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§1. Introduction

The purpose of this note is to study the KO-ring KO(N"(m)) of real vector
bundles over the (4n + 3)-dimensional quotient manifold

N"(m) =S*"*3|H,  (mz22),

whose K-ring K(N*(m)) of complex vector bundles is studied in the previous
note [3]. Here, H,, is the generalized quaternion group generated by two elements
x and y with the two relations

x2"'=y2 and xyx=y,

that is, H,, is the subgroup of the unit sphere S3 in the quaternion field H generat-
ed by the two elements

x =exp(ni/2®~!) and y=j,

and the action of H,, on the unit sphere S*"*3 in the quaternion (n+1)-space
Hr"t! is given by the diagonal action.
Consider the real line bundles

%o, PoeKO(N"(m)),

whose first Stiefel-Whitney classes generate the cohomology group H (N*(m); Z,)
=Z,®Z,, and the real restriction

0y =rn'le KO(N"(m))

of the induced bundle n'A, where A is the canonical complex plane bundle over
the quaternion projective space HP* =S4"*3/S3 and n: N "(m)—\—>HPf' is the natural
projection. Also, it is proved by B. J. Sanderson [7] that the complexification
¢: KO(HP")—K(HP") is monomorphic and (A1—2)2 € cKO(HP"), and so we can
consider the element

Xo =7n'c” 1 ((A—2)?) e KO(N"(m)).

Then we have the following
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THEOREM 1.1. The reduced KO-ring K’\é(N"(m)) (m=2) is generated
multiplicatively by the four elements
g =0 —1, Bo=Po—1, 0o=0,—4 and x,.
This theorem shows that the natural ring homomorphism

¢: RO(H,,) —> KO(N"(m))

is an epimorphism, where Ii\é(H,,,) is the reduced orthogonal represenfation
ring of H,,. Since the kernel of this homomorphism ¢ is determined by D. Pitt
[6, Th. 2.5], we have the following

COROLLARY 1.2. The above £ induces the ring isomorphism

-~ RO(H,,)/c™((x4—2)"* ')RO(H,,) if n is odd,
KO(N"(m)={ __
RO(H,)/c™'(xa—2)"*'c'RSp(H,))  if n is even.

Here, x,€R(H,) is the complexification of the symplectic representation
given by the inclusion H,,=S3=Sp(l), and the monomorphisms c¢: RO(H,,)
—R(H,,), ¢': RSp(H,)—R(H,,) are the complexifications, where R(H,,) is the
(unitary) representation ring and RSp(H,,) is the symplectic representation group
of H,.

For the case m=2, H,={+1, +i, +j, +k} is the quaternion group and we
have

THEOREM 1.3. As an abelian group,
~ Zz..u(-DZZ,.n@Zzz..n@Zz..-l lf nis Odd,
KO(N™(2))=

Zyn+i2:@Zyns 2@ Z52n @ Z 0 if nis even.

If n is odd, the direct summands are generated by

%9, Bos 00, and xo+(2+27),,

respectively, and the last summand does not appear in the case n=1.
If n is even, the direct summands are generated by

®9s Pos 0g, and xq+20,,

respectively, and the last two summands do not appear in the case n=0.
The multiplicative structure of K‘\O’(N"(Z)) is given by

ad = —2a9, P§=—2By, 03 =4x,, odo= ~4ag, Bodo = —4Bo,
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aoPo = —200—2Bo+xo+200, aoXg =409, Poxo =4P,
Xl =0 ifn=2m+1, OxF=x2"1=0 ifn=2m.

In §2, we recall the cell structure and the cohomology groups of N"(m).
In § 3, we consider the orthogonal representation ring RO(H,,), which is determin-
ed by D. Pitt [6], and represent the elements ag, f, 6o and x, in Theorem 1.1
as the &-images. Also, we study some relations between these elements and the
known elements of KO(L2"*1(Z,)) of [5], where L2"*Y(Z,)=S*"*3/Z, is the
lens space. Using these results we prove Theorem 1.1 in §4 by the induction on
the skeletons on N*(m). Finally, Theorem 1.3 is proved in § 5 by using Corollary
1.2.

