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§1. Introduction.

In the theory of ordinary differential equations in the complex domain a
study of analyzing global behaviours of solutions is of great importance, but
extremely difficult. Specifically, such a global problem for linear ordinary differ-
ential equations consists in finding explicit connection formulas between local
solutions. In fact, as is well known, a fundamental set of solutions of linear
differential equations can be expressed in terms of linear combinations of another
fundamental set of solutions with constant coefficients. But there exists no general
way to evaluate the constant coefficients explicitly.

In 1858, B. Riemann [21] first investigated the connection problem for the
so-called hypergeometric differential equation with three regular singularities
and derived the complete results by the method of double-circuit contour integra-
tion. After that, many authors tackled and to some extent contributed to the
global analysis of Fuchsian differential equations, though satisfactory results even
for Heun's equation, a second order linear differential equation with four regular
singularities have not yet been obtained. For topics on Heun's equation and
Fuchsian differential equations, see [7], [5] and [17].

At the quite same time when B. Riemann wrote the above paper, G. G. Stokes
[22] had been studying Airy's equation which has only a regular and an irregular
singular point in the entire complex plane, and discovered a striking fact that
constant coefficients appearing in asymptotic representations of solutions change
discontinuously by a change of sectorial neighborhoods of an irregular singular
point. This fact is now called the Stokes phenomenon. The Stokes phenomenon,
as we explain below, can be completely worked out by the solution of a connection

* A part of the results in this paper was announced in [12] without proofs.
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between two fundamental sets of solutions in respective neighborhoods of a regular

and an irregular singular point. The detailed study of such a two point connec-

tion problem was initiated by G. D. BirkhofT [1] and followed by several authors

[23], [13], [6], [8].

Our purpose of this paper also is to solve a two point connection problem

for linear ordinary differential equations with an irregular singularity of an arbi-

trary rank, providing a method of evaluating constant coefficients in the linear

relations between two fundamental sets of solutions.

Now we are concerned with a single n-th order linear ordinary differential

equation with polynomial coefficients of the form

which has obviously a regular singularity at the origin and an irregular singularity

of rank q at infinity in the entire complex plane. As is easily verified, there exists

a fundamental set of solutions expressed in terms of convergent power series

(1.2) Xj(t)=tp< Σ Gj(m)r 0 = 1, 2,..., ή)
m=0

in the neighborhood of the regular singular point ί=0. The constants pj are

the roots of the characteristic equation

(1.3) (p) ίplnΣ

where the notation [ ] p means that

(1.4) [ p ] P = p ( p - l ) (p

According to the local theory of irregular singular points, we can calculate formal

solutions of the form

(1.5) ( p( ^ g
\ q q 1 / s=o

and then prove the existence of an actual fundamental set of solutions X§(t)

(k = l9 2,..., ή) with reference to every sector S with vertex at the origin and cen-

tral angle not exceeding π/q such that

(1.6) Xk

s(t)~Xk(t) as ί-»oo in S.

The last statement means the asymptotic relation in the sense of Poincare's

definition.
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Here we remark that λk, a * _ l v . . , a i and μk (fc = l, 2,..., ή) in the formal

power series (1.5) are the characteristic constants determined by algebraic pro-

cesses, and, in particular, λk (fc = l, 2, ..., ή) are the roots of the simple equation

(1.7) () Σq

We assume throughout this paper that pj — pkφinteger {jφk), λj^O and λ^Φλk

(jφk). The first assumption, which is not essential, excludes the case when the

solutions in the neighborhood of the regular singular point ί = 0 involve loga-

rithmic terms.

From now on we shall aim at deriving the asymptotic representations of the

convergent power series solutions Xj(t) in terms of the formal solutions Xk(t)

in the whole complex plane. Once we have the asymptotic relations

(1.8) X£t)~Σju kKS)Xk(t) as ί^oo (; = 1, 2,..., ή)

in every sector S a finite number of which covers the whole complex plane, the

constant coefficients Cik'J)(§) appearing in the connection formulas

(1.9) *$(*)= ±C«>»(S)Xj(t) (/c = l, 2,..., n)

in a sector § c S can readily be given by evaluating the inverse matrix of the matrix

{T".*>(S):7, /c = l ,2, ...,n}, since

X\(t)~ Σ &">»(§) Σ T">l\S)Xl(t)=Xk(t) as ί-oo in 5.
j=l 1=1

And then, the Stokes phenomenon near the irregular singular point ί = oo will

be cleared up by the relations

(1.10) X*i(t)~ ΣCik-»(S)ΣTU-ιKS')Xι(t) as /->oo in S'
j=ί 1=1

The constant coefficients T°" k )(S) varying with a sector S are called the Stokes

multipliers.

We here give a short sketch of a method for the establishment of the asym-

ptotic relations (1.8) together with the determination of the Stokes multipliers

Tu*k)(S) for every sector S. Assume that the connection problem were solved.

Then the convergent power series solution Xj(t) may be written in the form

(1.11) Xj(t)=t" Σ Gj(m)f"= Σ T(J>kHS)Xk

s(t)= ± Σ
m=0 *=1 *=1s=O
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where functions x(J'k)(t, s) may be considered to have the following behaviours:

x(J>k)(t, s)~tpJ near / = 0

\ q q-lq

near / = oo.

Conversely, we take as the functions with just the same properties as (1.12) par-
ticular solutions

(1.13) x<' *>(f, s)=tpJ Σ 9u'k)(m, s)Γ
m=0

of first order nonhomogeneous differential equations

(1.14) / ^ β μ ^ + αJ_1ί -i + . . .+αϊ/+(μ 4 - j)}x + ̂ P ^ ) ( 0

where P(/ik)(t) are appropriate polynomials of degree (<?-l). Then, we try to
split the convergent power series solutions Xj(t) into series of the form (1.11)
and next make clear their global behaviours by means of the properties of the
functions xu>k)(t9 s).

We call the functions xu>k)(t9 s) the fundamental functions associated with
this two point connection problem, considering the fact that the first order non-
homogeneous differential equations (1.14) are determined solely by the character-
istic constants. The global analysis of the fundamental functions is heavily based
on the study of the coefficients g(j'k)(m9 s) of the power series (1.13) which also
are solutions of q-th order difference equations

(1.15)

The method stated above was first applied to the two point connection problem
for a differential system with an irregular singularity of rank 1 by K. Okubo [14]
and then effectively used in a series of papers [15], [9], [11], [12]. In the case
when the rank g = l,the corresponding coefficientsgu>k)(m9s) are the reciprocals
of the Gamma functions and hence the analysis of x(j>k)(t9 s) is due to the detailed
investigation on the so-called generalized hypergeometric series by E. M. Wright
[26] and others. In the paper [11] treating the case when the rank q=2, the
global behaviours of the fundamental functions are cleared up with the help of
the study of the modified Gamma function by N. G. de Bruijn [4].

Among the important papers cited before, H. L. Turrittin [23] treats a single
n-th order differential equation with the extended form of BesseΓs equation.
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Although the rank is not necessarily one in that paper, the coefficients Gj(m) of

the corresponding convergent power series solutions are represented in terms of

products of Gamma functions and their reciprocals, and therefore, as in the case

of the rank 1, the analysis again reduces to that of the generalized hypergeometric

series. We refer the reader to [2], [3] too.

