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Introduction

This work was motivated by the recent papers of Calvert [7, 8] who discussed
potential theoretic properties of nonlinear monotone operators and extended the

Dirichlet space theory (cf. Beurling-Deny [1, 2], Deny [9, 10], Itό [13, 14],

Bliedtner [3, 4]) to the nonlinear case in Sobolev spaces. He treated nonlinear
analogues of the modulus contraction, the unit contraction, the principle of lower

envelope, the domination principle and the complete maximum principle, etc.
In his argument, however, there is no notion of potentials. In this paper, restrict-

ing our arguments to a class of gradients of convex functions, we introduce a

notion of potential with respect to a given convex function and show that Cal vert's
arguments are valid in a more general space, namely, in a regular functional

space. Moreover, by introducing a notion of capacity with respect to a given

convex function, we discuss the refinement of functions in a regular functional
space.

§ 1. Preliminaries

Let X be a locally compact Hausdorff space with a countale base and ξ be

a positive (Radon) measure on X. Let & = &(X\ξ) be a real reflexive Banach
space whose elements are real-valued locally ξ-summable functions defined

ξ-a.e. on X (hereafter we write simply "α.e." for "ξ-a.e"). We denote by

#* the dual space of #*, by \\u\\ (resp. ||ιι*||) the norm of uε& (resp. w*e^*)
and by <M*, u> the value of M*e^"* at uε&. We denote the strong (resp.
weak) convergence by "— *-»" (resp. "— sκ->"). For functions w, veL}oc =

L}oc(X\ξ), we write uVυ and u Λv for max(w, ύ) and min(w, υ), respectively.

Especially, we write u+ and u~ for u V 0 and — (u Λ 0), respectively.
Throughout this paper, let 1 < p < oo and Φ be a strictly convex function on

X such that

ίΦ(0)=0,
(1-1)

IΦ(M) > C\\u\\p for any M
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where C is a positive constant. Suppose further that Φ is bounded on each
bounded subset of & and is everywhere differentiable in the sense of Gateaux,
that is, there is an operator G: #*->#'* such that for any M,

<Gu,v> ϋm
f i O *

This operator G is called the gradient of Φ and denoted by FΦ.
Now, we state basic properties of FΦ without proof:

(a) Let u e& and w* e$**. Then w* = FΦ(w) if and only if <w*, U-M> <
Φ(ι;)-Φ(w)forallι;e# .

(b) FΦ is strictly monotone, i.e., <FΦ(w) — FΦ(V), u — v> >0 for any
M, i; e 2£ such that M ̂  v.

(c) For each we^, <FΦO), I;-M>/||I;||-»OO as |M|->oo.

(d) FΦ is demicontinuouSji.e., if un—^>u in X as n-»oo, then FΦ(MΠ)
FΦ(w) in ̂ * as n-χχ>.

(e) For any M,

Φ(M)-ΦO) = \ <ΫΦ(v + t(u-v)\ u-v > dt.
Jo

LEMMA 1.1. FΦ is one to one and onto.

PROOF. As remarked above, FΦ is a monotone1), demicontinuous and
coercive1) mapping of &? into $**. Hence, in view of a result of Browder [5;
Theorem 3], the range of FΦ is all of $**. The fact that it is one to one fol-
lows directly from property (b). q.e.d.

DEFINITION 1.1. (cf. [2], [4], [9], [10], [13]) % = &;(X\ξ) is called a
functional space if the following axiom is satisfied:

Axiom (a) For each compact subset K of X, there is a constant M(K)>Q
such that

/»
J for all u e &.

Next, denote by Jt the space of all bounded ξ-measurable functions on
X with compact support. Then Axiom [a] implies that for each fe Λί, the
functional Lf given by

Z» =

1) For words "monotone" and "coercive", see [6],
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belongs to #**. Therefore, from Lemma 1.1 we obtain

THEOREM 1.1. Let & be a functional space. Then for each /e^, there
is a unique function UfE& such that

all<PΦ(uf),v> = (fvdξ for

From now on, we denote by # the space of all continuous functions on X
with compact support.

DEFINITION 1.2. (cf. [2], [4], [9], [13]) A functional space &=&(X; ξ)
is called regular if the following axiom is satisfied:

Axiom (b) # ΓΊ % is dense both in <% and in &.

DEFINITION 1.3. Let & be a regular functional space. A function U
is called a potential (with respect to Φ) if there is a (signed) measure μ on X
such that

(1.2) <rΦ(u),v> = (vdμ for all

If such a μ exists, then it is unique and called the associated measure of u9 and we
write u=uμ. In particular, a potential uμ is called pure if μ is positive.

We note that the function uf obtained in Theorem 1.1 is a potential whose
associated measure is/dξ.

The lemma below will be needed in the proofs of our main thoerems in § 3
and 4.

Let Ω be an open subset of X and denote by #(Ω) the space of all continuous
functions on Ω with compact support.