The author wishes to express his gratitude to Professors M. Sugawara and
T. Kobayashi for their valuable suggestions and reading this manuscript carefully.

§2. Cohomology grougs of N"(m)

The generalized quaternion group H,, (m=2) is the subgroup of the unit
sphere S? in the quaternion field H, generated by the two elements

x =exp(ni/2m~') and y=j.

In this note, we consider the diagonal action of H,, on the unit sphere S4»+3
in the quaternion (n + 1)-space H"*!, given by

4(q15--> 4u+1) = (49155 q9n+1)s
for ge H,, and (q,,..., 4,+1) € S*"*3, and the quotient (4n+ 3)-manifold
Nn(m) —_ S4"+3/Hm.

This manifold has the CW-decomposition {e4k*s, e}k+t e4**+t; 0<k<n, s=0,
3, t=1, 2} with the boundary formulas:

ae4k=2m+le‘11k-—1, ae‘ltk-fl =aegk+1 =0’
ae?k+2 p— 2m—1e?k+l _2e%k+l, ae&ztk+2 — 2e?k+1’ ae4k+3 —_ 0
(cf. [3, Lemma 2.1]). Also, the cohomology groups of N"(m) are given by
Z for k=0, 4n+3,
Zymes for k=0(4), 0<k<4n+3,
HY(N"(m); Z) =
1 Z,8Z, for k=2(4),0<k<dn+4,
0

otherwise,
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Z2,®Z, for k=1, 24),0<k<4n+3,
H¥N"(m); Z,) =( Z, for k=0, 3(4),05k=<4n+3,
0 otherwise,

(cf. [3, Prop. 2.2]).

Let 0—Z 2,74 ,7, ,0 be the exact coefficient sequence, and
H'(N™(m); Z,) 4 H*(N"(m); Z) X%, H*(N"(m); Z) &> H*(N™(m); Z,)
be the associated exact sequence. Then we have easily the following

LemMMA 2.1. 4 and j, are isomorphic.

Now, let a and b be generators of
HY(N"(m); Z,) = Z,®Z,,

and let ap and By (resp. o’ and ') be the real (resp. complex) line bundles over
N™(m), whose first Stiefel-Whitney (resp. Chern) classes are given by

wi(xp) =a, w,(Bs) = Db,
2.2)
c(a') =4da, c(B')=4b.

Denote their stable classes by

ao=0p—1, Bo=po—1€KO(N"(m)),
2.3) -
a=a'—1, B=p—1eK(N"(m)).

The K- and KO-rings of the quaternion projective space HP" are known as
follows.

(2.4) (B.J. Sanderson [7, Th. 3.11, 3.12])
K(HP™"y =Z[z]]/ <z >,

where z=JA—2 is the stable class of the canonical complex plane bundle A over
HP", Also, the complexification

¢: KO(HP") — K(HP™)
is monomorphic, and the ring KO(HP") is generated by the two elements
zZo=rz=c"'Q2z) and x=c"1(z?),

where r is the real restriction.
Using these results and the induced homomorphisms of the natural projection
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(2.5) w: Nt(m)=S*"*3|H,—— S4"+3 |53 =HP",
we consider the following elements:
6 =n'z e K(N"(m)),
(2.6) ~
0o =réd =7'zy, Xo=n'xe KO(N"(m)).
LemMA 2.7. For the complexification ¢: KO(N"(m))— R(N"(m)),
c(ao) =a, c(Bo) = B, c(8o) =20, c(xo) = .

Proor. The total Stiefel-Whitney class of af is w(ap)=1+a, by definition.
Therefore,

w(rcap) = wap) = (W(ap))2 =1+a2 =1+Sqla =1+jda =1+4j,c,(a).