Finally, we shall outline the steps to be taken in reaching our main theorem

in this paper. We begin with the analysis of the associated fundamental functions

and obtain beautiful results as to their global behaviours after a heavy computa-

tion. In order to proceed to the partition of the convergent power series solu-

tions, the detailed investigation on the behaviours of the coefficients Gj(m) and

hk(s) for sufficiently large values of m and s are needed.

In § 3, by an ingenious method, we make clear the behaviours of hk(s) for suffi-

ciently large values of s. In the last part of this section, we show how the charac-

teristic constants λk, ock

ι-1,..., oc\ and μk are determined by the coefficients alr

and find an invariant identity which plays an important role later.

§ 4 deals with the determination of the Stokes multipliers. There the coeffi-

cients Gj(m) are considered as solutions of qn-th order difference equations and

are expressed in terms of series in hk(s) and gu>k)(m, s). Then such expressions

will determine the Stokes multipliers.

In the last section we shall show the derivation of the asymptotic representa-

tion (1.8) by the method of decomposition.

§ 2. The global behaviour of the associated fundamental function.

We anew define the fundamental function x(t, s) associated with the two point

connection problem by the series

(2.1) x(U s)= Σ g(m + s)tm+p
m=0

where the coefficient g(m + s) satisfies the q-th order difference equation

(2.2)

of just the same form as described in the statement (1.15), omitting all indices

attached to the functions and the characteristic constants. Although in § 1 it

was introduced as a particular solution of a differential equation, the fundamental

function x(t, s) defined as above satisfies a first order nonhomogeneous differ-

ential equation. In fact, we easily obtain a recurrence relation

x(ί, s)=g(s)tt>+
m=
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and hence

(2.3) x(t9s-r)=g(s-r)tf> + g(s-r+l)tf>+ι + '~+g(<s-l)tP+r-ί+ trx(t, s).

We also have, using the difference equation (2.2),

(2.4)
at m=o

= Σ {oί1

m=0

=ot1x(t9 s - ^ + +α^.jX^, s-q + l) + λx(t, s-q)

ί, s).

Substituting the formula (2.3) into the right hand side of the relation (2.4), we
then obtain the first order nonhomogeneous differential equation

(2.5)

Therefore, the associated fundamental function may again be regarded as a par-
ticular solution of the differential equation (2.5) and its global behaviour will be
analyzed through the integral representation of the solution.

As is easily seen, a general solution of the differential equation (2.5) is written
in the form

x(t, ,r) =

x {[λg(s-
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And the desirable solution is obtained by putting the integral constant C = 0

since otherwise it does not behave like tp near the regular singular point at the ori-

gin. Consequently, putting η = tτ9 we have the integral representation of the as-

sociated fundamental function x(t, s) as follows:

(2.6) x(f, s)

t: s-μ + p + q-2:

where ^ / ^ μ i ^ e x p f - - a r g Λ A"(1/«> = |A|-(1/«> expΓ—— argλ) and we put

( 2 . 7 ) z(t: v : y k ) = z(t: v : γq-l9...9 γh9...9 γt)

Hereafter the above abbreviation will be used throughout, i.e., γk is representative

of a set of constants γq-ί9 yq-2> --> Ύi appearing in the integrand. And, for in-

stance,

z(ί: v: a^-(k/«>) = z(i: v: 0Lq.tλ-a

Owing to the integral representation (2.6), the study of the function x(t, s) is reduc-

ed to that of the integral z(t: v: γk).

Now we shall investigate the global behaviour of z(t: v: γk) in the entire com-

plex plane. In (2.7) the path of integration is the positive real axis and Rev>0

is, for the moment, assumed, though this will be relaxed later.

At first, we consider the case when t lies in the sector

(2.8) St; - — ^ a r g / < — .

Setting the integral variable η = tτ and for brevity

q q-\

we have

z(t: v: yk) = \ exp (p(t)-



300 Mitsuhiko KOHNO

• $ ; .

where the original path of integration, the straight line from the origin to ί, is

changed into the path (P x) which consists of

(i)i the positive real axis from the origin to |ί|

and

(ii)! the circular aτc\η\ =\t\ from |ί| to t.

Moreover, we have

(2.9) z(t: v: γk) = txp (p(t))r
Jo

The second and the third integrals in the right hand side of (2.9) are bounded for

sufficiently large values of ί. In fact, putting t = \t\eiθ(\θ\ ^π/q, \t\ ^ 1),

R e v - l

dξ

(M: a constant)

where i?4_ x(ξ, |ί |) is a polynomial of degree q — l'mξ and |ί| respectively with the

form of

We proceed to the estimate of the third integral. We put η = \t\eiφ along the cir-

cular arc (ii)x and then have
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\exp(p(t)-p(η))\

^ exp<——(cos qθ — cos qφ)

+ Σ -LΎr~ (Re Ίk ( c o s kθ — cos kφ) + Im γk (sin kφ — sin kθ)) >
k= l k ) I

for sufficiently large values of ί, since cosgfl — cosςfφ^O for 0^\φ\^\θ\^π/q.
Thus, we obtain

I jj
πl"dφ = M— (M: a constant).
o 9

Hence, if we set

(2.10)

where we make use of the same notation as in (2.7), then we obtain the
behaviour

(2.11) z(t: v: yk) = φ(v: yk)exp(p(0)r* + O(l)

for sufficiently large values of t in the sector Sί.
Next we consider the case when t lies in the sector

(2.12) Sj -ψ + ψj ύ arg / g —γ + ̂ fj (7 = 2, 3,..., q).

In this case, we change the original path of integration, the straight line from
the origin to ί, into the path (Pj) which consists of

(i); the straight line from the origin to |ί|e(2*(.

and

(ii); the circular arc \η\=\t\ from |ί|e(2«(i-D/β)< to t.

Let ω = e(2π/q)i and hence ωq = l. By the same procedure as stated above, we
obtain
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(2.13) z(t:v:γk)

o

f|f|exρ(iθ)
\
J l f l e x p Y\

o \ q fc=i k

for sufficiently large values of t in the sector Sj. We shall summarize these results

in the form of

THEOREM 2.1. For sufficiently large values of t in the sector

s" ~Ύ ΎJ~ a r g - ~Ύ+Ύ} ϋ= ' '-'q)'
the function z(t: v: yk) has the behaviour

(2.14) z(t: v: γk) = φ(v: ykω
k^-^)ω^J'^ exp Γ— + ?Jzii/ί-i + .

+ 0(1).

