}
of the discrete space IV of all natural numbers. Let us take
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c1=1,
go(n)=1/n" go(a)=0,
g(n)=1/n, gi(a)=0.
It is easily seen that M=0 and S, =¢.
ExampLe 2. Let K={N, a}, c;=c,=1,
g =1, go(n)=—1/n (ns1), g(a)=0,
g(D=1, gi(n)=—1/n? (n=1), go(a)=0,
&) =1, g:(n)=gx(0)=0 (n+1).
It is easily verified that M=1. If w=(ry, r;) € S*, then
—1/n+r/n*=>0 (n€N, ns1)
gso that co>r; >n(n=2, 8, ...). This is a contradiction. Therefore S* =g.
ExampLE 3. Let K={N, a}, c;=c2=1,
gL =1, go(n)=go(@)=0 (n+1),
gi(n)=1/n, g1(a)=0,
g&:)=1, g(r)=1/(n+1) (n1), g2(a)=0.

Then we have M*=0<1=M. In fact, it follows from p € S that

v1+ Z}Zvn/nzl and p;+ i}zv,,/(n—l—l):l,

where y,=v({n}) =0 and v,=v({a})=0. We have easily that y;=1, »,=0
(n=1) and »,=>0, and hence M=1. On the other hand, we derive from
w=(r1, Tz) € S* that
ri+r, <1 and ri/n+r/(n+1)0 (n=L).
It follows that ((z¢, w)),=r,+7,<<0. Since (0, 0) € S*, we conclude that M* =0.
ExamrLE 4. Let K={N, a}, ci=c2=1,
go(n)=—1/n, go(a)=0,

gl(n) = gl(a) =1,
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g:(n)=1+1/n*)'"?, go()=1.
First we show that M*=0. If w=(, r;) € S*, then

ri+r:(1+1/n®)M2 <—1/n,

ri+r. <0,
so that M*<0. Define w'® =@, r¥) e R? by

ri® =k and ri®=—1+EkHY2 (k€ N).
Then we have »® € S* and
((z0, W)z =1 7P = —[k+A+EHV?]

Letting k— oo, we conclude that M*=0. Next we show that S¥=g¢. Suppos-
ing the contrary, we can find w=(ry, r;) € R? such that

ri+r;=0 and r1+Q1+1/2*)r, <—1/n.
It follows that
[—1+A+1/a®)"]r,<—~1/n,
and hence
—co<ry < —n[1+1+1/a*)"*]
for all n € N. This is a contradiction. Therefore S} =4¢.

Remark 2. In Examples 2, 3 and 4, {g1, g2} is not y-independent for

any y € S.

Some of the examples in [47], [57], [6] and [ 147] show the duality gaps in
semi-infinite linear programming problems. However none of them satisfy
our assumption that M is finite and z,>0.

Next we are concerned with Remark 1 in § 4.

ExampLE 5. Let K={N, a}, c1=1/3, c;=1/4, and let {g1, g.} be the
same as in Example 3. Define g, by

(D) =g(2)=1, go(n)=go(@®)=0 (n=-1, 2).
If y € S, then it is valid that
vi+v2/2+v3/8+a=1/3,
vi+v2/3+vs/44+b=1/4,
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o= ii v/t b= 3 vu/(n+1),
n= n=4
where v, is the same as in Example 8. We have

M= inf {v;+v,; v S}=0.

Denote by ¢, the unit point measure at u € K. Since e;€ S, we have M=0.
If vy € Sy, then y; =p,=0, so that

y3+3a=1 and p;+4b=1.

It follows that
0=4b—8a= 3 (n—3)v,/n(n+1),
n=4

and hence v,=0(n =4). Therefore Sy={e;+te,;t€ Ry} and {gi, g2} is not
v-independent for any v€S,. Let us consider y=¢;/12+¢,/2. Then it is
valid that € Sand {gi, g.} is y-independent. We can easily verify that

S:)k:{ (’MJ], wz), nglgl& 4w1+3w2=0}
Namely S contains more than one point. We observe that
AP)=A{(r1, r2); 0=r1, 271/3§7'2§71}.

Now we apply Theorem 2 and Proposition 3 to our problem. Since
s(C(K), M(K)) coincides with the topology induced by the norm || f||= sup
{lf(w)|; wueK} on C(K) (cf. [2]) and the s(C(K), M(K))-interior (P*)° of
P*=C"(K) is equal to the set {f€ C(K); f>0on K}, we have

TueoreM 9. If the value Mis finite and g;>0 on K for some i (i=0,1, ...,
n), then M=M* and S, ¢.

Proor. It is enough to show that there exists w=(wy, ..., w,) € R” such
that

8o— i w,-gi>0 on K.
i=1
This is easily verified if any one of g; belongs to (P*)°.

We remark that the assumptions in Theorem 9 do not always imply that
S¥=£¢. This is shown by

ExampLE 6. Let K={N, a}, c1=c.=1,

go(n) = go(a) =1,
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g1(n)=3/(2—1/n), g1(@)=3/2,
g2(n)=[2+1+1/n)*]/(2—1/n), g:(a)=3/2.

It is easily seen that S=S,= {(2/3)¢.}, since g1(n)< g2(n) for all n €N and
gi(a)=ga(a). It follows from Theorem 9 that M=M*=2/3. We show that
S¥=¢. Suppose that w=(w;, w,) is an element of S¥. Then we must have

w1 +w,=2/3,
3w +[2+1+1/nH)Y* Jw, <2—1/n
for all n € N. This is impossible, since
3(2/8—wy)+[2+1+1/n*)"*Jw,—(2—1/n)
=[(14+1/nH"*—1Tw,+1/n
=[14ws/n(14+A+1/2*"*)]/n>0
for sufficiently large n. Therefore S¥=¢.

Remark 3. Example 6 shows a gap between equality constraints and
inequality constraints in semi-infinite linear programs. Let us recall the
potential-theoretic linear program in [16] which are concerned with the
problems to determine the values A7 and A7* defined by

M = inf {((g, g))1; p€ S}, M*= sup{((zo, w))2; we §*},
where
S={ueM*(K); Aw—z, € R}, S*={we Rz, go— A*we C*(K)}.

It was proved in [167] that /7=M* and there exist z€ S and @€ S* such
that M =((#, go)) and M*=((zo, @)); whenever z,>0, g;>0 on K for some
i(i=0,1, ..., n) and M is finite.

§7. Change of extremal values

We shall be concerned with the problem how the value of a regular
semi-infinite linear program (4, P, Q, y, z,) in § 1 changes as {y;} changes.
Recall that Q={0} as agreed in § 1. Ohtsuka discussed an analogous problem
related to the conditional Gauss variational problem ( [97, p. 228). We refer
to [187] for another analogous problem.

Let {y{¥} be a sequence in Y which w(Y, X)-converges to y; for each
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i (i=0,1, ..., n). Let us put
Apx=(((=, y‘{”))x, ey ((w, }’Zk)))l),
My =inf{((», y")1; x €SP},
M =sup{((z0, w))z; w€ S*¥P},
S® =Lx e P; Ayx=2z,},
S*B={weR"; y — Afwe P*},
S ={x €SP My=((x, yt!)},
S§® ={we S*®; Mif=((z0, w))2},
|w| =i+ +w2)t? for w=(wy, ..., w,) € R".
We shall prove

TuEOREM 10. Assume that zo€ A(P)° and that M is finite. Then it is
valid that im M,<M.
koo

Proor. By choosing a subsequence if necessary, we may assume from
the beginning that M, > — oo for all £ and that lim M, exists and lim M, > — oo.
koo

koo

First we observe that M=M* and S¥=~¢ by Theorem 3. We show that

@ A(P)° C \J Au(P)

for all m. Letz¢ O A,(P). Then z is a boundary point or an exterior point
r=m

of A,(P) for each k, m <k<oo. By making use of Propositions 1 and 2, we
can find w'® € R” such that

|w®]=1 and ((z, w"))2 = ((dsx, w™)),
for all x € P. We may suppose that {w®} converges to w. It follows that
|w| =1 and ((z, @)); = ((4x, ®))2=((x, 4*®))1
for all x € P. Since P is a cone, we have
((z, ), =0 and — A*weP".