On the other hand, it is well known that w,(rcap)=j.c,(cap), and we have c,(a’)
=c,(cap) by Lemma 2.1, and so o’ =capb. In the same way, we have the second
equality. The last two equalities follow immediately by definition. q.e.d.

§3. Representation rings

We denote the unitary (resp. orthogonal) representation ring of the group
G by R(G) (resp. RO(G)), and the symplectic representation group by RSp(G).
By the natural inclusions O(n)<= U(n), U(n)=O(2n), Sp(n)cU(2n) and U(n)

< Sp(n), the following group homomorphisms are defined:
RO(G) == R(G) == RSp(G).
c h

The following facts (3.1) and (3.2) are well known (cf., e.g. [2]).

(3.1) These representation groups are free, and c is a ring homomorphism.
Also

rc=2, hc =2, cr=1+t=ch,
(t denotes the conjugation), and ¢ and ¢’ are monomorphic.
(3.2) We have the commutative diagrams

RO(G)® ;RSp(G) — RSp(G)  RSp(G)® ;RSp(G) — RO(G),

c®c’l c’l c'®c’l lc

R(G)®;R(G) — R(G) R(G)®R(G) — R(G),

where the horizontal pairings are defined by tensoring over R or H.
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For the later purposes, we use the following facts for the representation rings
or groups of H,, S% and Z,.

The generalized quaternion group H,, has three non-trivial representations
of degree 1:

{Xl(x)= 1 {Xz(x)=—1 {x3(x)=—1

1n(y)=-1, L= 1, ()=-1,

and 2™~ ! —1 representations of degree 2:

xt 0 _ : 0 (—1)¢
Xi+3(-x)=< ) > Xi+3()")=< >
0 x7t/, 1 0 ,

fori=1,2,..,2m"1—1.

Lemma 3.3, (cf. [3, Prop. 3.1, 3.3]) R(H,,) is generated by x;(j=0, 1,...,
2m=1 42y (xo=1) as a free Z-module, and by 1, x,, x, and x4, as a ring. The
multiplicative structure is given by

XXy =Xt X1 =x5=1,
A3 = X1X2s X1Xa = Xa> X2Xa = X2m-142
, l+xi+x2+xs  for m=2,
X4= 1+X1+X5 fOV mgS,
Xi+1= XaXi—Xi-1 for iz5 mz3.
LemmA 3.4. (cf. [6, Prop. 1.5]) By the monomorphism
" ¢:RO(H,) — R(H,),

RO(H,) may be considered as the subring of R(H,), generated by 1, xy, X2,
X35 2X2i+2 and fzi43 (i21).

Lemma 3.5. (cf. [6, Prop. 1.6]) By the monomorphism
¢’ RSP(Hm) - R(Hm) )

RSp(H,) may be considered as the free abelian subgroup of R(H,,), generated
by 2, 211, 2X2, 2X3, 2X2i+3 and Yai+2 (i21).

LemMa 3.6. (cf. [4, Ch. 13, Th. 3.1])
R(S3?) = Z[«],
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where y is the c'-image ¢’y of the identity symplectic representation y: S* = Sp(1).
LemMA 3.7. For the monomorphism c: RO(S3)—R(S3), we have
2y, yx?**elme, foranyizl.

Proor. Since ye R(S3) is self-conjugate, we have 2y'=cr(y’)eImec. By
the commutative diagram

RSp(S*)® ;RSp(§%)—> RO(S?)

c’®c’l lc

R(S*)®zR(S3)——R(S?)

of (3.2), we have x2=c(x?), where y2 € RO(S3) is the image of y®ye RSp(S?)
® zRSp(S3). q.e.d.

It is clear that y, € R(H,,) is the c’-image of the symplectic representation of
H,, given by the inclusion H, =S3 =Sp(1), and we have

LEMMA 3.8. i) = Xa»
where i: H,<S3 is the inclusion.

