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§1. Introduction

The purpose of this note is to study the KO-ήng KO(Nn(m)) of real vector

bundles over the (An + 3)-dimensional quotient manifold

whose X-ring K(Nn(m)) of complex vector bundles is studied in the previous

note [3]. Here, Hm is the generalized quaternion group generated by two elements

x and y with the two relations

χ2m~1—y2 a n ( J χyχ=y9

that is, Hm is the subgroup of the unit sphere S 3 in the quaternion field H generat-

ed by the two elements

x = exp (πί/2m~ 1) and y — j ,

and the action of Hm on the unit sphere S 4 n + 3 in the quaternion (n + l)-space

jjn+i j s g i v e n by the diagonal action.

Consider the real line bundles

α'o, β'0eKO(N»(m)),

whose first Stiefel-Whitney classes generate the cohomology group H1(Nn(m);Z2)

=Z2@Z2i and the real restriction

δ'o =rnιλeKO(Nn(m))

of the induced bundle πιλ, where λ is the canonical complex plane bundle over

the quaternion projective space H Pn=S4 n+3/S3 and π: Nn(m)-*HPn is the natural

projection. Also, it is proved by B. J. Sanderson [7] that the complexification

c: KO(HPn)^K(HPn) is monomorphic and (λ-2)2 ecKO(HPn), and so we can

consider the element

xo=π{c-1((λ-*2)2)eKO(Nn(m)).

Then we have the following
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THEOREM 1.1. The reduced KO-ring KO(Nn(m)) (m^2) is generated

multiplicatiυely by the four elements

α o = α ' o - l , J8o=/*Ό-1, δo=δ'o-4 and x0.

This theorem shows that the natural ring homomorphism

ξ:Rδ{Hm)—*κb{N\m))

is an epimorphism, where RO(Hm) is the reduced orthogonal representation

ring of Hm. Since the kernel of this homomorphism ξ is determined by D. Pitt

[6, Th. 2.5], we have the following

COROLLARY 1.2. The above ζ induces the ring isomorphism

_ f ib(/f w )/c- 1 ((χ 4 -2) Λ + 1 )ΛO(//J if n is odd,

I RO(Hm)lc-i{{X4-2y^c'RSp{Hm)) if n is even.

Here, χ4eR(Hm) is the complexiίication of the symplectic representation

given by the inclusion Hmc:S3 =Sp(l), and the monomorphisms c: RO(Hm)

-+R(Hm), c': RSp(Hm)-+R(Hm) are the complexifications, where R(Hm) is the

(unitary) representation ring and RSp(Hm) is the symplectic representation group

ofHm.

For the case m = 2 , H 2 = { ± 1 , ± Ϊ , ±j, ±k} is the quaternion group and we

have

THEOREM 1.3. As an abelian group,

^ { Z 2n+ l©Z 2n+ l®Z 22n+ l®Z 2n-l ifΠlS
KO(N»(2)) = \

[ Z1n+2®Z1n+2®Z12n®Z1n if Π IS

If n is odd, the direct summands are generated by

α0, β0, δ09 and

respectively, and the last summand does not appear in the case n = l.

// n is even, the direct summands are generated by

respectively, and the last two summands do not appear in the case n=0.

The multiplicative structure of K0(Nn(2)) is given by

α§ = - 2 α 0 , βl = -2β0, δl =4x0, oc0δ0 = -4oc0, βoδo = -4βo,
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= - 2α0 - 2β0 + x0 + 2δ0, α ox o = 4α0, βoxo = 4£o>

x™+i=0 ifn=2m + l9 (5 0 xg=xS + 1 = 0 ifn=2m.

In §2, we recall the cell structure and the cohomology groups of Nn(m).

In § 3, we consider the orthogonal representation ring R0(Hm), which is determin-

ed by D. Pitt [6], and represent the elements α0, β0, δ0 and x 0 in Theorem 1.1

as the ξ-images. Also, we study some relations between these elements and the

known elements of K0(L2n+1(Z^)) of [5], where L 2 " + 1 ( 2 4 ) = S 4 n + 3 / Z 4 is the

lens space. Using these results we prove Theorem 1.1 in §4 by the induction on

the skeletons on Nn(m). Finally, Theorem 1.3 is proved in §5 by using Corollary

1.2.