Taking v € S*, we see that v+¢we S* for all t€ R,. Suppose that z€ A(P)°
and let us consider
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M*(z)= sup{((z, w))2; w € S*}.
Then we have by Theorem 1
oo >M*(z) = ((z, v+1t@))2=((z, v))2+t((z, @)):

for all ¢t € Ry, and hence ((z, @)),=0. By means of Lemma 2 we conclude that
w=0, which is a contradiction. Therefore z¢ 4(P)° and the relation (2) is
established. Suppose that 4,(P)°=¢ for all k, k=>m. Then A,(P) is con-
tained in a hyperplane® and u(A4:(P))=0 for each k, k=m, where i denotes
Lebesgue’s outer measure in R”. It follows from (2) that

0= 2 u(4x(P)) = u(AP)°)>0,

'sm

k

which is a contradiction. Therefore A4,(P)°+# ¢ for some k=>m. By the
arbitrariness of m, we may suppose that 4.(P)°+¢ and z, € 4.(P)° for each
k. There exists w® € R” by Theorem 3 such that

My=M¥=((z0, w'®)), and y P — AFw® e P+,

We show that {|w®|} is bounded. Supposing the contrary, we may consider
that |w®|—>co as k—oo. Writing v®=w®/|w®|, we may assume that
{v'®} converges to 5. Then we have

((z0, 9))2= lim ((z0, U(k)))2= lim Mk/|w(k)|.20,
koo koo

(G, A*0)1= 33 5((x, y)r=lim 5 o (Cx, y ¥
= lim (&, 4Fv®)i=1lim ((x, y ")/ |w®] =0
for all x € P, and hence — 4*s € P*. Taking we S*, we have w+t5 € S* and
oo > M* =((20, w))2+t((20, 7))z

for all t € R,. It follows that ((zo, #)):=0 and =0 by Lemma 2. This con-
tradicts |5|=1. Therefore {|w®|} is bounded and we may suppose that
{w™} converges to @ Then it is easily seen that @ € S* and

lim M, = llm M =((z0, @) =M*<M.

k—oo
This completes the proof.
The inequality hm M, < M is not always valid if we omit the condition
z0 € A(P)° in Theorem 10. This is shown by

6) Cf. [1], p. 54, Exercise 9, a).
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ExampLE 7. Let X=Y=R? P=R2 (the positive orthant of R?), z,=
1, ) eR?,

¥ =y=(@, 1/4),
yP=xn=0@1,1/2),
vy =@, 1/2+1/k), y.=(1, 1/2),
(%, y)1=ris1+73s5  for x=(ry, rz) and y=(s1, s5).
Then we have
S®={(, 0},
S={(r1, r2); 1 =0, r;=>0, r1+r;/2=1},

so that M,=1>1/2=M for all k.
The inequality lim M,>M is not always valid even if M is finite and

koo

zo € A(P)°. This is verified by

ExampLE 8. Let X, Y, Pand ((,)); be the same as in Example 7 and let
20— le R>

¥ =x=a,0),
y¥ =@, 1/k), y1=(Q1, 0).
Then we have
S®={(r1, r2); r1==0, r; =0, ri+ry/k=1},
S={Q, rz); r.=0},

so that M,=0<1=M for all £.
We have

TueoreM 11. Let Y be a mormed space with a morm || || and X be the
strong dual of Y. Assume that || y® — y|| >0 as k—>oo for each i (i=0,1,...,n)
and that x, € SP for each k. If {||x||}" vs bounded, then lim M,=M holds.

koo

Proor. Since {x,} is relatively w(X, Y)-compact ([27], p. 112, Proposi-

7) For x X, | x| is defined by
%] =sup {|((x, YN:l5 yE Y, [y]|=1}.
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tion 1), we may assume from the beginning that {x,} w(X, Y)-converges to z
and lim M, exists by choosing a subsequence if necessary. We have

koo

[((xpy y$)1— (7, y))1l
| (%, y#—y1| + (2 —Z, y:))1]
Slxelllly ¥ — yill + [ (e — 2, ¥l

for each i and k. Since {||x,||} is bounded, we have

Ilai_rg (s yPD1—= (&, Y1 =0

for each i. Since ((x;, y )1 =c; (i=1, ..., n) for all k, we have (%, ;)1 =c;
for each i, i.e., x € S. For i=0, it is valid that

lim M, = lim ((xs, y§")1=((&, yo)1=M.

koo k

This completes the proof.

§8. Conditional Gauss variational problem

In the rest of this paper, we shall study the conditional Gauss variational
problem which is slightly diffrent from the problem considered in [97]. Note
that we shall change some notations in the preceding sections.

Let 2 be a locally compact Hausdorff space and G be a Borel measurable
function on 2 x £ which takes values in (—oo, +o0]. We assume that
G(u, v)=G(v, u) for all u, v€ 2 and G is bounded below on every compact set.
Such a function G is called a-kernel. A non-negative Radon measure p with
compact support Sp will be called simply a measure hereafter. Deénote by
M*(82) the totality of measures on 2. Given u, v € M*(2), we define G(u, )
and (v, ) by

Gluy =6, v)dp(w),

s =60, wydv (),

and call them the potential of x and the mutual energy of x and » respect-
ively. We call (u, ») simply the energy of . Denote by E the set of measures
with finite energy.

We shall say that a property holds n. e. (=nearly everywhere) on a set
B & if it holds on B’ such that B’ C B, u(K)=0 for all compact sets KC B— B’
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and x€E. A kernel G is termed to be of positive type or positive semi-
definite if

(=, p—v)=(p, )+, ») —2(», p)=0

for all u, »€E. In case g and h are extended real-valued functions on £
which are p-summable for all x € E, we set

g(u)—h(u)=0

at points u where g(u)=h(u)=0o0 or g(u)=~h(u)=—oco.
Let B be a set in £ which is measurable with respect to every i € E and
satisfies the condition that E3=~{0}, where

Ey={ucE; (@ —B)=0}.

Let f and gi, k=1, ..., n, be real-valued functions on B which are y-summable
for every p € Ej and let {c,; k=1, ..., n} be a set of real numbers. For sim-
plicity, we shall write

{ran=<s, m>

A mutual energy (u, ») can be written as <G(-, x), v).
We shall consider the following class of measures:

S=Ep({ge}, 1ca}) ={p € Ep; {gu, py=ci for each k}.

We are interested in the problem of minimizing the expression (Gauss in-
tegral)

I(p) = (s ) —2{ff,
for € S. Denote by V the value of this preblem, i.e.,
V=inf{I(n); p € S}.

This is called the conditional Gauss variational problem.

In the case where G=0, B is a compact set K, f and g, are finite real-
valued continuous functions, the above problem was discussed as a potential-
theoretic semi-infinite linear program in § 6.

Ohtsuka [97] investigated the above problem in the case where G is lower
semicontinuous and # is not necessarily p-summable for every u € Ej.

Let us define S, by

So={p€S; V=I(w)}.
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In case S, ¢, it is clear by our assumption for f that 7 is finite. We shall
utilize the transformation 4 from Ej into R" defined by

AF’:(<81, l">’ “tty <gn, /-”>)‘

Writing zo=(cy, ---, ¢,), we have
S={p € Ep; Ap=1z}.

Thus the conditional Gauss variational problem may be regarded as a semi-
infinite program with a nonlinear objective function I(x). It must be obser-
ved that E is not necessarily a convex set and that 7(w) is not always a con-
vex function on Ej even if Ej is a convex set.

