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Introduction

It is important and interesting to determine when the dynamical system is

Anosov. J. N. Mather has already obtained a characterization of Anosov diffeo-

morphisms in [7], but the corresponding characterization of Anosov flows has

not been established as yet.

In this paper, the author proposes a characterization of Anosov flows for a

special flow, called a geodesic flow. For a geodesic flow, there is a canonical split-

ting TSM=E®S (see Lemma 3) and when the geodesic flow is Anosov, one can

obtain E=ES®EU (see Lemma 8), thus the question is whether we can obtain a

splitting of E with some properties or not, so that one can obtain the result corre-

sponding to [7].

In Section 1 the definition of geodesic flows is given and some lemmas are

proved which provide useful information on the structure of geodesic flows.

Extensive use is made of results on Riemannian geometry as developed by Anosov

[2], Dombrowski [3] and Sasaki [8].

In Section 2 and 3 some lemmas are presented upon which the proof of the

main theorem (Theorem 1) is based. All the tools used in these sections can be

found in the theory of manifolds and in the theory of semigroups (see, e.g. [1],

[4], [6]).

In Section 4 the main theorem is stated and proved.

§ 1. A treatment of geodesic flows

1.1 Riemannian connector K.

Let M be an n-dimensional complete connected Riemannian C°°-manifold,

TMpbe the tangent space at peM and TM = \jpeMTMp denote the tangent bundle

on M with projection π. If (x1, . , xn) is a local coordinate system a t p e M and

if we set TMpev = J]t!=ίv
id/dxi

9 then we can take (x1, .., xn, v1,..., υn) as a local

coordinate system at v e TMp9 so that we can induce a differentiable structure on

TM.

In order to define a geodesic flow by some vector field on ΓM, we must con-

sider the double tangent space TTM = T2M. Since the Riemannian manifold
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has the Riemannian connection F, we can interpret the double tangent space

T2M as the vector bundle over M as follows:

There is a mapping K: T2M-+TM, called the Riemannian connector associ-

ated with the Riemannian connection F, such that the following diagram is com-

mutative

T2M

and π Γ M ® π * ® X m a p s T2M to TM® TM © TM isomorphically as vector bundles

on Λf, where πM: TM^>M and πTM: Γ2M-> ΓM are the projections for the tangent

bundles on M and TM, respectively, and π* is the differential of π M . (For details,

see [3].)

The following proposition due to P. Dombrowski [3] is important in our

investigation.

PROPOSITION 1. For any triple X, 7, Z e TMp, there is a unique AeT2Mz

such that π*A =X and KA = Y.

REMARK 1. By the local coordinate system, we can represent the mappings

π* and K as follows: If we set

then

? Έ?

(2) i

where Γ)k are ChristoffeΓs symbols.

By using the mappings π* and K, we can induce a Riemannian metric on TM,

that is,

(3) <X,Y>TM = <π*X,π*Y>M+<KX9KY>M9

where X, Ye T2MV and < , >M is the Riemannian metric on M. (We will not

distinguish < , >M and < , >TM, unless they are confused.)

1.2 Definition of geodesic flows.

DEFINITION 1. A geodesic flow is the flow generated by the following vector
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field5:

( π+SΌ=υ,
(4)

I KSV=O9

where v e TM and Sv ε T2MV.

REMARK 2. (i) S is well defined because of Proposition 1 and 5 is a so-

called geodesic spray (see [6]).

(ii) Let ω be the 2-form on TM defined as follows :

(5) ω(X9 Y) = <π*X,KY>-<KX9π*Y>9

where X, YeΓ(T2M) (the set of vector fields on TM). Then (TM, ω) is a sym-

plectic manifold and for every YeΓ(T2M)9 S satisfies the equation

(6) ω(S,Y) = ±-dH(Y),

where H(v)= <v, v>9 veTM. This shows that a geodesic flow is a global

Hamiltonian flow. (For the definition of global Hamiltonian flows, see [1].)

Let us restrict S to the sphere bundle SM on M which consists of unit tangent

vectors. We can do this because of the following lemma.

LEMMA 1. The vector field X on TM is tangent to SM9 if and only if

(7) <v9KXv>=0.

PROOF. X is tangent to SM if and only if X(H) = dH(X) =0, where H is the

same as in Remark 2. By using (5) and (6) we can see that for all v e SM,

Xυ(H)=dH(Xυ)=2ω(Sυ9 Xυ)=2<π*Sυ9 KXV> -2<KSυ9 π*XΌ>

=2<v,KXv>.