The author wishes to express his gratitude to Professors M. Sugawara and

T. Kobayashi for their valuable suggestions and reading this manuscript carefully.

§2. Cohomology grougs of Nn(m)

The generalized quaternion group Hm (m^2) is the subgroup of the unit

sphere S 3 in the quaternion field H, generated by the two elements

x =exp(7π/2m~1) and y=j.

In this note, we consider the diagonal action of Hm on the unit sphere S4n+3

in the quaternion (n-Hl)-space Hn+1, given by

<?(4i, > qn+i) = (4<?i, , qin+i)>

for qeHm and (qί9...9 gπ + 1 ) e i S 4 M + 3 , and the quotient {An4-3)-manifold

Nn(m)=S4n+3/Hm.

This manifold has the CW-decomposition {e4k+s, e\k+t, eik+t; 0^/c^n, s = 0 ,

3, ί = l, 2} with the boundary formulas:

\ deik+1 = deγ+ι = 0,

-2e\k + 1 , de\k +2 = 2eik+1, de*k+3 = 0.

(cf. [3, Lemma 2.1]). Also, the cohomology groups of Nn(m) are given by

{Z for k=0, 4n + 3,

Z 2 m + i for /CΞ=0(4), 0</c<4n + 3,

Z2®Z2 for fe = 2(4), 0</c<4n + 4,

0 otherwise,
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Hk(N»(m);Z2) =

Z2@Z2 for fcsl, 2(4), 0<fc<4n + 3,

Z 2 for /c = 0, 3(4), 0^fc^

0 otherwise,

(cf. [3, Prop. 2.2]).

Let 0 > Z - ^ - > Z - ^ - > Z 2 >0 be the exact coefficient sequence, and

Hι(Nn(m)\ Z 2)i-iU H2(Nn(m); Z) -**-> H2(Nn(m); Z) J^+ H2(Nn(m); Z 2 )

be the associated exact sequence. Then we have easily the following

LEMMA 2.1. A and j* are isomorphic.

Now, let a and b be generators of

H1(N»(m);Z2)=Z2®Z2,

and let α'o and β'o (resp. α' and β') be the real (resp. complex) line bundles over

Nn(m), whose first Stiefel-Whitney (resp. Chern) classes are given by

Wl(αΌ) = α, Wl(/fΌ) = b,
(2.2)

') = Δa> cί(β')=Ab.

Denote their stable classes by

αo-αfc-l, βo=β'o-leKd(N»(m)),
(2.3)

α = α

/-l, β=β'-leK(Nn(m)).

The K- and KO-rings of the quaternion projective space HPn are known as

follows.

(2.4) (B. J. Sanderson [7, Th. 3.11, 3.12])

where z=λ — 2 is the stable class of the canonical complex plane bundle λ over

HPn. Also, the complexification

c: KO(HPn) > K(HPn)

is monomorphiCy and the ring KO(HPn) is generated by the two elements

zo=rz =c~1(2z) and x=c~1(z2)9

where r is the real restriction.
Using these results and the induced homomorphisms of the natural projection
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(2.5) π: Nn(m) = S4n+3/Hm >S4n+3/S5 =HP\

we consider the following elements:

δ=πιzeK(Nn(m)),

(2.6) _
δ0 = rδ = π ! z 0 , x 0 = πιx e KO(Nn(m)) .

LEMMA 2.7. For ί/ίe complexification c: KO(Nn(m))-+K(Nn(m)),

c(α0) = α, c(β0) = β, c(δ0) = 2(5, c(x0) = (52.

PROOF. The total Stiefel-Whitney class of α^ is w(oι'o) = l + a9 by definition.

Therefore,

w(rax'o) = w(2α'o) = (w(α'o))2 = l + α 2 = l + S « 1 α = l +j*Δa = 1 -h^c^αO.

On the other hand, it is well known that w2(rcoc'0)=j*c1(coί0), and we have c^α')

^C^COLQ) by Lemma 2.1, and so α'=cα'o. In the same way, we have the second

equality. The last two equalities follow immediately by definition. q.e.d.

§3. Representation rings

We denote the unitary (resp. orthogonal) representation ring of the group

G by R(G) (resp. RO(G)), and the symplectic representation group by RSp(G).

