
HIROSHIMA MATH. J.
3 (1973), 227-241

Isomorphisms between Interval Sublattίces

of an Orthomodular Lattice

Samuel S. HOLLAND, Jr.

(Received January 6, 1973)

1. Introduction.

This paper deals with the following question: given orthogonal projective

elements α, b of an orthomodular lattice Jδf, under what general circumstances

are the interval sublattices J£?(0, α), &(0, b) orthoisomorphic?

The answer that we offer provides a description of a class of lattices, called

uniform, in which not only do the indicated orthoisomorphisms exist, but they

are explicitly displayed as simple lattice polynomials. This desirable state of

affairs is achieved through the use of a strong postulate that requires the existence

of certain special kinds of elements of &.

The postulate is framed in terms of a new relation "UA" between pairs of non-

zero elements p, q of an orthomodular lattice «£?. We write p % q when

x < q=ϊ(p A (p1 V x)) ±(qΛ x1).

This resembles the condition that p, q form a modular pair, and is in fact stronger

(see (4) of 2.4 and remarks following the proof of 4.1). The relation UA (p, q)

is then defined as the symmetrization of #, subject to a side condition to rule out

trivial complications. The exact definition is this: UA(p, q)<=$ both p% q, q%p

and pΛq=pΛq1=p1 Λq=0. The letters UA are intended to suggest "uniform

angle", and the relationship UA(p, q) may be read as "p and q have a uniform

angle between them". This terminology is derived from a geometric interpretation

available when & is the lattice of projections of Hubert space — see 4.4.

A uniform orthomodular lattice is defined by the following property: given

any pair of non-zero orthogonal projective elements α, b, there is an element

h<aφb that makes a uniform angle with both a and b. We call such an element

ft "splitting" for the pair α, b. The desired orthoisomorphism between the in-

terval sublattices &(0, α), Jδf (0, b) is constructed through the use of the special

properties of the splitting element ft.

This definition has the advantage of being easily verified in a large class of

examples, namely the projection lattices of von Neumann algebras, and does

lead swiftly to a simple, explicit formula for the desired orthoisomorphisms

(Theorem 3.1). Another possible advantage is that the explicit nature of the defi-

inition may promote the building of a reasonably detailed theory of these lattices.



228 Samuel S. HOLLAND, Jr.

Clearly their usefulness must ultimately be measured by the success of such a

program. There are some hopeful signs.

In his work on the lattice of left annihilators of Baer-type rings [7], Janowitz

has dealt with the problem of finding lattice-induced orthoisomorphisms between

interval sublattices of the projection lattice of a Rickart *-ring. The closing

comment of his paper connects directly with uniform orthomodular lattices.

It suggests that "a suitable vehicle for lattice dimension theory ought to be a com-

plete orthomodular lattice such that e_Lf9 e « f=$e is modularly perspective to

/ " . (The notation e ~ / means that e and / are projective. To say that e is

modularly perspective to/means the existence of a g satisfying e\/ g=fv g=e V/,
e Λ g =/Λ g = 0 and such that all pairs (e, g)9 (g, e), (/, g)9 (g9 f) are both modular

and dual modular.) A uniform orthomodular lattice comes very close to having

Janowitz's property (2.9), and we may hope accordingly that these lattices will

prove useful in lattice dimension theory.

As another hopeful indication of the possible future role to be played by such

lattices, we mention the fact, cited by F. Maeda and S. Maeda [8; 36.14], that

one may derive the 0-symmetry of an orthomodular lattice from the existence

of sufficiently many orthoisomorphisms.

This paper is organized as follows: § 2 contains basic material about the re-

lations # and UA, § 3 contains the statement and proof of the main theorem, and

§ 4 is devoted to proving that the projection lattice of any von Neumann algebra

is uniform, and to deriving various analytic forms of # and UA in projection lat-

tices of von Neumann algebras.

The paper assumes some familiarity with the elementary theory of ortho-

modular lattices as presented for example in BirkhofΓs book [1 Ch. I, § 14],

the Maedas' book [8; §§29, 36] or my survey article [5], and some knowledge

of the basic properties of "Sasaki projections" which are summarized by Foulis

in [3; Lemmas 1 and 2], and developed in more detail in his lecture notes [4].

Inasmuch as the Sasaki projections are somewhat technical, I shall for the reader's

convenience repeat the definition here.