This completes the proof.

By this lemma we can obtain the following corollary which will be needed

later.

COROLEARY 1.

Γ(TSM)=*{XeΓ(T2M); <v9 KXV> =09 for all veSM}9

where TSM is the tangent bundle of SM.

From now on, by a geodesic flow on M we mean the flow generated by the

vector field S restricted to SM. Set φt=exptS. Then φt is a one-parameter

groups of diffeomorphisms on SM and the parameter t is equal to the arc-length,
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since | | S | | = 1 .

REMARK 3. Since a global Hamiltonian flow preserves the volume element

Λnω, we can easily see that a geodesic flow preserves some measure by the theorem

of Hamilton-Jacobi. (see [1], Theorem 16.27.)

1.3 Some lemmas for geodesic flows.

Let φt be a geodesic flow defined above. Then the differential Tφt of φt

is canonically defined. We will investigate Tφt as follows.

Let (xf, vι) be a local coordinate system at v e TMX. Then from (1), (2) and

(4), the geodesic spray S is locally represented as follows:

Therefore the mapping φt: SM-+SM is locally defined by the following differ-

ential equations

(10)

Let (xι, vι, ξι, ξn+i) be a local coordinate system at ξeTSMv. Then the

mapping Tφt: TSM-*TSM is locally defined by the following equations

(Π)

(12)

dt

Now we can obtain the differential equations for Tφt which are independent

of the local coordinate system as follows:

LEMMA 2. Let ξeTSMv be a tangent vector at veSM. Then Tφtξ satisfies

the following equations

(13)

(14)

where —7— is the cpvariant derivative along the geodesic curve y on M with the
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initial conditions y(0)=x, y(0) = v and y(t) = φtv and R is the curvature tensor

defined as: for X9Y9Ze TMX

(15) R(x,Y)z=-rxrγz+rγrxz+rίXtYΊz.

PROOF. Since the curve t^>x(t) is equal to y defined before because of (9)

and (10), π*Tφtξ and KTφtξ are vector fields along y. Thus the covariant deriva-

tives of π*Tφtξ and KTφtξ along γ have a meaning. For brevity we represent

πφtv, φtv and Tφtξ as (x ι(0), (i>4(0) and ({'(ί), ξn+i(t)) respectively. Then from (1)

and (2), π*Tφtξ and KTφtξ can be represented as (£*(0) and ( ί " + i ( 0 + ^}fc(*(0)

vj(t)ξk(t)) by using Einstein's rule. Furthermore, so as to avoid complication

we do not write t for xl(t), ϋ'(ί), ξ*(t) and ξn+i(t). It follows from (9), (10), (11)

and (12) that

Further, by using classical relations (see [5] note that our definition of R has

the opposite sign),

where R)ιk is defined in [5] (Proposition 7.6). This completes the proof.

For every v e SM, we define Ev as follows:

Ev = {XeT2Mv; <π*X, v>=<KX, v> =0} .

Then we obtain the following.

LEMMA 3. The following statements are true.

(i) E = yjυeSMEυ is a subbundle of the tangent bundle TSM on SM.

(ii) TSM=EφS is a continuous bundle splitting, where φ means an
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orthogonal sum and S is the 1-dimensίonal vector bundle generated

by the vector field S.

(iii) E is Tφt-invariant, namely TφtEυ=EφtV.

PROOF. The statement (i) is evident and (ii) follows directly from the follow-

ing fact, together with Corollary 1: for every X e Ev9

, Sv> = <π s | ίX, π*Sv> + <KX, KSV> = <π*X9 v > =0.

To prove (iii) let us consider X e Ev and TφtX. Then from Lemma 2, we

have

^ > = <^π*TφtX, φtv> + <π*TφtX, -^Φtv>

= <Kπ+TφtX9 φtv>=0,

-£-<KTφtX9 φtv> = <^KTφtX, φtv> + <KTφtX9 -Hfφtv>

= <-R(φtv9 π*TφtX)φtv9 φtv> =0.

The first equation follows from the facts that the Riemannian connection is com-

patible with the Riemannian metric and φtv is the velocity vector of the arc-length

parametrized geodesic curve, with TφtX e TSMφtV. The second equation follows

from the skew symmetric property of the curvature tensor (i.e. < R(X, Y)Z, W> +

<R(X, Y)W9Z>=0).

This completes the proof.

