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Introduction

The principal oriented bordism module Q,(G) for a finite group G is defined
to be the module of equivariant bordism classes of closed oriented principal
G-manifolds, and is a module over the oriented bordism ring Q, of R. Thom
(cf. [1D).

This module Q,(G) and the unoriented one N,(G) are studied by several
authors. If G is a finite cyclic group, the Q,-module structure of Q,(G) is deter-
mined by P. E. Conner and E. E. Floyd [1, Ch. VII] for G=Z (p: odd prime),
and by K. Shibata [3, §§ 1-4] for G=Z,. Also it is proved by N. Hassani [2]
that there is an isomorphism Qu(Z,)=Q(Z)®q,24(Z,) of Q,-modules if g
and r are relatively prime.

The main purpose of this note is to study the Q,-module structure of Q,(Z,x)
for k>1. Also, we study the Pontrjagin products in Q.(Z,:) and R,(Z,«) for
k>1.

In §1, we are concerned with the unoriented bordism module

N(Zy) = Mu®@Hu(Zyx; Z;) (e [1, (19.3)]).

It is easy to see that this is a free N,-module with basis {[T, S2#*1], i[a, S2"]|n =0}
(Proposition 1.7), where (T, S2#*1) is the Z,.-manifold with the diagonal action
T of exp(n \/——_1/2"“1) and i(a, S?*) is the extension of the Z,-manifold (a, S2")
with the antipodal action a. Also we study in Theorem 1.22 the product for-
mulae in N,(Z,x) using the results for N,(Z,) of F. Uchida [6].

In §2, we are concerned with

B(Zy) = X prg=nf(Z3; Q)  (cf. [1, Th. 14.2]).

Using the homomorphism r: Q,(Z,1)— N4(Z,x) obtained by ignoring orienta-
tions, and the results for Q,(Z,) in [3], we prove in Theorem 2.18 that the Q,-
module @,(Z,«) (k>1) is a quotient module of the free Q,-module

Q,{{[T, S2*1], iE?2"*"'W(w)|n20, wen}},

where E2"* 1 W(w)e (3,(Z,). Finally, we study in Theorem 2.22 the Pontrjagin
product in G,(Z,x).
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Recently, E. R. Wheeler [8] has discussed the bordism module of closed
oriented (not necessarily principal) G-manifolds for a finite cyclic group G.

The author wishes to express his thanks to Professor M. Sugawara for making
useful suggestions, and also to Dr. K. Shibata and Dr. K. Komiya for their crit-
icisms.

§1. The unoriented bordism algebra N, (Z;:)

For a given finite group G, an n-dimensional principal G-manifold (G, B")
is a pair of a compact n-manifold B* and a free action of G on B" as a group of
diffeomorphisms, and two closed principal G-manifolds (G, M") and (G, N*) are
equivariantly bordant (G-bordant), if there is a principal G-manifold (G, B"**1)
with (G, B"*1')=(G, M"U N"). Denote the G-bordism class of (G, M") by
[G, M"], and the collection of all such classes by N,(G). N,(G) is a module
with respect to the disjoint union, and the direct sum

(1.1) NW(G) = L0 NW(G)
is the principal G-bordism module. For the unit group e,
gt* = Z:O=0 gtm gtn = mn(e) s

is the usual bordism ring with respect to the multiplication induced by the car-
tesian product M x N, and R, (G) of (1.1) can be given a structure of (left) N,-
module by

[N1[G, M] =[G, NxM],

where G acts on N x M by g(x, y)=(x, gy) (cf. [1, §§2, 19]).
For an element [G, M] e R,(G), let f: M/G—BG be the classifying map of
the principal G-bundle M—M/G. Then the element

ulG, M]=f«(M|G) € H(BG; Z,) =H,(G; Z,)
is defined, where M/G € H,(M/G; Z,) means the fundamental class, and
(1.2) [1,@8.1)] wp:N(G)— H,G; Z,) is epimorphic.