Given the element a in the orthomodular lattice f̂, the Sasaki projection

φa belonging to a is the order preserving map of J£? onto its interval sublattice

J^(0, a) defined by φa(x) = a — (a A x1) (where I have used the convention of writing

a-b for a f\bL when b < a). We shall denote the composition of these maps in the

usual way: φbφa(x) = φb(φa(x)).

2. The definition of uniform orthomodular lattices preliminary material

2.1. As conditions on the pair a, b of elements of an orthomodular lattice,

the following are equivalent:

(1)
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(2) x<b=¥φa(x) = aA(b-x)1-(aAb1)

(3) x^HKxV^ΛίxVfl^Λ^jlί)

(4) x<b=^φbφa(x)=φx(a).

PROOF. First, we shall prove the equivalence of the first three conditions,

and then separately verify the equivalence of (1) and (4).

(1)=K2). Since φa(x)<a9 we can conclude, owing to (1), that φa(x)<a A

(b-x)1. Then

aA(b-x)1-φa(x) = aA(b-x)1-(a-aAx1)

= a A(b-x)1 A (a1 V(flΛ x1)).

Since a commutes with both a1 and a Ax1, we can distribute to get

=(b-x)L AaAx1

Rearranged, this gives (2).

(2)=K3). A straightforward calculation verifies that

(x V a) A (x V a1) A x1 =x V φa(x) - x = φx+φa(x).

Owing to (2), we have φa(x)<(b — x) 1 , whence

φx+(Φa(x))<φx+((b — x)1) = b1, a Sasaki projection being order preserving. This

is the desired conclusion.

). Statement (3) says that

xVφa(x)-x^b\ so φa(x)<xVφa(x)<b1\/x=(b-x)1.

(1)=K4). Using (1) and remembering x<b, we obtain ΦbΦa

=x. Then

=xAφa(x)1=xAa1,

and rearranging this formula we get the result.

(4)=K1). Assuming (4) we have φbφa(x)<x so b1 V (φbφa(x)) < b1 V x =

(b-x)1. But

b1 V (φbφa(x)) = b^(bA (b1 V φa(x)))

so φa(x) < b1 V φa(x) <(b-x)1 which is (1). That completes all parts of our proof.

We shall use the notation a # b to signify that the pair (a, b) satisfies the con-
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dition whose equivalent formulations are listed in 2.1. It forms the basis for the

following series of definitions.

2.2. DEFINITION. The non-zero elements a, b of an orthomodular lattice

are said to have a uniform angle between them, symbolized UA(α, b), provided

that aAb=aΛb1=a1Λb=O and both a%b, b%a.

The key definition then is this:

2.3. DEFINITION. An orthomodular lattice is UNIFORM if for each

pair of non-zero orthogonal projective elements a, b there is an h<aφb such

that UA(α, h) and UA(ft, b).

An element h that satisfies the conditions of Definition 2.3 we call splitting

for the pair a, b. Using this term we can restate the definition as follows: An

orthomodular lattice is uniform provided that every pair of orthogonal projec-

tive elements has a splitting element.

We remind the reader that p and q are called perspective, written p~q9 if

they have a common complement, i.e. there is an x such that pV x=qV x = l,

p Λx=q Λx=0, and are called strongly perspective, written p~q, if they have

a common complement in their own join, i.e. there is an x such that p\/ x=qV x =

pVq, pΛx=qΛx=0. Strongly perspective elements are perspective but not

vice versa, unless the lattice is modular [6]. Finally, we say that p and q are

projective if there are rί9 r2...,rn such that p~rί~r2~- '~rn~q.

We use the rest of this section to derive some basic facts about the relations

" t " and "UA".

2.4. The following assertions about the relation # are valid in any ortho-

modular lattice J?.

(1) If a commutes with every x<b, then a%b.

(2) // b is an atom, then a # b for every a.

(3) Ifa%b,thenaL%b.

(4) If a%b, then both (a, b) and (a1, b) are modular pairs.

(5) If a%b, then a^y for every y<b.

PROOF. If a commutes with every x<b, then φa(x)=aAx which is always

orthogonal to b — x; hence, according to (1) of 2.1, we have a # b. That establishes

(1). As a consequence of (1) we can deduce a # b in any one of the following

situations: a>b, or αG center (Jδf), or a±b.