Here we make some remarks on the function φ(v: yfc) of v which was defined by

the definite integral (2.10). By means of partial integration, we have

(2.15) vφ(v: yk) = φ(v + q: yk) + yq-^(v + q-l: yfc) + +y2φ(v + 2: yk)

which is a g-th order difference equation in v. And then, from the above differ-

ence equation, we easily see that the function φ(v: yk) defined in the half-plane

Rev>0 can be analytically continued over the whole complex v-plane except for

simple poles at v=0, — 1 , —2,... . Therefore the condition Rev>0 assumed so

far is replaced by the condition vφ non-positive integer and Theorem 2.1 also holds

under the assumption that vΦ non-positive integer. Such a function φ(v:yk)

defined by the integral of the form (2.10) or the difference equation of the type

(2.15) is called the modified Gamma function the asymptotic behaviour of which

has been investigated in detail by means of the saddle point method by N. G. de

Bruijn (4). We shall show and use N. G. de Bruijn's result later on.

We moreover consider the integral

(2.16) ί(t: v: yfc) = Γ expf— /*(! -
Jo V q k=ί
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where the function F(τ) is holomorphic and bounded at least in the closed unit

disk | τ | ^ l . Since the asymptotic behaviour of the integral z(t: v: yk) depends

mainly on the first constant term in the Taylor expansion of F(τ) near τ = 0 , we

readily obtain the following results.

THEOREM 2.2. For sufficiently large values of t in the sector Sj9 we have

(2.17) t(t: v: γk)=

and, more precisely,

(2.18) ί(t: v: y,) = exp(—

Now, in order to return to the analysis of the function x(t, s), we must still

make some preparations. If we apply Theorem 2.1 to the function z(λί/qt:

s — μ + p: <xkλ~(k/q)) in the integral representation (2.6), we have

(2.19) z(λχl*t: s-μ + p: α

= φ(s-μ + p: oίkλ'

x exp ( — tq + ?a=iί«- x + + α t

for sufficiently large values of ί in the sector

(2.20) S,U); - l 7 L + ̂ r - 7 ^ a r g A 1 ^ ^ - - ^ + - ^ 7 O ' = l , 2,...,

If we put

(2.21) Φj(s) = φ(s

then we know that Φ/s) (j = l, 2,..., g) are particular solutions of the difference

equation

(2.22) ( s - 4

from the fact that φ(v: yk) satisfies the difference equation (2.15). Furthermore,
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we have the important result.

THEOREM 2.3. Under the assumption that p — μΦinteger, Φ/s) 0 = 1,2,...,

q) make a fundamental set of solutions of the q-th order difference equation

(2.22).

This theorem teaches us the fact that the linearly independent solutions Φj(s)

of the difference equation (2.22) appear one after another by the change of the

sectors Sj(λ) as the coefficients of the asymptotic representation of the function

In order to prove the above theorem, we need the following two lemmata.

LEMMA 2.1. (N. G. de Bruijn) For sufficiently large values of s in the sec-

tor |arg(s — μ + p)\<π — δ where δ is a small positive number, we have

(2.23) Φ Λ » ~ 0 ( * y i i

(j=l,2 q)

where dJo = ί and

(2.24)

Here the saddle point ζj is a root of the equation

(2.25)

close to — log(s — μ + p)+ π ^ ~ >i where the log has its principal value, and

can be expressed in terms of the power series

( 2 . 2 6 ) ζ j = —

(7=1,2,...,?)

for sufficiently large s.

LEMMA 2.2. Let ζί9 ζ2,..., ζq be the roots of an algebraic equation

Let us define the sum σm by

(2.27) σM=CT
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Then, we have

(2.28) σm = HJyq,l9 yq-l9...9 γl9 γ0)

where Hm(γq-i9...9 y0) is a homogeneous function ofyq_ί,..., yί and y0 of degree

m with integral coefficients. And that, ifθ<m<q, yq_m^1,..., y1 and y0 are not

included in HJyq-u...9 y0), i.e.,

(2.29) Hm(yq-u yβ-2. ... 7u 7o) = #m (yq

The relation (2.28) is called Newton's formula.

q-2,..., yq-m).

PROOF OF THEOREM 2.3. A necessary and sufficient condition for the linear

independence of the solutions Φχ(s), Φ2(s),..., Φq(s) of the difference equation

(2.22) is the non-vanishing of the Casorati determinant

Φ2(s)

Φ2(5+l)

Φq(s)

As is easily verified, the Casorati determinant

ence equation

satisfies the first order differ-

and hence it has the explicit form

(2.30)
Γ(-μ + p)

in the sector |arg(s — μ + p ) | < π — <5. Now, by virtue of (2.30), if we could show

that ^ ( 0 ) ^ 0 , then we could conclude that ^ ( s ) ^ 0 for all s except for s — μ + p

= non-posίtίve integer, in particular, every integer s under the assumption that

p — μφ integer. The value of ^ φ (0) will be evaluated by examining the behaviour

of Ήφis) for sufficiently large s. Since, according to Lemma 2.1,

—y
qs /

^ l o g ί - ^ + j Σ ijks-^A{{ Σ
' fc—0

holds for sufficiently large values of s in the sector |arg(s—μ+p)\ <π — δ, we have
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(2.32) — log J

.7 = 1,2,...,?)

in the same sector.
Therefore, we obtain

(2.33) ^ ( ^ [ Π ^

where Vq(xί9 x2v > xq) is Vandermonde's determinant, i.e.,

u x2, .. ,xq) =

1 1

x2

9 - 1

which does not vanish if x^Xj (iφj). Using the asymptotic behaviour (2.23)
again, we calculate the asymptotic behaviour of the product

(2.34) [ ή

Since e^(./ = l, 2,..., q) are roots of the algebraic equation

we have, from (2.28) and (2.29) in Lemma 2.2,

and

q-i

• Σ £

ro=l
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Hence, it follows that

(2.35) Σί

where R(λ, α 9 _ l v . . , ocj) is a constant independent of s. Moreover we remark
that

n&=(-l)q-Ks-μ + ρ\ i.e.,

We thus obtain the explicit asymptotic behaviour of (2.34)

* < 2 ; ) < / a(2.36) [ n φjωi - an φjωi a «, ) < , ( , _ ; + p ) )

As a consequence of (2.30), (2.33), (2.36) and the asymptotic behaviour of the
Gamma function

we have

xexp {-i?α, α,_lf..., α J l ^ O , ω,...,

\ ^ /

xexp{-/?(A,α,_1>...,c(l)}F,(l) ω,..., ω""

for sufficiently large values of s in the sector |arg(s — μ + p) |<π — p. Letting s
tend to infinity and noting that #φ(0) is independent of s,
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- μ + p)

xexp{-R(λ, a,_1?..., a j j ^ l , ω,...,

(2.37)

which does not vanish under the assumption that p — μφ integer. This completes

the proof of Theorem 2.3.

A refined observation shows that the difference equation (2.22) has the con-

verse form of the fundamental difference equation (2.2) described at the outset

of this section. From now on we shall prove the existence of certain remarkable

relations between two such difference equations.