Let Z,. be the cyclic group of order 2. For the non zero element c,e
H(Z,.; Z,)=Z,, we can take C,e M, (Z,«) with uC,=c, by (1.2). Then, a
homomorphism of 9%,-modules

h: Re@HW(Zyx; Z,) — Ry(Zy1) (k=1)
is obtained by h(1®c,)=C,, and
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(1.3) [1,(19.3)] h is an isomorphism of N,-modules.

We denote a principal Z,«-manifold (Z,«, M) and its orbit manifold M/Z,.
also by (T, M) and M/T, respectively, using the action T: M—M of the generator
of Z,.. Consider the extension

(1.4) i: N(Z;) — N(Z,0)

defined by i(4, M)=(Z,x, (Z,x X M)/(iA x A)) where i: Z,<=Z,: is the inclusion
and the action of Z,« is g'[g, x]1=[g'g, x] (cf. [1, §20]).
We consider the principal Z,-manifold

(1.5) (a, S™) (a is the antipodal action),
and the principal Z,.-manifolds

(T, S27+Y), T(zq,..., 2,) =(Tzgs-.., Tz,),

(1.6)
i(a, S?") =(Tx 1, (Z,x x S?")/(ia x a)),

where T=exp(n./—1/2¥"1) is the generator of Z,..

ProposITION 1.7. (i) Mu(Z,e) (k21) is a free M,-module with basis
{LT, §27*1], i[a, S?"]|n 20}.
@) if[a, S*"*1]1=0 if k>1.

Proor. (i) is an immediate consequence of (1.3), since u[T, S2**']=c,,+1,
iwpla, S2"]=c3p.
(ii) The classifying map of the Z,.-bundle
i(a, S2"*1) — i(a, S2"*1)/(Tx 1) = §2m+1/q

is given by the projection i: S2"*1/g—S2"*!|T induced by i:Z,<Z,., and
iw: Hypy1(S2"* Y a; Z,))>H,, (S?"*1T; Z,) (k>1) is zero. Therefore, the
Stiefel-Whitney numbers of the above bundle are zero and we have i[a, S2"t1]=0
by[1, Th. 17.2]. q.e.d.

Now, N,.(Z,«) is an algebra over N, with respect to the Pontrjagin product
induced by the tensor product of principal Z,«-bundles. Explicitly, for principal
Z,«-manifolds (T;, M,) and (T,, M,), the product is defined by

(1.8) (Ty, M XTz, M) =(T, (M, x M)[Ty x T31),

where both T; x 1 and 1 x T, induce the same action T.
It is clear that the extension i of (1.4) and the augmentation

(1.9 x: Mu(Zy) — Ny, &lT M1 =[M|T],
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are homomorphisms of M,-algebras.
The product formulae in R,(Z,) are given by [6], [4], and we study those

in N(Zy) (k>1).

LemMA 1.10. For the manifolds of (1.6), we have

(1) [T, SY1[T, §**+1] =0,

(ii) (T, S*)(i(a, S?") = (Tx 1, (St x S2")/(a x a)).

Proor. (i) Consider the multiplication

m: St xS2r+t — §2n+1 0 (7 (20,..., 2,)) =(22¢,..., 22,,)
and the map
f: Stx S+l — Sl §2ntl 0 f(z, x) =(z, m(z, x)).

Then, f(Tx T ')=(Tx1)f and f(1xT)=(1xT)f. Therefore, f induces an
equivariant diffeomorphism

F:(T, SIXT, S2"*1) = (1 x T, (S* x S2"+ 1)(Tx T~1)) — (1 x T, S' x §2n+1).