For an n-dimensional representation w of H,, the n-plane bundle &(w) is
induced from the principal H,-bundle &: S4"*3— N"*(m) by the group homomor-
phism w: H,,—»GL(n, R), and we have a ring homomorphism

3.9 ¢: RO(H,,) — KO(N"(m)).
LEMMA 3.10. The elements oo and B, of (2.3) may be so taken
Sl —1) =0, LT (xz—1) =p,.
Also, for the elements d, and x, of (2.6), we have
et 2a—H =00, LM (Xa—2)?) =Xo.

Proor. The ring homomorphism ¢: R(H,,) —» K(N"(m)) is defined in the
same way as (3.9), and we have the commutative diagram

RO(H,) —~— R(H,)

) I

KO(N"(m)) - K(N™"(m)).

Since ¢;&(x;) and c,&(x,) generate H2(N™(m); Z)=Z,®Z,, (cf. [3, p.259]),
we can take a, be HY(N"(m); Z,) in (2.2) so that
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da=c,&(xy),  Ab=c&(x2)s
by Lemma 2.1. Then,
Jxda =jxc18(xy) = jxci(cle™ (x1)) = wa(reée™ ' (x1))
=w(28c M (x1)) = wi(€e™ 1 (x))? =Jjxdw (Ee™ ! (x1)-

Therefore w,(éc™1(x,))=a by Lemma 2.1, and we have &c™!(x,;)=ap by (2.2).
In the same way as above, we have &c™1(x,) = 6.
Consider the commutative diagram

R(S?) —i— R(H,,) —*—> RO(H,,)

:'J l& l{

K(HP") =, K(N"(m)) —t> KO(N"(m)),

where &' is the ring homomorphism defined in the same way as & of (3.9), using
g S4nt3 5 HPr, Then,

=4 d(-2)=x
directly by definition. Therefore, by Lemma 3.8, (2.4) and (2.6), we have
M 2ha—4) =8r(xa—2) =Lri(x—2) = rn'l'(x—2) = rn'z = do.
Finally, consider the commutatived iagram
R(H,) «—<— RO(H,) «—i— RO(S?) —<— R(S3)
g g ‘| ‘|
K(N"(m)) «<— KO(N"(m)) «=— KO(HP") —<— K(HP").
Then, by Lemma 3.8, (2.4) and (2.6), we have
e (1a—2)?) =¢&ic™(x—2)?) = m'c 1 &(x—2)?) =7'c™'(z?) = %o
q.e.d.

Finally, we consider the representation ring of the cyclic group Z, of order
4. Tt is well known that

LeEmMA 3.11. R(Z,) =Z[u]/<u*—1>,

where u is the unitary representation such that u(g) =exp(ni/2) for the generator
g of Z,.

Let L27"1(4)=S4"+3/Z, be the standard lens space mod 4, and {: S*"*3—
L27*1(4) be the natural projection. Then, we have the commutative diagram
proj g



On the KO-Ring of §**+3/H,, 467

R(Z,)—* > K(L2"*1(4))

i Il

RO(Z,) —*— KO(L?"+1(4)),

where {’s are the natural ring homomorphisms defined in the same way as & of
(3.9).

LeEMMA 3.12. For the element u of Lemma 3.11,
o+1="{(w)eK(L*"*1(4))

is the complex line bundle whose first Chern class generates H2(L?"*1(4); Z)
=Z,. Also u? belongs to cRO(Z,), and

K+ 1 =c 1 (u2) e KO(L2"1(4))

is the real line bundle whose first Stiefel-Whitney class generates H'(L2"*1(4);
Zz)=Zz.

Proor. The first half of thc lemma is proved by Lemma 3.11 and [1,
Appendix, (3)].

Since u?(g)=-—1 by Lemma 3.11, we have u?ecRO(Z,), and k+1 is the
real line bundle over L2"*1(4). Also, the first Chern class of c(k+1)={(u?)=
(6+1)2 is equal to 2c¢,(c+ 1), which is not zero. Therefore, k+ 1 is non-trivial.

q.e.d.