Consider two difference equations

(2.38) ao(x)Φ(x + q) + ai(x)Φ(x + q - 1) + + aq(x)Φ(x) =0,

(2.39) aJ(x + q)Ψ(x + q) + aq-1(x + q-l)Ψ(x + q-l)+...+ao(x)Ψ(x)=0

where ao(x)Φ0 and aq(x)Φ0 for all x. One of such difference equations may be

called the converse type of the other. Let us denote a fundamental set of solutions

of (2.38) and that of (2.39) by

(2.40)

and

(2.41)

Φί(x%Φ2(x\...9Φq(x)

Ψί(x%Ψ2(x)9...,Ψq(x)

respectively. The respective Casorati determinants are denoted by &φ(x) and

&Ψ(x) and, for brevity, the following notation of the determinant is put to use:

...ΦAχ

ϊ) Φ2(x + q-ϊ) ...Φq(x + q-

The cofactor of they-th column and Λ -th row element Φj(x + k — 1) in the Casorati

determinant &φ(x) will be represented by Δφ

JΛ\x) and, in particular, Δφ

JΛ\x)

by Dj(x). Similarly, we define Δ{4>k\x) and ̂ j(x) = Δy^\x). We often use

the following notation
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- 2 )

which, as a matter of course, means that the 7-th column and the fc-th row are

excluded from the Casorati determinant ^ φ (x) .

We are now in a position to state a theorem as to the important and very

effective relations between (2.38) and (2.39). As is verified later, this theorem

contributes to the derivation of the beautiful results for the asymptotic behaviour

of the associated fundamental function.

THEOREM 2.4. We put

(2.42)

and

(2.43)

(7 = 1, 2,...,

ao{x-q)<#Ψ(x-q)
7 = 1 , 2 , . . . , < ? ) .

If the functions Φj(x) 0" = 1, 2,..., q)form a fundamental set of solutions 0/(2.38),

then the functions Ej(x) (7 = 1, 2,..., q) form a fundamental set of solutions of

(2.39). Conversely, the functions <^ (x) (j = 1, 2,..., q) make a fundamental

set of solutions of (2.38) under the assumption that &Ψ(x)Φ0. Moreover, for

each j ,

(2.44) βj

and

(2.45) α o ( x -

hold.

+ k) + a x(x - . + ak(x -

PROOF. We easily see that
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(2.46)

and

(2.47) ao(x) Vr(x)

Now we shall prove the relations (2.44) by induction. The relation is valid for
fc=0 just by the definition of £/x). Assume that the relation (2.44) is valid for
k. Since

\

Φix

Φix + k+2)

-l)

\ -α,_ 4 _ 1 (

we have, multiplying the both sides of the above relation by the reciprocal of (2.46),

which means that

q.k(x + ί)Ej(x +1) + α4_λ_



A Two Point Connection Problem 311

Hence the relation (2.44) is proved. In particular, from the relation (2.44) for
k = q-\ and /l^«)(x + l)=(-l) i" 1/) i /(x), we obtain

= -ao(x)Ej(x).

We have thus proved that Ej(x) (j = l, 2,..., q) are particular solutions of the
difference equation (2.39). In order to prove that Ej(x) (7 = 1, 2,..., q) form a
fundamental set of solutions, we must consider the Casorati determinant <%E(x)
constructed by them. Since

(2.48)

and

(2.49)

we have

aAx)

Σ EJ(X)ΦJ(X + k)=0 (1 έ fc έ ? - 1 ) ,

Φ2{x) ...Φq(x) \

-1) Φ2(x + q-l) ...Φq(x + q-]

IΊ laAx)

E2(x) E2(x+l)...E2(x + q-]

\EJx) Eq(x+l)...Eq(x + q-ί

o \

0

whence we obtain

Similarly, we can prove the relation (2.45) and the fact that <f/(x) (7 = 1, 2,..., q)
form a fundamental set of solutions of (2.38). Thus, we reach the required
results.

Here we shall apply Theorem 2.4 to the difference equations
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(2.22)

and

(2.2) - q

Since, according to Theorem 2.3, the functions Φj(s) ( j = l, 2,..., q) defined as in

(2.21) form a fundamental set of solutions of (2.22), we immediately obtain a

fundamental set of solutions of (2.2)

(2-50)

where

V/2

Γ25Π Ω(λ* . - F
(2.51) β/A, α ί . l f . . . , α i ) ^

The last statement was derived from (2.30) and (2.37)

In the discussion thus far we have made use of only the difference equation

(2.2) and no properties of its solutions. And so the definition of the functions

Φj(s) O' = l, 2,..., q) was independent of the choice of a fundamental set of solu-

tions of (2.2).

We therefore put

(2.52) gι(s) = -Eι(s) (/ = 1,2,...,<?)

and denote the associated fundamental function defined in (2.1) by attaching the

corresponding suffix, i.e.,

(2.53) Xι(t,s)= Σ gι(m + s)r+<>.
m=0

Then we have the main theorem of this section concerning the asymptotic be-

haviour of xt(t, s) in the entire complex plane.

THEOREM 2.5. Each function xt(t, s) (/ = 1, 2,..., q) has the asymptotic

behaviour of the exponential type only in one sector S^λ);

(2.54) x,(/f j ) = e x p ( — / ^

as ί-»oo in
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and for jφ I

(2.55) xι(t,s) = O(tP+q-1) as t->oo in

PROOF. From the integral representation (2.6) of Xj(ί, s) and the asymptotic

behaviour (2.19), we easily obtain

(2.56) j

+ [λgι(s - 2) + α,_ l9ι(s - l ) ] Φ / 5 + q - 2)

for sufficiently large values of t in the sector Sj(λ). Considering the relation (2.44)

and the definition (2.52), we have

and consequently

- 2) + α,_ ̂ ,(5 - l)-]Φj(s + q~2)
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ί 1 for ; = /

I 0 for jφl.

We have thus completed the proof of Theorem 2.5.

§ 3. The anaylsis of the coefficients of the formal solutions.

This section deals with the behaviour of the coefficients hk(s) of the formal

power series solutions (1.5) when s is sufficiently large. The coefficient h(s),

the index k being omitted again, satisfies a certain difference equation which will,

in general, be derived by insertion of the power series of the form (1.5) into the

differential equation (1.1). Since such direct substitution is very complicated,

we overcome the difficulty by a method of detour used in the previous paper [11].

Let us define Xp(t) by

(3.1) Xp(t)=Γ^-^p

i + ... + «!*V Σ h(s)rs.
q

Substituting the expression in the right hand side of (3.1) into an obvious relation

(3.2) xp(t)=r«-"^fxp_1 + (q-i)(p-i)r<>xp-i(t)

and then identifying the coefficients of like powers of t in both sides, we have the

first difference equation

(3.3) p

hp-ι(s-q) (p = l, 2,..., n)

Similarly, substituting Xp(t) into the differential equation (1.1), we obtain the

second difference equation

(3.4) K(s)=Σ Σ auhΛ-t(s + r-qI).
ι=ι r=o

There and hereafter the assumption h(s) = ho(s)=0, a posteriori, hp(s)=O for s < 0

is made. Then, the difference equation satisfied by the coefficient h(s) = ho(s)

will be obtained by substituting the first difference equation into the second one.