Let us define the mapping D: Eυ^Ev as follows: for XeEvy veSM,

[ π*DX=KX,
(16)

I KDX=-R(v,π*X)v.

By Lemma 2 and Lemma 3, we can easily show that D is well defined and is a bundle

mapping on E.

Now we get the following lemma.

LEMMA 4. For every XeEv and TφtX9

(17) -tr\\TφtX\\> = 2<DTφtX, TφtX>,

where \\X\\2 = <X, X>.

PROOF. Using Lemma 2, we obtain
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=-^-<π*TφtX, π*TφtX>+-?L<KTφtK,KTφtX>

= 2<-^-π*TφtX, π*TφtX> -{-2<-^-KTφtX, KTφtX>
at at

=2<KTφtX, π*TφtX> +2< -R(φtv, π*TφtX)φtυ, KTφtX>

=2<π*DTφtX, π*TφtX> + 2<KDTφtX, KTφtX>

=2<DTφtX, TφtX>.

This completes the proof.

§ 2. Some lemmas from the theory of differentiable manifolds

Let M be a compact connected C°°-manifold with some Riemannian metric

< , > and φt be a one-parameter group of diffeomorphisms on M, so-called

"flow", defined by some vector field X on M.

DEFINITION 2. A flow φt is called an Anosov flow, if there exists a continuous

splitting of the tangent bundle TM=ES®EU®X such that:

(i) Es and Eu are Tφt-invariant vector bundles of dimension larger than one;

(ii) there are positive constants c and ω such that for YeE%, \\TφtY\\S

ce-ωt\\Y\\ in ί^O, and for YεE", \\Tφ_tY\\ ^ce~ωt\\Y\\ in ί^O.

We will call Es and Eu the stable and unstable bundles respectively.

Let F be a T^-invariant vector subbundle of TM and Γ°(F) be the set of con-

tinuous sections of F. For ξeΓ°(F), set ||ξ|| = s u p X 6 M | | ί , | | , where \\Y\\2 = <Y9

Y> and set φfξ = Tφtoξoφ_t. Then Γ°(F) is a normed space and φf is a one-

parameter group of linear operators on Γ°(F).

We can easily check the following properties of Γ°(F) and φf.

PROPOSITION 2. The following statements are true.

( i ) Γ°(F) is a Banach space over the reals.

(ii) φf: Γ°(F)^Γ°(F) is a toplinear automorphism on Γ°(F)for any teR.

(iii) φ0 is the identity operator on Γ°(F).

(iv) For alls, teR, φ*oφ* = φf+s.

(v) φ? is strongly continuous in t, that is, lim\\φfξ — ξ\\ = 0 for all ξe
t-*O

PROOF. Since (i), (ii), (iii) and (iv) are obvious, we will only prove (v).

Choose a finite cover {Uλ}λeΛ of M by charts and choose y > 0 so small that for

d(x, y)<y there is a chart (α, U) of the cover with x, y e U. Then we can consider

that φt maps U into U for |ί| <γ.
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Take a chart (α, U), where U is an open subset of M and α is a C°°-diffeo-

morphism mapping a neighborhood of U onto an open subset of &n, and ξ e

Γ°(F). Then by identifying φt with the induced mapping on the image of α, we

have

UDφ,)φ.tXξφ.tX-ξJ 5Ξ

+ \\(Dφt)φ_tXξx-(Dφt)xξx

+ \\(Dφ,)xξx-ξx\\

\\(Dφt)x-I\\ \\ξ\\

+ C3\\(Dφt)x-I\\,

where D is the derivation and Cu C2 and C 3 are constants independent of ί.

For arbitrary ε>0, when |ί| is sufficiently small, the first term is smaller than

ε, because ξx is equicontinuous in xeM. For the second and third terms, by

taking the Taylor expansion of first order with respect to t, we have

(Dφt)φ_tX=I-(DX)X2 XX2t,

for some xt and x2, where X is the vector field which defines φ,. Therefore

\\(Dφt)φ_tX-(Dφ,)x\\^C4\t\,

\\(Dφt)x-I\\ίCs\t\.

This implies that \\φfξ — ξ\\ converges to zero as t tends to zero, because Wφfξ — ξ\\

is equivalent to

sup J\(Dφ,)φ.tXξφ_tX-ξx\\.
λeΛ,xeUλ

This completes the proof.

Now let us obtain the relation between Tφt and φ*t.

LEMMA 5. The following statements are equivalent.