By the natural inclusions O(n) a U{n\ L/(n)czO(2n), Sp(n)<=U(2n) and U(n)

c= Sp(n), the following group homomorphisms are defined:

RO(G) ίzz; R(G) ίzz; RSp(G).
c h

The following facts (3.1) and (3.2) are well known (cf., e.g. [2]).

(3.1) These representation groups are free, and c is a ring homomorphism.

Also

re = 2 , he' = 2 , cr = l + ί = c'/i,

(t denotes the conjugation), and c and c' are monomorphic.

(3.2) We have the commutative diagrams

RO(G)®zRSp{G) > RSp(G) RSp(G)®zRSp(G) > RO(G),

c<S)c'\ c'\ c'φc'l c

R(G)®ZR(G) • R(G) R(G)®ZR(G) — > R(G),

where the horizontal pairings are defined by tensoring over Jϊ or H.
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For the later purposes, we use the following facts for the representation rings
or groups of Hm, S3 and Z4.

The generalized quaternion group Hm has three non-trivial representations
of degree 1:

-U \χ2(y)= l,

and 2m~1 — 1 representations of degree 2:

xi 0 \ / 0 (-1) '

o x - / , \ l o

LEMMA 3.3. (cf. [3, Prop. 3.1, 3.3]) R(Hm) is generated by Xj(j=O, 1,...,
2'w-i-{-2) (χo = l) as a free Z-module, and by 1, χί9 χ2 and χ4 as a ring. The
multiplicative structure is given by

XiXj ~ XjXb Xι = X2 = 1?

A3 "~ Λ1Λ2? Λ1Λ4 ~ Λ4» Λ 2 Λ 4 ~ Λ 2 w - 1 + 2

ί 1+Z1+X2 + Z3 /° r m =2»

v2 — i
/or m ̂  3,

LEMMA 3.4. (cf. [6, Prop. 1.5]) By the monomorphism

c:RO(Hm)—>R(Hm)i

RO(Hm) may be considered as the subring of R(Hm), generated by 1, χί9 χ2,
andχ2i+3 ( ΐ^ l ) .

LEMMA 3.5. (cf. [6, Prop. 1.6]) By the monomorphism

c':RSp(Hm) >R(HJ,

RSp(Hm) may be considered as the free abelian subgroup of R(Hm)9 generated
by 2, 2χί9 2χ2, 2χ3, 2χ2i+3 and χ2i+2 ( i^ l ) .

LEMMA 3.6. (cf. [4, Ch. 13, Th. 3.1])

= Z[χ],
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where χ is the c'-image c'χ of the identity symplectίc representation χ: S3 = Sp(l).

LEMMA 3.7. For the monomorphism c: RO(S3)^>R(S3), we have

2χS χ2ielmc, for any ΐ ^ l .

PROOF. Since χeR(S3) is self-conjugate, we have 2χi=cr(χi)elmc. By

the commutative diagram

RSp(S3)®zRSp(S3) >RO(S3)

R(S3)®ZR(S3) >R(S3)

of (3.2), we have χ2=c(χ2), where χ2eRO(S3) is the image of χ®χeRSp(S3)

®zRSp(S3). q.e.d.

It is clear that χ4 e R(Hm) is the c'-image of the symplectic representation of

Hm given by the inclusion Hm<=S3 =Sp(l), and we have

LEMMA 3.8. i(χ) = χ4,

where i: HmczS3 is the inclusion.

For an n-dimensional representation ω of Hm, the n-plane bundle ξ(ώ) is

induced from the principal //m-bundle ξ: S4n+3->Nn(m) by the group homomor-

phism ω: Hm^>GL(n9 R)9 and we have a ring homomorphism

(3.9) ξ:RO(Hm)—+KO(N»(tn)).

LEMMA 3.10. The elements α0 and β0 of (2.3) may be so taken

Also, for the elements δ0 and x0 of (2.6), we have

PROOF. The ring homomorphism ξ: R(Hm) -> K(Nn(m)) is defined in the

same way as (3.9), and we have the commutative diagram

RO(HJ — £ -

KO(Nn(m)) -£-> K(Nn(m)).