In fact, on account of the form of the first difference equation (3.3), we easily

see that hp(s) can be written in the form
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(3.5) hp(s) = Σ M(p: v: s)/ι(s-v) (p = l, 2,..., n).
v=0

If we substitute the expressions of hp(s) and /ιp_i(s) into (3.3) and identify the co-
efficients of ft(s — v) in both sides, we obtain the following three types of difference
equations for the coefficient M(p: v: s):

Case (I) when O^v^q-1

(3.6) M(p: v: s)=λM(p-l: v: s) + α 4 . 1 M ( p - l : v - 1 : s-1)

+ . . .+α β « v M(p-l :0 : s-v),

Case (II) when g ^ v ̂  <?(p -1)

(3.7) M(p:y. s)=λM(p-l: v: s) + α β . 1 M ( p - l : v - 1 : s-1)

+ +α 1M(/?-l: v-g + 1: s-g + 1)

+ (μ-s + (<7-l)p+l)M(p-l: v-q: s-q)9

Case (III) when q(p -1) +1 ̂  v ̂  ^p

(3.8) M(p: v: s)=α, p_ vM(p~l: ^(p-1): s-v + q(p-ί))

+ +α 1M(/?-l: v-^ + 1: s-ήf + 1)

-l: v-q:s-q).

Then, solving the above difference equations for M(p: v: s), we obtain the differ-
ence equation to determine the coefficient h(s)9 though the derivation of its explicit
form is not an easy work. For the purpose of our study on the behaviour of h(s)9

we need not seek the explicit form of M(p: v: s) and only attempt to obtain the
asymptotic behaviour of M(p: v: s) for sufficiently large values of s.

In Case (I), M(p: v: 5) (Orgv^g — 1) will be given successively by the formula
of summation

(3.9) M(p: v: s) =

where the symbol Λ means the summation in j . It is easily seen that the first

M(p: v: s) (O^v^q — 1) are expressed in terms of the characteristic constants not
depending on the variable 5.

In Case (II), using the values of M(p: v: 5) derived in Case (I), we have
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P
 q—

(3.10) M(p:v:s)=,

In the last Case (III), the formula (3.8) give the remaining value of M(p: v: s)

. By means of the above formulas of summation, we first

obtain the following

THEOREM 3.1. Let s tend to the positive infinity. Then

(3.11) lim -\-M(p: kq: s) = (-l)kλP

and

(3.12) lim J

where cpkq+i are the constant numbers. The round brackets ( j mean that

P\
(P\ J ql(p-q)l
\q) )

0 forp<q.

PROOF. The proof will be done by induction with respect to p and k.

Since

: 0: s)=λ, M(l: 1: s - l ) = α , _ l v . . , M(l: q-\: s -

: q: s-q)=;(μ-s + q)9

the relations (3.11) and (3.12) are valid for p = \ and fc=0 and moreover, the rela-

tion (3.11) holds for p = l and fc = l. Now we shall prove that the relations (3.11)

and (3.12) hold for p under the assumption of the validity of them for 1, 2,..., p — 1.

From the fact that

M(p:0:s)=λP

and that M(p: v: s) (l^vrgg — 1) are constants independent of s, the theorem is

obvious for fc=0. Moreover we have

i \ [ o Σ
lim± M(p: q: s) = lim±\λP + λP § J=!
s-+ao S s - * o o S l y *
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-l:O: s-q)

Next, under the assumption that the relations (3.11) and (3.12) are valid for /c,

we prove that they hold for /c+1. For l^fc-f l :gp — 2 and l^i^q, we use the

formula of summation (3.10) to obtain

A 1 μ

= const.

for 1 ̂  / ̂  q — 1. In particular, for / = q, we have

lim k+2M(p: (k+l)q + q: s)

For fc + l = p — 1 and l ^ ί g g , we must use the difference equation (3.8) in order

to obtain

i: s)
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= αg_/lim —k+j-M(p-l: q(p-l): s-i)
s-»oo «J

+

+ α 1 l im / + 1 M(p-l: kq + i+l: s-q+1)
S-+00 S

+ lim \μ-s + (q-l)p+l M(p-\: kq + i: s-q)\

= const,

and moreover

lim M(p:pq: s) = l i m μ-s + (q-l)p+l M(p-l: q(p-l): s-q)
lim l i m

s-*ao $ s-»oo S • S

=(-ιy.

Thus the proof of Theorem 3.1 is completed.

Now we shall consider the difference equation for h(s). If we regard that

M(p: v: s) = 0 for v>qp and v<0

and

α / r = 0 for r>ql and r < 0 ,

then the difference equation will be written in the form

(3.13) Σ {M(n: v: s)- Σ Σ at ql_rM(n-l: v-r: s-r)}h(s-v)=0.
v=0 r=0 1=1

But the coefficients corresponding to h(s — v) (v=0, 1,..., g —1) are identically
zero, because such q relations determine the values of the characteristic constants.

J(λ) = M(n: 0: s ) - Σ alqlM(n-l: 0: s)

1=1 "

is the characteristic equation determining the characteristic constants λk. By the
relations

(3.14) M(n:v:s)-Σ Σ alql.rM{n-l: v-r: s - r ) = 0 (
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the characteristic constants α£_v(l^v^<? — 1) are determined. Moreover, the
relation

(3.15) M(n: q: q)- £ £ aUql__rM{n-l: q-r: ^ - r ) = 0
r=Oί=l

gives the characteristic constant μk. Hence, the difference equation for h(s)
is of order q(n — 1) and its coefficient of the highest order can be evaluated ex-
plicitly. In fact, taking into consideration that M(p:v:s) (O^v^q — 1) are
constants and subtracting (3.15) from the coefficient of h(s — q)9 we have

(3.16) M(n:q:s)-£ £ <>ι qι-rM(n-l: q-r: s-r)
Γ=o i=i

n

—M{n\ q: s) — M(n: q: q)— Σ aι,qι(M(n — l: q: s) — M(n — l: q: q))

n . n-l

-in Q (q-s)λJ " . , O
~λ θ λJ ~ ^ aχ>#k h V

=(q-s)J'(λ).

As a result of (3.16), putting /ifc(0) = l, we can calculate the coefficients hk(s) of the
formal solutions (1.5) successively under the assumption that J'(λfc)#0, i.e.,
λjΦλk (jφk). As regards the other coefficients of the difference equation (3.13)
we know the following important properties.

THEOREM 3.2. For sufficiently large positive values of s,

(3.17) M(n: v: s)~ £ £ alql_rM(n-l: v - r : s-r)£
r=0

Ml

where we make use of the Gauss symbol [ ], i.e., \yjq~] means the integer such
that

Among the constants cv(q + l^v^nq) in the statement (3.17), ckq = l (k
= 2, 3, .., n) especially.
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PROOF. From Theorem 3.1, we easily see that

lim-^ttiM(n: v : •*)- Σ aι>qlM{n-l: v: s-r)
S-+O0 «J 1=1

- Σ έβ/.fl_rM(»-/:v-r:s-r)}
r=l 1=1

= c v (= const).

In particular, for v = kq

Using the results just derived above, we can rewrite the difference equation

(3.13) in the form

(3.18) J'(λ)sh(s)+''Σs{
l

4-

where cv (v = l, 2,..., (n —1)^ — 1) are constant numbers and

(3.19) Mv(s)

for sufficiently large positive values of s.