This shows (i) since [1x T, St x S2n*+1]=0.
(ii) The desired result follows immediately from

((S' X Ze x S2M(Tx T~ x 1))/(1 xiax a) =(S! x S?")/(a % a) . q.e.d.
Let
(1.11) A: N(Zy) — N,_2(Z30)

be the Smith homomorphism defined as follows (cf. [1, § 26 and (34.7)]): For
a principal Z,.-manifold (Z,«, M™), we can take a differentiable equivariant map
¢: (Zyx, M")— (T, S2N*1) which is transverse regular on S2¥~1, since S2N+1/T
is the (2N + 1)-skeleton of BZ,, where (T, S?¥*1) is the one in (1.6) and 2N +1>n.
Then,

A[Zyx, M"] = [Zx, 9~ 1(SPN1)].
It is easy to see that 4 is a homomorphism of N,-modules, and
LEMMA 1.12. For the generators of Proposition 1.7, we have
A[T, S?"1] =[T, S?"-1], Adi[a, S?"]=i[a, S?*2].
LemMmaA 1.13. A([T, St]i[a, S?*]) = [T, S*]i[a, S2""2].

Proor. Consider the differentiable map
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1 xig + 2n+1
Sle2n SIXSZn 1 m., §2n R

where iy: S2"=0x S2"<=S2?"*1 and m is the multiplication in the proof of Lemma
1.10. Since m(ax a)=m and m(Tx 1)=Tm, the composition m(1 x iy) induces
the differentiable equivariant map

(T, S*)(i(a, S2") =(Tx 1, (S' x S27)/(a x a)) — (T, S2"*1),

by Lemma 1.10 (ii). It is clear that this map is transverse regular on S2*~! and
the inverse image of S2"~! is (S!x S2"~2)/(a x a), and so we have the lemma.
q.e.d.

For MN,(Z,), we can also define the Smith homomorphism
(1.14) 4,:R(Z,) — R, (Z)

in the same way as (1.11) using the classifying space SV/a of Z, (cf. [1, (26.1)]).
It is clear that

(1.15) 4,[a, S"] =[a, S™ 1],
and the following is proved in [6, Lemma 2.2 (b)]:
(1.16) &4d,([a, S'1[a, S"]) =0  for m=1.
Now we prove the following theorem, which is an analogy of [6, Th 2.4].
THEOREM 1.17. For the elements of M,(Z,«) in Proposition 1.7,
[T, S?**']1=I[T, S'UX%=0[P?/]i[a, S?""2/])
where [P2/] e R,; is the bordism class of the real projective space P2/ =S2i[a.

PrROOF. We notice that g,[T, S?"*1]=[S2*1/T]=0 since S?"*!|T is
the boundary of the associated disk bundle of the canonical S'-bundle S2"+1/T
—S82n+1/S1  Consider the element

Vo= —[T, S2"* 1]+ [T, S11(Z"=o[P?/]i[a, S2"21])

of N,(Z,)=Kere,. Then A(y,)=y,_, by Lemmas 1.12-13,
It is clear that y,=0. If y,_,=0, then 4(y,)=0 and we have

Va=x[T, S']  for some xe N,

by Proposition 1.7 and Lemma 1.12, since y, e R,(Z,«). Mapping this equality
by the transfer

t: Nu(Zy) — NW(Z)y), t[T, M]=[T?**"", M]
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(cf. [1, §20]), we have
xla, §']1=1y, == [a, §¥11+ Tj=olP1[a, S'1[a, S272/]

by Lemma 1.10 (ii) and (1.'8). Applying 4, of (1.14) and the augmentation
ey of (1.9) for k=1, we have x=¢,4,(ty,)=—[P?"]+[P?"]=0 by (1.15) and
(1.16), and so y,=0 as desired. q.e.d.

CoroLLARY 1.18. [T, S']i[a, S2"] ="_oa,;[T, S2n~2i*1],
where the elements a,;e N,; (j=0) are defined by

(1.19) ap=1, X" oa,[P?™2/]=0  forany m=1.
Proof. The right hand side of the desired equality is equal to
Ste0ay, [T, S1N(TI4IP?i[a, S2r-2i21))
by the above theorem, and so to [T, S']i[a, S2*] by (1.19). q.e.d.
Let aj(m, n)e N,,,,_; be the elements defined by
(1.20) [a, S"1[a, S"] = 2. j>02;(m, n)[a, S7] in N, (Z,).

