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Introduction

In this paper we are concerned with nonlinear operators of monotone type
from a reflexive Banach space X into the dual space X*. Such operators have
been considered to make a general treatment of boundary value problems for
nonlinear elliptic partial differential equations and initial-boundary value problems
for nonlinear parabolic partial differential equations. Studies of nonlinear opera-
tors of monotone type have been made by many authors (e.g., [l]-[3], [5]-[7],
[9]-[12], [15]-[18], [20], [22], [25]).

In [2] Brezis introduced two classes of nonlinear singlevalued operators,
called of type M and pseudo-monotone respectively, from X into X* and then
established existence theorems for nonlinear functional equations of the forms

(a) Ax =f for given / e X*

and

(b) Ax + Tx =f for given / e X*,

where A is an operator of type M or a pseudo-monotone operator from X into
X* and Tis a nonlinear monotone operator from X into X*. Recently, the con-
cept of pseudo-monotone operators was generalized by Browder and Hess [10]
to the multivalued case. Many results in [2] on the solvability of (a) and (b) were
extended to the multivalued case where the equations have the forms:

(a)' Ax^ f for given / e l *

and

(by Ax + TxΞΞ>f for g i v e n / G I * .

In this paper we shall first give a natural generalization of the notion of opera-
tors of type M to the multivalued case, and investigate basic properties of such
operators. Next, we shall solve nonlinear equations of types (a)' and (fe)' for
multivalued operators of type M and multivalued pseudo-monotone operators
under somewhat different assumptions from those in [2], [10], [11] and [22].
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In the final section, as an application we shall show the existence of a solution
of a variational inequality

ί (x, X*)<ΞG(>1) with XGEC;

1 <x*-f, x-y> <φ(y)-φ(x) forallyeC,

where A is a multivalued pseudo-monotone operator from X into X*, f e X*
and φ is lower semicontinuous on a closed convex subset C of X. Furthermore,
we shall study dependence of the solutions on A, C, φ and / by making use of
results in Mosco [21].

§0. Preliminaries

Let Fand W be two topological vector spaces. For a multivalued operator
A from Finto PF(i.e., to each x E F a subset Ax of Wis assigned), we define

R(A)= W Ax
xeD(A)

and

G(A) = {(x, X * ) G F X W; X<=D(A),

In what follows an operator means a multivalued operator unless otherwise
stated.

For an operator A from V into W and a real number A, >L4 is an operator
from Finto Wdefined by

G(λA) = {(x, λx*) e Fx *F; (x, x*)e= G(i4)}.

Let Ax and yl2 be two operators from Finto W. Then the sum A1Λ-A2 is an
operator given by

G(Aί+A2) = {(x, X? + X£)<ΞFXTF; X^D(A1)ΠD(A2), x ϊ e ^ x , xfe^ 2 x}.

For an operator A from Finto PF, we denote by A~ι the inverse of A, i.e., .4"1

is an operator from FT into F given by

G(A-1) = {(x*5 x)e FΓx F; (x, X*)GG(^4)}.

Let 4̂ be an operator with D(A) — Finto Wsuch that Ax is a closed subset of
W for each x e F . Then it is called wpper semicontinuous (resp. sequentially
upper semicontinuous), if for any x e F a n d any neighborhood U* of 4̂x (resp.
any sequence {xπ} c F converging to x e F and any neighborhood (7* of y4x),
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there is a neighborhood U of x (resp. an integer n0) such that U*z>Ay for all
y e U (resp. U*nAxn for all n>n0). In particular, if A is single-valued (i.e.,
4̂x consists of a single element of Wfor each x e K), then the upper semicontinuity

(resp. sequential upper semicontinuity) of A coincides with the continuity (resp.
sequential continuity).

Let V and W be two real Banach spaces, and let A be an operator from V
into Wsuch that Ax is non-empty and weakly closed in Wfor each X G F . Then
A is called weakly upper semίcontinuous (resp. sequentially weakly upper
semicontίnuous) if it is upper semicontinuous (resp. sequentially upper semicon-
tinuous) with respect to the weak topologies of V and W. For a single-valued
operator A, we say that it is demicontinuous, if it maps any strongly convergent
sequence in Fto a weakly convergent sequence in W.

Next, let V and W be real reflexive Banach spaces and let A be an operator
from V into W with D(A) = K such that Ax is weakly compact for each x ε F .
We note that if A is sequentially weakly upper semicontinuous, then A is bounded
(i.e., it maps bounded sets in Fto bounded sets in W) and G(A) is sequentially
weakly closed in Vx W. In particular, if Fis finite dimensional, then A is weakly
upper semicontinuous if and only if it is bounded and G(A) is sequentially weakly
closed in Vx W.

We use symbols "__*_»" and "_»*_>" to denote convergence in the strong
and weak topology of a Banach space, respectively.

Throughout this paper, let X be a real reflexive Banach space, X* be the dual
space of X and <x*, x> denotes the duality pairing between x * ε l * and x e l
and ||x|| (resp. ||x*||) the norm of X G I (resp. X * G I * ) . We denote by J the
duality mapping of X into X*9 i.e., it is defined by

JX = {X*6ΞX*; <X*, χ > = | | χ | | 2 = ||χ*||2} for each X G I

We know that D(J)=X and R(J)=X*, and that if X* is strictly convex,
then J is single-valued and demicontinuous. The inverse J " 1 is, as easily seen
from the definition of J, the duality mapping of X* into X ( = X**). We remark
that if X and X* are strictly convex, then J is demicontinuous, one to one and
onto.

Let A be an operator from X into X*. If for any (xh xf)^G(A), Ϊ = 1, 2,

<x* —x|, Xi — x 2 > >0,

then 4̂ is called monotone. A monotone operator A from X into X* is called
maximal monotone, if there is no monotone operator A such that G(A) is a proper
subset of G(Ά). It is well known that the duality mapping J is maximal mono-
tone.
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§1. Operators of monotone type

1.1. Definitions

We first of all recall the original definitions of operators of type M and

pseudo-monotone operators as given by Brezis [2].

Let A be a single-valued operator from X into X*. Then A is called of type

M, if D(A) =X and it has the following two properties:

(Mx) // {xj is a bounded net in X, and ifχa-^χ in X, AxΛ-^x* in X*
and

limsup<Axa, xa> <<x*, x>,
α

then Ax=x*.

(M2) The restriction of A to any finite dimensional subspace of X is con-

tinuous with respect to the weak topology of X*.

A single-valued operator A from X into X* is called pseudo-monotone, if

D(A)=X and two conditions below are satisfied:

(PMi) If {xa} is a bounded net in X such that xa—™-+x in X and

limsup<AxΛ, xa — x><0,
a

then for all y^X

liminf<Ax;α, xa — y> > <Ax, x — y>.
a

(PM2) For any fixed _ y ε l , the function x-+<Ax,x — y> is bounded

below on each bounded subset of X.

Recently, the above notions were extended to the multivalued case (see

Browder-Hess [10] and the author [12]). In the definition of multivalued pseudo-

monotone operators by Browder and Hess, only sequences are considered instead

of nets. In this direction, we give a generalization of the notion of single-valued

operators of type M as follows:

DEFINITION 1.1. (cf. [12]) Let A be an operator from X into X*. Then

A is called of type M, if it satisfies the following conditions:

(mx) For each X G I , AX is a non-empty, bounded, convex and closed

subset of X*.

(m2) // {(xn, x*)}aG(A) is a sequence, and if xn—^-±x in X, x*—™->x* in

X* and

limsup<x*, xn> < <x*, x>,
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(m3) The restriction of A to any finite dimensional subspace F of X is
weakly upper semicontinuous as an operator from F into X*.

The following definition of multivalued pseudo-monotone operators is due to
Browder and Hess.