LEMMA 1.2. Let (^ί be a dense linear subspace of &(Ω) such that v+ e ^Ί
for any ve(iίί. Let L be a positive linear functional on #lβ Then L can be
extended to a positive linear functional on &(Ω) and hence there is a positive
measure σ on Ω such that

L(v) = \ υάσ for all
JΩ

The assertion of this lemma was shown in a more general form in [20;
Corollary 2.3].

§ 2. Normalized contractions

In this section, let #* be a functional space.
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A mapping T: (—00, oo)->(— oo, oo) is called a normalized contraction on
(-00,00), if it has the following properties : TO = 0 and \Tr-Tr'\<\r-r'\.
Such a mapping Tcan be considered as a mapping from L}oc into itself by putting
(Tu)(x) = Tu(x) for xeX at which | u(x)\ < oo.

LEMMA 2.1. Let T be a normalized contraction on (—00,00). Let {un}
be a sequence in & such that Tune^ for all n. If un — ?->u in & and {Tun}
is bounded in #*, then Tue& and Tun-^-^Tu in &.

PROOF. Since & is reflexive, {Tun} is weakly relatively compact in #*.
Let {Tun>} be any subsequence of {Tun} weakly convergent and v be the weak
limit. Then we have

(2.1)

for any/e^f and n'. By Theorem 1.1,

((Tun -υ)fdξ = <VΦ(uf\Ύun,-v> - >0 as n' - > oo .

By using Axiom (a) we have

|ιv^

as n'-»oo, where M is a positive constant which depends on the support of/.
Hence by (2.1) we have

f(7lι - v)fdξ = 0 for any /e Jί .

This implies that v = Tu in & and Tun-^-^Tu in % as n->oo. q.e.d.

In the Dirichlet space theory, there is an important class of normalized
contractions on (— oo, oo) of the following type:

DEFINITION 2.1. Let k be a non-negative number or oo, and define a
mapping Tk: (— oo, oo)->[0, oo) by Tkr=min{max(r, 0), k}. Then we say
that Tk operates in & (with respect ot Φ), if the following two conditions are
satisfied:

(Ck) Tkuε& for any u

(ΦCk) Φ(u) + Φ(υ) > Φ(u + Tk(v - ιι)) + Φ(v - Tk(v - ιι))

for any u,
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We now give a necessary and sufficient condition for condition (ΦQ).

PROPOSITION 2.1. Let /ce[0, oo]. Under condition (Q), condition (ΦCk)
is equivalent to the following:

(ΦCk)
f <PΦ(u + Tkv)-PΦ(u)9v-Tkv>>0 for any

PROOF. Clearly, (ΦCk) is equivalent to

(2.2) Φ(z) + Φ(z + w) > Φ(z + Γfew) + Φ(z + w - 7» for any z, w e X .

First assume (2.2). Let u and t; be any functions in % and t be any positive
number, and take w = Tkv + t(υ—Tkυ) and z=w in (2.2). Then, noting that
Tkw = Tkv, we have

Φ(u + Tkv + t(v - Tkυ)) + Φ(u) > Φ(u + Tkv) + Φ(ιι + t(υ - Tkv)) .

Hence

]im—
ί l O ί

Conversely assume (ΦQ)'. For any w, t e^1, we have by property (e) and
γ

Γl
v)-Φ(u + Tkυ) = \ <PΦ(u + Tkv) + t(v-TkΌ))9υ-Tkv>dt

Jo

> \
Jo

Thus (2.2) is proved. q.e.d.

REMARK. In particular, when T^ operates in #", we often say that the modu-
lus contraction operates in 9£. Calvert [7 : § 2] gave the definitions of the con-
tractions onto [0, k~\ in the form (ΦQ)' for a general class of nonlinear monotone
operators in a Sobolev space. Also, compare them with the definitions in Deny
[9] and Itό [13].

LEMMA 2.2. Suppose that condition (Cko) is satisfied for some k0 such that
0<fc0<oo. Then for every k, 0</c<oo, the following holds: Tkφe& for any
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φ G V Π X.

PROOF. The lemma is trivial for fc=0. Let φ be any function in # n X.
In case 0<fc<oo, we observe that

Next, let us consider the case where fc = oo. Taking a number M which is larger
than sup \φ\, we have by the above fact

T^φ = φ+=TMφe<>ε. q.e.d.

Using this lemma we prove

LEMMA 2.3. Suppose that X is regular and that condition (Ck) is satisfied
for some k such that 0<fc<oo. Then for any open set G in X9 {φ €&[}&;
suppφcG} is dense in #G = {</> e # supp φ c G} with respect to the topology of

PROOF. Let φ be any non-negative function in #G. Given ε>0, there
exists a function ψ e %> n X such that \φ — φ\ <ε on X on account of Axiom (b).
Setψε=(ιl/-Tεψ)+. Then, by Lemma 2.2, ψ:

BeV ϊ\'X and we see that ^fi(x)=0
if φ(x)=Q, so that \l/εe<gGn& and \ψε-φ\<2ε on X. Thus the lemma is
proved. q.e.d.