Let i: Z,<H,, and i': Z,cH, be the inclusions defined by i(g)=x2""*
and i'(9)=y, and

(3.13) p: L2"*t1(4) — N"(m), p': L2"t1(4) — N"(m)
by the natural projections induced from i, i’.

LemMMA 3.14. For the induced homomorphisms p' and p" of (3.13),
and the elements oy, Bo, 9, Xo 0f (2.3) and (2.6), we have

p'ag =0=p"f, p'Po =k =p"a,,
p'do =2ra =p"8g,  p'xo =(ro)? = p’'x,.

Proor. We prove the equalities for p’'. Consider the commutative
diagram

R(H,) < RO(H,) —*> KO(N"(m)) «—— K(N"(m))

oo b P

R(Z,) <~ RO(Z,) —* KO(L*"*1(4)) «— K(L?"*1(4))
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We notice that the following equalities hold by [3, Prop. 3.9, Lemma 4.8]:
(%) iy =p? ixa=1, p'é=0?/(1+0), i'ya=p+tu,
where ¢ is the conjugation. Then, we have
plag =p" 8 (=) =Lty =) =l (W -1) =x,
p"'Bo=Lcti'(xo—1) =0,
by Lemmas 3.10 and 3.12. Also,
p''og =p"'rd =rp"'d =r(c?/(1+0)) = r(6+to) = rcro =2ra,

by (2.6), the third equality of (*) and the fact that to¢ =—o/(1+0). Finally,
we have

p'xo =p" 8 ((Xa—2)?) =L i (Xa—2)?) =L (n+ 11 —2)?)
=L ((er(u—1D?) = {(r(u—1)*) = (r{(u—1))* = (r0)?,

by Lemmas 3.10, 3.12 and the last euqality of (x).
We notice that the equalities

ixl=1,‘ ix, =pu2, p'o=02/(140), ix,=p+tu,

which are similar to (*), can be proved in the same way as [3, Prop. 3.9, Lemma
4.7], using the inclusions

Z,cH,cH,.

Therefore, the desired equalities for p' can be proved in the same way as above.
q.e.d.

§4. Proof of Theorem 1.1

Let N* be the k-skeleton of the CW-complex N*(m) in §2, and i: N¥— N"(m)
be the inclusion. For an element aeK’\é(N"(m)), we denote its image i'ae
KB(N") by the same letter a. Therefore, we have the elements

4.1) %o, Bos 00y Xo € KO(N¥)  for any k=0,
from those of (2.3) and (2.6).
LEMMA 4.2.  obBidkxl =0 in KO(Ni+i+4k+si=1y

PROOF. o and B, are zero in I&VO(N 0)=0, and §, and x, are zero in I?O(N 3)



On the KO-Ring of §¢"+3/ H,, 469

=KO(N°(m)) and KO(N7)=KO(N'(m)) respectively, by (2.4). Therefore, the
desired results follow from the obvious fact that ab is zero in I%(NP+4‘1) if a
is zero in KB(NP‘I) and b is zero in K’\O(N‘l‘l). : q.e.d.

LeEMMA 4.3. If the ring K'b(N“"“) is generated by ay, Bo, 6o and xo,
then i': I?(’)(N""“)—»K’\é(N“"”) is an isomorphism.

Proor. Consider the Puppe sequence
0—bs KB(N“H) i, K"b(N“"”) )

Since the elements oy, By, 0o and x, in I’(\(/)(N“"”) are the i'-images of those in
K’\O(N“"“), we have the lemma. q.e.d.
LEMMA 4.4. i': I’(\b(NS"”)—rK’\O'(NS"“) is an isomorphism. A

Proor. By the Puppe seugence, the lemma follows immediately. q.e.d.

LeEMMA 4.5. If the ring IE@(N““) is generated by agy, o, 69 and x,
then the ring I’(\O(NS””) is so.