DEFINITION 1.2. - (Browder-Hess [10]) Let A be an operator from X into
X*. Then A is called pseudo-monotone, if it has the following properties:

(pm^) For each X G I , AX is non-empty, convex and closed in X*.
(pm2) If {(xn, x*)}cG(^4) is a sequence such that xn—^-*x in X and

limsup<x*, xn — x> <0,

then to each y^X there exists x*(y)^Ax with the property that

liminf <x*, xn-y>><x*(y), x-y>.
n-*oo

(pm3) The restriction of A to any finite dimensional subspace F of X
is weakly upper semicontinuous as an operator from F into X*.

Note that (rax) or (praj implies that D(A)=X.

1.2. Basic properties

We begin with the following:

PROPOSITION 1.1. (Browder-Hess [10; Proposition 7]) Let A be an
operator from X into X* with D(A)=X satisfying condition (pm2). If {(xM,
x*)}cG(i) is a sequence such that xn—^->x in X and

limsup<x*, xn — x> <0,
n-*oo

then {x*} is bounded in X*. //, in addition, A satisfies condition (pmx), then
every sequential weak cluster point of {x*} is contained in Ax.

The class of operators of type M includes not only sequentially weakly upper
semicontinuous operators with property (m^, but also pseudo-monotone opera-
tors; in fact, we have

PROPOSITION 1.2. Let A be an operator from X into X*. If A is pseudo-
monotone, then it is of type M.

PROOF. It suffices to show (raj and (ra2). Let x be any point in X and
{x*} be any sequence in Ax. Then, since <x*, x — x> =Ofor all n, Proposition
1.1 implies that {x*} is bounded, and so Ax is bounded in X. Thus (raj is verified.
Next, let {(yn, y*)}aG(A) be any sequence such that yn—^->y, y*—^->y* and
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(1.1) limsup<j;*, yn><<y*,
n-*oo

Then, since (1.1) implies that

*, yn-y><0,
n-+oo

it follows directly from Proposition 1.1 that y*^Άy. Thus we have (m2).

q.e.d.

REMARK 1.1. In infinite dimensional Banach spaces, the converse of Proposi-

tion 1.2 is false. For example, the operator — / i n the space I2 is of type M

because of the weak continuity, but not pseudo-monotone, where / is the identity

mapping in I2.

Let A be the family of all finite dimensional subspaces of X. For each F e A,

we denote by j F the natural injection from F into X and jf the adjoint of j F .

We know that each jf is linear, weakly continuous and surjective as an operator

from X* into F*, and hence it is open.

The following lemma will be helpful in the later discussion.

LEMMA 1.1. Let A be an operator from X into X* satisfying condition

(mi). Then, setting AF=jfAjF for F E / 1 , we have

(1) AFx is a non-empty, bounded, convex and closed subset of F* for each

FELA and each X G F .

Furthermore, condition (m3) (=(pm3)) is satisfied if and only if the following

condition holds;

(2) for each F^A,AF is an upper semicontinuous operator from F into F*.

PROOF. The property (1) is easily derived from (mΛ). Since, under (m x),

condition (m3) clearly implies (2), we show only the "if" part of the second asser-

tion of the lemma. Thus, assume (2). Let Fo be any element of A, x0 be any

point in F o and U% be any weak neighborhood of Ax0 in X*. By ( m j , Ax0 is

weakly compact in X*. Therefore, there are finite sets E* = {yf, }>*>•••> y*} c Ax;0

and {εl5 ε2> > %} of positive numbers such that

(1.2) C/gD \Jϋt^Ax0,
k=ί

where

ί/f = {x*Gl*; \<y*-x*9 y>\<εk for ally EiEk}

with a finite subset Ek of X, fc = l, 2, ..., N. Denote by F the finite dimensional
N

subspace of X spanned by Fo and \J Ek. Then, we observe
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k=l

and

α -iΛ , * ~ 1 / i*ίTT*ΛΛ 77* IT 1 Ί AT

.J) Jp \J F\V k)) — U k 9 K—^> Z , . . . i V .

N

Since \j jf(Ut) is a neighborhood of AFx0 in F*, (2) for this subspace F im-
k=ί

plies that there is a neighborhood 17 of x0 in F such that

fcW 7?(^?) D ̂ F (t/) = JHA(U)).

Hence

These relations together with (1.3) imply that

Therefore, setting U0 = U f]F0, we see from (1.2) that for this neighborhood Uo

of x0 in F o the relation

holds. Thus A satisfies condition (m3). q.e.d.

Next, we give results on the sum of two operators of monotone type.

PROPOSITION 1.3. // A is an operator of type M from X into X* and T

is a sequentially weakly upper semicontinuous monotone operator from X into

X* such that Tx is non-empty, bounded, convex and closed in X* for each X G I .

Then T+A is of type M.

PROOF. Since the verification of (mj and (m3) for T+A is easy, we verify

only condition (m2). Let {(xn, z*)}cG(v4 + T) be a sequence with z* = x% + y*,

and y*^Txn such that x w - ^ x 0 in X, z%—^-+z% in X* as n-*oo and

limsup < z*, xn> < < zg, x0 >.
n-*co

Then

(1.4) limsup<x*9 xn> = limsup<z*-y%, xn>
n-*oo n->oo

5, J C 0

> — liminf<j;*, xn>.
n-»oo
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We can choose a subsequence {y*k} of {y*} weakly convergent to some
such that liminf<y*, xn> =lim<y%k, xnk>. Since yg<=Tx0 by the sequential

H-+O0 fc->00

weak upper semicontinuity of T, we have by the monotonicity of T

and hence

> <y*>

liminf<j*k, xnk> > <y%, xo>.
k-*oo

From (1.4) and the above inequality it follows that

limsup<x*k, xnk> < <z%-y%, xo>.
k-*oo

Therefore, by condition (m2) for A we have z% — y% e Ax0. Thus z% e Ax0 + Tx0.
q.e.d.

PROPOSITION 1.4. (Browder-Hess [10; Proposition 9])
Let Aγ and A2 be two pseudo-monotone operators from X into X*. Then

Aί-\-A2 is also pseudo-monotone.
The following Proposition 1.5 gives a characterization of operators of type

M and pseudo-monotone operators in finite dimensional Banach spaces.

PROPOSITION 1.5. Suppose that X is finite dimensional. Let A be an opera-
tor from X into X*. Then the following three statements are equivalent to
each other:

(a) A is of type M.
(b) A is pseudo-monotone.
(c) Ax is non-empty, bounded, convex and closed in X* for each X G I ,

and A is upper semicontinuous.

PROOF. Since assertions "(b)->(α)" and "(α)-»(c)" are easily seen from
Proposition 1.2 and the definition of operators of type M, we have only to show
"(c)-+(by\ Therefore, assume (c). Let xn-*x in X and x*^Axn for all n. By
the boundedness of A and the closedness of G(A), there is a subsequence {(xnk,
x*k)}czG(A) for each J G I such that

liminf<x*, xn-y>=lim<x*k, xnk-y>
n-*ao k-*co

and for some x*(y)^Ax

xnk~^x*(y) inX* as/c-»oo.

For this {(xnk, x*k)}, we have

<x*(j/), x — y> =liminf<x*, xn — y>.
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Thus (pm2) is verified and A is pseudo-monotone.

1.3. A generalization of Brezis' condition (PM2)

We now give a natural generalization of condition (PM2) to the multivalued
case.

Let A be an operator with D(A)=X into X*. We consider the following
condition:

For each x o e X and each bounded subset B of X, there exists a
constant N(B, x0) such that

<x*,x-xo> >N(B9 x0) for all (x, X*)<ZΞG(A) with

Condition (pm4) is fulfilled by monotone operators A with D(A)=X as well
as by bounded operators.

LEMMA 1.2. Let A be an operator from X into X* satisfying (pmj, (pm2)
and (pm4). Then A satisfies also (pm3).