We shall prove

Tueorem 12. Assume that Ej is convex and that p* € S,. If zo€ A(ER)°,
then there exists w=_(ry, ---, r,) € R" such that

3 GCy p*)—f= élrkgk n.e. on B,
@ CC, W)= f < Sirige wF—aue.
(5) GGy p*)—f, p*>= éllrkck.

If, in addition, G and — f are lower semicontinuous, f <co and each g,
18 finite valued and continuous on B, then

6) G, ) —f< Sirige om Sp*NB.
k=1

Proor. From our assumption that E; is convex, it follows that S is
convex. Letve Sand:eR, with 0<t<1l. Then iv+(1—¢)p*< S and

I(p)<I(tyv+A—t)p*)
=121(») +2t(1—1) (¥, ») + A=) I(p*) —26(L— ) f5 ™+,
so that
t2—)I(p*) <2t(1—1) (u*, v)+>1(») —2tA—)f, p*+v).
Dividing both sides by ¢ and letting ¢ — 0, we obtain

I(p*) < (p*, »)—<f, p*+v).
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Thus we have
GGy p*) = f, WG, )= fr v
for all e S. Writing go=G(:, x*)— f, we have
(M M={go, p*)=min{{go, »); v € S},
@®) V=L gos W= fy w5,
In order to apply Theorem 3 in § 3, let us choose
X=M'(2)—M"(2), P=E;, Z= W=R",
fi)={g v) (i=1, ..., n),
f)=<go, »).

Since zo € A(ER)° by our assumption, there exists w=(ri, ---, r,) such that

€] (4w, )= f (»)
for all v € £} and
(10) M=((zo m)):

by Theorem 3. To prove the relation (3), we set

N={u€B; go(u)— élrkgk<u><0}.

If we deny (3), then we can find a compact set K, and a measure y, <€ E such
that K, CN and v,(K,)>0. Let y; be the restriction of y, onto K,. Then
v € E; and

0><go—k§ reges vy = f (1) —((dv1, D)3,

which contradicts (9). Therefore the relation (3) is valid.
From (7) and (10), it follows that

11) <go, P’*>:<,§1 Tr 8ks ,U'*>-
We obtain (4) from (3) and (11).

Assume that G and — f are lower semicontinuous, f <oo and each g, is
finite valued and continuous. Let us put

h-:go'— kglrkgk.
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We may suppose that x*=~0. If there were a point u,€ Sp*N\B at which
h(ue)>0, then A(z)>0 on B in a neighborhood of u, by the lower semicon-
tinuity of A. Since 2==0 n.e. on B by (3) and px*=~0, we have <h, p*>>0,
which contradicts (4). Therefore #<<0 on Sy*N\B. This completes the
proof.

We have by (8) in the above proof

CoroLLARY. It 18 valid that
V=1I1(p*)= 2 CATh —<fs w*> =2,§1 care— (¥, p*).

RemARrk 4. Ej is convex if and only if (u, v) is finite for all x, v € Ej.
It is clear that Ej is convex whenever G is of positive type or G is bounded
on Bx B.

For p*€S,, we denote by S¥(x*) the set of points @ which satisfy the
relations (3) and (4). Note that the relation (5) follows from (3) and (4) and
that the equality in the corollary of Theorem 12 holds for every @€ S¥(u*)
with =Gy, -, 7).

Let pc€Ez. We say that {gx; k=1, ..., n} is p-independent if there ex-
ists a set {u;; k=1, ..., n} of measures in M*(Sw) such that p—p, € M*(Sp)
for each £ and det ({gj, us)) 70, where

M (Sp)={» e M*(2); Sv C Sp}.

The set {uz; k=1, .-, n} is called a system of components of . A system
of components {u;; k=1, ..., n} of x is called to be full if p= Zn} . In this
k=1

case we say that x has a full system of components.
For 4 € E, we define C[ 1 ] by

Clpl={veM" (Sp); p—v € M*(Sp)}.

It is clear that C[ 4] is convex and contains 0 and p.
We shall prove

Lemma 3. It is valid that C{u |CE.

Proor. Since K= Sy is compact, there is a number 4 such that G=56 on
K x K by our assumption. Let y€C[x]. Then we have p—» € M*(K) and

G(+y »)—by(K)<G(:, p)—bp(K)
on K, so that
0 <(p, »)—bu(K)v(K) < (p, p) —bpu(K)*< oo,

Since (u, v)=(, w) by our assumption, we have
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0= (v, ») —bu(K)* =< (v, p) —bp(K)»(K) < o0,

and hence v € E.

CoroLrLARY. Let € Ep and {p; k=1, ..., n} be a system of components
of w. Then € Ej and p— u, € Eg for each k.
We have

ProrosiTion 8.  Assume that Ej is convex and that p* € So. If {gw; k=1,

-y n} 18 p*-independent, then SF(u*) consists of only one point @w(p*)=(ry, -,

). Lf {pr; k=1, ..., n} is a system of components of pn*, then {r;; j=1, ..., n}
18 the solution of the equations

(12) 2 1< m> =60, W)~ f .

Proor. Since SF(i*) is the set of optimal solutions for the dual problem
of the problem determining the value M defined by (7) in Theorem 12, our
assertion is an immediate consequence of Theorem 6 in § 4.

Without using a duality theorem, Ohtsuka proved the following result.
Here we review his proof for completeness.

Prorosition 9.  Assume that p*€ S, and that {p.; k=1, ..., n} s a

system of components of p*. Let {r;; j=1, ..., n} be the solution of the equa-
tions

(13) j;l Tj<gj, ;bk>=<G(’, w*) ‘f, ll‘k>'
Then it is valid that
(14) (-, w)=f+ L rege me. on B,
k=1
(15) CCowI=f+ Snge m—ae.
for each k.

Proor. Let v be any measure of E; and {¢,; k=1, ..., n} be the solution
of the equations

(16) 32 g mdte=<gp »>-

With a positive parameter z, we set

8) [9], p. 213, Theorem 2.1.
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n
w(t)=p*— tkgl Lppertity.

Since (p*—1t i toper) — (A—t i} [tp| e € M*(Sp*), w(t) is a measure for
= k=1
In case (x*, v) is finite, we have p(¢) € S by (16) and

sufficiently srkr;;ll t.
I(p*)=V < I(x(¢)) for sufficiently small :Z—=0. Thus we have

Ogil_(%(;l)_ o = 2{G(+, p*), v— él tklbk>—2<fa y— é:l Lrpr)-

Substituting (13) and (16), we obtain
GGy ), 2= fy 22 5 G )= e

=2t erf<gj, 7%

k=1 j=

Il

215 23L& meote= 211 8ijs v)-
=1 k1 j=1

Namely we have

7 Gl 1), DZLf Brign o

This inequality is obvious in case (u*, v)=oo0, so that (17) holds for all v € E3.

It is clear that (14) follows from (17).
Integrating (14) with respect to u;, we obtain

G(oy ™)y pa> =L fy pay+ éHKgf, Br-

By this relation and (13), we conclude (15).
In this result, E; is not assumed to be convex. However {r,} seems to

depend on both x* and {u,}. Writing v= Zn] 1, We see that p*=~p in general
k=1

and that
G(-, M*)§f+ ké .8 v—a.e.

by the relation (15). Therefore we may regard Theorem 12 and Proposition
8 as a partial generalization of Proposition 9. In order to generalize Proposi-

tions 8 and 9, we prepare
LemMa 4. Let p* € S and assume that {g,; k=1, ..., n} is p*-independent.
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Then p* has a full system of components.

Proor. Denote by Q(p*) the convex cone generated by A(C[x*)), i.e.,
z€Q(p*) if and only if there exist » e C[1*] and ¢ € R, such that z=zA4v.
We first show that z,€Q(x*)°. Supposing the contrary, we see that z, is a
boundary point of Q(x*), since p* € C[ *] and Ap*=2z,. There exists a non-
zero w=(wi, ---, w,) by Proposition 2 such that

((z0, w)2=0=((2, w)):

for all zeQ(u*). Let {u:; k=1, ..., n} be a system of components of n*.
From p, € C[*] and p*— i, € C[ p*] for each £, it follows that

0=((Aps, w))2= ]_21 wil gy i)

Since det ({gj, pr>) 70, we conclude that w;=0 for each j. This is a con-
tradiction. Therefore z,€Q(x*)°. There exist a set {v,; k=1, ..., n} of
measures of C[p*] and a set {s;; k=1, ..., n} of strictly positive numbers
such that {A4y,; k=1, ..., n} is linearly independent and

n
z0= D, spAvy.

k=1

In the case where so= }”] si =<1, we have
k=1

p= 3 s €S and y=p*— g€ M (Sp¥).
k=1
Choosing p¥=sv;+v/n for each k, we see that {u}; k=1,...,n} is a
full system of components of x*. In the case where s,>1, let us put ¢, =s;/s¢
for each % and consider w,= f] trve. Then po € CCp*] and Aupo=20/s,. Tak-
k=1
ing yo=p*— o € M*(Sp*) and pwf=tyvr+vo/n, we have
M*:k;ni /.lrz< and AL’():(].—I/S())Z().