For our object of deriving the behaviour of h(s)9 there fortunately exists a

result obtained by O. Perron (18) (19) (20). We here describe O. Perron's

theorem for the asymptotic behaviour of the solution of the difference equation

in such a fashion that we can easily apply it to the above difference equation (3.18).

THEOREM (Perron-Poincare). Consider a difference equation

(3.20) Φ
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where the coefficients tf/s) have the following properties:

(3.21) l i m « 4 ί l = a ( = constant) (j=l, 2,..., q).
S-+OO S J

We construct an upward convex polygon, known as the Newton-Puίseux polygon,

such that the q + l points with the coordinates

(3.22) (0,0), (1, kx),...,(q,kq)

either lie upon the line or below the line.

If the Newton-Puiseux polygon consists of one straight line, then we have

where τ is the directional coefficient of the straight line. The constant y, is one

of the roots of the equation

(3.24) /«+a^f*"' 1 + al2*«-ia+••• + άq=o

where iί9 i2,-,q are such numbers that the coordinates (il9 kh), (i2, kh),...9

(q, kq) lie on the straight line.

In this case when the Newton-Puiseux polygon is one straight line, we obtain,

with the aid of the transformation

the so-called Poincare's difference equation

Φ(s + q) + b1(s)Φ(s + q-l)

where the coefficients b/s) tend to finite limits as s->oo, i.e.,

And then, according to Perron's theorem (19), the value of

Πm
s-+co

is equal to the absolute value of a root of the equation

Now we shall apply Perron-Poincare's theorem to the difference equation

(3.18). The coordinates of the points corresponding to (3.22) are
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(3.25)

(0,0), (i,o),..., fo-1,0)

fa, l),fa + l,l),...,(2g-l, 1),

((n-2)q, n-2), ((n- , n-2),..., ( ( n - l ) ^ - l , n-2)

and therefore, the Newton-Puiseux polygon is the straight line with the directional
coefficient τ = 1/g. The constant y,- in (3.23) is given by the equation

-1)"" 1 J<»>(λ)=0

(3.26)

which has, for a fixed λk9 the roots

(3.27)

Consequently, we obtain the main results of this section.

THEOREM 3.3. For each k9 the coefficients hk(s) of the formal solutions
(1.5) have the behaviours

j= l, 2,. . . , /i: y

(3 28)

(3.29) \λk-λk\=min\λj-λk\.
jΦk

Lastly, we shall make some remarks as to the characteristic constants λk9

ttq-i, α£_2,..., OL\ and μk (fc = l, 2,..., n) which are successively determined by the
relations (1.7), (3.14) and (3.15). In fact, from the formula of summation (3.9),
we know that

(3.30)

+ Mk(p: λk, < _ l

where Mk{p: λk9 αξ_ l s..., α*_v+1) include the powers of λk of degree not greater
than p — 2, and then obtain, substituting (3.30) into the relation (3.14),
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= -Mk(n: λki α|-_!,..., α*_ v + 1)

n ^

~~ Σ aι qiMk (n — ί: λk, α j _ 1 ? . . . , α* + 1 )

+ Σ Σ altql-rMk(n-I: v-r: s-r)
r=ί 1=1 H

This relation gives the value of the characteristic constant α*_v depending on

Λ*> β«-l» » α«-v+l

Moreover, substituting the formula

(3.32) Mk(p:q:q)

into the relation (3.15), we again obtain the equation determining the characteristic

constant μk

(3.33) (αS-i + αί-.2 + '

- Σfi.qiMkin-l: λk, αξ_l5..., α )̂

+ Σ Σaι,qι-rMk(n-l:q-r:q-r).

r=ί 1=1

From the equation (3.31), we here obtain the important relations

(3.34) ^ ( α ί - i + α S - i + + α S ^ ^ Σ ^ i . β - r (v = 1, 2,..., g-1)

which are derived by the method of residue calculation: In order to obtain

(3.34), we may only integrate the function of A
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v n

r =l ι=ι 'q

along a sufficiently large circle around the origin, including all poles λί9 λ2,..., λn

in its interior, in the complex 2-plane. Similarly, we obtain from the equation

(3.33)

(3.35) Σ «
k=l

Hence, subtracting the relation (3.34) for v=q — l from both sides of (3.35),

(3.36)

is obtained. On the other hand, it is easy to obtain the relation

(3.37)

from the characteristic equation (1.3).

We at last obtain one relation which plays an important role in the next sec-

tion and describe it in the form of

LEMMA 3.1. With respect to the n-th order linear differential equation

(1.1) with two singular points one of which is irregular, there exists one

invariant identity

(3.38) ΣPi-Σμ* =

§ 4. The determination of the Stokes multipliers.

In this section, we shall investigate the coefficient Gj(m) of the convergent

power series solution (1.2) with the purpose of the determination of the Stokes

multipliers.

Taking account of the relation

where the notation (1.4) is used again, it is easy to see that the substitution of the

convergent power series solution Xj(i) into the differential equation (1.1) yields
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_ _ _ _ _ Σ C

m=0 * " m=0 1=1 r=0

'= Σ (Σ

under the assumption that G/r)=0 for r<0. Therefore, by comparison of the
coefficients of like powers of t in both sides of the above formula, we have the qn-
th order difference equation

(4.1)

or

(4.2) /(m4

The formulas

(4.3)

n Ql

\_YYl •+" pj\nGj(wί) = 2 J Σ ^/,rC^ — r~^~Pjin
1=1 r=0

n 91

•pj)Gj(m)= Σ Σ aι,rLm-r + Pj]n-ιGj(r

for m=0

I(Pj)G£0)=0 0 = 1, 2,..., n)

0 = 1, 2,..., n) .

are the identities because of the characteristic equation (1.3). Hence, if we put

(4.4) G/0) = l 0 = 1,2,..., ή),

then Gj(m) can be successively determined by (4.2) since I(m + Pj) never vanish
under the assumption that pi — pjφ integer (ί#j).

Here we shall define new functions f\JΛ)(m) expressed in terms of the series
as follows:

(4.5) f\j'k\m)= Σoh
k(s)g\J'k)(m + s) (y, k = l, 2,..., n: / = 1, 2,..., q)

where the functions

g(ij>k)(m)9 0 ( / fc)(m),..., g[j'k)(m) (j9 k = l92,...9 n)

form the fundamental set of solutions of the difference equations (2.2) with the
coefficients of the characteristic constants λk, α£_!,..., μk9 pj and are written as
in (2.52). The reason why such functions are introduced will be obvious according
to the relations (1.11); for, by quite a formal calculation, we have

Σ hk(s)x">kKt, s)= Σ hk{s) Σ gu'k)(m + s)tm+pj

s=0 s=0 m=0

=?> Σ Σ hk(s)gU V(m+s)r
m=0 s=0

m=0
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For the moment, we assume the well-definedness of the functions f\J*k)(m).