PROPOSITION 2.2. Suppose that X is regular and let r be a positive num-
ber. In addition to assumptions on Φ made in § 1, suppose that Φ(λu) = \λ\rΦ(u)
for any u^X and any real number λ. If Tko operates in X for some k0 such
thatQ<k0<ao, then all Tk9 0<fc<oo, operate in X.

PROOF. Clearly, T0 operates in X. Now, assume that 0<fc<oo. For
an arbitrary φ e & n X9 we have Tkφe2£ by Lemma 2.2. Moreover, by our
assumption and (ΦCko)9

Φ(Tkφ) =

This implies that the mapping: φ^Tkφ from ^ n X into X is bounded on each
bounded subset of # n X in the topology of X. Therefore, by Axiom (b) and
Lemma 2.1, condition (Ck) holds. Next, notice that
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(2.3) ΓΦ(λιι) = μr1 sign(λ)PΦ(ιι), A ̂  0.

Let 0, ψ be any functions in <% n #. Then, by (2.3) and (ΦCko)'

<rΦ(φ+Tkψ)-rΦ(φ)9ψ-Tkψ>

), k0ψ/k

-Tko(k0ψ/k)> >0.

Hence, just as in the proof of Proposition 2.1, we obtain

Φ(φ + Tk(φ - φ)) + Φψ - Tk(ψ - φ)) < Φ(φ) + Φ(^)

for any φ9 ψ e # n X .

Taking account of the strong continuity and weak sequential lower semicontinuity
of Φ, we consequently see that (ΦQ) holds. Thus Tk operates in &.

Finally, we can show (C^) and (ΦC^) in a way similar to the above.
q.e.d.

§ 3. Potentials with respect to Φ

For a ^-measurable set A in X and v, w in L\oc, we simply write "t?>w
(resp. u = w) on A" for "v>w (resp. v = w) a.e. on A". Especially, we write
"ι;>w (resp. u = w)" for "v>w (resp. t; = w) on X".

In this section, let £ be a regular functional space.
The following theorem is a nonlinear version of a result of Beurling-Deny

[2; Lemma 2].

THEOTEM 3.1. Suppose that V+E& for any VE& and the mapping:
υ-*v+ from & into & is bounded on bounded subsets of &. Let UE&. Then
the following three statements are equivalent to each other:

( i ) u is a pure potential.

(ii) Φ(w-f ι ) > Φ(u) for all ve& such that v > 0.

(iii) <FΦ(w), v> > 0 for all VE^ such that v>0.

PROOF. The equivalence between (ii) and (iii) is easily obtained from the
definition of FΦ and property (a). Next assume (i). Then there exists a positive
measure μ on X such that (1.2) holds. Let v be an arbitrary non-negative function
in $*. In view of Axiom (b) and Lemma 2.1 for T=T00, we find a sequence {vn}
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in # n & such that vn>Q for all n and vn— ̂ υ in 3C as «-»oo. Therefore we
see that

u), υ> = lim <FΦ(w), vn> = lim\vndμ > 0,

so we have (iii). Conversely, assume (iii) and consider the functional:

v e tf {]& - > <FΦ(w), v> .

From Lemma 1.2 and Axiom (b) it follows that there exists a positive measure
μ on X such that

<FΦ(w), v> = Udμ for all t e ^ Π ^ . q.e.d.

COROLLARY. Suppose that V+E& and Φ(υ+)<Φ(v) for any υe&. Then
any pure potential is non-negative.

PROOF. Let uε& be a pure potential, and let us consider 3f =
v>u}. Then inf{Φ(ι;); vεtf] is attained at a unique function of Jf, because
JΓ is closed and convex in 2£ and Φ is strictly convex. By Theorem 3.1, u is
the minimizing function. On the other hand, by our assumption, u+ e 3C and
Φ(w+)<Φ(w). Hence w=w + , i.e., w>0. q.e.d.

Throughout the rest o/ this section, we assume that T^ operates in &. In
this case, the following holds :

(3.1) Φ(w+) + Φ(-ιO < Φ(u) for any uε&.

Moreover, Theorem 3.1 is valid, since it follows from (3.1) that the mapping:
v-+TaQv = v+ from # into itself is bounded on each bounded set in #\

LEMMA 3.1. Let μ and v be associated measures of potentials. If σ is a
measure such that μ<σ<v, then σ is the associated measuer of a potential.

PROOF. Let φ be a non-negative function in # n $*. Then we have

(φάσ < (φάv = <FΦ(t/J, φ>

and

\φdσ >\φάμ =<PΦ(uμ), φ> .

Therefore for any ^e ̂  Π & we write \l/ = φ+ — \l/~ and have by (1.1) and (3.1)
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(ψd

< (\\rΦ(uμ)\\

Hence

This means that the functional: ψe & Π &-* \ψdσ is continuous with respect

to the topology of #*, so there exists a M* e&* such that <u*,ψ> = \ψdσ for

any ψ £<£(}<%'. Lemma 1.1 shows that w* = FΦ(w) for some we$*. This
u is a potential uσ by definition. q.e.d.