In order to prove that {x}; k=1,..., n} is a full system of components of u*,
it is enough to show that det ({g;, u¥>) #0, or equivalently, {An¥; k=1, ..., n}
is linearly independent. Suppose that

> br Api=0.
k=1

Then it follows that

B3

k

I

0= lbktkAUk‘*‘(l'_]-/SO)ZO i:l(bl/n)
i=

= 3 batadva+(L—1/s50) 32 vy 3. (b;/n)
k=1 k=1 Ji=1
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= 3 Chutat (1= 1/s0)s 3 (b;/n)] dvs.
= =
Since {Av,; k=1, ..., n} is linearly independent, we have
buta+ (1=1/s0)ss 33 (b/m) =0,
=

or equivalently

bit(so—1) 33 (8;/n)=0

for each k. We can easily conclude from this relation that i} b,=0 and hence
k=1
b,=0 for each k. Namely {4x¥; k=1, ..., n} is linearly independent. This
completes the proof.
We shall prove

Tueorem 13. Assume that p*€ S, and that {gw; k=1, ..., n} s p*-
independent. Then SF(u*) consists of only one point w(u*)=(ri, -, ra). If
{pr; k=1, ..., n} is a system of components of n*, then {r;; j=1, ..., n} is the
solution of the equations (12). It is valid that

V=1I(p*)= (20, @(pp*)))2—<f5 ™
=2((z0, @(p*)))2— (™, p™*).

Proor. Let {uf; k=1, ..., n} be a full system of components of x* and
define {r;; j=1, ..., n} by

2 rien w>=<CC, w)—f, wi>.

It follows from Proposition 9 that

(18) G(-, )= f+ 5 r;g; ne. on B,
ji=1
19) G(-, /b*)éeri;rjgf p*—ae.,

since p*= kﬁ 5. Therefore w=_(r1, ---, r,) € SF(p*) and V= I(*)=((z0, @))2—
=1
<f, :U’*>:2((z03 w))z—(/ﬁ*, l"*)' If w=(sy, -, sw) € S:)k(:u'*)y then

Jé13j<gj, wi>=<G(, ,u,*)_f, = jg:l rj<gj, /1,;:>,

so that
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jgnll (sj—r7) <gj p>=0.

Since det ({gj, u¥>)#0, we have w=w. Namely S¥(x*) consists of only one
point. Let {u; k=1, ..., n} be a system of components of x*. Then we have
(12) by (18) and (19). This completes the proof.

THEOREM 14. Assume that G is of positive type and that p* and »* are
elements of So. Then it is valid that S¥(u*)=SF(*).

Proor. From I(p*)=I(*)=V and (u*+v*)/2€ S, it follows that
I(p*)=I((p*+v*)/2)=I(p*) = (p* —v*, p*—v*)/4,

and hence (p*—v*, p*—v*) < 0. Since G is of positive type, we have (u*—v*,
p*—v¥)=0and G(:, p*) = G(-, v*) n.e. in 2. Consequently (u*, u*)=(p*, v*)=
(w*, v*) and {f, p*>={f, v*>. Assume that @=(ry, ..., r,) € SF(p*). By the
above observation, we see that

G(, )= f=6(-, p*)— f= 3. roge n.e.on B,
k=1

GCoy v®)—f, v O=LC(, p)—f5 p*>

k

Inas

TrCh

=2 Tk<gk, V*>:< 2 Tr 8k V*>a
k=1 k=1

and hence

G(+y v¥)— f= kglrkg,, y¥—a.e.,

so that we S¥(v*). Therefore S¥(p*) C S¥F (v*). Since the discussion is
symmetric, we have SF(»*) CS¥(x*) and hence SF (u*)=SF(»*).

CoroOLLARY. Assume that G is of positive type and let p* and v* be ele-
ments of So. If {gw; k=1, ..., n} is p*-independent and v*-independent, then
it 18 valid that w(p*)=a(v*).

This is an improvement of Theorem 2. 3 in [9]. We observe that
Theorem 14 and its corollary are not always valid if G is not of positive type.
This is shown by

ExampLe 9. Let 2=B= {u, us}, g1(u1)= g1(u2)=1, c1=2, f(u,)=1,
f(u2)=2 and G be given by

9) [9], p. 254, Example 2.
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G(ul, u1)=1, G(ul, uz):G(le, ul)ZG(uz, u2)=2.

It is clear that € E=Eg if and only if p=wx.6, + x28,, With 0= x4, x2<oo.
Our problem is to minimize

I(p)=x2+2x34+4x,0,—2x,—4x,
subject to
w1+ 22 =2,
x%1=>0, x50,
or equivalently to minimize
I(w)=—(21—1)"+1
subject to

0=x =<2

It is easily seen that So={2¢,, 2¢,,}. Let us take p*=2¢, and »*=2¢,,
Obviously {g:} is p*-independent and »*-independent and G is not of positive
type. By Theorem 13, we have @w(px*)=1 and @w(v*)=2. Namely SF(p*)=~
SE(v*).

We have

TureoreMm 15. Assume that G is of positive type and that p*€ S and
w=(ry, ---, r») € R” satisfy the relations

G(y W)—f= D rigs me. om B,
k=1
<G('> I"*)_f: M*>: kglrkck.

Then it is valid that I(p*)=V, 1.e., p* € S,.

Proor. Let v be any element of S. Then we have
2(M*, V) - 2<G(.’ F'*)’ p>22<f, V>+2ki:17'k6k

=2{f, )+ 2C(, p*)— f, w*>
=2, )+ T(w*) + (¥, w*).

Since G is of positive type, we have
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I(*) = I(p*)+(p*—v, p* =) < I(»).

This completes the proof.

§9 Existence of optimal solutions

We shall discuss the existence of measures ;€ S such that V=1I(x). It
is rather difficult to find conditions which ensure the existence under general
circumstances as in § 8. So we shall limit ourselves to the special case in
which B=K is a compact set, G is lower semicontinuous, f is upper semicon-
tinuous and f<oo on K and each g, is finite valued and continuous on K.
This restriction will be preserved in the rest of this paper.

The topology on M*(K) induced by the weak topology w(M(K), C(K))
is called the vague topology (cf. §6 for the definition of M(K), M*(K) and
C(K)). We say that a set HCM*(K) is vaguely bounded if sup{u(K); n €
H} < oo.

We shall use the following two facts which are well-known in potential
theory.

ProrosiTion 10.19  Any vaguely bounded set H is relatively compact in
M*(K) with respect to the vague topology.

ProposiTion 11.1Y  The mutual energy (i, v) is lower semicontinuous on
M*(K)x M*(K) with respect to the vague topology.
We shall prove

Lemma 5.'%  Assume that V is finite. Let {u,} be a sequence in S such
that I(w,) tends to V as m—oo. Then {u,} ts vaguely bounded whenever any
one of the following conditions is satisfied :

n

C. 1) g= Z1gk>0 on K.

k=
(C.2) g>0o0n K for some k.

(C.38) G 1sof positive type and f >0.

(C.4) (p, )=0 for all p€ Ex and f=sup{f(u); ucK}<O0.
(C.5) c(K)=inf {(g, w); SpCK, w(K)=1}>0.

Proor. Let us put a,= min {g,(v); u €K} (k=0,1, ..., n). From con-
dition (C. 1), it follows that a,>0 and

aoli’m(K) g Sgodlbm = kZ Sgkd,u'm: 1;:1 Ck-

=1

10) Cf. [9], p. 187, Proposition 3 and [3].
11) Cf. [9], p. 187, Proposition 4.
12) Cf. [15], Lemma 3.
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From condition (C. 2), it follows that @, >0 and
awin(K) = | grdpn=ca.
From condition (C. 4), it follows that
I(pm) = — 28 (K.