PROOF. Let F be any element of A and AF=βAjF. Then we see from
Proposition 1.1 that Ax is non-empty bounded, convex and closed in X* for each
xeX. Hence, in view of Lemma 1.1, it is enough to show that AF is upper
semicontinuous. If AF is not so, then there are xo^F, a neighborhood Uf
of AFx0, sequences {xn}czF and {x% = j*x*} with x*<=Axn such that xn-+x0

in F as π->oo and x*φUf for all n. First we show that {x*} is bounded in F*.
In fact, if otherwise, then there is a subsequence {3c*fc} of {x*} such that ||3c*k ||-> oo
and ji* = x*k/||3c*J|->j7$ as fc->oo for some j g e F * with | | j;*| | = l. Here, using
condition (pm4), we find a constant N(x) for each X E F such that

<y*k, xnk-x> ^^ξj for all k.

Letting fc-^oo, we have

<y%, XQ — X> >0 for every X G F .

This implies that j§=0. This is a contradiction. Thus {x*} is bounded, and
hence

limsup<x*, xn — x0> =lim<3c*, xn — x0> =0.
H-»OO n-*co

From Proposition 1.1 we infer that {x*} is bounded in X* and sequential weak
cluster points of {x*} belong to Ax0. Therefore, cluster points of {x*} in F*
also belong to ^4Fx0. This contradicts the hypothesis that x*φUf for all n.

q.e.d.

This lemma implies that an operator A satisfying conditions (pm^, (pm2)



238 Nobuyuki KENMOCHI

and (pm4) is pseudo-monotone.
As a consequence of the above lemma and a result on local boundedness

of monotone operators (see Browder [5; Lemma 1] and Rockafellar [24; Theorem
1]), we have

PROPOSITION 1.6. (Browder-Hess [10; Proposition 8]). A maximal mono-
tone operator A from X into X* with D(A)=X is pseudo-monotone.

§2. Nonlinear functional equations for operators of monotone type

2.1. Functional equations for operators of type M

We now give a result on the solvability of the equation Ax 3/for an operator
of type M.

THEOREM 2.1. Let A be an operator of type M from X into X*9 and let
o

C be a bounded convex closed subset of X with the origin in its interior C.
Suppose that one of the following two conditions is satisfied:

(α) If {(xn9 x*)}(zG(A) is a sequence such that xn—^->x in X and

limsup<x*, xn-x> <0,
n-*ao

then {x*} is bounded in X*.
(α) A is a quasi-bounded, i.e., for each M>0 there is a constant K(M)>0

such that if | |x | |<M, <x*, x> <M||x| | and ( J C , J C * ) G G ( 4 then
\\x*\\<K(M).

Suppose furthermore, given f G I * ,
(β) for any x^dC and any x*&Ax,

<x*-f, x>>0.

Then Sf = {xGiC;f^Ax} is non-empty and weakly compact.

REMARK 2.1. In the case of single-valued operators, the above theorem was
shown by Petryshyn and Fitzpatrick [22; Proposition 1.2] under (α'). In the
multivalued case, we know [12; Theorem 1] that if A is of type M in the sense
of [12], that is, it satisfies conditions (mj, (m3) and (m2)' given by replacing
sequences by nets in (m2), then Theorem 2.1 is valid without the assumption
(α) or (α).

The proof of Theorem 2.1 is based on the following lemma due to Browder
[8; Theorem 11].

LEMMA 2.1. Suppose that X is finite dimensional. Let A be an operator
from X into X* such that
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(1) Ax is a non-empty, bounded, convex and closed subset of X* for each

X G l ,

(2) A is upper semicontinuous,

and let T be a monotone operator from X into X*. Then for any given bounded

convex closed subset C (Φ0) of D(T) andf^X*, there exist x o e C and x%

such that

<x*-f+x*, xo-*> <0 for all (x, X*)<ZΞG(T) with

Before proving Theorem 2.1, we recall the following remarkable result by

Browder and Hess [10; Proposition 11] that allows us to dispense with nets

and to consider only sequences in our arguments.

PROPOSITION A. Let Xobe a linear subspace of X, and let Ao be the family

of all finite dimensional subspaces of Xo and B the closed ball of radius R about

the origin in X. Suppose that we are given a mapping ψ: A0^2B, with φ(F)

a non-empty subset of Ff]B for each F^A0. For Fo in Ao, set

VFo= \J ψ(F)
F=>F0FeΛo

and let

X0GΞ Γ\ VF,
FeΛo

where VF is the weak closure of VF. Then for each F' eΛ 0 , there exists an

increasing sequence {Fk}f=1aA0 with F ' c F 1 ? and exists for each k an element

such that xk converges weakly to x0 as k->oo.

PROOF of THEOREM 2.1. Let A, jF, jf and AF be as in paragraph 1.2. For

each F G / 1 , we set

S F = { X E C Π F ; there is x*<^Ax such that <x*-f, y> =0 for all y^F}.

We first show

(2.1) SFΦ0 for every F<=A.

In fact, as we have seen in Lemma 1.1, AFx is non-empty, convex and closed in

F* for each X G F and AF is upper semicontinuous. Therefore, applying Lemma

2.1 for AF and Tgiven by G(T) = {(x, 0 ) G F X F * ; x e F } , we obtain xF<=CΓ)F

and xf G AxF such that

(2.2) <xf-fxF-x><0 for all

In the case where xF e C, since xF is in the interior of C Π F in F, we have
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(2.3) <xf-f, x>=0 foral

In the case where x F edC, noting that <xf—f, xF> >Oby (β) and <xf—f, xF>

<0 by taking x =0 in (2.2), we see that

<xF-f,xF>=0.

Thus, also in this case, (2.3) holds. Hence we have (2.1).

Now, we set for each F^Λ

VF= \J SF,.

F'eΛ

Then, clearly, VFczC for every F^Λ and the family {VF; F<ΞΛ}has the finite

intersection property. Since C is weakly compact, it follows that

r\ VFΦ0,
FeΛ

where VF is the weak closure of VF in X. We take an x0 in the intersection of

all VF and fix it.

Next, let z be any point in X and take F0^Λ with z, X O G F O . Applying the

above proposition, we find an increasing sequence {Fk}f=1 with FoczFί and a

sequence {(xk, xf)}cG(v4) with xk^SFk and xf^Λxk such that xk—V-+x0 in X

as fe->oo and

(2.4) < * ? - / , Λ:> =0 for all x^Fk, fc = l, 2,....

This implies that

(2.5) < * ? - / , xk-x0> =0, <x?, xfe> < \\f\\'\\xk\\ for all fe.

Hence, by hypothesis (α) or (α'), {x%} is bounded in X*. Choose a subsequence

{ φ } of {.*£} weakly convergent to some x§eX*. Then, by (2.5),

^ , xk>> =
fc'-*oo

Therefore, by condition (m2), xge^4x0. Moreover, it follows from (2.4) that

0= lim <** ' -/ , z> = < x j — / , z > .

We have seen that for each z e Z there is x*(z)&Ax0 such that

< x * ( z ) - / , z > = 0 .

Since ^4x0 is convex and closed by (m^, Hahn-Banach theorem implies that

f ^Ax0. Thus SfΦ0. Finally, the weak compactness of Sf immediately follows

from condition (m2). q.e.d.
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COROLLARY 1. Let A be an operator of type M from X into X*. Suppose
that A satisfies condition (α) or (α') in Theorem 2.1 and that A is coercive, i.e.,

inf <Xn'J> ->°° as InJ IMI
x*eAx \\X\\

ThenR(A)=X*.

COROLLARY 2. Let A be a pseudo-monotone operator from X into X*.
If it is coercive, then R(A)=X*.