(i) There are positive constants c and ω such that for every xeM and every

XeFχ9

\\TφtX\\^ce-^\\X\\ in teO.
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(ii) There are positive constants c and ω such that for every ξeΓ°(F),

\\φ*ζ\\^ce-<°>\\ξ\\ in ί^O

(namely \\φf\\ ^ce~ω ).

PROOF. For x e M and ξ e Γ°(F)

\\Tφtξφ_tX\\ύce-°»\\ξφ_J\iίce-°»\\ξ\\,

and therefore,

\\φ*ξ\\=suv\\Tφtξφ_tX\\<ce-°>'\\ξ\\.
xeM

Thus (i) implies (ii).

Conversely, for XeFx9 we can take ξeΓ°(F) such that ξx=X and | |£|| =

11*11. Then we have

\\TφtX\\=\\Tφtξx\\=\\(φ*ξ)ΦtX\\ ^ WΦKW

ύce-»<\\ξ\\=ce-°>t\\X\\.

Thus (ii) implies (i), which completes the proof.

Here we will state a result of R. G. Swan [9] which will be needed later.

PROPOSITION 3. // M is compact and E, Et and E2 are vector bundles on

M, then the correspondence which sends a vector bundle splitting E=Eί®E2

to the corresponding splitting Γ0(E)=Γ0(E1)®Γ°(E2) of C°(M)-module is bi-

jective, where C°(M) is the ring of all continuous functions on M.

§ 3. Some lemmas from the general spectral theory and the theory

of semi-groups

Let X be a Banach space over the complex numbers ^ and A be a bounded

linear operator on X.

DEFINITION 3. The spectrum of the bounded linear operator A is the set

of complex numbers λ such that A — λl is not a toplinear automorphism on 3E.

We denote this set by σ{A). The set p{A) = ̂  — σ(A) is called the resolvent set

of A and R(λ, A)—(A — λI)~1 is called the resolvent of A for λep(A).

σ(A)9 p(A) and R(λ, A) have the following properties (see [5], VII 3.4).

PROPOSITION 4. J/3E#{0}, then the following statements are true.

(i) σ(A) is a closed and bounded non-void subset of &.

(ii) VPF
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(iii) R(λ, A) is an operator valued analytic function on p(Λ).
Let Tt be a strongly continuous semi-group of bounded linear operators on

X. Then we have the following lemma.

LEMMA 6. // \\Tn\\ 5sc1e~lιω for all positive integers n, where ct and ω are
some positive constants, then there is a positive constant c such that \\Tt\\ ^
for all ί^O.

PROOF. Since Tt is strongly continuous, by Lemma VIII 1.3 in [4], we have

sup \\Tt\\£c29
fe[O,l]

where c2 is some constant.
Set c = c1c2e

ω. Then | |T f | |^cίΓω ί for all ί^O, which completes the proof.
When p(Tx)^{λeV\ \λ\ = 1}, if we set

\x\=i

then P is a bounded projection operator on X because {λeσ^); |A|<1} is a
spectral set (see [4], p. 573), hence PX is a closed subspace of X.

Now we obtain an important lemma.

LEMMA 7. PX is Trinvariant for all ί^O.

PROOF. If p(7\)=>Ue#; \λ\=l}, then ρ(T1/n)=>{λe&; \λ\=l} for every
positive integer n, because it follows that σ(T1)=σ(T1/n)

nfrom the spectral mapping
theorem (see [4], p. 569).

Since T1/n is a bounded operator, we can choose three constants 0 < r 1 < l <
r2<r3 such that ρ{Tιt^{λe^\ rx^\λ\^r2) and σ(T 1 / n)c{2e^; W<r 3 }.
By Dunford's integral (see [4], p. 568), we have

1 7 2πi J |α|=ri <Xn-λ 2πi )\a\=r2 0ίn -λ

2πi ),α,= r 3 *»-λ aCC>

for |A| =1. Therefore, by Proposition 4 (iii), we have

J—){ {-{ +{ -{ }
2πί/J |A| = l( J|«|=r, 3|«|=r2 3|α|=r3ί U" — λ
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This shows that Tί/nP=PTί/n for every positive integer n, because Tι/nR(aι,Tί/n) =
R(cc, T1/n)Tί/n.

Thus by using the fact that Tt is strongly continuous, we have shown that
TtP=PTt for all ί^O. This means that PX is TΓinvariant for all ί^O.

Next we will consider the case where X is a Banach space over the reals &
in order to apply the general spectral theory to Γ°(F).