Then, we can define the well-defined functions

(4.6) f\j>k\m)= thk(s)g\j>
s=0

one after another by means of the first difference equations (3.3). In fact, if we

multiply both sides of the first difference equation

by g\J k\m+s) and sum them up over s from zero to infinity, we obtain, again

using (2.2),

Ai?\m) = λk fSl& («) + «S_! f\ϊ£\ (« + 1) + + α*, /{/;*>, (m + q-1)

Σ

= λkf
(

l! p-Λm)+ak_ί f\!i,-\(m+ 1) + - +<x\ / ^

j + (q-l)p+l)/jP'L\(m + q)

- Σ {<x\g\J k)

5=0

Hence, the functions f\Ίpk)(m) are well-defined and

(4.7) / (^ f c )(m) = [m + pJ + ̂ ] p / ( Λ f c ) ( m + ̂ ) (p = l, 2,..., n)

hold.
The same procedure as stated above can also be applied to the second differ-

ence equation (3.4), obtaining the relations

(4.8)

Substituting (4.7) into (4.8), we at last obtain
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(4.9) lm + qn + pj]γH

= Σ Σa

(j9 fc = l, 2,..., n : / = . l , 2,..., 4) .

The above relations show that for a fixed j , the functions f\JΛ){m) (fc = l, 2,..., n:

/ = 1, 2,...9q) are particular solutions of the gn-th order difference equations

(4.1) satisfied by G/m).

Now we shall proceed to the proofs of the well-definedness of the functions

f\J*k\m)9 i.e., the convergence of the series in the right hand side of (4.5) and the

linear independence of qn particular solutions f\Jtk\m) (fe = l, 2,..., n: / = 1,

2,..., /?) of the difference equation (4.1) for a fixed j . For that purpose, we need

some informations on the behaviours of the modified Gamma functions g\iΛ\m)

for sufficiently large values of m and the series expanded in terms of them.

We immediately obtain

LEMMA 4.1. If m is sufficiently large in the sector |arg(m—/ίk + py)|<π — δ,

S being a small positive number, then

(4.10) g\'.»(m) ~ ( - 1 )«+'λΓ<' ^ V ^ ( h ω ω > - \ ω ' ω ^ )
" q\ M C ϋ , . . . , CU )

m-«4-l)/q)

(j,k=l929...9n: I=l,2,...9q).

PROOF. Dropping the indices {j9 k)9 the functions gt{m) are explicitly

written as

By the same method of calculation as done in § 2, it is easily obtained from the

asymptotic formula (2.32) that

(4.11) ί φ ( ) [ Π

and

(4.12)

1, ω,..., ω'-2, ω',...,
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Hence, Lemma 4.1 is established.

Next we show a result as to the series of the form (4.5) which is expanded by

means of the modified Gamma functions.

LEMMA 4.2. Suppose that the series defining the functions f\j*k\m0) are
absolutely convergent for a certain number m0. Then the series f\j>k){m) are
also absolutely convergent in the right half-plane Rem^Remo + ε, ε being any
positive small number. Moreover, in that right half-plane, the asymptotic
relations

(4.13) f\i-kHm)~g\J'

hold.

PROOF. For a sufficiently large positive integer σ, we put

(4 I4) bJ
dropping the indices (j, k) and / again. Then we may only prove that the remain-

ing series R(m: σ) is absolutely convergent and uniformly bounded in the right

half-plane Rem^Remo + ε. First, applying formally Abel's transformation,

we have

1 Σ * ( ^ ( w o + ί ) { l + Σ q(m,mo:σ:p)}
g{mo+σ) s-.

1 j

1

h(s)g(mo+s)

x> oo

« / , \ ZJ Qyifi, fΐiQ. u. p) \ 2_χ rt

where

(m m ' σ- )= g^m°+σ^ | d(^n+P) _ g(m+p-l)}

From Lemma 4.1 and the asymptotic relation (2.32), we can obtain

g(mo+σ) g(m+p) _ Φ(m+cr+l) Φ(mo+p+l)
g(m+σ) g(mo+p) ~ Φ(mo+σ+l) Φ(m+p+l)
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and hence

for sufficiently large σ.

Then we have

(4.16) Σ \q(m9m0:σ:p)\
p=σ+l

mo —
mo"m)/ Y 1

mo — m
V σ

Since the series in the right hand side of (4.16) is convergent and, as is easily seen,

approaches zero exponentially as m tends to infinity, the series in the left hand side

of (4.16) is absolutely convergent and therefore Abel's transformation is valid.

Concerning the asymptotic behaviour, we instantly obtain

f(m) = Σ h(s)g(m + s) + g(rn + σ)R(m: σ)

since

(4.17)
9ι(m)

(1=1,2,..., q).

Thus we obtain the required results in Lemma 4.2.

We have made preparations for stating the theorem as to the well-deflnedness

and linear independence of the functions (4.5).

THEOREM 4.1. Under the condition that

(4.18) 0<\λj\<\λj-λk\ OV/c; fe = l, 2,..., n),

the functions fγ>k\m) (j, fc = l, 2,..., n: / = 1, 2,..., q) are well-defined for every

integer m^i—qn + l. And that, for a fixed j9 the functions f\j>k)(m) (fe = l,

2,..., n: / = 1, 2,..., f̂) mα/cβ α fundamental set of solutions of the qn-th order

difference equation (4.1).
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PROOF. TO begin with, we prove the absolute convergence of the series

defining f\itk){ — qn), using Lemma 4.1 and Theorem 3.3. For sufficiently

large s, we have

whence

(4.19) Ήm\g\J-k>(s
s-*oo

Consequently, we have, from (3.28),

(4.20) lim \hk(s)g\J-k)(s-qn) \

If the value in the last statement is less than 1, i.e.,

(4.21) X

then the series f\jtk)( — qri) are absolutely convergent. Hence, the functions

f\jtk\m) are all well-defined for every integer m^—qn + 1 because of Lemma

4.2.

Since we have already proved that the functions f\iΛ\m) (k = l9 2,..., n:

1=1, 2,..., q) are particular solutions of the difference equation (4.1), we shall,

from now on, prove their linear independence i.e., the nonvanishing of their

Casorati determinant
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(4.22) ff(m)= Det

i f\j'k\m)

f\j>k\m+\)

In this case, the Casorati determinant satisfies the first order difference equation

(4-23) **"+» = KmCϊiyW

Considering the relations

(4.24) I(m + qn + pj)=fl(m + qn + Pj - pk),
k=ί

(4.25) Π^K-IΓ'V
k=l

which are immediately derived from (1.3) and (1.7), we then have the solution of

the Casorati difference equation (4.23) of the form

(4.26)

Therefore, in order to prove the nonvanishing of <gf{m) for m ^ — qn +1, we may

show that tff( — qn + \)Φ09 evaluating its explicit value by means of the asym-

ptotic behaviour of &f(m) for sufficiently large m.

From Lemmata 4.1 and 4.2, it is easy to see that

Using (4.27), we then obtain

(4.28) V Am) - [ Π Π ^(/

\..., λ\l"ω-+1
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where Vandermonde's determinant never vanishes since λjφλk(jΦk), and more-
over, from (4.10) and (2.36),

(4.29) [ Π Ug\JΛ\m)-]
fc=l 1 = 1

xcxp(-R(λk, αjμ.!,...,^)

m + m)

x w-»(

Denoting, for simplicity, the nonzero constant by Co, we at last obtain

(4.30) Vf(-qn+l)

x {Co +O(τ«-<»/f))}.