Statement (2) is an immediate consequence of the fact that x<b=$x=0 or

x = b when b is an atom.

Statement (3) is easily deduced from the fact that (3) of 2.1 is unchanged

when we substitute a1 for a, and statement (5) follows directly from (1) of 2.1.
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This leaves (4), the only really non-trivial assertion in the list. Owing to

(3) it is enough to prove that a # b=$(aλ, b)M. Now (α 1, fe)M (which is symbolic

for the assertion that (a1, b) is a modular pair) means that x<b=^(x Vfl^Λ b =

x V (a1 A b). Now always x V (a1 A b)<(x V α 1 ) Λ b, so it is enough to prove that

z=(x V a1) Λ t - ( x V ( f l x Λ f>))=0.

Now

z =(x V a 1 ) Λ b A x 1 Λ (a V fc1)

and (aVb1)A(xVa1)=a\/b1-aA x1

Then z = {[a1 Λ (α V ft1)]®^)} Λ (6-x) .

The element φa(x) being < α is orthogonal to α i Λ ( α V i i ) ; and, owing to the

assumption a # b in the form (1) of 2.1, φa(x) is also orthogonal to b — x. Hence

we can distribute to get

z = α 1 Λ (αV fe1) Λ (fe-x) <(a V b 1) Λ α 1 Λ b

which was to be proved.

If b Λ a1 =0, then we can express the relation α # £> in a particulary nice form

using Sasaki projections.

2.5. Both relations a%b and ί ? Λ α i = 0 hold for elements α, b of an ortho-

modular lattice ££ when and only when ΦbΦaΦb = Φb-

This latter condition resembles von Neumann's "regularity" axiom in ring

theory.

We know from (4) of 2.1 that a # b is equivalent to x<b=^φbφa(x) = φx(a)

= x — xΛfl1. If fcΛα1=0, then x Λ f l i = 0 so φbφa(
χ) = x whenever x<b.

For any y^se, φb(y)<b so φbφaφb(y) = φb(y), which is to say φbφaφb=φb.

Conversely, if this equation is valid, then

b A a± = φb(b Λ a±) = φbφa(b A a±) = φb(0) = 0 ,

and then x<b=$φbφa(x) = φbφaφb(x) = φb(x)—x=φx(a) which is (4) of 2.1, an

equivalent form of a # b.

Using 2.5, we can express the relation UA in a very convenient form:
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2.6. For non-zero elements «, b, we have UA(α, b)<=ϊa A b=0, φbφaΦb

 = Φb>

and ΦaΦbΦa = Φa
The proof of the main theorem is based on 2.1 through 2.6. We close this

section with two results, 2.8 and 2.9, that provide additional information about

the relation UA. The first result asserts a kind of transitivity of UA, and requires

an elementary preliminary fact about Sasaki projections.

2.7. Ifa±(bVc\ then φaθbφc = φbφc.
Owing to the fact that for any xGif , a is orthogonal to both b and φc(x),

we have

*) =(aVb)A ((α1 Λ fr1) V φc(x))

=(a V b) A (a1 V φc(x)) A (b1 V φc(x))

=(aV b) Aa1 A(bLV φc(x))

2.8. // UA(α, b\ UA(b, c) and (αV b-b)±(c\ί b-b\ then both φaφcφa

= φa and φcφaφc = φc. Hence we can conclude UA(α, c) provided that aAc=0.

Introduce the auxiliary notations m=a\l b — b, n — b\lc — b. We have mφb

= a V b, nφb = bW c. Owing to the fact that c < b V c = nφfc, we have φc = φcφn®b>

so ΦaΦcΦa^ΦaΦcΦnφbΦa- P a r t of the hypothesis of 2.8 asserts that n±m, and

since evidently n±b, we have n±(b@m)=(aVb). According to 2.7, φn@bφa

= φbφa, so φaΦcΦa = ΦaΦcΦbΦa' Now using similar justifications, we argue that

ΦaΦc = ΦaΦm®bΦc = ΦaΦbΦc> S O ΦaΦcΦa^ΦaΦcΦbΦa^ΦaΦbΦcΦbΦa According tO
the hypothesis, φbφcφb = φb and φaΦbΦa = Φ<» hence φaφcφa = Φa a s w a s to be prov-

ed. The other equation is proved similarly: we write ΦcΦaΦc = ΦcΦaΦm®bΦc —

ΦcΦaΦbΦc = ΦcΦn®bΦaΦbΦc=zΦcΦbΦaΦbΦc = ΦcΦbΦc = Φc That completes the veri-
fication of 2.8.