Let A be a bounded linear operator on X and set

for ί -

Then X is a Banach space over ^ with norm | |£ | | 2 = |l£ill2 + ll£2ll2 and 4̂ is a

#-linear bounded operator on X. (X and A are the so-called complexifications

of X and 4, respectively.)

§ 4. A characterization of Anosov flows for geodesic flows

Let M be an n-dimensional compact connected Riemannian C°°-manifold and
let φt be the geodesic flow on M. Recall that φt is a one-parameter diffeomor-
phisms on SM. Let E be the subbundle of the tangent bundle TSM defined in
§1 (1.3), and consider the Banach space Γ°(E) defined in §2. From now on,
we will write Γ°(E) as X for brevity.

Since E is Tφt-invariant, φf operates on X and φf is a strongly continuous
semi-group of bounded operators in both sides because of Proposition 2.

The following lemma is brief, but fundamental in our consideration.

LEMMA 8. // the geodesic flow φt is Anosov and if Es and Eu are the
stable and unstable bundles, respectively, then E=ES@EU.

PROOF. It follows from Lemma 3 and Definition 2 that:
(a) TSM=ES®EU®S=E®5 and especially E®S is an orthogonal sum.
(b) E, ES®EU and 5 are Tφrinvariant.
(c) \\TφtX\\ =\\X\\ for XeS.

From (a), it is sufficient to show that EsaE and Euc:E. If ES<£E, then
there is a non-zero vector XeEs-E. We can take the decomposition X =XX +
X2 where Xt e E9 X2 e S and X2 Φ 0. By (a) and (b), we have
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However, from the definition of Es, the left hand side converges to zero as t tends

to -f oo while, in view of (c), the right hand side does not converge to zero as t

tends to +00. This contradiction shows that EscE. In the same way, only

replacing t by — t, we can show that £Mc=£, which completes the proof.

Now let us consider the complexifications X, φf of X, φf respectively as

defined in § 3. Then we can state the main theorem in this paper.

THEOREM 1. For the geodesic flow φt, the following statements are equiva-

lent.

( i ) φ\—I is a toplinear automorphism on X.

(ii) \φσ(φ\).

(iii) λφσ(φ\)if\λ\=l.

(iv) φt is an Anosov flow.

(v) There exist a direct sum splitting TSM=ES®EU®S such that Es

and Eu are preserved by Tφt, a Riemannian metric || || on SM, and a

positive constant ω such that \\TφtX\\^e-ωt\\X\\ for all XeEs, ί^O

and \\Tφ_tX\\^e-ωt\\X\\for all XeEu

9 t^O.

PROOF. The proof goes (i) => (ii) => (iii) => (iv) => (v) => (i).

1. ( i)o(i i) is evident from the definition of the complexification.

2. (ii) => (iii) is a direct consequence of the following proposition which is

an adaptation of a result of J. Mather [7].

PROPOSITION. //1 φ σ(φ\), then μ e σ(φ\) and \λ\ = 1 imply that λμ e σ(φ\).

3. We will show that (iii)=>(iv). In this step we denote φ\ by A for brevity.

If pC?)=> {λ e&; \λ\ =1}, then because of Lemma 7 there is a projection oper-

ator P such that PX is 0?-invariant for all t. Hence Q=I — P is also a projec-

tion operator and QX is φf-invariant for all t as well.

Set σ+={λeσ(A); \λ\>l} and σ_={λeσ(Ά); \λ\<l}. Then σ± have the
following properties:

(a) σ± are spectral sets, namely open and closed sets in σ(A);

(b) σ+ U σ_ =σ(Ά) (disjoint union);

(c) σ ± are non-void.

(a) and (b) are evident from the fact that σ(Ά) is a closed bounded set and σ(Ά) Π

{λ e # ; \λ\ =1} =φ. (c) will be proved later by Lemma 9.

Applying the general spectral theory (see [4], VII 3.20, VII 3.21), we get the

following statements:

(d) If we denote the restricted poerators of A on PX and QX by i _

and Ά+ respectively, then σ(A±) = σ±
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(e) X = PX®QX.

Set r_=snp{\λ\;σ(Ά)3λ, \λ\<l} and r+ = sup{\λ-1\;σ(Ά)3λ9\λ\>l}.