THEOREM 3.2. Lef μ and v be associated measures of potentials. If
there is an associated measure σ of a potential such that μ>σ and v^σ, then
uμ/\uv is a potential. Moreover, if we denote by η the associated measure of
uμ/\uvί then we have η>σ.

PROOF. By the above lemma μ Λ v is the associated measure of a potential.
Let JΓ = {ι;e^;ι;>wμΛMv} and define an operator B: &-*&* by Bv = PΦ(v) —
FΦ(«μΛϋ). Then B is a monotone demicontinuous operator from & into
$** such that for each we&9 <Bv, v — w>/||t;||->oo as ||t?||-»oo. By virtue of
a result of Brόwder [6; Theorem 3] there is v0 e3C such that <-Bι?0, ι? — v0> ;>0
for any v e tf. For any v e 9C such that v > 0, we have v0 + veJf and hence < Bvθ9

v>>Q. Therefore by Lemma 1.1 and Theorem 3.1 there exists a pure potential
uηo such that Bv0 = ΓΦ(uηo). This means that VQ is a potential whose as-
sociated measure is η0 + μλv. If it is shown that v0=uμ/\uv, then the proof
of the theorem is completed.

First we see that <Bvθ9 v0 — ι?0Λuμ> <0, because v0/\uμejf. Next,

by (ΦCJ',

< B(v0 Λ wμ), v0 ~ ̂ o Λ uμ >

= < B(Uμ - (||μ - ϋo)+), (Uμ - VQ)- >

For a non-negative function φ e <€ n & we have

<Buμ,φ> = (φdμ-Ud(μΛv) > 0.
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By Lemma 2.1 we see that <Buμ, ι» >0 for any non-negative υeS£. Hence,

< Buμ, (uμ - VQ)- > > 0. Therefore

< V Φ(v0) - Γ Φ(>0 Λ uμ), v0-v0/\uμ>

= <Bv0-B(v0Λuμ\ VO-VQ Λ Uμ > <0.

Property (b) implies that v0=v0/\uμ. Similarly we obtain v0=v0/\uμ. Since

v0EJf, vQ=uμf\uv. q.e.d.

COROLLARY. I f u , v are pure potentials, then u Λ v is also a pure potential.

THEOREMS. 3. Let μ and v be associated measures of potentials. If

there exists an associated measure σ of a potential such that μ>σ, v>σ and

<FΦ(wμ)-FΦ(tO, (uμ-uv)
+> =0, then uμ<uv.

PROOF. By Theorem 3.2, uμ/\uv is a potential whose associated measure

η is >σ. As in the proof of Theorem 3.1 we see that < ΓΦ(uη) — ΓΦ(uσ)9 v>>Q

for any non-negative v e &. Hence we have

Since uμ — uη=uμ — uμ/\uv—(uμ — uv)
+

9 we have by using our assumption

<PΦ(uμ)-PΦ(uη),uμ-uη> <0,

which implies uμ=uη (cf. property (b)). Then uμ<uv. q.e.d.

COROLLARY 1. Let μ and v be associated measures of potentials. If

μ<v, then uμ<uv.

PROOF. Take σ=μ in the theorem. q.e.d.

COROLLARY 2. Let f be a non-negative function in Jt and uμ be a pure

potential. Ifuf<uμ on the set {xeX;f(x)>Q}9 then uf<uμ.

In fact, take σ=0 in the theorem and note that <ΫΦ(uf),(uf — uμ)
+> =0.

REMARK. Ideas in the proofs of Theorems 3.2 and 3.3 are found in Calvert

[7; §2]. Theorems 3.2 and 3.3 are nonlinear analogues of the principle of

lower envelope and the domination principle in the Dirichlet space, respectively.

THEOREM 3.4. Let k be a positive number and suppose that Tk operates

in 2£. Let μ and v be associated measures of potentials such that μ>σ and

v>σ for some associated measure σ of a potential. Then uμA(uv + k) is a

potential whose associated measure is >σ.
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PROOF. We note that u/\(v + k) belongs to & for any u, ve&, because
ut\(v + k)=uf\v+Tk(u-υ). Set w=uμ/\(uv + k), jr = {ve&'9 v>w} and define
the operator B from SC into £Γ* by Bv = PΦ(v)-PΦ(uμλv). Then, just as in the
proof of Theorem 3.2, we see that there exists VQ e JΓ such that <Bv09v — v0> >0
for all i eJΓ and that v0 is a potential whose associated measure is > μ Λ v and
v0=v0/\uμ. Therefore we have only to show that v0=v0/\(uv + k). For this,
first note that < Bv0, v0 - VQ Λ (uv + fe) > <0. Next, by (ΦCfc)',

Λ (uv + ky),Ό0-v0 Λ (

Λ t/v+Γ,(t;o-wv)
+),(t;o-wvr-Tfc(t;o-wv)

+>

> <B(v0 Λ f*v)» NO-NO Λ (wv + /c)> .