The final result establishes a connection with Janowitz's concept of "modu-

larly perspective" [7].

2.9. // h is a splitting element for the orthogonal pair a, b, then all the

pairs (a, h), (h, a), (/z, b), (b9 h) are modular. The pairs (h, a) (h, b) are also

dual modular.

The eight relations (a, Λ)M, (α 1 , Λ)M, (ft, α)M, (ft1, α)M, (ft, 6)M, (ft1, b)M,

(fe, ft)M, (fe1, ft)M are all immediate consequences of (4) of 2.4, which establishes

the modularity of all pairs in question. To prove the dual modularity, we set

c = α 1 Λ ft1, and note that c commutes with ft1, because ft<αφb=cx, and c also

commutes with b. Since (ft1, b)M, we may conclude by Schreiner's lemma,

3641 of [8], that (ftxVc, bVc)M, But hλ>c so ft1γc = ft1,
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(α i Λί? i )=(feVf l 1 )Λ(Hί? i ) = fli. Thus (ft1, aλ)M, so (ft, a)M* by 29.6 of [8].

We prove (ft, b)M* by an analogous argument, starting with (ft1, α)M and using

the same c.

It may be that (a, ft)M* and (b, ft)M* as well, in which case a would be

modularly perspective to b in the sense of Janowitz.

Our principal result is this:

3. The theorem

3.1. THEOREM. If h is a splitting element for the orthogonal pair (a, b),

then the function

Ψh(x)=(xV h) A(xV h1) Λx1

(1) maps <£(0, a) orthoisomorphically onto ££(0, b) so that x£Ψh(x)

for every x e «£?(0, a),

(2) maps JS?(O, b) orthoisomorphically onto ^f(0, a) so that xΛ,Ψh{x)

for every x ε i f ( 0 , b),

(3) is its own inverse in the sense that the maps in (1) and (2) are mutually

inverse, and

(4) is expressible explicitly in terms of Sasaki projections by the formulas

ΨH(X) = ΦbΦh(x) When X G J ^ ( 0 , a\

ψh(x) = φaφh(χ) When XGi?(0, b).

We shall devote this section to the proof of this result. We first rephase

the result so as to answer explicitly the question raised in the introduction:

3.2. COROLLARY. Let J£ be a uniform orthomodular lattice. If a, b

are orthogonal projectίve elements in Jίf, then the sublattices if(0, a), J^(0, b)

are orthoisomorphic.

Of course, considerably more information is conveyed by the theorem itself.

As the last statement in the theorem asserts, we can view the orthoisomor-

phism as the composition of two Sasaki projections, one from «£?(0, a) onto

^f(0, ft), and the other from ^ ( 0 , ft) onto J£?(0. b). We begin our proof of the

theorem by analyzing these individual maps.

3.3. Suppose that UA(α, ft). Then:

(1) φa is an orthoίsomorphism of J£?(0, ft) onto JSf (0, a), φh is an

orthoisomorphίsm of J?(0, a) onto J£?(0, ft), and φa, φh are mutually inverse.

(2) xZφh(x) When X<EJS?(0, a), and xΛ,φa(x) When x<

PROOF, The proof is based on 2,6 which asserts that under the above



234 Samuel S. HOLLAND, Jr.

hypotheses we have a, hΦO, a /\h=0, φhφaφh = φh9 and φaφhΦa — Φa' If*ejS?(0, ft),
then x=Φh(x) = ΦhΦaΦh(χ)==ΦhΦa(x)> from which we conclude that φhφa=identity
on ^f(0, ft). Similarly, φaφh= identity on ^f(0, a). Now given J ; E ^ ( 0 , ft), we
have y = φhΦa(y) = Φh(x) where x = </>fl(j;) £«£?((), a), which shows that <£h maps
if(0, α) onto ^(0, ft). Similarly, φa maps ^f(0, ft) onto &(0, a). The one-
to-one character of both maps clearly follows from the fact that their product
in either order is the identity, and, since each is order-preserving, each is a lattice
isomorphism.