Since c^ίxO and cxξ{χ2) generate H2(Nn(m); Z)=Z2®Z2, (cf. [3, p. 259]),

we can take a, b eHx{Nn(m)\ Z 2) in (2.2) so that
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Aa=cιξ(χι\ Ab=c^(X2l

by Lemma 2.1. Then,

j\Aa =j*c1ξ(χ1) =j*cί(cξc-ί(χ1)) = w2(rcξc-ί(χί))

Therefore w1(<^c~1(χ1))=α by Lemma 2.1, and we have ζc~1(χι)=ocΌ by (2.2).
In the same way as above, we have ζc~ί(χ2)=βΌ.

Consider the commutative diagram

R(S3) — i -

-£U K(Nn(m)) -^> KO(Nn(m)),

where {'is the ring homomorphism defined in the same way as ξ of (3.9), using
ξ>. s*n+3^>HPn. Then,

directly by definition. Therefore, by Lemma 3.8, (2.4) and (2.6), we have

ΓH2Z4-4) = ξr(χ4-2) = ξri(χ-2) = rπ>ξ'{χ-2) = rrtz = δ0.

Finally, consider the commutatived iagram

R(HJ <—£— RO(Hm) +->— RO(S3) - ^ - ^ R(S3)

i 1 '\ Ί
K(Nn(m)) <-ίL_ KO(Nn(m)) <̂ L_ KO(HPn) -^-> K(HPn).

Then, by Lemma 3.8, (2.4) and (2.6), we have

ξc-i((χt-2)*) =ξic-\(χ-2Y) = π*c-iξX(χ-2)*) =π>C-i(z2) =x0.

q.e.d.

Finally, we consider the representation ring of the cyclic group Z 4 of order
4. It is well known that

LEMMA 3.11. R(Z4) = Z [ μ ] / < μ 4 - l > ,

where μ is the unitary representation such that μ(g)=Qxp(πi/2)for the generator

gofz4.

Let L2n+ί(4)=S4n+3/Z4 be the standard lens space mod 4, and ζ: S4n+3-»
L2n+ί(4) be the natural projection. Then, we have the commutative diagram
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i ? ( Z 4 ) _ ί _ > * ( £ * " + ! (4))

•II- tl-
RO(Zt)^-^KO(L2»+1(4)),

where ζ's are the natural ring homomorphisms denned in the same way as ξ of

(3.9).

LEMMA 3.12. For the element μ of Lemma 3.11,

σ + l=C(μ)6ϋ:(L 2 » + 1 (4))

is the complex line bundle whose first Chern class generates H2(L2n+1(4); Z)

= Z 4 . Also μ2 belongs to cROiZ^), and

κ + 1 = ζc~1(μ2)eKO(L2n+ί(4))

is the real line bundle whose first Stiefel-Whitney class generates Hί(L2n+1(4);

Z2)=Z2.

PROOF. The first half of the lemma is proved by Lemma 3.11 and [1,

Appendix, (3)].

Since μ2(g) = — 1 by Lemma 3.11, we have μ2 ecR0(Z4), and κ+1 is the

real line bundle over L 2 w + 1 (4). Also, the first Chern class of c(κ+l)=ζ(μ2) =

(σ+1) 2 is equal to 2c x(σ+ 1), which is not zero. Therefore, fc+1 is non-trivial.

q.e.d.

Let i:Z4czHm and i':Z4czHm be the inclusions defined by i(g)=x2m~2

and ίf(g)—y, and

(3.13) p: L2n+1(4) > Nn(m), p ' : L2n+ί(4) > Nn(m)

by the natural projections induced from Ϊ, V.

LEMMA 3.14. For the induced homomorphisms ρι and pn of (3.13),

and the elements α0, β0, δθ9 x0 of (2.3) and (2.6), we have

p>δ0 = 2rσ = p'!<50, p 'x 0 = (™)2 = pnx0.

PROOF. We prove the equalities for p " . Consider the commutative

diagram

i' 1- {-•• I--
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We notice that the following equalities hold by [3, Prop. 3.9, Lemma 4.8]:

(•) ϊXi=μ2, i'Xi=h pnδ=σ2l(l+σ), i'χ4=

where t is the conjugation. Then, we have

by Lemmas 3.10 and 3.12. Also,

p"<50 = p'>rδ = rpnδ = r(σ2/(l + σ)) = r(σ + tσ) = rcrσ = 2rσ,

by (2.6), the third equality of (*) and the fact that ί σ = - σ / ( l + σ ) . Finally,

we have

by Lemmas 3.10, 3.12 and the last euqality of (*).