(1.21) (cf. [6, Lemma 3.1], [4, Th. 4.1]) The above elements o m, n)
are determined by the following relations:

@) Zjz1zj-1usf(m, n) =351z, (a(m—j, n)+a(m, n—j)),
where z;eN;, zo=1and z; =0 if i+1 =25,

() ag(m, n)=[P"J[P"]+ 2,5 12;(m, m)[P] .

(©) [Hppl=21jz12{(m, n)[PI71],
where H,, , is Milnor’s hypersurface in P™ x P".

The commutative algebra M,(Z,«) over N, with the Pontrjagin product
defined by (1.8) is given by the following theorem.

THEOREM 1.22. R,(Z,x)(k>1) isa free Ny-module with basis {[T, S2**1],
i[a, S2*]In=20} of (1.6), and

[T, S*™*1][T, S?"*1]=0, i[a, S*™]i[a, S*"]= 2] ;x,;(2m, 2n)i[a, S?/],
[T, S2m*1]i[a, S?"] =X (Xs, [P?*]ay(2m—2s, 2n)ay,, [T, S27*1],
where a,,_,; and a,;{(2m, 2n) are the elements of (1.19-20).

Proor. The first half is Proposition 1.7 (i). The equalities are seen by
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routine calculations, by Theorem 1.17, Lemma 1.10 (i), (1.20), Proposition 1.7
(i), Corollary 1.18 and the fact that i is a homomorphism of ,-algebras.
q.e.d.

§2. The oriented bordism algebra 2,(Z,.) over 2,
The principal oriented G-bordism module and the oriented bordism ring
24(6) = T202,(G) and Q, = T2,9,

are defined in the same way as R,(G) and N, in §1, provided that manifolds
are oriented and G-actions preserve the orientations (cf. [1, §§2, 19]). Q.(G)
is a module over Q,, and there are homomorphisms

2.1) r: 2,(G) — N,(G), r: Q, — N,,
obtained by ignoring the orientations. Also, the augmentation homomorphism
(2.2) et Qu(G) — Q4, &[G, M]=[M/G],
defines the direct sum decomposition of Q,-modules:
Qu(G) = 0u(G)DQ,  O4(G) =Kerey.

Wall’s results on Q, can be stated as follows:

Let © denote the set of partitions w=(a,, .., a,) with unequal parts a;, none
of which is a power of 2, and set |w|=r. Let wNw', wOw’, w;en for w, v’ en
be the intersection, the symmetric difference and the partition obtained from
w=(ay,..., a,) by omitting a;, respectively. Then,

THEOREM 2.3. (C.T.C.Wall[7]) The oriented bordism ring Q, is the
quotient ring of the integral polynomial ring

Zlhy 9(0)|k20, wen]
by the ideal generated by the elements
29(w), 2,9(a9(w;) (lw|23),
g(w)g(w')— 2 jh(w; N w)g(a)g(w;0 "),
where h((ay,..., a,))=hsg, +* ha, .

K. Shibata [3] studies the principal oriented Z,-bordism algebra Q,(Z,)
(=9%(Z,)), together with the bordism algebra Q4(Z,) (=Q3(Z,)) of orientation-
reversing principal Z,-manifolds. Let
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2.4) A1 Qu(Zy) — 2, (Z,), E?"*2: QUZ,) — Quion+2(Z2),
E2M = A E?"* 2 Q(Z,)— Qi 2n+1(Z2)

be the Smith homomorphism defined in the same way as (1.14), and the homo-
morphism of Q,-modules defined by

E2"2[A, M ] =[a, S?"*2][4, M ] for [A,M]eQ,(Z,),
where (a, S2"*2) is the one in (1.5) and the product is defined by (1.8). Then
2.5 [3, p.205] E™[a, S°] =[a, S™] for m>0.
For a partition w=(ay,..., a,) e, let
26) Xo=Xpq X0 €My Ry, W(w) e %(Z))

be the bordism classes of the unoriented manifold M,=M,, ---M,,, in [7, §4]
and of the orientation bundle over M, with the orientation-reversing transfor-
mation as a Z,-action. Consider the following elements of Q%(Z,):

A(w) = 2 ;9(a)W(w;)—g(w)[a, S°T,
B(w, 0") = 2] jk(w; N 0")g(a)W(w;00")—g(w)W (@),

Q.7

for w, o’ € m, where h(w), g(w) € Q, are the elements in Theorem 2.3.