Assume condition (C. 5). For any w,==0, let us put v,,= gen/pm( K). Then we
have y,(K)=1 and

C(K) g (Vs ”rn) = (Mm, F‘m)/#'m(K)zy
so that
I(l"m) z C(K)MM(K)Z_ 23/"m(K)-

Therefore {u,(K)} is bounded. Finally we assume condition (C. 3). Then
(pm+pp)/2€ S and

V=I(pm+tpp)/2)=I(pn)/2+ 1(165)/2— (pm— prpy ptm— pp)/4,
so that
Cpom— pops pom— pep) S 21 (pem) + 21 () — 4V

Therefore {(wm, pm)} is bounded, ie., 0<(um, pn) <b<oco. Suppose that
{pm(K)} is not bounded. Then we may assume that .,(K) tends to e with
m. Writing v,,= pw/pn(K), we can find a vaguely convergent subsequence of
{v,} by Proposition 10. Denote it again by {v,} and let v, be the vague
limit. Then we have

0= (0, v0) = lim (v, ) < lim b/ (K )*=0.

M— o0 Mm—oo
Since G is of positive type, we have
0 << (vo = tptm, votpm)=%£t(vo, pm)+t*(pms pm)

for all :>0. Dividing both sides by ¢ and letting ¢t —0, we have (v, pn)=0
for all m. Furthermore we have

S gedvo= limS gidvm=lim cu/pn(K)=0
for each k.. Therefore p,+my, € S and

V< I+ me) = I(,u,,,,)—ZmS Fdvo.
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Letting m—co, we arrive at a contradiction, since f>0 on K and »o(K)=1.
Thus {xx(K)} is bounded.

TuEOREM 16. Assume that V is finite. If any one of conditions (C. 1)-
(C. 5) is fulfilled, then there exists ;. € S such that V= I(;).

Proor. Let {un,} be a sequence in S for which I(u,) tends to V as
m—oco. Assume any one of conditions (C. 1)-(C. 5). Then {u,} is vaguely
bounded by lemma 5 and contains a vaguely convergent subsequence by Pro-
position 10. Denote it again by {x,} and let x, be the vague limit. Then
we have

Sgkdpozlimggkdlbm:ck for each &k,

— 00 < (ptoy )= H o, o) = i [ (i) +2{ fdpon]

Mm— o0 M- o0

= Lim [ () + 28 pm(K )] =V 428 10(K) < oo,

by Proposition 11, where f=sup{f(u); u € K}. Therefore o€ S. Since f is
upper semicontinuous, we have

M—o0

lim Sfd,u-mé Sfd;bo,

so that

V= lim Kpen) = lim G, o) —2 0 { 7 i

M—o0

= (o, )= 20 fpro=T(po) = V.
Thus we have V"= I(x,). This completes the proof.

Remark 5. Ohtsuka [97] called the conditional Gauss variational problem
the n-dimensional problem in the case where K consists of mutually disjoint
compact sets K, k=1, ..., n, go>0 on K, and g,=0 on K;(j+#k).

It is clear that condition (C. 1) is satisfied for the n-dimensional problem.
An existence theorem for the n-dimensional problem was established in [97]
(p. 219, Theorem 2. 6) without the assumption that 7 is finite.

Let € S and denote by 4, the restriction of . onto K,. Then {gj, ps>
=0 if j=k and {g4, pr>=cr=0. Thus we have

det({gj, pr)=c1 - ca.

In case ¢, >0 for all k, {g,;k=1,...,n} is p-independent and {u;; k=1, ..., n}
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is a full system of components of .

§10. Some properties of ¥V (z)

We shall study the change of the value 7 of the conditional Gauss varia-
tional problem when G, f and {g;; k=1, ...,n} are fixed but z=(cy, ---, ¢c,) € R"
changes. Let us put

Ap=(g1, 15 -+ {gn @),

V(2)=inf{I(p); p € S(2)},

S(2)={p€Ex; Ap=z},

So(x)={w€ S(2); V(2)=1(p)},
where

Ex={p€E; SuCK}=Ey.

We shall examine the continuity of ¥ (z) and compute the directional deriva-
tives of V(z).

In the case where {u}; k=1, ..., n} is a full system of components of
w* € S(zo), we define D(z0)=D(zo; {xf}) by

D(z0)=D(zo; {pf)=1 2 txdpi; 1 €Ro (k=1, .-, n)},

which is the polyhedral cone generated by {Au}; k=1, ..., n}. It is clear
that D(z,) is a neighborhood of z, (cf. the proof of Lemma 4).
We shall prove

Tueorem 17. Assume that Ex is convex. Then V(z) 18 upper semicon-
tinuous in A(Eg)°.

Proor. Let zo€ A(Eg)°. We show that lim V(z?)<¥V(z,) for any

sequence {z®} of points in 4(Ex)° which converées to z,. For any number
a with V' (z,)<a, there exists € S(z,) such that I(z)<a. Since z, is an in-
terior point of A(Ex) and Ex is convex, there exists i€ S(z,) such that
{g; k=1, ..., n} is p-independent by Theorem 5 in § 4. Writing p*=ca+
(1—¢)p with 0<e<1, we see that {g:; k=1, ..., n} is p*-independent, so that
there exists a full system of components {x}; k=1, ..., n} of x* by Lemma 4.
Let {z”} be any sequence of point in A(Eg)° which converges to z,., We
may suppose that z” € D(zo; {f}) for all p. Namely we have
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n
20 = > t}f’A,w}f, t;;m > 0.
k=1

It is valid that »®= 3] /P u* € S(z») and
k=1

n

VESI6P)= 35 e (ul ph)—2 5 o<, ut

jik=1
Since {Ap¥; k=1, ..., n} is linearly independent and
20— Z A/“)}t’
k=1

we have lim ¢{” =1 for each k and

pee

Fm V(z?)<lim I6®P)= 3 (uf, u)—2 3 <f, wd>
Jnded P k= k=1

=I1(p*) =I1(p+1—e)w)
=el(p)+A—e) I(p)—e(l—e) (p— , p— ).

1

Letting ¢ —0, we have
lim V' (z)<I(p)<a.
P

By the arbitrariness of a, we obtain the desired inequality.
Similarly we can prove

ProrosiTioN 12. If there exists p* € So(z,) such that {gi; k=1, ..., n} is
wr-independent, then V(z) is upper semicontinuous at z,.
We have

LemMa 6. Let {z?} be a sequence of points in A(Ex) which converges to
20 € A(Eg) and let p, € So(z®P). If i, converges vaguely to p* and lim V(z?)
<V (zy), then it is valid that u* € So(zy) and lim V()= V(z,).
P

Proor. Let z®?=(c{?, ..., ¢?) and zp=(cy, ---, c»). Then we have
(g, p*>=1lim {g;, p®>=lim ¢} =c,
s o=

for each k and

— oo < (p¥, p*)= lim (u®, @)= lim [V (z?)+2{f, pp)]
o= e

égl—j{_} [V (z)+2Bp(K)]= V(20)+28p*(K) < oo
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by Proposition 11 and our assumption, where 3=sup{ f(uz);u €K}. Thus we
have p* € S(z,) and

V(z0)=lim V' (z®)=> lim V (z»)

p—ooo =

= lim I(pp)=1(n*) =V (29).

pooo

Hence V(z0)=1(x*) and p* € So(z0).

TueoreM 18. Let zo€ A(Ex) and assume that for any sequence {z?} of
points in A(Ex) which converges to z, there exists a sequence {u,} of measures
such that u, € So(z?) and {1} is vaguely bounded. Then V (z) is lower semi-
continuous at zg.

Proor. Suppose that 7 (z) is not lower semicontinuous at z,. Then
there exists a sequence {z”} of points in 4(Ex) such that z¥—z, as p—oo
and

(20) lim V() <V (o).

There exists a sequence {:,} of measures such that .,e So(z®) and {x,} is
vaguely bounded by our assumption. To save notation, we assume that s,
converges vaguely to x*. It follows from Lemma 6 that lim V' (z®)=V(z,),
which contradicts (20). Therefore 7 (z) is lower semicont?;;ous at zo.

Let us consider the following two conditions:

(H.1) V(z) is finite whenever S(z)=¢.

(H. 2) S(0) is vaguely bounded.
It is clear that condition (H. 2) is equivalent to condition S(0)={0}.