By Theorem 3.2, v0 Λ w v is also a potential whose associated measure is > μ Λ v .
Therefore, the right hand side of the above inequality is non-negative, so that

<PΦ(v0)-PΦ(v0 Λ (wv + fe)),ι;o~^o Λ (tιv + fe)>

= <B(v0)-B(v0 Λ (uv + k)),v0-v0 Λ (uv + k)> <0.

By property (b) we have v0 =v0 Λ (wv + fc). q.e.d.

COROLLARY. Let k be a positive number and suppose that Tk operates in
2£. If uμ and uv are pure potentials, then uμ/\(uv + k) is also a pure potential.

THEOREM 3.5. Let k be a positive number and suppose that Tk operates
in 9£. Let μ and v be associated measures of potentials. If there exists an
associated measure σ of a potential such that μ>σ, v>σ and <PΦ(uμ) —
PΦ(uσ),(uμ-uv-k)+> =0, then uμ<uv + k.

PROOF. By using Theorem 3.4 and Property (b), we can obtain the theorem
in the same way as in the proof of Theorem 3.3. q.e.d.

COROLLARY. Let k be a positive number and assume that Tk operates in
3C. Let f be a non-negative function in Jt and uμ be a pure potential. If uf <
uμ + k on the set {xeX;/(X)>0}, then uf<uμ + k.

REMARK. Theorems 3.4 and 3.5 are nonlinear versions of the strong principle
of lower envelope and the complete maximum principle in the Dirichlet space,
respectively.

§ 4. The condenser and balayage principles

In this section, let 9C be a regular functional space in which T^ and some
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Tk with 0< fc < oo operate.

THEOREM 4.1. (Condenser principle) Let G0 and G1 be two open sets in
X with disjoint closures, Gί being relatively compact. Then there exists a
potential uμ such that

(1) 0 < W / ί < / c ;
(2) uμ = 0 on GO and = k on Gl

(3) μ+ is supported by Gί and μ~ by G0.

PROOF. Define a closed and convex set Jf in 9£ by

Jf = {ve& v >0on G! and v < 0 on G0}.

It is easily seen that JΓ is non-empty. Let us consider α=inf {Φ(v); ve JΓ}.
Then there exists a unique function w such that α = Φ(w). Besides, we see that

<ΓΦ(u),v-u> > 0 for any z eJΓ,

and that u = Tku, since T f c wejΓ and Φ(Tku)<Φ(u) by (ΦQ). Thus w satisfies
(1) and (2). Next, we shall show that w is a potential whose associated measure
satisfies (3). Set

<%={φetfn%';φ>0 onG1 and <QonG0},

ir = {φ E ̂  n #"; </> > 0 o« G! α«ί/ supp ψ cz A^-G0}

and

Or = {φ e <β n %\ φ > 0 ow GO α«rf supp </> cz X-G^} .

Since u + φεJf for any <£ e ̂ , we have

(4.1) <FΦ(«),0>>0 forany

Noting Lemma 2.3 and applying Lemma 1.2 for Ω=X — G0,
 <^1=

supp (̂  c X — GO) and L : φ e ̂  -> < FΦ(w), 0 > which is non-negative on
^ = {φEe^l'9 φ>Q on X-GO) and vanishes on {φe «Ί; (suppφ) n G± =0}
on account of (4.1), we can find a positive measure v on X such that

<PΦ(u),φ> =\φdv forany

and suppvcGi. Similarly, we find a positive measure τ on X with support in
GO such that

<FΦ(w), 0> = — \φdτ forany
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In the same way as in Deny [9; Theoreme 1], Bliedtner [4; Theorem 13.2] and
Fowler [11; Lemma 3.2], for each non-negative i e ̂  n & on X and open sets

V, W such that X-G0=> V^> (suppt?) n Gl9 X-G^ W^ (suppt?) n G0 and
Fn W=09 we can find sequences {φn}9 {φ'n} in y with support in V and {ψn}9

{ψ'n} in τ0Γ with support in Wsuch that φn t f, φ'n I v uniformly on Gί and ψn ί v,
ψnlv uniformly on G0 as rc->oo. Then we see by (4.1) that

tfr dτ < <FΦ(ιι), Ό>

Letting n->oo yields that

<PΦO), v> = Udv-Udτ.

This shows that u is a potential whose associated measure is v — τ. Thus the
theorem is proved. q.e.d.

REMARK. As was seen in the above proof of Theorem 4.1, in addition to the
assumptions on Φ made in § 1 we needed only the property that Φ(Tku)<Φ(ύ)
for any ue&. Fowler [11: Theorem 4.1] showed the condenser principle in
the case of Φ(u) = || u \\ 2. Our theorem is a generalization of it.