COROLLARY 3. Let A be an operator from X into X* such that Ax is non-
empty, bounded, convex and closed in X* for each x ε l . If A is sequentially
weakly upper semicontinuous and is coercive, then R(Ά)=X*.

PROPOSITION 2.1. Let A be an operator of type M from X into X*, and
let C be a bounded and weakly closed subset of X. Then the image A(C) is
closed in X*.

PROOF. Let {**} be a sequence in A(C) converging strongly to some x§ e X*.
For each n, there is xn<= C such that x* e Axn. Since C is weakly compact by the
reflexivity of X, there is a weakly convergent subsequence {xnk} of {xn} and the
weak limit x0 is contained in C. Besides, as easily seen,

lim<x*k, xk> = <*§, x o >
fc->-oo

Hence, by condition (m2), xξ&Ax0. Thus x%^A(C). q.e.d.

An analogous result for pseudo-monotone operators was proved by Browder
and Hess [10; Lemma 1].

PROPOSITION 2.2. Suppose that there is a coercive monotone and sequen-
tially weakly upper semicontinuous operator Tfrom X into X* with D(T)=X
such that ( 0 , 0 ) G G ( T ) , TX is bounded, convex and closed in X* for each X G I

and there is δ>0 with

(2.6) <**, x> >δ\\x\\ \\x*\\ for all (x, x )eG(T).

Let A be an operator of type M from X into X* satisfying condition (α) or (a)
in Theorem 2.1 and assume that there is N>0 such that

(2.7) <x*, x> > -JV||x||-JV for all (x, x*)GG(i).

Suppose further that A~ι is bounded. Then R(A)=X*.

PROOF. We first observe from Proposition 1.3, assumptions on Tand (2.7)
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that for each λ>0, the operator λT + A is of type M and coercive. Furthermore

λT + A satisfies condition (α) or (α') according as A. Therefore, by Corollary

1 to Theorem 2.1 we have R(λT + A)=X* for λ>0. Let/be any element of X*.

Then we find (xλ, xf)<=G(A) and (xλ, yf)<=G(T) for each λ>0 such that

(2.8) λyi + xt=f.

By considering <f,xλ> and using (2.6) and (2.7) we obtain

This implies that {xλ}λ>0 is bounded in X. For, if otherwise, there would exist

a sequence {λn} such that \\xλn\\ t °°, and hence {AJ|)>}J|} is bounded, so that

{||xJJ|} is bounded by (2.8). This contradicts the boundedness of A~K Thus

for a suitable M > 0 we have

| |xA | |<M for every λ>0.

Since Tis bounded, {yf} is also bounded in X*. Denote by BM the closed ball

of radius M about the origin in X. Then from Proposition 2.1 and (2.8), it follows

that f(ΞA(BM), because | |xJ-/| |=A||.yi| |-*0 as λ | 0. q.e.d.

This proposition is an analogue of Theorem 2 in [10].

2.2. Functional equations for pseudo-monotone operators

In this paragraph, we discuss the solvability of the equations

(2.9)

for a closed convex subset C of X and a n / G l * under a boundary condition.

In case A is a pseudo-monotone operator from X into X*,C=Br = {x^X;\\x\\<

r} with r > 0 and/=0, the solvability of (2.9) was discussed by Browder and Hess

[10; Theorem 11] and DeFigueiredo [11; Theorem 1] under the following

boundary condition:

(2.10) Ax + λJxφO for all λ>0 and all x with ||x|| = r.

We shall establish an existence theorem for (2.9) under a more general boundary

condition (2.13) below.

Let φ be a function on X, i.e., a mapping of X into [— oo, oo]. If for a sub-

set S of X, φ(x)G( — oo, oo] for every X G S and φξέ oo on S, then φ is called proper

on 5.

We now consider subdifferentials of proper convex functions. Let φ be a

proper lower semicontinuous convex function on X. Then the subdifferentiαl

dφ is an operator from X into X* given by
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<x*, y-x> <φ(y)-φ(x) for all y^X)

fo rxeX with φ(x)< oo and by dφ(x)=0 for x e X with φ(χ) = oo. It is well-

known that dφ is maximal monotone (see Rockafellar [23], [26]).

Let C be a non-empty closed convex subset of X and let us consider a func-

tion φc on X defined by

f 0 if x e C ,
(2.11) ΦcW =

[ oo otherwise.

φc is a proper lower semicontinuous convex function on X. Then, as easily

seen, x* e dφc(x) for x e C if and only if

<x*, y - x > <0 for all

From this we see that

( D(dφc) = C, 0 €Ξ dφc(x) for all x e C and
(2.12)

I 3ψc(x) = {0} foral lxeC.

THEOREM 2.2. Let A be a pseudo-monotone operator from X into X*

and let C be a non-empty bounded, convex and closed subset of X. Given

, assume that

(2.13) Λx + (dφc(x)\{0})^f^ for all

where φc is the function given by (2.11). Then Sf = {x^C; f ^Ax} is non-

empty and weakly compact.

This theorem will follow from the following proposition.

PROPOSITION 2.3. Let A be a pseudo-monotone operator from X into X*

and let T be a monotone operator from X into X* with bounded closed convex

domain D(T). Then for any given / G I * , there is xo^D(T)with the following

property: for each xeD(T) there is x%(x)&Ax0 such that

< * * ( * ) - / + **> * o - * > < 0 for all x*<=Tx.

PROOF. In view of Lemma 1.2, we apply Lemma 2.1 for AF=jfAjF and

TF=jFTjF, F^A, and see that the set SF of all x f e D ( T ) ί l F such that there

is xf e AxF with the property that

(2.14) <xf-f + x*, xF-x> <0 for all (x, x*)<=G(T) with

is non-empty. Here, set

1) For subsets St and S2, 5Ί\52= {*; x^S1} x(£S2}.
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VF= \j SF,.
F'^F
F'eΛ

Then, just as in the proof of Theorem 2.1, we observe that

0Φ r\ vF^D(T),
FeΛ

where VF is the weak closure of VF in X. Let x0 be a point of the intersection.
Let x be an arbitrary point in D(T) and, by using Proposition A, choose an

increasing sequence {Fn}™=ί in A with x0, x^Fί and {xn} with xn^SFn weakly
convergent to x0. Then, by (2.14), for each n there is x*^Axn such that

(2.15) < x * - / + y * , x M - ) » < 0 for all (y, y*)ϊΞG(T) with

Substituting some (x0, x$)^G(T) for (y, y*) in (2.15), we have

0>limsup<x*-/ + x§, xn-xo>
π-*oo

= limsup < x*, xn — x0 >.
π-^oo

Therefore from condition (pm2) it follows that for some x%

<x^(x), x0 — ̂ > <liminf<x*, xn — x > .

This inequality and (2.15) imply that for all x*eTx

0>liminf<x*-/ + x*, x n - x >

*, xo-x>.

q.e.d.

We now state another lemma due to Browder [8; Lemma 1] which is needed
in our proof of Theorem 2.2.

LEMMA 2.2. Let Co be a convex subset of X and C'o be a bounded, convex
and closed subset of X*. Suppose that for each x e C 0 there is x*(x)eC'o such
that <x*(x), x > < 0 . Then there is x§<=C'o such that <x%, x> <Q for all
x e C 0 .

PROOF of THEOREM 2.2: Applying Proposition 2.3 for A and T = dφc,
we obtain a point x o eD(δ0 c ) = C with the property that for each X G C there
is xg(x) e Ax0 such that

< x*(*) - / + x*, x0 - x > < 0 for all x* e dφc(x).

Taking x*=0(cf. (2.12)),
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- / , xo-x> <0.

We infer from Lemma 2.2 that for some x*,e4x0

(2.16) <**,-/, xo-x><Q foral lxeC.
o

If JCOGC, then (2.16) implies that x*=f. If x o edC, then, since / —
dφc(x0) by (2.16), our boundary condition (2.13) implies that x*=f. Thus
X O G S J . That Sf is weakly compact is easily seen from the pseudo-monotonicity
of A. q.e.d.