Proor. Consider the commutative diagram

I'(VO(Ssmz Vstz)_&)K'\O’(NSHZ)_Q_)I?'O(NMH)

I | I

IZ(SS"”VSB"“)—’”—» K(N8n+2) il K~(N8"+1),

In the lower sequence, keri'=Imp'=Z,®Z, is generated by ad?" and po2"
(cf. [3, p263]). Since r in the left is an epimorphism, Keri'=Im p' is generat-
ed by r(xé%") and r(B42") in the upper exact sequence. Since c(aoxB)=ad2"
by Lemma 2.7, we have r(ad?")=rc(ayx3)=20,x8, and also r(fd62")=2B,xs.
These imply the desired result. q.e.d.

LEMMA 4.6. If the ring I?O(NS"*“) is generated by ag, Bo, 09 and x,
then i': I’(\'O(N8"+5)—+I€(')(N8"+4) is an isomorphism.

Proor. We have the desired result in the same way as Lemma 4.3.  q.e.d.

LemMmA 4.7. If the ring IZ{)(NS”) is generated by oy, By, 0o and xq, then
the ring I’(\O(NB"“) is also so. In particular, K’\O(N1)=KN(/)(S1 vShHY)=Z,®
Z, is generated by o, and B,.

Proor, Consider the commutative diagram
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I;'\é(Ss”+1VS8n+1)L) KB(NSrﬁl) il K’v\é(NSn)

p! p! p!
KO(S®m+1) P\, KO(L*"(4)) -y KO(L4"(4)).

Since i'(aoxp) =i'(BoxB)=0 by Lemma 4.2, we have agxh, Pox3€
Keri'=Imp'. On the other hand,

p'(aox3) =0, p'(Boxp) = p’'(aoxy) = 22"k

by Lemma 3.14. Also, 22"k is not zero in I&)(L4"(4)) by [5, Th.B]. Therefore,
we have oox3#0, PBox3#0 and oyxh#Boxs. Since I’(\b(S*”l+ Ly S8ntly=
Z,®Z,, these imply the desired result. q.e.d.

LemmMmA 4.8. If the ring K’\O’(N“”‘l) is generated by ug, o, 69 and x,
then the ring I?O(N“") is so.

Proor. We consider the commutative diagram

KO(S4") 2, KO(N*") iy KO(N*r—1)

| I I

0 —> KO(S*") 2, KO(HP") L KO(HP* ') — 0,

induced by n=mn|N*": (N4*, N4»~1)>(HP", HP"* '), which is a relative homeo-
morphism. In the lower sequence, Keri'=Im p'=Z is generated by

xk (if n=2k), ZoXxK (if n=2k+1)
by [7, p.145]. Therefore, Keri'=Im p' in the upper sequence is generated by
n'(xk) = xk (if n=2k), nt'(zox¥*) = dox% (ifn=2k+1).
These complete the proof. g.e.d.

PrOOF oF THEOREM 1.1. Starting from the latter half of Lemma 4.7, we have

Theorem 1.1 for I?O(N") by the induction on k, using Lemmas 4.3-4.8.
q.e.d.

By Theorem 1.1 and Lemma 3.10, we see that the ring homomorphism
¢: RO(H,) — KO(N"(m))

of (3.9) is an epimorphism.
On the other hand the following theorem is proved by D. Pitt :

THEOREM 4.9. [6, Th. 2.5]
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: RO(H,)[c™ ' ((x4—2)"*')RO(H,,) if nis odd,
Imé =~

RO(H,)|c ' ((xa—2)"*'c'RSp(H,,)) if nis even,
where (x,—2)"*! € cRO(H,,) if n is odd, by Lemma 2.4.

Therefore, we have Corollary 1.2 in §1.

