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Nonoscillation criteria for second order elliptic equations have been obtained
by Headley [4], Headley and Swanson [5], Kreith [6], Kuks [7] and Swanson
[10]. The purpose of this paper is to establish nonoscillation criteria for the
non-self-adjoint elliptic equation

1) Lu= :;"_1 Dy(a;(x)D,u)+ 2; b(x)Du + c(x)u =0 .
Nonoscillation criteria for (1) due to Swanson [10] will be derived from our main
theorem.

Let R be an unbounded domain in n-dimensional Euclidean space E" with
piecewise smooth boundary 0R. A generic point of E" is denoted by x=
(x,..., X,). Partial differentiation with respect to x; is denoted by D,, i=1,..., n.
It is assumed that the coefficients a;;, b; and c of L are real-valued and continuous
on R, that the b, are differentiable in R and that the matrix (a;;) is symmetric
and positive definite in R. The domain of L relative to R, D(L; R), is the set of
continuous functions on R which have uniformly continuous first derivatives
in R and for which all derivatives involved in L exist and are continuous in R.
A solution of equation (1) is a function u € D(L; R) which satisfies (1) at every
point of R.

DEerFINITION 1. A bounded domain G with G=R is a nodal domain of
a nontrivial solution u of (1) iff u=0 on 0G. The partial differential equation
(1) is said to be strongly oscillatory in R iff for arbitrary r>0 there exists a
nontrivial solution u, of (1) with a nodal domain contained in R,, where

R,=Rn{xeE": |x|>r}.

Equation (1) is said to be nonoscillatory in R iff it is not strongly oscillatory in
R, i.e. iff there exists a number s>0 such that no nontrivial solution of (1) has a
nodal domain contained in R,.

DEerFINITION 2. Consider the two self-adjoint operators

@ Lou= 33 Die()D )+,
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© Liv= 3 D{A(x)D,0)+C(r,

where a;;, , A;;, C are real-valued and continuous on R and the matrices («;)),
(4;;) are symmetric and positive definite in R. We say that L, belongs to MM[L,;
R,] for some s>0 iff for every bounded domain G with G<=R, the functional

) V[u; G] =SG[,-.,Z"; (0= A)DuDu+(C—y)u?ldx

is nonnegative for all real-valued piecewise C! functions u on G vanishing on
0G. The functional V[u; G] in (4) is called the variation, relative to G, of L,
from L,. For example, L, € M[L,; R,] if the matrix (o;;— A;;) is positive semi-
definite in R, and C—7 is nonnegative in R,.

Our main result is stated in the following

THeoREM. Equation (1) is nonoscillatory in R if for some number s>0
there exist a self-adjoint elliptic operator Lleim[%(L+L*);Rs:], L* being
the formal adjoint of L, and a function we D(L,; R,) with the property that

(i) w>0 in Rg;

(i) L,w=0 in R,

To prove the theorem we require the following three lemmas that provide
useful information regarding bounds for eigenvalues of self-adjoint and non-
self-adjoint elliptic operators.

Let G be a bounded domain with piecewise smooth boundary dG and such

that GeR. By an eigenvalue 1 of L relative to G we mean a number A with the
property that there exists a nontrivial solution u € D(L; G) of the problem

Lu+iu=0 in G, u=0 on 0G.
The solution u is called an eigenfunction associated with the eigenvalue A.

Lemma 1. (Allegretto [1]) Let L be the elliptic operator defined by (1).
Then, no eigenvalue of L relative to G can be less than the smallest eigenvalue

of—;—(L+L*) relative to G.

LeMMmA 2. (Swanson [8]) Let Ly and L, be the elliptic operators defined
by (2) and (3), respectively. If there exists an eigenvalue A of L, relative to
G with an associated eigenfunction u satisfying V[u; G]=0, then A cannot be
less than the smallest eigenvalue of L, relative to G.

LEMMA 3. Let p, be the smallest eigenvalue of the self-adjoint elliptic
operator L, relative to G. Then, for any ve D(L,; G) such that v>0 in G,
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Ho> inf = L1
xeG v

Proor. Our method is essentially that used by Swanson [9]. If u is an
eigenfunction of L, associated with p,, then the following identity holds (see [2]):

(5) iilA,-jDiuDju—Cu2=4i:
W J=

i, j=1

n 2
A XX+ Y D,.(u2Yi)—£v_le,
i=1

<.

where

Xi=vD[ % Yi=L S 4. Do i=1
vD{—-), s 2. AijDjv,i=1,...,n.