REMARK 2.1. We remark that the boundary condition (2.10) is a special
case of (2.13) with / = 0 and C=Br. In fact,

/{0} if | |x| |<r,

dφBr=Nr(x)= I {/be*; Λ>0, x*eJx} if | |x | |=r,

0 i f | | x | |>r .

To prove this, first, let x0 e dBr and xg e ^ΦBXXO)- Then by the definition of dφBr

<x*>, x o - x > >0 for all x £ β r

Putting p = < x*>, x0 >, we have

p=sup <xg, x> =r| |x§| |.
xeBr

If p=0, then xg=0eAΓr(xo). In case p>0, we see that

-y-\\xt\\=r=\\xo\\

and

<—-—Xo,xo>—r — \\Xo\\ .

Therefore, by the definition of the duality mapping J,

r2

—-x*<=Jx0.

Hence x*,eΛΓr(x0), i.e., dφBr(x0)(zNr(x0). Thus we have proved

Nr(x) 3 dφBr(x) for all x e 55,.

In view of (2.12), this inclusion holds for all x e l . Since Nr is monotone and
dφBr is maximal monotone, the above relation implies that Nr = dφBr.
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REMARK 2.2. If C is a bounded, convex and closed subset of X with the
origin in its interior, then (2.13) is more general than a boundary condition of the
following type (cf. (β) in Theorem 2.1):

(2.17) <x*-f, x> >0 for all (x, x*)εG(i) with X<EΞ3C.

Indeed, assume (2.17) and let xo^dC, x%^AxQ and f—x%^dφc{x0). Then,
since

</-**> X-XQ> <0 for all X G C ,

we have by (2.17)

<x%-f, x> >0 for all x e C .

Hence x% =/, because OeC. Thus (2.13) holds.

§3. Perturbation of maximal monotone operators

3.1. Perturbation of linear maximal monotone operators

In this papagraph, we treat the range of operators of the form L -f A with
L linear maximal monotone and A of type M.

THEOREM 3.1. Suppose that X is separable. Let A be an operator of type
M from X into X* and L be a maximal monotone operator from X into X*
with linear graph G(L) in XxX*. Suppose further that A is coercive, i.e.,

inf <X*\? -—>oo as ||JC||-»OO
x*eAx \\X\\

and that A is quasi-bounded, i.e., for each N>0 there is K(N)>0 such that if
(x,x*)eϊG(A), \\x\\<N and <x*, x> <N\\x\\, then \\x*\\<K(N). Then R(L +
A)=X*.

This theorem is a consequence of the following proposition.

PROPOSITION 3.1. Let X, A and L be as in the above theorem, and let
C be a bounded, convex and closed subset of X with the origin in its interior.
Suppose that A is quasi-bounded and that

(3.1) <**, x> >0 for any (x, x*)<=G(A) with x<=ΞdC.

Then the set S = {x^C; O^Lx + Ax} is non-empty and weakly compact.

REMARK 3.1. In case A is bounded and of type M in the sense of [12],
the above proposition was shown in [12; Theorem 2] without the separability
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of X, so that, under the separability of X, the present result is a slight generaliza-
tion of that in [12].

We prepare lammas to prove Proposition 3.1. The first is as follows:

LEMMA 3.1. (Browder [7; Theorem 1]) Let 7\ be a maximal monotone
operator from X into X* with the origin in DiT^) and T2 be a single-valued,
bounded, coercive, demicontinuous and monotone operator from X into X*.
Then Tt + T2 is maximal monotone and R(Tί + T2)=X*.

LEMMA 3.2. Suppose that X and X* are strictly convex, and let T be a
maximal monotone operator from X into X*. Then

(i) The graph G(T) is sequentially closed in the strong-weak topology
of XxX*.

(ii) For each ε>0, the operator TB=(T~1 + εJ~1y1: X^>X* is a single-
valued, bounded, demicontinuous and maximal monotone operator
with D(TE)=X. Moreover, if (0, O)GG(T), then (0, 0)eG(Γε).

PROOF. Let {(xn, x*)}aG(T) be a sequence such that xn—?->x in X and
xJ_jίUχ* in X*. Then, from the monotonicity of T it follows that

< x - y*9 xn - y > > 0 for any (y, y*) ΪΞG(T).

Letting rc->oo, we have

< x* - y*9 x - y > > 0 for any (y, y*) <=G(T).

The maximal monotonicity of Timplies that (x, x*)e G(T), and thus (i) is proved.
Since X and X* are strictly convex, we note that J " 1 : X*->X is one to one,

demicontinuous, bounded, coercive and monotone. Now, we show (ii). Let
a*^Ta. It is easy to see that x*-^Γ~1(x* + α*)is a maximal monotone operator
with the origin in its domain and x*-^εJ~1(x* + α*) is single-valued, bounded,
coercive, demicontinuous and monotone. Therefore, by Lemma 3.1, R(T~1 +
βJ"1) =X, i.e., D(Tε) =X, and simultaneously we see that Tε is maximal monotone
and bounded (the boundedness of Tε follows from the coerciveness of the operator

Let x* and y* be contained in Tεx. Then T~ίx* + εJ-ίx*Ξ)x and T~ίy*
y*^x. Therefore, for some suitable x eT~ x x* and / G Γ 1 y*9 we have

x=x +εJ~ίx*=y'+εJ~1y*. Moreover, we observe

0=<χ*-y*, χ'+εj-iχ*-y'-εj-
1y*>

= <x* — y*, x — y > +ε<Λ:* — y*9 J~ίx* — J~ίy*>

>ε{| |x*| |2- <x*, J~!y*> - <y*, J~ιx*> + ||y*||2}
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Hence ||JC*|| = | | ^ * | | and <y*, J~*x*> = ||y*||2. This implies that x*=.y*.
Thus Tε is single-valued.

Let x* = Tεxn and xn—^->x. By the boundedness of TE, {x*} is bounded in
X*. Now, let x* be any weak cluster point of {xj} and {xnk} be a subsequence
of {xn} such that xjk—^->x*. Since Tε is also maximal monotone, from (i) we
infer that x*=Tεx. Hence x*—-̂ ->Tεx. Thus Tε is demicontinuous.

Finally, if (0, 0) e G(T), then we have

and hence, 0 = 7$. q.e.d.

LEMMA 3.3. Let A, Land C be as in Proposition 3.1; (3.1) is assumed as
well. For each ε>0 and F<^Λ, we set

AεtF=JΪ(Lε + A)jF

where Lε=(L~~ι +εJ~1)~~1 and A, j F and j * are as in paragraph 1.2. Then
each AεF has the following properties:

(1) Aε>FX is bounded, convex and closed in F* for every X G F .
(2) AεF is an upper semicontinuous operator from F into F*.
(3) For any boundary point x of CΠF in F and any x*&AεFx,

<x*, x>>0.

PROOF. By Lemma 1.1, for each FeΛ, AF=jFAjF is an upper semicon-
tinuous operator from F into F* such that AFx is bounded, convex and closed
for every x e F . Since Lε, ε>0, is demicontinuous from X into X*, LεF =j*LJF

is a continuous operator from F into F*. Hence AεtF=LεtF + AF has the
properties (1) and (2). Condition (3) is easily obtained from (3.1), the monoto-
nicity of Lε and the fact that (0, 0 ) E G ( L £ ) (cf. Lemma 3.2).

PROOF of PROPOSITION 3.1: Since X is reflexive, there exists a norm on X
equivalent to the initial norm with respect to which X and X* are strictly convex
(see [4]). Thus, we may assume from the beginning that X and X* are strictly
convex.