The next step of the proof is the verification that φa and φh are orthoisomor-
phisms, which (for φh) is the assertion φh(a — x) = h — φh(x). According to (2)
of 2.1,

y < a=ϊφh(y) = ft Λ (a - y)1 - ft Λ a1.

Under the present hypotheses we have ftΛα1=0. Setting y = a — x we get
φh(a — x) — hAx±=h — (h — hAx1) — h — φh(x) as was to be proved. A parallel
argument establishes that φa is an orthoisomorphism.

The strong perspectivities cited in (2) are a consequence of the general "paral-
lelogram law": xVy-yΛ,x-xAy [6]. We have xeif(0, α)=Φx=x-xΛ
ft1^xVft1-ft1 = ft-ftΛλ:J-= φh(x\ and similarly, xeJ^(0, h)^>x^φa(x). That
completes the proof of 3.3.

At this point we could deduce the existence of the orthoisomorphisms of
Corollary 3.2 directly from the above result by composition of maps. But we
prefer to examine the situation in more detail, concentrating attention specifically
on the map Ψh, in order to get the more precise information stated in the main
theorem.

3.4. For a fiixed element ft in the orthomodular lattice ££ the mapping
Ψh defined by

has the following properties (each property holding for all

(1) ψh(x)=ΨA*)

(2) Ψh(x)lx

(3) Ψh(x)=xVφk(x)-x = φx+φk(x)

(4) Ψh(x)

(5) hΛΨ
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ft1 V ΨΛ(x) = (A 1 V x) Λ (Ax V x x )

(6) Ψh(x)ϊΨx(h)

(7) xVφh(x)=xφΨh(x)

Ψk(x) V φh(x) = x 0 Ψh(x) -xΛ/i1

xΛ«x)=xΛΛ Ψh(x)Λφh(x)=0

(8) nW^ΦΛW-ΛΛx

(9) f f(*) = Ψh(Ψh(x))=x- [(x Λ A)φ(x Λ ftx)].

Thus Ψ2(x) =x«=»x Λ ft = x Λ Ax =0.

Statements (1) and (2) are obvious. The validity of assertion (3) is establish-

ed by the following direct calculation: xVφ h (x)-x = [xV(ftA(h1 Vx))] Λx x

=(x V h) Λ (x V hx) A x1. Number (4) follows from the known calculus for

Sasaki projections:

X) ±

Assertion (5) can be verified easily as follows:

h A Ψh(x) = h A (x V h) A (x V hx) Λ x 1

=(x V Λ 1) 1 Λ (x V hL) A (x V h) =0, A1 Λ Ψh(x)

= hx A x 1 Λ (x V h) A (x V hL) =(x V h)Σ A (x V h)

A (x V h1) =0, h V ̂ ( x ) = h V [(x V h) A (x V /i1) Λ x x ]

= {ft V [(x V h) A (x V /ιx)]} Λ (A V x x ) =(/J V x) Λ (Λ V x x ) ,

hL V Ψh(x) = /ιx V [(x V h) Λ (x V ft1) Λ x 1 ]

= {A1 V [(x V h) A (x V h x )]} Λ (ft1 V x x )

=(ft x Vx)Λ(ft x Vx x ) .

Number (6) is a direct consequence of the parallelogram law

n θ ) = Ψk(x) - A Λ f A(x) AAV f Λ(x) - ft
=(ftVx)Λ(ftVxx)Λftx = iP*(ft). The computations verifying (7) are also routine:

x 0 Ψh(x) = x θ ( x V φA(x) - x) = x V φh{x) (using (3)),

Ψ A(x) v « χ ) = ( χ v φ A (χ)-χ) v φΛ(χ)

=((xVψ»(x))Λxi)V«x)
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=(xWφh(x))A(x1Vφh(x))

= xVφh(x)-xΛhλ,

x A φh(x)=x A(hA(ft1 Vx))=xΛ/i,

Ψh(x) A φh(x) < Ψh(x) Ah=O (using (5)).

Number (8) follows from the parallelogram law, (7), and (3):

φh(x) - ft Λ x = φh(x) - φh(x) Λ x i φh(x) V x - x

= Ψh(x) by (3).