J=1

Since u=0 on dG and v>0 on G, u/v is nonconstant in G and hence we have

g i}nle,jX iXidx>0. By integrating (5) over G and applying Green’s
G L,j=

formula, we obtain

n n 2

1

2
>—Su—L1vdx
G U

;infﬂg w2dx
xeG G

from which the desired conclusion immediately follows with the use of Courant’s
Minimum Principle [3, p. 399].

PrOOF OF THEOREM. Suppose to the contrary that equation (1) is strongly
oscillatory. Then, there exists a nontrivial solution u of (1) with a nodal domain

G contained in R,. By Lemma 1, the smallest eigenvalue A, of %(L+L*) relative
to G is nonpositive.

By hypothesis, there exists a self-adjoint elliptic operator L, € M [—;—(L+ L*);

R,]. Since the variation, relative to G, of L, from %(L+L*) is nonnegative,

we can apply Lemma 2 to conclude that the smallest eigenvalue u, of L,; relative

to G does not exceed 4y, i.e. uo<0. On the other hand, it follows from Lemma

3 that p, is greater than ing [—L,w/w] which is nonnegative on account of (i)
XE€E

and (ii), i.e. po>0. The contradiction proves our theorem.

ReMARK 1. The above theorem is an extension of the sufficiency part of
Kuks’ nonoscillation theorem [7, Theorem 3] for self-adjoint elliptic equations.
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Our method is different from the one used by Kuks.

COROLLARY 1. Equatio;i (1) is nonoscillatory in R if for some s>0 there
exists a function he D(L; R,) such that

32 [Dai(x)D;h)+a,(x)D;hD;h] + c(x) — div b(x) <0

i,j=1
in R,, where b(x)=(b,(x), ..., b(x)).
Proor. This corollary follows from the observation that the function

w =exp [h(x)] satisfies

1 Lw+L* 2 :
_w__z%_w_ =U2=1 [Di(a;;D;h)+a;;DhD;h]+c—divh.

Let A(x) be the smallest eigenvalue of the matrix (a;;(x)), x € R, and let f be
an arbitrary positive-valued function of class C(0, c0) such that

f(rEmin A(x), O<r<oo,

x€eSy

where S,={xeR: |x|=r}. We define the function g by

g(r) =x£z;:( [e(x)—div b(x)], 0<r<ow.
Let us consider the self-adjoint elliptic operator
©) Lyo= 5 D(xDD) +g(xDo
Since, for all xe R and all £ € E®,
23 @) ZANER 2 F(DIE,
the operator L, e M [%(L+L*); R], moreover, if ve D(L,; R) depends only on
r=|x|, then

L,v =r1‘"—g—r(r""‘f(r)g%>+ g(rv.

COROLLARY 2. Equation (1) is nonoscillatory in R if

™ tim sup | r2g(1)~-2=2% £ ()= 25 257 |<0.

PrOOF. Observe that the function w=r(2-"/2  r=|x|, satisfies
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P Low =) 22 Y g (yw

—romorzl g = =D £ () - 2220 |.

ReMARK 2. If L is uniformly elliptic in R with ellipticity constant x, then
we can take f(r)=k, and in this case condition (6) reduces to

_ 2
lim sup r2g(r)<(n—‘?‘)—x s
ro0 4

which is a nonoscillation criterion of Swanson [10, Theorem 2].
The following corollary was first obtained by Swanson [10, Theorem 1].

CoROLLARY 3. Equation (1) is nonoscillatory in R if the ordinary dif-
ferential equation

®) L)L

>+r"‘1g(r)y=0

is nonoscillatory at r =+ c0.

Proor. Since (8) is nonoscillatory at r=+ 00, there exists a solution y(r)
which does not vanish on some half-line [s, +00). Without loss of generality
we may assume that y(r)>0 on [s, +c0). Define the function w in R by w(x)
=y(r), r=|x|. Then w satisfies the elliptic equation L,w=0 in R,, where L,
is the operator defined in (6). Now the conclusion follows from the main theorem.

Our final result is an extension of that of Kuks [7, Corollary 1].

COROLLARY 4. Let the operator L be defined in R= H I,, where I,=

[s;, +0), i=1,...,n, and uniformly elliptic in R with ellzpttczty constant
K. Assume that each of the ordinary differential equations

d? ,
)] K—d;%—+c,-(x,-)y=0,z=l,...,n
is nonoscillatory in I, i=1,...,n. If
)i ci(x;) 2 e(x) —div b(x) in R,
i=1

then equation (1) is nonoscillatory in R.

Proor. By hypothesis there exist solutions y,=y(x;) of (9) such that
yi{x)>0 in Ij=[s}, + 0)<I;, i=1,...,n. Now the conclusion follows from
the main theorem by taking



284

Norio YosHIDA

Ly=kA+ ;:1 ci(x) and w =i=l—Il yilxs) -
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