We have

Lemma 7. Assume condition (H. 2). Let {z”} be a sequence of points in
A(Ex) which converges to some z, € R" and let 1, € S(z2?). Then {u,} is va-
guely bounded.

Proor. Supposing the contrary, we may assume that . ,(K)—>co as
p—>co by choosing a subsequence if necessary. Writing v,=,/1:,(K), we can
find a vaguely convergent subsequence of {v,}. Denote it again by {v,} and
let v be its limit. Then we have 3(K)=1 and

S 9= Tim Cgay o>/ (KD = 1im efp)/ 1o (K) =0

for each k, where z?=(c{?, ..., ¢{?). Namely 45=0 and ¢5 € S(0) for all
t € Ry, which contradicts condition (H. 2). Therefore {.,} is vaguely bounded.

CoroLrArY 1. If condition (H. 2) is fulfilled, then S(z) is vaguely bounded
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for every z€ A(Eg) and A(Ex) is closed.

It is clear that any one of conditions (C. 1) and (C. 2) in § 9 implies con-
dition (H. 2).

By the same argument as in the proof of Theorem 16, we have

CoroLLARY 2. Assume condition (H.2). Then Sy (z)=<¢ for every
z€ A(Eg).

Noting that f is p-summable for all € Ex by our assumption, we see
that condition (H. 2) implies condition (H. 1).

We have

Prorosition 13.  Assume condition (H. 2). Then V(z) is lower semicon-
tinuous in R”.

Proor. Observing that A(Ek) is closed and V(z)=oc for all z ¢ A(Ey),
our assertion follows from Theorem 18 and Lemma 7.

Prorosition 14. Let z,€ A(Ex). Assume that V(z) is upper semicon-
tinuous at zo and condition (H. 1) is satisfied. If any one of conditions (C. 4)
and (C. 5) 1s fulfilled, then V(z) is continuous at z.

Proor. Let {z”} be any sequence of points in A(Ex) which converges
to zo. We see that S,(z”)=~¢ by Theorem 16. Taking u,< So(z®), we have
either

V(Z(p)) = I(l-bp) =— 2Bpp(K)

or

V(&)= 1(up) = c(K) pp(K) 1" —281p(K)

by conditions (C. 4) or (C. 5) (cf. the proof of Lemma 5). If {ux,} is not va-
guely bounded, then we have

co=lim ¥ (zP)<¥ (z0) <o
Pporoo

by the above observation and our assumption. This is absurd. Therefore
{u,} is vaguely bounded and 7 (z) is lower semicontinuous at z, by Theorem
18, so that ¥ (z) is continuous at z,.

Summing up the above results, we have

THeorREM 19. Let zo € A(Ex)°. Assume either that Ex is convex or thai
there exists p* € So(z0) such thal {g.; k=1, ..., n} is p*-independent. If con-
dition (H. 1) and any one of conditions (H. 2), (C. 4) and (C. 5) are fulfilled.
then V (z) is finite-valued and continuous at z.

We shall prove
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TureoreMm 20. Let zo € A(Ex)° and assume that there exists u* € So(z,) such
that {gv; k=1, ..., n} is p*-independent. Then it is valid that

Tim L Gote) =V (E0) —o((x, w(u*)))s

€40 e

JSor every x € R”.

Proor. Let {u¥; k=1, ..., n} be a full system of components of u*.
There exists ¢, such that z,+ex € D(zo; {p}}) for all ¢, 0<e<g,. It is valid
that

n
zotex= 2] tf)A/"t, tf)goa
k=1

p&) = f'_, tOuF € S(zo+ex),
E=1
so that
V(zo+ex)—V(z0) < I(»)— I(p*)

=5
k=

J

@6 =D (b, D) =22 GO =D S5 i

1

From the relation

ex= 3 (1} —1)Apt,
k=1

we see that lim ¢{”=1 and lim (¢{” —1)/e=1y, for each k, where {y,} are
&4 E-+(0

defined by

| =z
It follows that

V(zot+ex)—¥ (20)

Tim
&40 e
éj kZ=1( yit yw) (uf, pi)—2 El el fs k>

= 2211 YelG(ey *)—f5 wi)

=22 7 2 wi(p*) g, pi>
k=1 Jj=1
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= 2 3% (1) =2((x, ().

This completes the proof.
In order to compute the directional derivatives of ¥V (z), we prepare

Lemma 8. Let {z?} be a sequence of points in A(Ex)° which converges to
zo and let p® e So(z?). Assume that lim V (z®)=V (z,) and that u® hasa

Sull system of components {u?; k=1, pﬁt n} such that ui converges vaguely
to p¥ as p—> oo for every k and det({g;, p>)#0. Then it is valid that

pr= éll wi € So(z0),
l{rg o(p?) = w(w*),
, lljll (B?, pP) = (p*, p¥),
lim <f, 4@ = <f, 1.
Proor. It follows from Lemma 6 that u* € So(z,). It is valid that
}i—rf GGy B = fy D> =<6, ) — fy wiE
by Proposition 11 and that
m 3% GG, w®)—f, wf?>= Tm <G, wP)—f, 4
=Tm{¥ (:9)+<f, s}
= V() +Lf, w*
= 346G, ) —fr u>
by our assumption that })LIB V(z®)=V(zy). Thus we have
lim <GC, k)~ wif> = <G, w1, ut>
for each k. From the relation
5 0,6 g > =60, w1,

and our assumption that u{” converges vaguely to u} for each k and det

(K gis p)F0, it follows that lim w;(u?)=r; exists for each j and {r;; j=1, ...,
b

n} is the solution of the equations
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]_21 rf<gj9 /L?:> = <G(" /L*) _f> /"’;5>’

and hence rj=w;(x*) by Theorem 13. Therefore lim w(x®)=w(x*). It is
valid that g

lim (u?, p@)= lim [2((z"", @(u?))2— V (z) ]
poroo

p—»uo

= 2((z0 DN =V (z0)= (%, 1),
lim <f, w®> = lim [, B(uP))2— ¥ ()]
peo poe

=((z0, @(*)))2—V (z0) = <fa wO.
This completes the proof.

CoroLLARY. Under the same assumptions as tn Lemma 8, we have
lim (uf?, pi?)=F, 1),
p—)cﬂl
tim </, uff>=<f, u>

Sfor every j and k.

Let x€ R*, x=~=0. We say that z,€ R" is an x-regular point of V(z) if
the following properties (D. 1) and (D. 2) are fulfilled :

(D.1) There exists p*€Si(z0) such that {g:; k=1, ..., n} is p*-
independent.

(D.2) For any sequence {z»} of points in the segment L(zy; x)=
{zo+ex; 0<e<e,} contained in A(Ex)° which converges to z,, there exist a
measure p® e So(2?) and a full system of components {x{’; k=1, ..., n} of
w? for every p such that

lim [det(<g;, 1#i”2)[ >0

oo

and {x?} is vaguely bounded.
Denote by Si;(z) the set of measures € So(z) such that {g;; k=1, ..., n}
is p-independent and put

a(z; x)= Inf{((%, @(1)))z2; € Soi(2)}.
We shall prove

TueoreM 21.  Assume that z, is an x-regular point of V(z). Then it is
valid that

@1) lim P Goten)=V(E0) —5q (s x).