The last expression namely means that

(4.31) «/<

because of the invariant identity (3.38) in Lemma 3.1. Thus, we obtain
for m ^ — qn + 1 under the assumption that Pj — ρkΦ integer (jφk). Obviously,
from (4.23), <#f(-qn)=0 and hence, ^ / m ) = 0 for m^-qn. The proof of
Theorem 4.1 is thus completed.
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Now we shall state how to determine the Stokes multipliers in the following

THEOREM 4.2. The Stokes multipliers T\j>k) (fc = l, 2,..., n: / = l,2,...,g)

are determined by the linear equations

(4.32) Gj(r)=£ ±T¥-»fY k\r) (r= -qn + l, -qn + 2,.., 0)
ί=l k=\

G/0) = l and G/r)=0 for r<0.

Then, the coefficients Gj(m) 0 = 1, 2,..., n) are expressed in terms of the

linear combinations

(4.33) G/w)= Σl feΣ

§ 5. Main results for the two point connection problem.

Now, making use of Theorem 4.2 in the previous section, we shall attempt to

partition the convergent power series solutions X/Jt) into qn fundamental func-

tions x(/'fc)(ί, s) as follows:

(5.1) ΛΓ/O= ΣGj(m)i«+"
m=0

= Σ Σ τγ'k)(Σ f\J'kHm)tm+l'j)
1=1 k = l m=Ό

= Σ Σ τγ k) Σ hk(s)( Σ g\J k)(m+s)tm+lΌ
1=1 k=l s=0 m=0

= Σ Σ TV'"> Σ A*(ί)χί A t ) (/, *) (y = l, 2,..., «)
i = l fc=l s = 0

where we, of course, put

(5.2) x\j>k)(t,\ Σ g\ )
m=0

(j, k=l, 2,..., n: / = 1 , 2,..., ^ ) .

In the above statement (5.1), the interchangeability of the order of the sums by 5

and m is guaranteed by the absolute convergence of the double series
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(5.3) X\j>k)(t) = Σ AJ-k)(m)tm+pJ
m=0

= Σhk(s)x\J-k\t9s)
5=0

(y, &=1,2, . . . ,« : / = 1, 2,..., ?) .

In fact, we easily see

I Σ (Σhk(s)g\J>k)(m + s))r+pJ\
m=0 s=0

^ I Σ hk{s) Σ g(ιJ'k)(m + s)tm+pJ\ + I Σ g\JΛ\m + σ)R\j>k\m: σ)tm+pJ\
s=0 m=0 m=0

^ Σ |A*(J)I I Σ g\J kHm+s)tm+p'\ +MΣ \gV ki(m+σ)r+"j\
s=0 m=0 m=0

since the functions R\J>k\m: σ) are uniformly bounded as stated in the proof of

Lemma 4.2 and the functions x[J''k\t9 s) are entire.

Here we shall investigate the global behaviours of the functions X\Jtk\t)

defined as in (5.3). From the global properties of the fundamental functions

x\J*k\t9 s), we immediately obtain the following results.

THEOREM 5.1. Let σ be an arbitrarily large positive integer. In the

entire complex plane, the functions X\jfk)(t) (j, fc = l, 2,..., ή) admit the

asymptotic behaviours as follows:

(5.4) X\j>k\t)
q q

x { Σ ( ) ( ) } ( )
s=0

as /->oo in St{λk)

and

(5.5)

+ O(tpJ+q-ί) as t-+ao in St(λk) (iφl).

PROOF. By means of the integral representation (2.6) for the fundamental

function, we have
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(5.6) X\J'k)(t)= Σ hk(s)x\J k)(t, s)+ Σ hk(s)x\J'k)(t, s)
0 +l

Σ
s=0

Σ hk(s)xγ'kHt, s)
s=0

| ;

^ Σ — tu(l-τu))
M=I u J

qΣ -^tu{\ -τ»)\λkF\j>k\τ: -q)

+*k

2F\j>kHτ: -2) +

where we put

(5.7) F\j'k)(τ: m)= Σ hk{s)g\j>k

In the above calculation (5.6) we used the termwise integration which is again

guaranteed by the fact that the power series in the right hand side of (5.7) is

absolutely and uniformly convergent in any compact domain of

0 ^ | τ | < M j y ^ ! , \λk-λk\=mm\λj-λk\

and hence, in the unit disk |τ| :g 1 according to Theorem 4.1 and its proof.

Applying Theorem 2.5 to the first σ terms and Theorem 2.2 to the remaining

integrals in the right hand side of (5.6), we have

(5.8) Σ hk(s)x\j>k)(t, s) = exp(^tq + (^j^tq-1 + '''+0L\t)tμk Σ hk(s)Γs

s=o \ q q-l / s=o

(5.9) Σ h(s)x[\t,s)θ(exp(t« + ^
s=σ+1 \ \ q q — 1
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for sufficiently large values of t in the sector St(λk) and

(5.10) Σ hk (s)x\j>k)(t9 s)=
s=0

(5.11) Σ

in the sector Si(λk) for \Φl. Thus the statements in Theorem 5.1 are derived

by combining (5.8) with (5.9) and (5.10) with (5.11).

Now we put

(5.12) XU^)(t)= Σj\Lk)X\Uk\t) (j\ * = 1, 2,..., n)

and consider their asymptotic behaviours in the entire complex plane.

For a fixed index /c, the sectors Sx(λk)9 S2(λk), ..,, Sq^ι(λ^) and Sq(λk) cover

the whole complex plane. Hence, if t is sufficiently large, then t necessarily lies

in some sector 5z(2k) and, according to Theorem 5.1, we have

(5.13) ^

x { Σ
5=0

In other words, we can say that among q functions expressing the function X{J>k)(t)

one and only one function has the principal asymptotic behaviour and the remain-

ing (q — 1) functions are absorbed in that principal one.

We can at last obtain the main results of this paper by means of the decom-

position relation (5.1), i.e.,

Xj(t)= ΣχX
UΛ\t) 0 = 1, 2,..., n)
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and state them in the following final theorem.

THEOREM 5.2. Suppose that

( i ) Pj-Pk^ integer (j# k),

( i i ) pj-μkΦ integer, and

(iii) 0 < | A * j < 1 {jΦk) (j9k = l92,...9n).

//1 is sufficiently large, then t necessarily lies in some sector

(5.14) s(il9 /2,..., / π ) = s / l ( A 1 ) n s l 2 ( λ 2 ) n ••• n s l n ( λ n )

where 1 ̂ / l 5 /2> > K^0. and Π means the usual notation of the intersection, and

n

x { Σ hk(s
s=0

in S(lu l2,..., /„) ( ; = 1, 2 , . . . , n ) .

/n particular, if the exponential functions in the asymptotic expression (5.15)

/or all k are dominant over the powers of t in the sector S(lί, I2, ~,ίn), we

then have the exactly desirable asymptotic relations

(5.16) ^ 0 ( 0 - Σ T\

as ί->oo in S(IU l2,...,/„) (; = 1, 2,..., n ) .
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