We notice that the equalities

which are similar to (*), can be proved in the same way as [3, Prop. 3.9, Lemma

4.7], using the inclusions

Z 4 c H2 cz Hm.

Therefore, the desired equalities for pι can be proved in the same way as above.

q.e.d.

§4. Proof of Theorem 1.1

Let Nk be the /c-skeleton of the CJF-complex Nn(m) in §2, and i:Nk^Nn(m)

be the inclusion. For an element aeK0(Nn(m)), we denote its image Vae

K0(Nk) by the same letter a. Therefore, we have the elements

(4.1) a09β09δ0,x0eKO(Nk) for any fc^O,

from those of (2.3) and (2.6).

LEMMA 4.2. ochβoδUo = 0 in i δ

PROOF. α0 and β0 are zero in KO(N°)=0, and δ0 and x0 are zero in K0(N3)
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= KO(N°(m)) and KO(N1)=KO(N1(m)) respectively, by (2.4). Therefore, the

desired results follow from the obvious fact that ab is zero in KOiNP+i'1) if a

is zero in KOiNP'1) and b is zero in KOiN^1). q.e.d.

LEMMA 4.3. // the ring KO(N4n+2) is generated by α0, β0, δ0 and x0,

then V: XO(iV 4 n + 3)-^XO(N 4 w + 2) is an isomorphism.

PROOF. Consider the Puppe sequence

0 • KO(N*n+3) - i U KO(N*n+2).

Since the elements α0, βθ9 δ0 and x 0 in KO(N4n+2) are the i'-images of those in

KO(N*n+3), we have the lemma. q. e. d.

LEMMA 4.4. V: KO(N8n+6)^KO(NSn+5) is an isomorphism.

PROOF. By the Puppe seuqence, the lemma follows immediately. q.e.d.

LEMMA 4.5. // the ring KO(iV8 n + 1) is generated by α0, β0, δ0 and xθ9

then the ring KO(N8n+2) is so.

PROOF. Consider the commutative diagram

f }
2)-^U K(N8n+2) - !U K(N8n+ί),

In the lower sequence, ker V =lmpι =Z2@Z2 is generated by aδ2n and βδ2n

(cf. [3, p263]). Since r in the left is an epimorphism, Ker V =lmpι is generat-

ed by r(aδ2n) and r(βδ2n) in the upper exact sequence. Since c(αoxg)=α<52w

by Lemma 2.7, we have r(a(52w) = rc(a ox8)=2a oxg, and also r(βδ2n)=2β0x%.

These imply the desired result. q. e. d.

LEMMA 4.6. // the ring KO(N8n+A) is generated by α0, β0, δ0 and x0,

then V: KO(iV8w+5)->KO(iV8n+4) is an isomorphism.

PROOF. We have the desired result in the same way as Lemma 4.3. q. e. d.

LEMMA 4.7. // the ring KO(N8n) is generated by α0, βθ9 δ0 and x0, then

the ring KO(N8n+1) is also so. In particular, KO(N1)=KO(S1 V S ί ) = Z 2 ®

Z2 is generated by α0 and β0.

PROOF, Consider the commutative diagram
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KO(S8n+1 VS8n+ί) -*U KO(N8n+ί) JU KO(N8n)

L Li LI

KO(S*n+1) pl ) KO(L*n(4)) -ϋ-> KO(Ltn(4)).

Since / !(αoxg) =/ I(j80xδ)=0 by Lemma 4.2, we have αoxg, βoxoe

Ker Ϊ ! =Im/7I. On the other hand,

p !(αoxg) = 0, pι(βox
n

o) = p / !(αoxδ) = 22nκ

by Lemma 3.14. Also, 22nκ is not zero in K0(L4n(4)) by [5, Th. B]. Therefore,

we have αoxS#0, βox
n

o^0 and aox
n

oφβox
n

o. Since KO(S8n+1 v S 8 n + 1 ) =

2J these imply the desired result. q.e.d.

LEMMA 4.8. // the ring K0(N4n~1) is generated by oί0,β0,δ0 and x0,

then the ring K0(N*n) is so.