E5+0 €
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Proor. Let {¢,} be any sequence of numbers such that e, >e,>e,.1>0
and lim ¢,=0. Let us put z”=z,+¢,x. There exist € Sy(z?) and a full

poroo

system of components {x{”; k=1,..., n} of 1:? such that lim |det({g;, x’>)| >0

g
and {x?} is vaguely bounded. In order to establish (21), we may assume
that @ converges vaguely to -} for each k. Then . converges vaguely

to p*= L w¥. Since Syi(z¢)7¢ by our assumption, it is valid that Ti—rn
V(z<”)< V(zo) by Proposition 12. Thus we have p* € Sy(z,) and llm V(z("))

=V{(zy) by Lemma 6. {uf;k=1,..., n} is a full system of components of u*,
since we have

|det({gj, wiX)| = llm |det(< gy 1> >0.
Denote by D, the set D(z*'; {1{”}). We show that there exists p, such
that zo € D, for all p, p=p,. If we suppose the contrary, we see that z, ¢ D,

for infinitely many p. In case z, ¢ D,, there exists ‘¥ € R” such that [+?| =1
and

(22) ((z0, 02 <0 = ((z, )

for all z€ D, by Proposition 1. It follows from (22) that

(23) 0= ((4pf?, v'M)).= Zvﬁp’<gj, i

for each k. By choosing a subsequence if necessary, we may assume that »?
converges to 5. We have by (23) that

2 78 1> 20.
It follows from (22) that
0= lim (a0, o))z = (20, 002 = 3. 0,8 u*>
= 3 3 ogp 1y

k=1j=1

so that
ngﬁng, pE>=0

for each k. Since det({gj, u¥>)=~0, we conclude that =0, which contradicts
|#] =1. Consequently z, € D, for all p=p,. It follows that

» S 4,8
2P =zo+ex= ) ApP
k=1
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and

0= 3t Apd, P 20.
k=1
The measure y = Zn t? P belongs to S(z,), so that
k=1
V() =V (20)=I(?)— I(»?)

= 5 AP, p)— 2 5 A—tf) f wl.
j k= k=1

7> 1

Since 11m ApP = Ap¥ for each k and z,= Z, Ap¥, we see that 11m tP =1 and
11m [l—t"’]/e,, y; for each k, where {yk} is defined by Z ykA,uk——x By

means of the corollary of Lemma 8, we have
})ijg CI(pP)—I(»P)]/e,
= 5 Gty 1) =2 25 0l >
=2 32 6, )~ f, up) 1= 2((x, m(w)):
= 2a(z¢; x).

By the arbitrariness in choosing subsequences of {.{”}, we have

Jim V(zo-l-epex)—V(zO) =2 a(zo; ).
e b

By the arbitrariness of {¢,}, we complete the proof.
By Theorems 20 and 21, we have

TueOREM 22. Assume that z, is an x-regular point of V(z). Then it is

valid that

lim Vizotex)—V(zo) _ 2a(zg; x).

Eat0 e

In the case where the set {@w(u); € Soi(z0)} consists of only one point,
we can compute the partial derivatives of V' (z) at z, by Theorem 22.

We shall study the notion that z, is an x-regular point of V(z). We can
easily verify that every z,€ A(Ex)° is an x-regular point of V' (z) for all
x, x 70, in the case where the problem is n-dimensional in Ohtsuka’s sense
(cf. Remark 5 in § 9).

We shall prove



Semi-Infinite Programs and Conditional Gauss Variational Problems 219

Prorosition 15.  Assume that g, =0 on K for each k, that condition (H.2)
1s fulfilled and that there is a neighborhood U of z, such that UC A(Ex) and
Soi(2)=So(2) for all z€ U. Then z,is an x-regular point of V(z) for all
x, x5=0.

We need some preparations for the proof of this proposition. The
assumptions in Proposition 15 persist in the rest of this section except in
Proposition 16 below.

It is valid that 4(Ex) C R and that z=(z, ..., z,) € A(Eg)° implies z, >0
for each £, since g,—=0 on K for each k. Let x* € Sy;(z) and denote by Q(x™*)
the convex cone generated by A(C[ ;:*7]) (ef. the proof of Lemma 4) and by e,
the point of R” whose j-th coordinate is equal to 0 if j5~%& and 1 if j=k.
Define d(u*; z) by

d(p*; z) = sup{r>0; z+re, € Q(p*) (k=1, ..., n)}.
Since z is an interior point of Q(u*), d(w*; z)>0.

Lemma 9. Let F be a nonempty compact set contained in U. Then it is
valid that

d(F) = inf{inf{d(p; 2); € So(2)}; z € F}>0.

Proor. Suppose that d(F)=0. Then there exist z(? € F and px» € So(z?)
such that d(u?; 2”)<1/p. We may suppose that z” converges to z € F and
that there is i such that 2+ (1/p)e; ¢ Q(u?) for all p. There exists v € R”
such that |+ | =1 and

(G +QA/pes, vP)): <O=((u, v'?)),
for all u € Q(x”) by Proposition 1. It follows that
(24) S0 g, =0 on Su®.
k=1
We may assume that x” converges vaguely to p* (c¢f. Lemma 7) and that

v? converges to . It is valid that p*€ So(z) by Theorem 19 and Lemma 6
and that |#| =1 and

<I§:1 U, &rs /-"*> = ((2’ 77))2: I;m ((Z(ﬁ)—!- (]‘/P)ei’ y(p)))z é()
It follows from (24) that
i &:=0 on Sp*.

Thus we have Z 7,4:=0 on Sp*. Since p*e Si(z)=S,:(z), there exists a
system of components i k=1, ..., n} of p*. We have
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ngﬁj<gj) /‘t> = O>

and hence v, = 0 for each £, since det({g;, #>)70. This contradicts |v|=1.
Therefore d(F)>0.

Let F be a compact neighborhood of z, such that FCU and let r, be a
number such that 0<r,<d(F). For z€F and p* € Sy(z), there exist a set
{vi; k=1, ..., n} of measures in C[ n*] and a set {r,; k=1, ..., n} of strictly
positive numbers such that

redvy=z+ree;, and vu(K)=u*(K)/n
for each k. Define {s,} by
z= Zn; si(z+roep).
E=1
It is clear that

se=2z3/(ro+ Zn,'IZj)>O
=

n

for each k& with z=(zy, ..., z,). Let us put a,=rss, and ao= >, a;. Since
k=1

g»=0 for each k and p*—v, € M*(K), we have Au*— Av, € R} and
Z ak(A,u*—Avk) = Z akA,u* - Z akAvk
k=1 k=1 k=1

=(ap—1)z € R},

and hence ap=>1. Let us define u} by
pE=(ar/ao)vi+[p*— '21 (aj/ao)v;]/n.
=

Since {Av,; k=1, ..., n} is linearly independent, we see that {u}; k=1, ..., n}
is a full system of components of p* (cf. the proof of Lemma 4). We call
this a normalized full system of components of u*.

Proor or ProrosiTion 15: There exists ¢, such that L(z,; x) is contained
in the above F. Let {z”} be any sequence of points in L(zo; x) which con-
verges to z,. We take u'? € Sp(2?”) and a normalized full system of com-
ponents {x; k=1, ..., n} of u?, ie.,

n
M;{P) :(azﬂ)/aéﬁ))u(kﬁ) +[ILL(17)___ .Zl (a-(iﬁ)/aé)b))u‘(iﬁ)]/n,
ji=

7
af =15, = 5, v (K)=uPK)/n,
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r;emAu;ap) = +roen, uzﬁ) c C[/L-(p)], rzm >0,

n
D= 37 (D L roey).

We show first that r?P= i ri# is bounded. Supposing the contrary, we may
k=1

assume that r¥’ >co as p—oo for some i. Since {1} is vaguely bounded by
Lemma 7, we may also assume that ;” and »{” converge vaguely to x* and
v¥ respectively. Then it is valid that u* € So(z) and p*(K)>0, so that
pE(K)= lim y?(K)= lim u®(K)/n=1*(K)/n>0.
pen po

We have
Av¥= lim (2P +re;)/r?=0.
proo

This contradicts condition (H. 2). Therefore {+*»} is bounded. Now we

prove that lim |det({g;, x">)| >0. Supposing the contrary, we may con-
P

sider that »{?’ converges vaguely to x} for each k and lim det({g;, x{>)=0,

. . p—foa
by choosing subsequences if necessary. We may also assume that »{’ con-
verges vaguely to v¥ and that r{”’ converges to r, for each k. It is valid that

oo

n
lim s = s, = ¢, /(ro+ _Zl ¢;), z0="(c1, -+, Cn)
=

redAvE = zo+roep, vE(K) = p*(K)/n.
It is clear that ,>0 and s, >0 for each £&. We have

n
lim ¢ =r,s,=a,, lim a{’ = kZ ar=aq,
poroo P =1

pE=(ar/a)E+Tp*— 3 (as/ao)v¥]/n,

n
p*= k§1 pi € So(zo)

Namely {xF; k=1, ..., n} is a normalized full system of components of »*, so
that det({gj, -¥>)5=0. This contradicts our assumption that

det(( gy uf>) = lim det((gs, pif) = 0.