First step. For each ε, l > ε > 0 , and each finite dimensional subspace F of
X, we denote by SεF the set of all y^CπF such that there is y*eAy with the
property that

(3.2) <Lεy + y*, x> =0 for all x e F .

Just as in the proof of Theorem 2.1, we see that each SεFΦ0. We now show
that there is a constant M>0 independent of ε and F such that for any (y, y*)
<=G(A) with y^SE}F satisfying (3.2),
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(3.3) II/ΊI<M.

In fact we have by the definition of Lε

(3.4) Lεy<=L{y-εΓ\Lεy))

and hence, using (3.2) and the monotonicity of L,

(3.5) ε||Lεy||2 = <Lεy, εJ-\Lεy)> < <Lεy, y>=-< y*9 y>.

Thus < y*9 y > < 0 . This and the quasi-boundedness of A imply that (3.3) holds

for some M > 0 independent of ε and F.

Second step. Fix ε with l > ε > 0 . By the separability of X there is an
» 0 0

increasing sequence {Fn} of finite dimensional subspaces of X such that \J Fn

n=ί

is dense in X. For simplicity we write Sεn for S£fFn. We take sequences {xε,M}

with xEn^SEitt for all n and {x*π} with xftn^AxEiH satisfying

(3.6) <LExEtn + x*n, x>=0 for all

Set X=suρ| |x | | . Then, since \\xEin\\<K and | | x * π | | < M by (3.3), we derive

from (3.5) that

("l Ί\ p\\T~ί(T Y Ϊ I I 2 = P I I 7 ' Y II2<Γ — < ^ γ * Y ^><MK

Therefore, there is a subsequence {nk} such that as k->oo,

ε,nic ^ ε i n Λ »

^* w

' - 1 /
εn)_2ίL_>pε in Z

for some X 6 G I , X * G I * , J ί feX* and p £ G l . For these limit points we see

that X £ G C by the weak compactness of C, that

(3.8) \\pB\\<yjM'K, \\>

by (3.7), and that by (3.6)

<X* + x*9x>=0 for all xe W FWfc,

so that
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00

because \J Fnk is dense in X. Moreover, since G(L) is sequentially strong-weak-

closed ((i) of Lemma 3.2) and linear in I x X * , it is sequentially weak-weak-

closed. Hence, by (3.4),

(3.9) - x ?

00

Next, we show x*Gy4xε. In fact, given <5>0, we take ^ G \J Fnu so that

\\xδ — xε\\<δ. Using the monotonicity of Lε and noting that <L εx ε j M k + x*Πk,
χ

ε,nk — xε> = ° f° r ! a r S e k by (3.6), we have

limsup <x* Π k , xεtHk-xε>
k-*ao

= limsup<L εx ε-f x*Hk, xε,nk-xε>
fc-»oo

<limsup<L ε x ε > n k + x*Mk, x β , n k - x ε >
fc->oo

<limsup{<L εx ε > M k + x*Π k, xtfnk-xδ>
h-+ao

=δ l imsup | |L εx ε > n k + x * w J ! .
fc->oofc->oo

Since {L εx ε n k + x*Mk} is bounded in X* for fixed ε, and δ is arbitrary, the above

inequalities imply that

limsup <x*nk, xε,Mk> < <x*, x e > .
k-*σo

Thus x*e^4x ε by condition (m2).

Third step. Since {xε; 0 < ε < l } c C and {x*; 0 < ε < l } are bounded as we

have seen in the Second step, there is a sequence {εk} tending to 0 such that as

/c->oo,

^->x0 in X,

for some x o e C and x g e Z * . Write simply xk and x% for x ε k and x*k, res-

pectively. Then ^Jskpk—S->0 in X by (3.8), and hence xk — \/skpk—^-^Xo in X as

fc->oo, where pk~pεk Furthermore, (3.9) and the weak-weak closedness of G(L)

imply — x § e L x 0 . Finally, we prove that x$^Ax0. From the monotonicity

of L it follows that

i.e.,
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£, xk> <<xf, x o > + <x*, xk~x0>+\/zk<-** + **> Pk>

and hence

j , xk> < <x*, xo>.
fc->oo

Condition (m2) implies that xgeAx0. Thus 0= -x$ + x$(=Lxo + Axo, that
is, SΦ0.

Finally we show the weak compactness of S. Let {xn} be any sequence in S
weakly convergent t o x e C and {x*} be a sequence in X* such that x%^Axn and
— x*eLxw for all n. Then, <xj, xn> = — < — x*, xn> <0 by the monotonicity
of L and (iii) of Lemma 3.2. From this and the quasi-bόundedness of A it follows
that {x*} is bounded in X*. Now, let {x*J be a subsequence of {x*} weakly
convergent to some X * G P . We have — x* e Lx because of the sequential weak-
weak closedness of G(L). Hence, by the monotonicity of L again, we obtain

lim sup < x*k, xnk > < < x*, x >,
k-*oo

so that x*eAx; by condition (m2). Thus x e S . q.e.d.

PROOF of THEOREM 3.1: For any / e l * , we consider an operator Ay-
given by Afx=Ax — f. By the coerciveness of A, there is r>0 such that

<x*, x> >0 for all (x, X ^ G G ^ ) with ||x|| = r.

Therefore, applying Proposition 3.1, we obtain x with | |x | |<r such that / e Ax
+ Lx. Thus R(A + L)=X*. q'e.d.

3.2. Perturbation of nonlinear maximal monotone operators

The purpose of this paragraph is to prove

THEOREM 3.2. Let A be an operator from X into X* satisfying (pm^),
(pm2) and (pm4), and let T be a maximal monotone operator from X into X*.
Suppose that for some

(3.10) inf < X V | Γ f l > - > ~ , as ||x||->oo.
x*eAx \\X\\

ThenR(A + T)=X*.

PROOF. Without loss of generality we may assume that X and X* are strict-
ly convex.

Now, define for each positive number ε
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Then, by Lemma 3.2, D(Tε)=X and Tε is a single-valued maximal monotone
operator from X into X*. The operator Tε + A is pseudo-monotone by Proposi-
tions 1.4 and 1.6. The mapping x-»re(x + fl) + ̂ 4(x + a) is coercive by (3.10).
Hence we have R(Tε + A)=X* by Corollary 2 to Theorem 2.1, that is, for each
/ G I * there are elements (xB9 xf)(=G(A) and (xε, yf)<=G(TE) such that xε* + y*
=/. Let (α, Λ*) <Ξ G(T). Since

we have by the monotonicity of T

j / ε , x ε α^> — < - J ε , x ε εj yε a>-tε\\yε\\

><a*9xε-εJ-1yf-a>+ε\\yf\\2

> <α*, x ε > — <fl*, a>

and hence

</, x ε-α> =<xf, xε-a> + < j * , xε-a>

> <xf, xε-a> + <a*, xε> - <a*, a> —-f-Hα*

From (3.10) we see that {xε; εo>ε>O} is bounded in X and so {<xf,xε — a>;
ε o>ε>0} is bounded above for some ε o>0. Moreover, by condition

< yf, x> = </, x> — <x*, x>

= </, x> + <x*, xε — x — a> — <xf, xε — a>

is bounded below for each X G I . By considering — x instead of x, we see that
<yf,x> is also bounded above. Thus we have seen

sup I < yf, x > I < oo for all x e X.
0<ε<ε0

It follows from the uniform boundedness theorem that { yf ε0 > ε > 0} is bounded
in X*9 so that {xf; ε o>ε>0} is bounded in X*. Therefore we can choose a
sequence {εk} tending to 0 such that for some X O G I , xgeX* and

xεk—^->x0 in X,

in x*,
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as /c->oo, and

exists. For simplicity, write xk9 x% and yf for xεic, x*k and y*ki respectively.
. Let χ2=lim<yf, xk-x0>. Noting that

fc->oo

, xk-εkJ-ίyt-x0> + <yf9 xk-εkJ-1yk*-x0>

Clearly χ% + y%=f. Let χ2=lim<yf, xk-x0>. Noting that
fc->oo

χ ι t 9 xk-x0> =
fc->oo k~+ao

and

χ2=lim<yt, xk-x0> =
k-*ao k-*oo

we have either χ t <0 or χ2 ̂ 0 We first consider the case where χ2 <0. In this
case, we see that

(3.11) lim<.yf, xk>

By the monotonicity of T, we have

(3.12) <y*-yt, y-(xkskJ-1yt)> >0 for all (y, y*)^G(T).