THEOREM 4.2. (Balayage principle) Given a pure potential uμ and an
open set G in X, there exists a unique pure potential uμ> such that

(1) uμ> = uμ on G;

(2) μ' is supported by G;

(3) if uv is a pure potential and uv>uμ on G, then uv>uμ> on X.

PROOF. Define a closed and convex set JΓ in ̂  by

JΓ = [v e #; v > uμ on G} .

Then it is non-empty and there exists a unique t?0ejΓ such that <ΓΦ(ι;0), v —
v0> >0 for any ί e JΓ. Since v + v0ejf for any t;e#" such that u>0, we have.
<FΦ(u0), v> >0 for such v. Hence υ0 is a pure potential by Theorem 3.1. Let
uv be any pure potential such that uv>uμ on G. Then v0 Λ uv e Jf and < FΦ(ι;0

Λw v ), v0-v0Λuv> =<ΓΦ(Mv-(wv-ί;0)
+), (wv-t;0)"> ><FΦ(wv), (MV-UO)"">

>0 because of (ΦC^)'. So we have

<PΦ(VQ)-PΦ(VO Λ "vX^o-^o Λ w v> <0.

Therefore we have ι;0=t;0ΛMv, that is, t;0<wv by property (b), and especially
v0<uμ. It remains to show that the associated measure μ' of VQ is supported by
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G. For this, take any function φ e ^ n ^ * such that suppφaX — G. Noting

that ι>0±0e JΓ, we see that \φdμ' = <FΦ(ι;0), φ> =0. It follows from Lemma

2.3 that suppμ' cG. Thus υ0 is a function having the required properties.

Finally we note that properties (1) and (3) imply the uniqueness of such
a uμ>. q.e.d.

§ 5. Capacity with respect to Φ

Let us assume in this section that & is a regular functional space in which

Γ^ operates. We introduce a notion of capacity with respect to Φ and discuss
the refinement of functions in #*.

Let K be any compact set in X. We define

Cap(X) = inf {Φ(φ); φ e & n #, φ > 1 on K}.

Note that such φ exists by Axiom (b) and that 0<Cap(X)<oo. Since T^

operates in #, Cap(£)=inf {Φ(φ); 0e <€ Π #, φ>0 on X and >1 on K}.
For any open set G in Jf, we define

Caρ(G) = sup {Caρ(K); K c G, K is compact}.

LEMMA 5.1. Let K be any compact set in X. Then

Cap(K) = inf {Cap(G); K c G, G is open} .

PROOF. Since Cap(X)<inf {Cap(G);XcG, G is open} is trivial, we show

the converse inequality. Given ε>0, choose φ G t f n t f ' such that φ>\ on K
and Φ(0)<Cap(K) + ε. Set Gη = {xεX', φ(x)>η} for any number η, 0<η<i.

Then, since Gη is open and contains K, inf (Cap(G); XcG, G is open} <Cap(G^)

<Φ(φ/η) for each η. By the continuity of Φ, Φ(φ/η)-+Φ(φ) as fj t 1. Hence

we have

inf {Cap(G);£c=G,G is open} < Φ(φ) < Cap(K) + ε.

Since ε is arbitrary, the lemma is valid. q.e.d.

The above lemma allows us to give the following definition:

DEFINITION 5.1. For any set A in X we define

Cap (A) = inf {Cap (G): A c G, G is open} .

and call it the capacity of A (with respect to Φ).

Using condition (ΦC^), we can easily prove the following two lemmas.
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LEMMA 5.2. For any set A^ and A2 in X, we have

Cap (A! ΌA2) + Cap(A1 ΠA2) < Cap(A1)-{ Cap(A2) .

LEMMA 5.3. Cap( ) is countαbly subαdditive, i.e., for any countable
family {An} of sets in X we have

C a p ( C / Λ ) < Σ C a p ( Λ M ) .
n=l «=1

LEMMA 5.4. Let A be a Borel set in X and let μ be the associated measure
of a pure potential. Then

PROOF. According to the definition of capacity and Lemma 5.1 it suffices
to show the case where A is a compact set K in X. Given ε>0, choose a function
φetf n& so that </>>0 on X, φ>\ on K and Φ(φ)<Cap(K) + ε. Then by the
definition of uμ and assumption (1.1),

μ(K) < φdμ = <ΓΦ(W μ), φ>

so the lemma is obtained. q.e.d.

COROLLARY I. If A is a Borel set in X such that Cap(,4)=0 and if μ is
the associated measure of a pure potential, then μ(A)=Q.

COROLLARY 2. If A is as in the above Corollary, then ξ(A)=0.

PROOF. Setting μ=fdξ for any non-negative function /e e ,̂ we see from
Theorem 1.1 that μ is an associated measure of a pure potential. Therefore,

by Corollary 1, we have f fdξ=Q. It then follows that ξ(A)=0. q.e.d.
JA

THEOREM 5.1. With each function ve&9 it is possible to associate a func-
tion v (refinement of v) such that

(1) ϋ=v a.e. on X\
(2) there exists a decreasing sequence {Gn} of open sets in X such that

Cap(Gπ) I 0 as n-»oo and v is continuous as a function on X — Gnfor each n\
(3) v is measurable with respect to the associated measure μ of any pure

potential and
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<ΓΦ(uμ),v> = (vάμ.