Item (9) is a matter of direct calculation using (5):

Ψh(Ψh(x)) =(Ψh(*) V h) A (Ψh(x) V ft1) Λ Ψh(xy

=(h V x) Λ (ft V x1) A (ft1 V x) A (ft1 V x1) A Ψh(x)λ

= [(ft V x) A (ft1 V x) A W 1 ] Λ [(ft V x1) A (ft1 V x1) A

= {(Λ Vx)Λ (/ί1 Vx) Λ [((Λ Vx)Λ (h1 Vx))1 Vx]}

=x Λ (ft V x1) A (h1 V x1) A Ψh(x)λ

=x A (h V x 1 ) Λ (ft1 V x1) since x < ^ ( x ) 1

= x-((ft1Λx)Θ(ftΛx)).

That completes the proof of 3.4.

When restricted to an appropriate subset of ££ the properties of Ψh are sim-

ple and easily described. We single out the relevant subset in 3.5 and list the

properties in 3.6.

3.5. Define N C ( f t ) = ( y e ^ ; yA h=y A ft1 =0). An equivalent form is

<=$every subelement of y save 0 fails to commute with ft.

3.6. The image (range) of Ψh is NC(ft). Restricted to NC(ft), Ψh is a

one-to-one map o/NC(ft) onto itself and is there its own inverse. The orthogonal

elements x and Ψh(x) are strongly perspective for each xeNC(ft).

The proof of 3.6 follows directly by specializing 3.4. According to (5) of

3.4, we have ft Λ Ψh(x) = hλ A Ψh(x)=0 which says that <Fft(x)€ΞNC(ft) for all

X G s e . And (9) of 3.4 asserts that Ψ2(x) =x for all xeNC(ft), which shows that

Ψ is one-to-one and onto there. And item (7) of 3.4 says that φh(x) is an axis of
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strong perspectivity between x and Ψh(x) for each XENC(/I).

There is one property missing from the attractive list in 3.6, namely that Ψh be
order-preserving. Indeed, since Ψh is the meet of two maps, an order-preserving
one, x->(x V h) A (x V h1), and an order-inverting one, x-^x1, the possible order-
preserving character of Ψh is not at all clear. In fact, if Ψh is order-preserving
on J£?(0, a), then we must have x<a=^Ψh(x)<Ψh(a)<aL which already requires
h$a by (3) of 2.1. We complete the proof of the main theorem by proving
a converse:

3.7. Suppose a<BNC(h) and h#a. Let b = Ψh(a). Then Ψh(x) = φbφh(x)

/orx£if(0, a).

Before beginning the proof of 3.7, we assemble here the results of 2.1 under
the substitution a-+h, fr-»α for our present use. We have h # a Φ

{x <ad>(χ V /*) Λ (x V hL) A x1) = Ψh(x) 1 a}

According to 2.4, h # a^h1 # a and /ι # a=$h # j ; for every y<a. According to
2.5, H f l ά f l Λ / l 1 ^ ^ ΦaΦhΦa = Φa

Let x represent an element<a. We first prove that φbφh(x) = aVφh(x) — a
by the following series of computations.

= fliΛ[(flV/ι)Λ(αV/ι1)]

Λ ([(a Vh)Λ(a\ί / i 1 )] 1 V (a V φΛ

where we have used 6 = Ψh(ά). Since we are assuming h % a, we can use the fol-
lowing formula written directly above

= /iΛ(fliVx)Λ(/ι1Vfl)<αV/ι1.

Since also a<a\/hL, we have αVφh(x)<aVh1. Also φh(x)<h, so αVφΛ(x)
<aVh. Hence α V </>Λ(x)<(α V /*) Λ (α V h1), so α V ψΛ(x) commutes with [(α V /i)
Λ (a V /i)1] and its orthocomplement. Using this information, we can distribute
the expression [ ]Λ([ ] xV(αV φh(x))):

ΦkΦhW =aL A (a V φh(x)) = a V ^ ( x ) - ^ .

Next, we prove that φbφh(x) = Ψh(x).

=((α-x) V (x V 0Λ(x))) Λ a1, using α =(α-x) V x.
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Since A # a, φh(x) I (a — x), and, evidently x J_ (a — x), so (x V φh(x)) ±(a — x).

Clearly a1 commutes with a — x, so we can distribute

= ( * V φh(x)) A a± =(x V φh(x)) A (a - x ) 1 Λ x \

using aL =(a — x)1 A x 1 ,

Now h%a implies that Ψh(x)±a, so Ψh(x)<aλ <(a-x)λ. Therefore φbφk(x)

= Ψh(x) A(a-x)1 = Ψh(x), which completes the proof.