PROOF. We consider the commutative diagram

KO(S*n) -^U KO(N4n) -ϋ-> KOiN*"-1)

I f- t-
0 • KO(S4n) -^U KO(HPn) - iU KO{HPn~ι) • 0,

induced by π = π\N4n: (N 4 π , N4n-ί)-^(HPn,HPn~ί), which is a relative homeo-

morphism. In the lower sequence, Kerΐ' =lmpι =Z is generated by

xk (ifn=2k)9 zox
k (i/n=2fc + l)

by [7, p. 145]. Therefore, K e r ί ! = I m p ! in the upper sequence is generated by

πι(xk)=xk

0 (ifn = 2k), π !(z ox k) = δox
k

o (ifn = 2k+l).

These complete the proof. q.e.d.

PROOF OF THEOREM 1.1. Starting from the latter half of Lemma 4.7, we have

Theorem 1.1 for K0(Nk) by the induction on k, using Lemmas 4.3-4.8.

q.e.d.

By Theorem 1.1 and Lemma 3.10, we see that the ring homomorphism

ξ:RO(Hm) >K0(N"(m))

of (3.9) is an epimorphism.

On the other hand the following theorem is proved by D. Pitt :

THEOREM 4.9. [6, Th. 2.5]
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f RO(Hm)lc-H(χ4-2)n+1)RO(Hm) ifnis odd,
Imξs

( RO(Hm)lc-i«X4-2y+ic'RSp(Hm)) ifnis even,

where (χ 4 -2)" + 1 ecRO(HJ if n is odd, by Lemma 2.4.

Therefore, we have Corollary 1.2 in § 1.

§5. Proof of Theorem 1.3

In this section, we deal with the special case

N»(2) = S4n+3/H2,

where H2={±1, ±U ±Λ +&} is the quaternion group.

Consider the ring homomorphism

ξ:RO(H2) >K0(N*(2))

of (3.9), and set also

«0=c-i(Xl-l), βo=c~\χ2-l),
(5.1)

δo = c-H2χ4-4), x o =c- 1 ((Z4-2) 2 )

in RO(H2). Then

ξot0 = α0, ξj?0 = î o, ξδ0 = <50, ξx 0 = *o>

by Lemma 3.10. Furthermore, by Lemmas 3.3 and 3.4, we see easily that

(5.2) R0(H2) is the free Z-module with bases

1> #o> Po> ô> -̂ o>

and the multiplicative structure is given by

αg = - 2 α 0 , β2

0 = -2β0, δ2

0 = 4 x 0 ,

(5.3) «(A = - 2 α o - 2 j 5 o + x o + 2<5o, α o δ o = - 4 α 0 ,

By these relations, we have easily

(5.4) (50xo + 12x

(5.5) xg + 3<50x0 + 8 * 0 = 0 .

LEMMA 5.6. αO(5o*o = ( - l ) ' 2 2 < l + ^ α 0 , ^ o x J o = ( - iy22«+»β0.
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PROOF. These equalities follow from the last four equalities of (5.3).

LEMMA 5.7. 5O(1)S& =(-l)iδ0(l)xί

0 =(-l) ί2 2 ί

<5 0(l), whereδo(l) =xo + 2δo.

PROOF. We see δo(l)δo= -δo(l)xo = -22δ0(\) by (5.3), (5.4) and (5.5).
These imply the desired results by the induction on /. q.e.d.

(I) The case n = 2m + 1

By Corollary 1.2 and (5.1), we have

KO(Nn(2))zRd(H2)lx>S+1RO(H2).

By (5.2), RO(H2) is the free Z-module with bases

α0, βo, δ09 δo(l) + 2nδo=xo + (2 + 2»)δθ9

and the ideal x*$+ίRO(H2) is generated by

w oy ^o 5 Oίo^o » Poxo 9 ^o^o » *o

Therefore, Theorem 1.3 for n = 2m+ 1 follows immediately from

LEMMA 5.9. The elements of (5.8) are linear combinations of

(5.10) 2»+1α0, 2»+1£0, 2 2"+M 0, 2--1(«od) + 2-ao),

β«ί/ the elements of(5ΛQ) are also so of (5.8).

We prove this lemma by the following routine calculations.