§5. Proof of Theorem 1.3

In this section, we deal with the special case
Nn(2) — S4n+3/H2’

where H,={+1, +i, +j, £k} is the quaternion group.
Consider the ring homomorphism

&: RO(H,) — KO(N™(2))
of (3.9), and set also
ap =c"1(x,—1), Bo=c"1(x2—1),
0o =c"1(2xs— %), Xo =¢ 1 ((xa—2)%)

(5.1)

in RO(H,;). Then
Cag =g, EBo =Po, E0g =00, Exp =X,

by Lemma 3.10. Furthermore, by Lemmas 3.3 and 3.4, we see easily that
(5.2) RB(H ,) is the free Z-module with bases

1, ao, o, 605 Xo»
and the multiplicative structure is given by
af = =20, B§=—2Bo, 0% =4x,,
(5.3) aoBo = —20g—2Bo+Xo+280, Aody = —4dtg,
Bodo = —4Bo, aoXo =4xg, Poxo =4Po.
By these relations, we have easily
(5.9 oXo+12x,+85, =0,
(5.5) x3+300%0+8xy =0.

LEMMA 5.6. aodhx) = (—1)i22(+Day,  Bohxd = (—1)122G+D, .
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ProoF. These equalities follow from the last four equalities of (5.3).
LemMMA 5.7. ,(1)dh =(—1)do(D)xh = (—1)1225,(1), where (1) = x¢+ 26,.

PROOF. We see 50(1)5(): “60(1)X0= —2260(1) by (5.3), (5.4) and (5.5).
These imply the desired results by the induction on i. q.e.d.

(I) The case n=2m+1
By Corollary 1.2 and (5.1), we have
KO(N"(2)) = RO(H,) | x3* ' RO(H,) .
By (5.2), R’\é(HZ) is the free Z-module with bases
%o, Pos 09, 0o(1)+2"0y =x0+(2+2")d,,
and the ideal x%*! RO(H,) is generated by
(5.8) xBHL, aoxBt,  BoxTT!, JoxBY!, xBri.
Therefore, Theorem 1.3 for n=2m+ 1 follows immediately from
LEMMA 5.9. The elements of (5.8) are linear combinations of
(5.10) 2ntlgy, 2n¥ig, 0 22mt15 0 287 1(50(1)+2"8,) ,
and the elements of (5.10) are also so of (5.8).
We prove this lemma by the following routine calculations.
LEMMA 5.11. (1) 24*3§,x%"i=0 (0Ligm),
(ii) 24i+6xp—i=( O=Z£igsm-1),
(i) 26ox7% =24x7,
(iv) 24itaxm—if 241455 xn-i-1 =0 0=is=m-1),
(v) 2455 xg-im1 42448 ym—i~1 = 0£ig£m-2),
(vi) 2"71(d,(1)+2"6,) =0,
where = means modulo the ideal generated by {x%+1, §,x%~1, x5*2}.

Proor. (i), (i) We have the desired equalities by the induction on i,
using the equalities (5.4) x24ix%~% and (5.4) x 24i+15,xp—i-1,

(iii) The equality follows from (5.5) x x3~1 and (i).
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(iv) By (5.4) and (5.5), we have easily
(5.12) x3 = 28xy+248, = 2%x,+3-2264(1),

and (iv) is obtained from (5.12) x 24i+2x#=i—1 using (i) and (ii).
(v) The equality follows from (5.12) x 24i+35,x%~1-2_ using (i) and (ii).
(vi) By Lemma 5.7 and (iii))— (v), we have

2"15,(1) = 8o()XE =20x8 =24x0 = — 250 x4 1 =28x 1 =... = —24m¥15
q.e.d.
LEMMA 5.13. (i) x%+*1=2""1(2"—1)(8,(1)+2"5,) —23m1§,,
(ii) GoxBtl =22n+1 (21 4 1)§,—2"F1 (271 —1)(6o(1) +2"6,) ,
(iii) xm+2 =2mH1(2"v2 —1)(8o(1) +275y) — 22+ 1(27+2 1 3)§,.
" PROOF. (i) From (5.12) x 24ix%~i~1 we have easily
24ixr6l+i—-1 —_ 24(i+1)xr(r)l—i+3.2n—l+2i50(1) s
using Lemma 5.7. Therefore, we have
xPHl = 24mx, +3:201(1 4224244 ... +22m=10)§ (1) ,
= 22Dy, 4 2n=1(2n=1 —1)§ (1)
=2""1(2"—1)(8o(1)+275) — 23714,

(ii), (iii) These are obtained easily from (i) x 6, and (i) X xo, using Lemma
5.7, (5.12) and (5.4). q.e.d.