The proof of the main theorem now follows directly from these results.

The hypotheses of the main theorem are UA(α, A), UA(A, b), and h<aφb, and

we note first that if these are fulfilled, then so are the hypotheses of 3.7. First

both flGNφ) and A # a are contained in UA(α, h). Secondly, b = Ψh(a) is a

consequence of h<a@b, a1 Ah = b AhL=0 as follows: Ψh(a)=(a V/ι)Λ

(a V h1) A a1 =(a V h) A a1 =(((α0Z>) Λ b1) V Λ) Λ α 1

=((«Θ&) V A)Λ(fc1 Vh)Aaλ =(aφb) Aaλ=b. Thus we are in the situation of

3.7 and are entitled to conclude Ψh(x) = φbφh(x) for xGif(0, α). Now by 3.3,

from UA(α, A) it follows that φh is an orthoisomorphism of «£?(0, α) onto J£?(0, A),

and from UA(A, b) it follows that φft is an orthoisomorphism of -£?(0, A) onto

j£?(0, fo). Thus, as the composition of two orthoisomorphisms, Ψh is itself an

orthoisomorphism of ^f(0, a) on ϋ?(0, fc). By symmetry, we conclude that

Ψh(x)=φaφh(x) when xGif(0, b) and that !Ph maps J£?(0, b) orthoisomorphically

on ĵ f(O, a). Finally, we note that both J£?(0, a) and J£?(0, b) are contained in

NC(A), so that the assertions of 3.1 relating to the strong perspectivities xZΨh(x)

and the fact that Ψh is its own inverse now follow directly from 3.6. That com-

pletes the proof of the main theorem.

4. Examples and further comments

The properties of splitting elements are so special that one might easily

surmise that they exist rarely, if at all, and that correspondingly the class of

uniform orthomodular lattices is a small class. Our first result shows that, to

the contrary, there is a large class of orthomodular lattices easily verified to be

uniform.

4.1. The projection lattice of a von Neumann algebra is uniform.

PROOF. Let s/ be the von Neumann algebra in question, «£? its projection

lattice, and let A, B be orthogonal non-zero, projective elements of J£\ Then

A, B are equivalent, which is to say, there is a partial isometry W'mrf such that
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WW*=A9 W*W=B. Choose λ satisfying 0<λ<\ and set H=λA + (l-λ)B

+ (λ(l—λ))1/2(W+W*). Direct computations show that H is a projection, and

that AHA=λA9 HAH=λH9 BHB=(l-λ)B9 HBH=(l-λ)H. For an element

X of S£9 one verifies easily that the Sasaki projection φH(X) is the projection on

the closure of im(HX). According to the criterion of 2.1, we have H % A 4Φ {X

<A^φH(X)L(A-X)}9 which is equivalent to {X<A=ϊ(A-X)HX=0}9 or

{X<A=^AHX = XHX}. But from AHA=λA we derive immediately AHX

=λX =XHX. Hence E%A. Similarly, we have also A % H, H # B9 and B # H.

The equations AAH=AAH1=A1AH=BAH=BAH1=B1AH=O being

easily verified, we have that H is splitting for A9 B. This completes the proof

of 4.1.

If h is a splitting element for the pair a9 b9 then all pairs (a9 h) (h9 ά)9 (h9 b)

(b9 h) are modular, and the pairs (h9 a) (h9 b) are also dual modular. However,

the requirement that h be splitting is much stronger than the modularity of these

various pairs: We give an example in the modular lattice of subspaces of a four

dimensional real vector space V where A±B9 H<A®B = 19 AVH=BVH = 19

AAH=BAH=09 (SO that H effects a strong perspectivity between A and B)

but not UA(A9 H). Let {eί9 el9 e39 e4} be an orthonormal basis of V9 let A be

the subspace spanned by {eί9 e2}, B that spanned by {e3, β4}, and let H be the

subspace spanned by {eι + e2-\-e39 e2-\-e^\. Then one checks easily that H

effects the claimed strong perspectivity. Let X be the subspace spanned by

{ex}. Then §<X<A9 and, as computation shows, φH(X)=H — H AX1 is span-

ned by -2e1-e2-2e3 + e4r. But if UA(A9 H)9 then by (1) of 2.1 this vector

would have to be orthogonal to e2 which is clearly not the case.