Then it follows from (d) and Proposition 4 (ii) that

(f)

I lim sup n

(g) '

(f) implies that there are positive constants cί and ω such that | | ^ _ | | ^

Cjβ""40 and \\A+n\\ ^cγe~nω for all n. Hence by Lemma 6, there are positive

constants c and ω such that

( φ f t for . / ^ 0 ,
(h)

' llφί ί l β ϊ l l ^ c e - ^ for ί'^O.

Since </>f commutes with conjugation, there are closed subspaces 3E± of X

such that the complexifications of ϊ _ and £.+ are PX and QX respectively, X±

are 0f-invariant and X=X-®X+.

By (g) we can easily check that

(i)

X+= {ξeX; lim sup tJJφΪM ύr+) .
r-*+oo

It follows from (i) that X± are C°(5M)-modules and moreover ΐ=3E_©3C+

is a splitting as C°(5M)-module. Therefore according to Proposition 3, we see

that there are two subbundles of E, denoted by Es and £", such that

(j)
( E=E*®EU .

Applying Lemma 5 in this case and using (h) we see that: for every veSM,

{ \\TφtX\\^ce-ωt\\X\\ for XeE% and
(k)

I ψ l l l l l l for XeE»v and ί^
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Thus (j) and (k) show that (iii) implies (iv).

4. That (iv)=>(v) is easily shown as follows. Take any μ satisfying 0 <

μ<ω and choose τ so that ce ( / i ~ ω ) τ <l, where c and ω are constants defined in

Definition 2.

We define a new Riemannian metric || \\u by

l ^ \\e»<TφtX\\2dt for XeE*,
Jo

\\XM=\τ\\e»'Tφ-,Xpdt for XeE",
Jo

and generally for X*=X_ + X+ +X0, X_eE\ X+eEu, XoeS,

Let X e E'. Then

because

[' [' \\e"sTφsX\\2ds\
o

Hence \\TφtX\\ι£e-'«\\X\\1 for t^O.

The same argument applied to φ.t shows that WTφ^XWi^e'^WX^ for ί^O

and Z e Eu.

5. We will finally show that (v)=>(i). Set A=φ*u A. =A\Γ°(ES) and A+ =

^|Γ°(£M). Then | |A_| |<1, and hence - Σ ? = o ^ - converges and equals (A_-

J)-1. Also | | i4ϊ 1 | |< l > so ( ^ i 1 - / ) " 1 exists. Therefore (A+-I)~l =-A+ι

( A ; 1 - / ) - 1 exists. Since ( A . - / ) " 1 and ( ^ H . - / ) - 1 exist, (A-I)'1 exists.

This completes the proof of Theorem 1.

Now it only remains to prove Lemma 9.

LEMMA 9. σ± are non-void.
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PROOF. We will prove this lemma by contradiction. If we assume that

σ+ = φ, then by (h) in the proof of Theorem 1, we have \\φf \\ ^ce~ωt for ί^O.

Therefore, by Lemma 5, we see that for every v e SM and every X e Ev, \\ TφtX\\ ^

ce-»<\\X\\.

On the other hand, if we set π*X' = π*X, KX' = -KX, then X' e Ev and ap-

plying Lemma 4, we have

-jf\\TφtX'\\2=2<DTφtX', TφtX'>

=2{<π*DTφtX', π*TφX'> + <KDTφtX', KTφtX'>}

=2{<KTφtX', π*TφtX'> + < -R(φtυ, π*TφtX')φtv, KTφtX'>}

= -2{<KTφtX, π*TφtX> + < -R(φtυ, π*TφtX)φtv, KTφtX>}

This is contradictory. To see this fact, it is sufficient to observe the following fact.

If r(t) is a C 1 -function on [0, oo) and if 0^r(t)Sce~ωt for some positive

constants c and ω, then we have

r(t) = r(0) + [' r(t)dt^ ce~ωtr(0),
Jo

which implies

This shows that \ r(t)dt < 0 for sufficiently large t Ξ̂ O. Thus the proof of Lemma
Jo

9 is complete.
This proof of Lemma 9 gives us the following important corollary.

COROLLARY 2. // the geodesic flow φt is Anosov, and if Es and Eu are the

stable and unstable bundles, respectively, then d i m £ s = d i m £ α = n — 1 , where

dim M = n.

PROOF. If XeEs, then we have \\TφtX\\ ^ce~m\\X\\ for ί^O. If we set

π*X' =π*X, KX' = -KX, then, as already shown, we conclude that

\\Tφ_tX'\\^ce-<°*\\X'\\ in ί^O.

This shows that X' e Eu, which completes the proof.
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