By letting fc-»oo in this inequality and using (3.11), we obtain

< y*-yt y~*o> >0 for all (y, y )eC(Γ).

This implies that (xθ9 J J ) G G ( T ) , since T is maximal monotone. Then taking

y=x0 and y*=y* m (3.12), we have

It follows that lim<j;^, xk — xo> >0, and hence the equality holds in (3.11).
fc-KDO

Therefore χ2=0. Consequently, χx =0 because Zi+X2=0. Hence from Pro-
position 1.1 we infer that x%^AxQ. Thus/=xg + yge^4xo + Γxo. Incase/i^O,
we first use Proposition 1.1 and obtain x%^Ax0. Then, by the pseudo-mono-
tonicity of A, we see that χt =0, so that χ2 =0. As above we see that

% 4. Variational inequalities

4.1. Existence theorem for variational inequalities

As an application of our preceding results, we give an existence theorem for
a variational inequality.
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Let A be an operator from X into X*, C be a convex closed subset of X and

φ be a proper lower semicontinuous convex function on C. Then for given

/ G I * we consider the variational problem V\_A, C,φ,f]: find X O G C such

that there is an x%^Ax0 satisfying

(4.1) <x*-f> Xo-χ> <Φ(x)-φ(xo) for all x<=C.
*

THEOREM 4.1. Let A be an operator from X into X* satisfying (pm^,

(pm2) and (pm4), C be a convex closed subset of X and φ be a proper lower

semicontinuous convex function on X. Suppose that for some a^C with

φ(a) <oo

(4.2) inf < * * , * - * > + 4 > ( * ) _ > o o a s

x*eAx \\X\\

Then for any given / e X * , there is (x0, x$)^G(A) with x o ε C satisfying (4.1),

that is, V^A, C, φ,f~\ has a solution.

(4.3)

REMARK 4.1. If the assumption (4.2) is replaced by the following condition:

ί there is an a^D{dφ) such that

I inf < * * ' * ~ a > - > ° ° aS\\x\\-+oo,

then Theorem 4.1 is a direct consequence of Theorem 3.2. Obviously (4.3) im-

plies (4.2). But, in general, (4.2) does not imply (4.3).

REMARK 4.2. For proper convex functions, lower semicontinuity in the

strong topology is the same as sequential lower seriiicontinuity in the weak topo-

logy.

To obtain Theorem 4.1 we apply the following proposition.

PROPOSITION 4.1. Let A, C and φ be as in Theorem 4.1. Suppose, in

addition, that C is bounded. Then for any given f G I * , the problem V[_A, C,

φ,f~\ has a solution.

The main tool for the proof of this proposition is the following:

LEMMA 4.1. Let C and φ be as in Proposition 4.1 and λ be a positive num-

ber. Define

φλ(x) = inf (4-H*-
yeC \ Λ

Then φλ is finite in X and

(i) inf φ(y)<φλ(x) for XGΞX and φλ(x)<φ(x) for
yeC
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(ii) for each X G I there is a point iceC such that

(iii) φλ is convex and continuous in X,

(iv) D(dφλ)=X, where dφλ is the sub differential of φλ.

PROOF. Since C is bounded closed and φ(a) <oo, we see that φλ is finite

in X. From the definition of φλ we immediately obtain (i). For each

there is a sequence {xn} in C such that

Since C is weakly compact, we may assume that χn—2->χ as w->oo for some

x e C. Now, since

and

we have

This implies that

φ(x)

Thus (ii) is proved. Next, let xu x2eX and 0 < ί < l . Then, by (ii) we have

Φ ( x ) \\Xγ ) for some x , e C , / = 1,2.

Hence

>±\\tx1+(l-t)x2-tx1-(l-t)x2\\+φ(tx1+(l-t)x2)
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Thus φλ is convex. Moreover, we see easily that φλ is locally bounded at every
point in X. Therefore φλ is continuous in X. This implies the subdifferentia-
bility of φλ at every point in X, that is, D(dφλ)=X (see Moreau [20]).

q.e.d.

PROOF of PROPOSITION 4.1: Let λ>0. Since dφλ is maximal monotone and
D(dφλ)=X by (iv) of the above lemma, the operator A + dφλ is pseudo-monotone
by Propositions 1.4 and 1.6. First, apply Proposition 2.3 for A + dφλ and T
given by G(T) = {(x, 0); xeC} to obtain a point xλ^C with the following pro-
perty: for each X G C there is zf(x)^Axλ + dφλ(xλ) such that

<z*(x)-f,xλ-x><0.

Furthermore, apply Lemma 2.2 for C0=xλ — C and C'0=Axλ + dφλ(xλ)— /.
Then we find xf^Axλ and y*&dφλ(xλ) such that

/, xλ — x> <0 for all

Therefore we have by the definition of dφλ and (i) of Lemma 4.1

(4.4) <x*~f> Xχ — x> < <y*9 x — xλ>

<Φλ(x)-Φλ(xχ)

<φ(x)-φλ(xλ) for all X G C .

By condition (pm4), the left side of (4.4) is bounded below for fixed x e C, and
hence {φλ(xλ)l λ>0} is bounded above. Therefore, by this and (i) of Lemma
4.1, we see that {φλ(xλ); λ>0} is bounded. Next, let xλ be a point in C given
by (ii) of Lemma 4.1 for xλ and take a sequence {λn} tending to 0 such that

Xχn—^->Xo in X for some

jc, -^->JcΩ in X for some x

Write xn and xn for xλn and xλn, respectively, for simplicity. Since, as is proved

above, {φλn(
xn)} *s bounded,

and hence x o

=

(4.5)

= liminf
Λ B
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Taking x=x0 in (4.4) with λ=λn and letting n->oo, we obtain by (4.5) and (i)

of Lemma 4.1

limsup < x*, xn — x0 >
n~*oo

= limsuρ<x*-/, xn-x0>
«->oo

< limsup{φλn(x0) - φλn(xn)}
n-+oo

<φ(xo)-limmΐφλn(Xn)<O.
«->oo

Hence, by Proposition 1.1, {x*} is bounded in X* and, if {**,} is a subsequence

of {x*} weakly convergent to some xgeX*, then x%^Ax0 and by (pm2) we have

(4.6) lim < x*,, xn, > = < xg, x0 >.
n'->oo

Letting n -> oo in the inequality

<xi--f, *n>-*> £φχnXx)-φjLnXxn-) for all

we have by using (4.5) and (4.6)

PROOF of THEOREM 4.1: For r>0, we set Cr = Cn {x; | |x | |<r}. Apply

Proposition 4.1 with Cr in place of C. Then there are X , G C Γ and x*

for each r > 0 such that

(4.7) <xf-f,xr-x><φ(x)-φ(xr) for all xeCr.

Since {xr; ^>r 0 } is bounded in X for some r 0 because of (4.2), we can choose

a sequence {rn} tending to oo such that

r n 0 asn-»oo.

Now, taking x = x 0 in (4.7) with r = rn and letting n->oo in the inequality

<xfn-/, xrn-xo><φ(x0)-φ(xrn)9

we obtain by the lower semicontinuity of φ

limsup <xfn, x r n ~

Hence, just as in the proof of Proposition 4.1, we see that {xfn} is bounded in

X*, a weak cluster point xg of {xfn} belongs to Ax0 and (x0, x%) satisfies (4.1).

q.e.d.
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REMARK 4.3. Theorem 4.1 is an extension of Theorem 24 in [2] to the multi-

valued case.