THEOREM 2.8. (K. Shibata [3, Th.4.5, Cor.3.3 (6)]) The principal orien-
ted Z,-bordism module Q,(Z,) is the quotient module of the free Q,-module

Qu{{[a, S2"*1], E2"" 1 W(w)|n=20, wen}}

by the submodule generated by the elements 2[a, S?2"*1], 2E?"" W (w),
E2"t1 f(w) (lw| 22), E?"*'B(w, ®'), where E2"*1 is the homomorphism of (2.4).

For our purpose, we use also the following
THEOREM 2.9. (cf. [1, Th. 14.2]) There is an isomorphism
0: 3,(Z) = Spraall,(Z2302)  (I21).
We see easily that this isomorphism 0 is natural by the proof of [1, pp. 39-41],

and so we have the commutative diagram

R,(Z,)——3,(Z,)—H,, ®G,
(2.10) j ; l o 1 s
m"(zzk)& Qn(ZZ")?Hn,k@Gn,k ’
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where r’s are the homomorphisms of (2.1), the left i is the extension of (1.4), the
middle i is the one defined in the same way,

Hn,l = ZmH2m+1(ZZ'; Qn—Zm-l)a Gn,l = ZmHZm(ZZ’; Qn-—Zm)a

and i,’s are the induced homomorphisms of the inclusion i: Z,=Z,.. We
notice that

2.11) Kerr=23,Z,) (I=1)
by Rohlin’s theorem (cf. [1, Th. 16.2]).

LeEmMMA 2.12. (i) ix: G,y — G, is isomorphic and i, H, <2 'H, .
(ii) r6-'iy is monomorphic on G, ; and r6~ ‘i, (H, ) =0 if k>1.

ProoF. Since @, is a direct sum of some copies of Z and Z,, we have
the lemma by the well known facts for H,(Z,:; Z) and H,(Z,:;Z,) and by
20t(Z,1) =0. g.e.d.

LeEmMA 2.13. (i) [T, S?2"*11e€@,,.(Z,x) (k=1) is of order 2¢.
(i) x[T, S2"*1] =0 if and only if x € 2¥Q,,, for x € Q,,.

Proor. (i) Itis clear that u[T, S2*+1] is a generator, where u: Q,,, (Z,x)
—H,,,(Zyx; Z)=Z,« is the natural homomorphism defined in the same way
as (1.2) (cf. [1, §6]). Therefore we have the desired result by Theorem 2.9.

(ii) Tt is sufficient to prove x € 2¥Q, if x[T, S2**1]1=0. By [1, §7], there
is a commutative diagram

Q®Q5, 4 ((Z1) = J2n+1,mCQm+2n+ 1(Z %)
1 100

Qm®H2n+l(ZZ"; Z) > H2n+1(22"; Qm)

where «’s are the homomorphisms defined by the multiplications, and the lower
k is monomorphic. Therefore we have the desired result. q.e.d.

PROPOSITION 2.14. (i) The Q4 -submodule $, of @,(Z,x) (k=1), generated
by the elements [T, S2"*1] (n=0), is the quotient module of the free Q,-module

Q,{[T, 5?**1]In20}}

by the submodule generated by the elements 2¥[T, S2**1] (n=0).

(ii) By the isomorphism 0 in (2.10), H,,=9H,N 3 (Z,)) is mapped isomor-
phically onto H, .

(i) 9, <219, for the extension i in (2.10).
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Proor. (i) Consider the Smith homomorphism
4: Q(Zy) — 2,-(Z,x)

defined in the same way as (1.11). Then we have A[T, S2/*']=[T, S?/71]
in the same way as Lemma 1.12.
Assume that

nox[T, §2%11=0  (x;€0,).