We next examine in some detail the meaning of A % B and UA(^4, B) in the

projection lattice of a von Neumann algebra.

4.2. THEOREM. Let 3? represent the lattice of projections of a von Neu-

mann algebra s/. The following conditions on the elements A, B of & are

equivalent:

(1) A%B

(2) BAB commutes with every X<B9 X^se.

(3) There exists a unique operator Tsuch that

(a) ΓGcenter 0 0 , (b) BAB = TB9 and (c) T=e(B)T (where e(B) is the central

cover of £). The operator T (uniquely determined by (ά)9 (b)9 and (c)) also

satisfies 0<T<L

PROOF. (1)=K2). The relation A%B means this: If XtΞSe and X<B9

then (A - (A A X1)) L(B- X). Now (ker(JO)) 1 =A-(AΛ X1), so the previous

condition is equivalent to X<B=$(B-X)<keτ(XA)9 or X<B=ϊXA(B-X)=Q9



240 Samuel S. HOLLAND, Jr.

which is the same as XΛB=XAX. Taking adjoints, we get BAX=XAX =XAB.
Since X<B, we have BX=XB=X, so we can recast the previous equation in the
form (BAB)X=X(BAB), which is (2).

(2)=^(3). The operator BAB belongs to the *-algebra Bs/B, and the projec-
tions in Bs/B are precisely those Xej£?, X<B. Now Bs/B is *-isomorphic
to s/B, the von Neumann algebra of operators on the Hubert space B that are
restrictions to B of elements of Bs/B [2; Ch. I, §2, Γ ] . Then BAB considered
as an operator in s/B commutes with every projection in $0B and so is in the
center of s/B. But the center of s/B is 3?B where JΓ is the center of s/ [2; Ch.
I, §2, Cor. to Prop. 2]. It follows that BAB=BTB for Tecenter (s/). The
operator T can be replaced by e(B)T, and the new T satisfies both BAB = TB,
= e(B)T. That proves the existence.

To prove the uniqueness, we observe that if M is the subspace of all finite
sums T1x1 + T2x2-\ t-Tnxn, Ti^s/, x f e £ , then e(B) is the projection on the
closure of M. If j/εM, then Ty = T(T1xί+~ + Tnxn) = TίTxί + ~> + Tnxn

= 7\ TBxx + + TnTBxn = T1BAxί + + TnBAxn so that T is already determined
on M by the conditions TB =BAB, T e center (jaf). By continuity, Γis determined
on e(B). The condition T=Te(B) implies that T=0 on I-e(B); thus Tis deter-
mined everywhere. That proves uniqueness.

(3)=^(1). If X<B, BAB = TB, then XA(B-X)=XAB-XAX=XBAB
-XBABX=XBT-XTBX=XT-XT=O, which is equivalent to A#B.

We turn our attention now to the other properties claimed for T. The
assertion 0<T<I is equivalent to 0<(7x, x)<| |x | | 2 for every x ε i ί . Owing
to (c) we have (Tx, x)=(Te(B)x, e(B)x), so we may assume xεe(5). Since
TB=(AB)*(AB)>0, and B-TB=((I-A)B)*((I-A)B)>0, we have 0<TB<B.
Inasmuch as elements of the form x = Tίxί-[ hTπxrt, T^s^.x^B are dense
in e(B), it is enough to verify 0<(Tx, x)< \\x\\2 for such x's. We have

(Tx, x)=

=Σ(TTiXi,

=Σ(TJTiTxb xj)=Σ(TJTiTBxh Bxj)

=Σ((BTJTiB)(TB)xh xj)

=Σ((BT]TiB)yi, yj) where yt =

= \\T1Byί + .

and similarly for I— T.
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It is a reasonable conjecture that keτ(T) = e(BAA^φeiB)1, ker(J-T)
= e(B Λ A), but I have not been able to prove this.

4.3. COROLLARY. // s/ is a factor (of any type), then the following
conditions on A and B are equivalent:

(1) A%B
(2) There exists a unique scalar λ such that

(i) BAB=λB, (ii) λI=λe(B). The number λ necessarily satisfies 0<λ<\.

4.4. COROLLARY. If st is the full algebra of all operators on the Hubert
space, and A, B are non-zero projections in s/, then UA(A, B)<=>ABA=λA
and BAB=λB for some λ satisfying
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