4.2. Convergence of sets and of functions

Let {Cn} be a sequence of subsets of X. Then we define

s-Liminf C B = { X G I ; there is a sequence {xn} with x n ε C π
n-*ao

for all n such that xn—^->x in X}

and

w-LimsuρCΛ = {λ;eX; there is {xk} with xk^Cnk for a subsequence
n-*oo

{CΛk} of {Cn} such that x k ^ x in X}.

DEFINITION 4.1. (Mosco [21]) 4̂ sequence {Cn} of subsets of X converges

to a subset C of X in X, if

C=s-Liminf Cn = w-Limsup Cn.

l^e then write

C=LimCM inX.
n-+ao

Let φ be a function on X, that is, it is a mapping of X into [— oo, oo]. Then

the set

is called the epigraph of φ and denoted by epi (φ).

DEFINITION 4.2. (Mosco [21]) A sequence {φn} of functions on X con-

verges to a function φ on X, if

epi (φ) =Lim epi (φn) in XxR
n-*co

in the sense of Definition 4.1. We then write

φ=Lim φn in X.
II-* 00

The following lemma is also due to Mosco [21; Lemma 1.10].

LEMMA 4.2. Let {φn} be a sequence of functions on X. Then φ=Lim
n->oo

φn in X if and only if (1) and (2) below hold:

(1) For each X G I , there is a sequence {xn} in X such that xM—£-*x in X

and
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limsup φn(xn)<φ(x).

(2) // {φnk} is a subsequence of {φn} and {xk} is a sequence in X weakly
convergent to x, then

liminΐφnk(xk)>φ(x).
&->oo

Here, limsup, liminf and lim are taken in the wide sense, that is, those may
take the values oo or — oo. Moreover, we note that if φ=Lim φn in X, then (1)

n->oo

and (2) of Lemma 4.2 imply that for each x e l there is a sequence {xn} strongly
convergent to x such that

ίimφH(xn) = φ(x).
n~*oo

4.3. Convergence of solutions of variational inequalities

Let A be an operator from X into X* with D(A)=X, C be a closed convex
subset of X, φ be a proper lower semicontinuous convex function on X and /
be an element of X*. We suppose that

(i) {An} is a sequence of bounded pseudo-monotone operators from X
into X* with the following properties:
(ax) {An} is uniformly bounded, i.e., for each bounded subset B of

00

X, the union W An(B) is bounded in X*,
(a2) Given a subsequence {Ank} of {An}9 let {(xk, x%)} be any sequence

such that (xk, x^)^G(Ank), xk-^>x in X, x j _ ^ x * and

limsup < xf, xk > < < x*, x >.
fc-+oo

Then (x, x*)ς=G(A) and

lim<jc*, xk> = <x*9 x>.
k-+aθ

(ii) {Cn} is a sequence of closed convex subsets of X such that

C=Lim Cn.
n-*oo

(iii) {</>„} is a sequence of functions on X such that each φn is proper lower
semicontinuous and convex on X, { X G I φn(x)< oo}cCπ and

ψ ψIJ in X.
n-+co

(iv) {/„} is a sequence in X* such that/π—^-*/in X* as n-»oo.

Now, we consider the variational inequalities V[A, C, 0,/] and
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Gn, φn,fn], n = l, 2, .... We denote by S the set of all solutions of V\_A, C, φ,

/ ] and by Sn the set of all solutions of V\_An, Cm <£„,/„].

THEOREM 4.2. In addition to the above hypotheses, assume that there

is a bounded sequence {an} with an^Cn and φn(an)<oo for all n such that

(4.8) limsup <£„(«„) <oo,
«-*oo

(4.9) for any sequence {(xπ, x*)} with (xπ, X J ) G G ( 4 ) , IÎ WII—^ °° implies that

<x*,xn-an>+φn(xn)

II*JI
(4.10) for each n,

<x*,x-a -a
i Q f | | | h n

x*eAnx \\x\\

Then we have:

w-Limsup Sn Φ 0 and w-Limsup Sn c S.

PROOF.. First, applying Theorem 4.1 for each n, we have SnΦ0. Let

{xn} be any sequence with xn^Sn for all n. Then for each n there is x*

such that

(4.11) <*:-/-, x»-x> <Φn(x)-Φn(xJ for all X G C ,

In particular, taking απ for x in (4.11), we obtain

(4.12) < x* - / „ , xn - an > + φn(xn) < φn(an) for every n.

Hence our assumptions (4.8) and (4.9) imply that {xn} has a bounded subsequence,

so that {xn} has a sequential weak cluster point. This proves w-Limsup Sn Φ 0.
n->oo

Next, in order to show w-Limsup Sn c S, we must prove that every sequential
n->oo

weak cluster point x0 of {xn} belongs to S. By assumption (ax) on the uniform

boundedness of {An}, we can choose a subsequence {xnk} of {xn} weakly conver-

gent to x0 such that the corresponding subsequence {x*k} of {x*} converges

weakly to some x § e X * . We see that X O G C , since C=Lim Cn in X. For sim-
n-»oo

plicity we write xfe, xj, /ft, αfc and 0fc for xnfc, x*k,/Bfc, flMfc and φnk, respectively.

Then we observe from (2) of Lemma 4.2, (4.12) and (4.8) that
(4.13) (

fc-»oo

<limsup {φk(ak)- <xf -fk9 xk-

k-+σo

< O O .
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By Lemma 4.2 (see the remark after it), there is a sequence {yk} such that

yk—£-+x0 in X and

(4.14) l i m ^ G ^ H ^ o ) .

Here, note that yk e CMk for all k, which follows from the assumption (iii), so that

<x*-fk, xk~yk><Φk(yk)~Φkfrk) for a 1 1 k

Hence, letting fc->oo in this inequality, we have by using (4.13) and (4.14)

limsup <jtjj*, xk — x0>
fc-+oo

=limsup<xf -fk, xk-yk>
k-*oo

< limsup φk(yk) — liminf φk(xk)
k-*oo fc->oo

Therefore we infer from the assumption (α2) that (x0, x§) e G(A) and

(4.15) lim<x£, χfc> = <χ*5 χo>.
fc-^oo

We shall show that

(4.16) <x*-f, xo-x> <Φ(x)-φ(x0) for all

Let x be any point in C. If φ(x) = oo, then (4.16) is trivial. Thus, assume
φ(x)<oo. Then, by Lemma 4.2 and (iii) again, there is a sequence {zk} with
zk G Cnk for all k strongly convergent to x such that

lim φk(zk) = φ(x).
fc-*oo

Since/fc—5->/in X* as /c-»oo and

-fk> xk-zk><Φk(zk)-φk(xk) for all fe,

we obtain (4.16) by letting /c->oo and using (4.13) and (4.15). Thus x o ε S .
q.e.d.

REMARK 4.4. The following can be proved as above: Let (x, x*)Glxl*
and {(xk, x%)} be a sequence in XxX* such that (xk9 x%)^G(Ank) and xk^Snk

for some subsequence {nk}, xk—™-+χ in X and x%—^->x* in X* as /c->oo (hence
by the above theorem) and

<x*-/„*, xk-y><φnjy)-Φnk(
χk) for all ye= CWk.
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Then we have

and

= <x*9 x>

limφnk(xk)=φ(x).
fc->oo

REMARK 4.5. In case A and An, n = l, 2,..., are bounded hemicontinuous
monotone operators, a sharper result than our theorem was proved by Mosco
[21]. Some interesting applications of Theorem 4.2 to boundary value problems
are given in [13] and [14].
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