Then the image of the left hand side of this equality by 4" is equal to x,[T, S!],
and so we have x,€2¥Q, by Lemma 2.13 (ii). Therefore we have (i).

(ii) Consider a commutative diagram similar to (2.10) for the inclusion
JjiZy<=Zyiey. Then, we see that rf~!j, is monomorphic on G,, and r0~1j,H,,
=0 in the same way as Lemma 2.12 (ii). Then, we obtain

0(5;1,1) < Hn,l

since we have jr[T, S2"*1]=0 in the same way as Proposition 1.7 (ii).
On the other hand, there is a group homomorphism

(P: Hn,l = ZmH2m+ 1(22‘; Z)®'Qn—2m~l I 53..,1 ’

defined by @ (dymse1 ®x)=x[T, S?"*'] (x€ Q,_,m_1), Where d,,.; €
H,,.(Z,1; Z)=Z,: is the generator. It is clear by (i) that ¢ is isomorphic.

These show that 6(%, ;) =H,, as desired.
(iii) The desired result follows immediately from (ii) and Lemma 2.12 (i).
q.e.d.

Consider the Q,-submodule
(2.15) 6, c Qu(Z,) (k=1)
generated by the elements iE2"* ! W(w) (n20, w € ), and the elements
A, () = 5,9(@)iE? W (),
(2.16) B, (o, 0) = 3. ;h(w; N @)g(a)iE>"* 1 W(w; 0 0’)
—g(w)iE?" 1 W (o),

of &, (k> 1), where i: Q,(Z,)—Q,(Z,:) is the extension in (2.10) and the elements
are the ones in Theorem 2.8.

LemMmA 2.17. (i) 6, =i®,, i(®,nH,)=0,
(ii) A, (@) = iE2" 1 A(w), B, (®, w")=iE?""1B(w, '), for k>1,
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where §, is the one in Proposition 2.14 and A(w) and B(w, ®') are the elements

of 2.7).

Proor. Take ge ®, and he$, such that g=h. Then g—h is a linear
combination of the elements E2"*1A4(w) in Theorem 2.8, and so

h =Zx, .g(w)la, 2]

by (2.7) and (2.5). Therefore ih=0 and i(®, n H,)=0 for k>1, by Proposition
2.14 (iii) and Theorem 2.3. The first equality of (ii) follows in the same way.
q.e.d.

Now, we are ready to prove our main theorem.

THEOREM 2.18. The principal oriented Z,w-bordism module Q,(Z,x)
(k>1) is the direct sum

Q*(sz) = Sjke')(ﬁk )

where the submodule 9, is given by Proposition 2.14 (i) and ®, (k>1) of (2.15)
is the quotient module of the free Q,-module

QA{E?" W(w)|n=0, wen}}

by the submodule generated by the elements 2iE?"*1W(w) and A, (0) (|jw|=2),
B, (0, @) of (2.16).

ProOF. Since ©,(Z,)=9,+ 6, by Theorem 2.8, we see immediately that
Qu(Z3) = D+ 6 = 9, +i6,

by the right commutative square of (2.10), Lemma 2.12 (i) and Proposition 2.14 (ii).
Assume that

h+ig,=0 for he®, and g, € 6,.

Then, since i, ps0g, =ps0(h+ig,)=0 by Proposition 2.14 (ii), we have p;0g, =0
by Lemma 2.12 (i), where ps: H, @G, ,—G,, is the projection. Therefore, by
Proposition 2.14 (ii), there is an element h,; € $, such that g,=h, in Q.(Z,).
Therefore, we have

ig, =0 and h=0

by Lemma 2.17 (i). Also, by Theorem 2.8, g; —h, is a linear combination of the
elements

2E2”+1W(C0), E2n+1A(w) (lwng), E2"+IB(w, w,)a
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and so ig, =i(g; —h,) is a linear combination of their i-images. Therefore, we
have the theorem by Lemma 2.17 (ii). q.e.d.