PROOF. By Axiom (b) and the continuity of Φ, we can take a sequence
{φn} in # n X strongly convergent to v e & in X such that

(5.1) \\Σ{Φ(2n(Φn-Φn+ι» + Φ(2n(Φn+ι-Φn»}<π
n=l

We then set G}={xeX; |φy+1(x)-φ/x)|>l/2 /} for each , Gn= U JLHG'j for
each n and A= Π S=ιGΛ. Now, note that limn_000n(x) exists for each xe X — A,
and define

lίmφn(x) if x e X — .4,
™
0 if x e / 4 .

From (5.1) and Lemma 5.3 it follows that Cap(Gn) J, 0 as n->oo, so that Cap(/4) =
0. Therefore, using Corollaries 1 and 2 to Lemma 5.4, we see that ϋ fulfills (1)
and (2) in the theorem and that v is measurable with respect to the associated
measure μ of any pure potential. Next we observe from (Cx), (ΦCX) and
(1.1) that

\>\φn-φm\dμ=<rΦ(uμ),\φn-φm

Since {φn} is a Cauchy sequence in #", it is also a Cauchy sequence in Ll(X',μ).
Therefore there are a μ-measurable function v0 and a subsequence {<£„.} of {φn}
convergent to υ0 in L^X μ) such that φnj^v0μ-a.e. on Z as j->oo. Clearly

v0 = v μ-a.e. onX and

= \ί;dμ. Thus (3) is proved.

REMARK. Recently, Fowler [12] introduced a notion of a capacity with
respect to the norm in a regular functional space in which the unit contraction
T! operates and discussed the refinement of functions.

§ 6. Examples

EXAMPLE 1. (Discrete case) Let X be a finite set, say {1, 2,..., ΛΓ}, equipped
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with the discrete topology. In this case, # can be identified with RN. We put

Ml = (Σ IK,! ' ) 1 ", U = (tt l 9 I/ 2, ..., UN) E R"
i=l

and &=RN. Clearly, 9£ is a regular functional space. Let Φ be a convex and
continuously differentiable function on RN with the property (1.1). Then we
observe that ΓΦ is a mapping of RN into £N such that ΓΦ(u)=(Φί(u)9 Φ2(w),...,
ΦN(w)) for uεRN, where Φί=(d/dxi)Φ, i = l, 2,..., JV. Let us denote by e0

the element (1, 1,..., 1) in R^, and define r+=max(r, 0) for a real number r.

For any u=(uί9 M2,..., UN) and i^O^, t>2, > %)e#N, we write w<ι? when
for all ί, and write u f \ v for (w1? w2,..., WN) with w—minίi/f, ι;t ) for all /.

PROPOSITION 6.1. The following statements are equivalent to each other:

(1) T^ operates in RN.

(2) FΦ(>Λt;)>FΦ(w)ΛFΦ(>)/0r any u, vεRN.
(3) //M=(w 1 ,w 2 , . . . ,M^ v ) andv=(υ^υ2,...,vN)eRN and if

In fact, assertions (l)->(2) and (2)-^(3) are already shown in Theorems 3.2
and 3.3, respectively. For a proof of the assertion (3)->(l), see Kenmochi-
Mizuta [16].

PROPOSITION 6.2. Assume that T^ operates in RN, and let k be a positive
number. Then the following statements are equivalent to each other:

(a) Tk operates in RN.

(b) FΦ(w Λ 0 + /cί?o)) > ΓΦ(«) Λ FΦ(t ) for any u,veRN.
(c) Ifu =(w 1 ,M 2 , . . . ,w N ) and v = (vi9 1?2,..., vN)eRN

and if

Σ^ΦM - Φ&Wui - v, - k)+ = o ,

then u<v + keQ.

Assertions (a)-»(b) and (b)->(c) follow from Theorems 3.4 and 3.5, res-
pectively. For a proof of the assertion (c)->(a), see Kenmochi-Mizuta [16]
in which the assertion is proved in a more general form.

EXAMPLE 2. Let X be a bounded domain Ω in the n-dimensional Euclidean
space Rn and ξ be the Lebesgue measure dx. We consider Sobolev spaces WίtP(Ω)

and W J'^(Ω)(=the closure of Cg»(Ω) in Wl *(Ω)\ with norm |M l jp = ||w||Lp(β)
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du+ Σ
k=ί 8xk LP(Ω)

For these Banach spaces, Axiom (a) can be verified. Besides,

we see that W^P(Ω) is regular, but Wl p(Ω) is not.
Let α0 and αx be bounded measurable functions such that α0, oq >c a.e. on

Ω for a positive constant c. Then functions Φ0 on W o'p(Ω) and ΦA on WίtP(Ω)
defined by

Φ0(Ό =
/>

and

satisfy all of the assumptions for Φ = Φ0 and Φ = Φ l 5 respectively, where Vυ
is the gradient of υ. It is also easy to see that all Tk, 0</c<oo, operate in each
space with respect to the corresponding function.