This completes the proof.
In the case where the problem is n-dimensional in Ohtsuka’s sense, it is
valid that S,(2)=S,:(z) for all z€ A(Ex)°. If S(z) consists of only one point

for all z€ A(Eg), then Sy(z)=S,i(z) for all z€ A(Ek)° by Theorem 5 in § 4.
We have
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ProposiTiON 16. Let zo € A(Eg)°. Assume that g.—=0 on K for each k,
that condition (H. 2) ¢s fulfilled and that So:(z0) = So(z0). Then SF(zo)={w(w);
€ So(z0)} 18 a compact set. If we further assume that So(z,) is convex, then
S¥(zy) ts connected.

Proor. Since d({z,})>0 by Lemma 9, we can define for px € S¢(z) a
normalized full system of components of 1 with a number r, such that 0<r,
<d({ze}) (cf. the proof of Proposition 15). Let {x”} be any sequence of
measures in Sy(zo) and {x”; k=1, ..., n} be a normalized full system of com-
ponents of x». If 1P converges vaguely to p} for each k, then we see by
the same argument as in the proof of Proposition 15 that det({g;, pi¥)>)=~0.
By this fact and Lemma 8, it can be shown that S¥(z,) is closed. We show
that S¥(z,) is bounded. Supposing the contrary, we can find a sequence {u‘?}
of measures in Sy(zo) such that |@(x?)| >0 as p—>oo and

n

.Z:l ﬂ)j(,u,(p)) <gj’ l’b(kp)> = <G('9 /‘b(p))——f; #-Zm ’

~
where {x{”; k=1, ..., n} is a normalized full system of components of u®.
Writing v®=a(u?)/|w(x?)|, we may assume that +» converges to » and

that x{? converges vaguely to . by Lemma 7. We have
bpP(K)pi(K) — B (K) <G+, )= f, i,
546G, )~ f, > = V o)+, wP)
= V(z0)+ Bp(K),

where 8= sup{f(u); u€K} and b= inf{G(u, u'); (u, u’)EKxK}. Since
So(z,) is vaguely bounded, it is easily seen by the above relations that
{<G(+y pP)—f, piP>} is bounded. Thus we have

]Zzllfinga pi> =0,

and hence 5 =0, since det({g;, x¥>)#0. This contradicts || =1. Therefore
S¥(z0) is bounded.

Next we show that S¥(z,) is connected whenever S,(z,) is convex. For
any p® € Sy(z0)(p=1,2) and t € R with 0=t < 1, we have p*=tpP+ 1 —1)p®
€ So(zo) by our assumption. Let {x{”; k=1, ..., n} be a normalized full sys-
tem of components of . for p=1, 2 and set pf=1txi’+ (1 —t)u? for each k.
Then {u}; k=1, ..., n} is a full system of components of x*. We have

n

2 wi( D) gjy pi> =<G(+, pP)— f, p">

i=1

for p=1,2 and
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”

% @(u* gy w1> = <6, )~ 1>

]':

It is valid that
G6C, p—f, wib>
=t3G(, gD = f, >+ A =06, p)—f, uf?
+ A=) [KGC, p) = fy pif ) +<GC, pP) =, pi>]
= 5 [em(u®)+ (=0, (u®) I gy wi>+1A—Da,
where
ar =<G(oy pD)—f, 152> +<GCy pP)—f, uf?
- ,Zz:l @,(p V) gis 1> — Zz:le(#(z)) {&is Wi
Namely we have
2 [0,() — 1, (u) ~ (A= 0 (u ™) K gy w3 = A= D).
Define g=(gq1, -+, g») by
,21 98 e = .
It follows that
@)  @(tpP+A—=0)p®)=1w(p®)+ A —)@(p®) +1(1—1)g
for all ¢, 0"t <{1. Since @(tx™® +(1—1)p®) € S¥(z,) and the right side of (25)

represents a curve connecting @(x®) and w(x®), we conclude that S¥(z,) is
connected.

This is a generalization of Theorem 2. 9 in [97].

§11. The case where G is of positive type

We continue the study of 7 (z) under an additional condition on the
kernel G. We shall prove

TueoreM 23. Assume that G is of positive type and that condition (H. 1)
18 fulfilled. Then V(z) is finite-valued and convex on A(Ex) and V(z)=oo
outside A(Ex).
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Proor. Let z® e A(Ex) (k=1,2) and t€R,0<t<1. For any &¢>0,
there is o, € S(z®) such that V(z®)> I(j,)—e (k=1, 2). It follows that

tpr+(A—t)ps € S(z2V+1A—1)z®),
tV(E)+A =) V() >t I(p)+ QA —) [(1p2) —¢
=I(tp1+ (A=) pe2) +t(1— )1 — gy po1— pez) —€
>V(tzP+1—1)z®)—e.
By the arbitrariness of ¢, we have
V(tzD+1—8)z®) <t V(z)+ 1 —1) V(D).

It is clear that S(z)=¢ if and only if z ¢ A(Eg). In this case we have V(z)=o0
by our convention.

On account of this fact, we can apply the general results concerning
convex functions in [17], [127] and [13] to the study of V(z). In the rest of
this section, we always assume that G is of positive type and that condition
(H. 1) is fulfilled.

By a well-known result ([ 17, p. 92, Corollaire 2 of Proposition 2), we see
that V(z) is continuous in A(Ex)°. However V(z) is not always continuous
at boundary points of A(Ex). This is easily verified by Example 3 in § 6.

Let x € R”, x50 and zy€ A(Eg)°. Define DV(z,) and V'(z¢; x) as follows:

DV(zo)={we R"; V(2)— V(z0) = ((z— 20, w)) for all z€ A(Ex)},

V'(zp; ) = lim V(zo+ex) = V(o) .

E40 e

The existence of V'(zy; x) follows from the convexity of V(z). It is valid
that

V'(z05 )= sup {((x, w))z; wE€ DV (z9)}

(cf. [12], Theorem 3).

We shall determine DV{(z,) explicitly. For p* € Si(z¢), let SF(u*; zo) be
the set of we R” which satisfies the relations (3) and (4) in Theorem 12 with
zo=(c1, -+, cp). It is valid that S¥(u*; z0)=SF (v*; zo) for w*, v*€ So(z) by
Theorem 14.

We have

Tueorem 24. Assume that zo € A(Ex)° and So(zo) 7%~ ¢. Then it is valid
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that
DV(zo) = {2w; we SF(p*; 20)}
for any p* € So(zo).

Proor. We first assume that p*e So(z0) and we SF(p*; z,). Let
z€ A(Eg). For any £>0, there is v € S(z) such that V(z)+e> I(v). Integrat-
ing both sides of (8) by v, we obtain

(v, W) —={fs 1> = (2, W)
Since (p*, p*)={f, p*>+((z0, w))2, we have
V(z)+e—V(zo)> I(v) — I(p*)
= (v, )= (¥, ) +2f, O —2f, v>
= (p*—v, p*—) +2((z— 20, )2
= ((z—z0, 2w))>.
By the arbitrariness of ¢, we have
V(z)—V(z0) = (2 —z0, 2w))

for all z€ A(Ex), and hence 2we DV(z,). Next we assume that 2we DV(z,)
and p*€ Syp(zo). Let v be any element of Ex and set z=A4v. For any t€R
with 0<t<1, we have

((t(z—z0), 2w))s < V(tz+ (1 —1)z0) — V(z0)
=Lty +A—=)p*) — I(p™)
=1%(v, ) +20(1—1) (v, p*)—1(2—1) (¥, p*)—2t{f, v> +2tf, p*>.
Dividing both sides by ¢ and letting ¢—0, we obtain
((z =20, )2 = <G, p*)=f, ) —<GC, W) —f, ¥,
or equivalently
GG 1) —f = B wign, 2> =60, W) —f~ 3 wngn, 1w,

where w=(w;, ---, w,). From this relation, we can easily conclude that
we SF(pn*; z9). This completes the proof.
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CorOLLARY. V'(zg; x)= sup{2((x, w))s; we SF(u*; z0)}.
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