In the rest of this note, we study the Pontrjagin product in Q,(Z,«), which
is defined in the same way as (1.8) for M, (Z,«).
We consider the commutative diagram

Q(Z) 5 Q,y2044(Z5)

(2.19) l 1
N(Z,) B Ryt 5041(22)

where r’s are the homomorphisms of algebras obtained by ignoring the orienta-
tions (cf. (2.1)), the upper E2"*1 is the one of (2.4) and the lower E2"*! is
defined in the same way.

ProrosiTION 2.20. (i) rW(w)=X,[a, S°]+rg(w)[a, S'],
(i) rE?" ' W(w) = X, [a, S2"* 11+ Z1tbayrg(w)la, S2m=20*2],

where W(w)e Qx(Z,), X,, a,;€N, and g(w)eQ, are the elements of (2.6),
(1.20) and Theorem 2.3.

Proor. (i) Since g,W(w)=X, (¢4 is the augmentation) by the definition
of W(w), we have

rW(w) = X,[a, S°]1+ 3 j~0x,([a, ST1—[P/][a, S°]) (x;€ Ny)

by Proposition 1.7. On the other hand, the orientation bundle W(w)-M,
can be clssified by S'— S1/Z, (cf. [7, p.299]), and so A7rW(w)=0 for m=2,
by the definition of 4, of (1.14). Also, &,4,rW(w)=rg(w) by the definition of
g(w) in [7, p.309]. These facts, (1.15) and Proposition'l.lé show that x;=0
(j22) and x, =rg(w).

(ii) The equality follows immediately from (i), (2.19), (2.5), Corollary 1.18
and (1.15). q.e.d.

LEMMA 2.21. The homomorphism r: Q,(Z,) — N, (Z,«) of algebras
in (2.10) is monomorphic.

Proor. In the commutative diagram (2.10), r6~'|G,,, is monomorphic
by Lemma 2.12. Any element of H,,;=XH,,.(Z,x; Q5;—2,—) is of order
2, since 2Q2,,_,,,— 1 =0 by Theorem 2.3. Therefore we have the lemma by (2.11).

q.e.d.

THEOREM 2.22. For the generators of the Qi -module Q,(Z,«) in Theorem
2.18, the Pontrjagin product is given as follows:
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(l) [7" S2m+l][’1"’ S2n+l] ____0
(ii) The images of the products

[T, S2m*1iE2"* ' W(w) and iE*™ 1 W(w) iE2" 1W(w')
by the monomorphism r of the above lemma are determined by the equalities

r[’r’ SZn+ 1] = [’I” S2n+1]’ riE2n+1 W(CD) — Zy:(l)az 'rg(w)i[a, SZn—2j+2] s

J

and the product formulae in Ny(Z,) of Theorem 1.22. In particular,
IE2" 1 W()iE2" 1 W(w") =0.

Proor. The desired results follow immediately from Propositions 2.20 (ii),
1.7 (ii) and the fact that 9N,(Z,) is the exterior algebra over R, (cf. [5]).
q.e.d.

References

[1] P.E. Conner and E. E. Floyd: Differentiable Periodic Maps, Erg. d. Math. Bd. 33,
Springer-Verlag, Berlin-Géttingen-Heidelberg, 1964.

[2] N. Hassani: Sur le bordisme des groupes cycliques, C. R. Acad. Sci. Paris. 272 (1971), 776~
778.

[3]1 K. Shibata: Oriented and weakly complex bordism algebra of free periodic maps, Trans.
Amer. Math. Soc. 177 (1973), 199-220.

[4] ———: A note on the formal group law of unoriented cobordism theory, Osaka J. Math. 10
(1973), 33-42.

[5] J.C.Su: A note on the bordism algebra of involutions, Michigan Math. J. 12 (1965), 25-31.

[6] F.Uchida: Bordism algebra of involutions, Proc. Japan Acad. 46 (1970), 615-619.

[7] C.T.C.Wall: Determination of the cobordism ring, Ann. of Math. 72 (1960), 292-311.

[8] E.R. Wheeler: The oriented bordism of cyclic groups, to appear.

Department of Mathematics,
Faculty of Science,
Hiroshima University