By definition, a function u in WQ>P(Ω) is a potential (with respect to Φ0) if and
only if for some measure μ on ί2, it satisfies the following differential equation in
the distribution sense on Ω:

-div(ocί\7v\p-27u) = μ.

In this case, μ is the associated measure of u.

EXAMPLE 3. Let Ω be a bounded domain in Rn with smooth boundary Γ.
We consider the trace space W ΐ / p f ' p ( Γ ) (l/p+l/p' = l) with norm

"L P ( Γ )Λ)r)r \χ'-y'V\»+v-^άΓχ'άΓy') '

where dΓ means the surface measure on Γ, and we denote by y the trace operator
which is a linear continuous operator from PF1>P(Ω) onto Wί/p'*p(Γ) (cf. Lions-
Magenes [18]). Clearly, Wί/p'*p(Γ) is a regular functional space; in this case,
we take Γ and dΓ as X and ξ, respectively.

Now, let Φί be as in Example 2. Then we see that

α0
k=iJΩ

and

t;), v> .

Consider the boundary value problem for given u e W ί / p ' > p ( Γ ) : Find w e
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Wl>p(Ω) such that

-div(α 1 |Fw | p - 2 Γw)+α 0 |M | p - 2 w =0 on Ω

(in the distribution sense) ,

γu = ύ .

This problem has a unique solution u for any ύ e WIIP'*P(Γ)\ in fact, u is the func-
tion at which inf^O); ve Wί>p(Ω),γv = ύ} is attained (cf. [15; §3]). Hence
we can define an operator S: Wl>p' >p(Γ)^>Wl>p(Ω) by setting Sύ=u. Notice
that for each ve W l'p(Ω) the value <7Φί(Sύ)9 v> depends only on γv9 that is,
<PΦί(Sύ), φ> =0 if φeWfrp(Ω). This allows us to define an operator st\

=the dual space of WUp' p(Γ)) by

, yv>Γ = <PΦ1(Su), ι» , v e W

where < , >Γ denotes the duality pairing between W-lίp' p'(Γ) and W ί / p ' > p ( Γ ) .
In view of a result in [15; § 6] the operator S is bounded and continuous, so that
cθ/ is also bounded and continuous. Define the function Φ on Wί/p' p(Γ) by
$(u) = Φ^Sfi). Then we have

PROPOSITION 6.3. (i) Φ is strictly convex and bounded on bounded sets
in WHp'>p(Γ).

(ii) Φ is everywhere different table in the sense of Gateaux and ΓΦ(ύ) =
j t f ύ f o r every ύeWί'pf>p(Γ).

(iii) For some positive constant C',

C ' \ \ C ι \ \ l / p , t p for every A e

and Φ(0)=0.

PROOF. The fact that Φ is bounded on bounded sets in W 1 f p t p(Γ) follows
from the definition of Φ and the boundedness of S. Let ύ and ϋ be any functions
in W1/P' P(Γ) and t be a number such that 0<ί<l. Then we see that if

fi, then

$(tύ + (1 - i)v) = Φι(S(tύ + (1 -

Thus (i) is proved.
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Next, to prove (ii) we observe that for any ύ,ϋ e WilP'*p(Γ)

(6.1) lim — {Φ(ύ+tv)-Φ(ύ)} < lim — (Φ^Sύ+tSv)- Φι(Su)}
110 * t10 t

= <PΦ1(Sύ), Sv> = <Λ?u9 v>Γ.

On the other hand, by virtue of a result in [19], there is £* e w-vpf>p'(Γ)
for each ύeWl'p'>p(Γ) such that

(6.2) <w*, v-ύ>Γ<Φ(ϋ)-Φ(u) for all ϋe W^P' P(Γ).

Therefore, by (6.1) and (6.2) we have

<w*, v> Γ < lim — {Φ(ύ+tv)-Φ(u)} < <jtfu,v>Γ
110 t

for any ϋ e W ί / p ' > p ( Γ ) , so that U*=A?U holds. This shows (ii). (iii) is clear.
q.e.d.

PROPOSITION 6.4. For every fce[0, oo], Tk operates in W1/P'*P(Γ) with
respect to Φ.

PROOF. Since it is clear that condition (Ck) is satisfied for every fee [0, oo],
we shall show (ΦCk) with Φ replaced by Φ.

Notice that for any fe e [0, oo] and any M, v e WίtP(Ω),

From this inequality and the definition of Φ we see that condition (ΦCk) with
Φ = Φ is satisfied for every fe e [0, oo].

REMARK. Such an operator stf was also treated by Lions [17; Chapter 2]
so as to formulate initial value problems on Γ.
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