Proor oF LEMMA 5.9. By Lemma 5.6,
ocox'(','“ — 2n+1a0, ﬁoxt(r)ﬁl = 2n+1ﬂ0.

The other elements of (5.8) are linear combinations of those of (5.10) by Lemma
5.13. Conversely, by Lemma 5.11 (i) and (vi), we have

22mH150 =0, 271(8,(1)+2"8,) =0,
modulo the ideal x3*'RO(H,), as desired. q.e.d.
(II) The case n =2m

By Corollary 1.2, we have
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KO(N"(2)) = RO(H,) [¢™* (x4 —2)*"*'¢' RSp(H))) .
By Lemma 3.5, the ideal (y,—2)?™*1¢'RSp(H,) of R(H,) is generated by
2xa=22™, 20— Da—=2)*"* 1 (i=1,2,3), (xa—2)*™*2.

On the other hand, by Lemma 3.3, we have

203 = Da = 2> =2((1a—2)* +4ta =)~ (11 — D= (2 = D) (xa — 2)*>"*1,
whose ¢~ 1-image is equal to

OoxBr! +8xF* ! —o0oxB— PoboxT = —4xTH! —860xT —agdoxF— fodoxT,
by (5.1) and (5.4). Therefore, we see that the ideal ¢ 1((x,—2)?"*1¢’RSp(H,))
of RO(H,) is generated by
(5.19) 0oXB, 0g00XT, PodoxT, xTHI,

by the above facts and (5.1).
Also, I%(H ,) is the free Z-module with bases

%, Bo» G0s (1) =xo+260,

by (5.2). Therefore, Theorem 1.3 for n=2m follows immediately from

LEMMA 5.15. The elements of (5.14) are linear combinations of
(5.16) M2y, 2mF2B,, 2275, 274(1),
and the elements of (5.16) are also so of (5.14).

By Lemma 5.6, we have

00X = — 2"+ 20, Bodoxh = =228,

Therefore, Lemma 5.15 follows immediately from the following

LEMMA 5.17. (i) Jox% =22"00—2"(2"—1)d4(1),

(ii) xPrt =271 —1)do(1)—22m+145,,

(iii) 270,(1) = xBt1 4+25,x%,

(iv) 2275, = (2Q"—1D)xB*1 4+ (271 —1)5,x3.

Proor. (i) By (5.4)xxZ~!, we have
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—8ox = 12x7+88oxn~1 = 8xB+4x518,(1) = 8x%+2"50(1),
using Lemma 5.7. While, by (5.12) x 24¢+3x1-i—2 we have
24i+3x761—-i — 24(i+1)+3xr61—i—1 +3.2n+1+2i50(1) .
Therefore, we have (i), since
8xf = 24m~1xy + 3201 (1422424 4 .. 4 220m=2))§ (1)
=22 1x. 4 (2201 2+ 1)§ (1)
= (22r—2m+1)§ (1) —22"5,,.
(ii) By (5.12) x24ixm~i-1 we have
24ixml-i = Q4G+ xm—iy 3904215 (1),
Therefore, we have (ii), since
xptl =22nyx 4 3:20(1 +22 424+ ... +22m=1))§ (1)
=20(2M 1 = 1)8,(1)—22n+15,,.

(iii) follows immediately by Lemma 5.7, and (iv) follows from (i) and (ii).
q.e.d.

These complete the proof of Theorem 1.3.
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