LEMMA 5.11. (i) 24ί+3(50xS~ί = 0

(ii) 24 i + 6x;r ί =Ξ 0

(iii) 2δox% = 2*x*S,

(iv) 24i+4xS~ ί + 2 4 ί + 5δ 0xS~ ί" 1 = 0

(v) 24i+5δ0x
fS-i-ί + 2 4 ί + 8 x S " ί - 1 = 0

(vi) 2- 1(5o(D + 2 ^ o ) ^ 0 ,

= means modulo the ideal generated by {JCO+1»

PROOF, (i), (ii) We have the desired equalities by the induction on ί,
using the equalities (5.4)x24ixS"1' and (5A)x24i+1δox'ξ-i-1.

(iii) The equality follows from (5.5) x cg"1 and (i).
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(iv) By (5.4) and (5.5), we have easily

(5.12) xl = 28x0 + 24<50 = 2 4 x 0 + 3 2 2 5 0 ( l ) ,

and (iv) is obtained from (5.12) x 24i+2xtg~i~ί

9 using (i) and (ii).

(v) The equality follows from (5.12) x 24i+3<50x;rί~"2> using (i) and (ii).

(vi) By Lemma 5.7 and (iii) — (v), we have

% = 2δox>$ = 2 4 * S = -

q.e.d.

LEMMA 5.13. (i) x*S+1 = 2n~1{2n-l)(δo(l) + 2nδo)-23n-1δθ9

( i i ) δox>$+1 =

(iii) x*S+2=

PROOF, (i) From (5.12) x 24ixg-1'-1, we have easily

using Lemma 5.7. Therefore, we have

(ii), (iii) These are obtained easily from (i) x (50 and (i) x x0, using Lemma

5.7, (5.12) and (5.4). q.e.d.

PROOF OF LEMMA 5.9. By Lemma 5.6,

= 2" + 1 α 0 , βo^+ί = 2n+1β0.

The other elements of (5.8) are linear combinations of those of (5.10) by Lemma

5.13. Conversely, by Lemma 5.11 (i) and (vi), we have

22n+ίδ0=0, 2n-1(

modulo the ideal xtS+ίRO(H2), as desired. q.e.d.

(II) The case n =2m

By Corollary 1.2, we have
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By Lemma 3.5, the ideal (χ4 - 2)2m+1 c'RSp(H2) of R(H2) is generated by

On the other hand, by Lemma 3.3, we have

2 ( z 3 - l ) ϋ U - 2 ) 2 " + 1 = 2 ( ( χ 4 - 2 ) 2 + ^ ^

whose c'1 -image is equal to

δox>$+1 + 8xS+ 1 - a o δ o x ^ - βoδox*ξ = - 4 * S + ' - 8^o^o - α o 5 o *o ~ ^0*0^0.

by (5.1) and (5.4). Therefore, we see that the ideal c-1((χ4-2)2m+1cfRSp(H2))

of RO(H2) is generated by

(5.14) <50*iJ,

by the above facts and (5.1).

Also, RO(H2) is the free Z-module with bases

by (5.2). Therefore, Theorem 1.3 for n = 2 m follows immediately from

LEMMA 5.15. The elements of (5.14) are linear combinations of

(5.16) 2«+ 2α0, 2«+ 2£ 0, 22»(5O, 2-50(l),

the elements o/(5.16) are a/so so of (5.14).

By Lemma 5.6, we have

Therefore, Lemma 5.15 follows immediately from the following

LEMMA 5.17. (i) Sox's = 22nδ0-2n(2n-l)δ0(l)9

( i i ) * S + 1 =2"(2» + 1 -l)<5o(l)-2 2 n + 1 <5o,

(iii) 2 Λ δ o ( l) = ^ o + 1 + 2 δ o ^

(iv) 22nδ0 = (2 W ~ l ) x S + 1 + ( 2 n + 1 -

PROOF, (i) By (δ.tyxxo1-1 , we have
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using Lemma 5.7. While, by (5.12) x 2 4 i + 3xS" i- 2, we have

2 4 i + 3 J C m - ί =

Therefore, we have (i), since

(ii) By (5.12) x24ίxS~ ί-1, we have

2 4i J C «+i-ι ϊ = s

Therefore, we have (ii), since

(iii) follows immediately by Lemma 5.7, and (iv) follows from (i) and (ii).
q.e.d.

These complete the proof of Theorem 1.3.
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