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Introduction

In the previous papers [9], the author introduced a notion of energy for
functions on a self-adjoint harmonic space. Our model there was the harmonic
space formed by solutions of the self-adjoint second order partial differential
equation Au =Pw with P^O on a Euclidean domain Ω. The energy of a function
/ with respect to this harmonic space is given by

(1)

where D[/] denotes the ordinary Dirichlet integral of/ over Ω.
For an abstract harmonic space (Ω, §), its self-adjointness was defined as the

property that it admits a symmetric Green function G(x, y), provided that there
is a positive potential on Ω. The condition P^O in the above model was inter-
preted as the condition that the constant function 1 is superharmonic. On a
self-adjoint harmonic space satisfying this condition, we defined the notion of
energy of a function/in terms of potential representation of/with respect to the
kernel G(x9 y), in such a way that it coincides with £[/] in the special case of the
above model.

The definition of energy in [9] also suggests how a value corresponding to
the Dirichlet integral D[/] should be defined on such a harmonic space; but it
is not clear whether the value has such good properties as the ordinary Dirichlet
integral enjoys — among others, whether it is always non-negative.

On the other hand, solutions of the equation Au—Pu form a harmonic space
even if P is not necessarily non-negative on Ω (cf., e.g., [7, Theoreme 34.1] and
[8, Theorem 2.1]), so that one might ask if the method developed in [9] is appli-
cable to the harmonic space on which 1 is not superharmonic. For such a har-
monic space, there may not exist positive potentials even if the boundary is
large, so that one had better consider the self-adjointness locally. However,
in order to make a consistent definition of Dirichlet integrals, some global con-
sideration is also necessary (see § 1.2).

For a self-adjoint harmonic space thus defined, we shal define (in § 4) the no-
tion of gradient measures of certain locally bounded functions with the same
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idea as in the definition of energy measures in [9] in fact the gradient measure
δf is given as a generalization of the measure |grad/|2dx on a Euclidean domain,
so that δf(A) (A: a Borel set) may be called the Dirichlet integral of / over A.

Verification of non-negativeness of energy in [9] was not an easy task. It
requires more elaboration to verify that δf is a non-negative measure. For fun-
ctions of potential type, we make a certain estimate (Theorem 1.2), which is
a consequence of the energy-principle for Green functions (cf. § 1.3; also cf. [10]).
To deal with gradient measures of harmonic functions, we consider (in § 3) a per-
turbation of the given harmonic space. Perturbations of harmonic spaces were
first considered by B. Walsh [12] for a different purpose. What we need is a
perturbed harmonic space for which 1 is harmonic; in the model mentioned
above, the perturbed space should correspond to the harmonic space of solutions
of Au=Q. With these extra considerations, the non-negativeness of δf can be
shown by the method developed in [9].

For the equation Au=Pu with P^O, M. Nakai [11] studied the space of
all Dirichlet-finite solutions (also cf. M. Glasner and M. Nakai [6]) and showed
that it is a vector lattice as well as a Hubert space with respect to the Dirichlet
norm. In our axiomatic setting, we can prove Nakai's results in case 1 is super-
harmonic (§ 5); but we fail to verify these properties in the general case.

As we did in [9] for energy, we shall extend the definition of gradient measures
to more general functions by functional completion (§ 6) the resulting class
of functions is the space of Dirichlet functions. Also, along the same lines as in
[9], we shall study the lattice structures of this space and the space of locally
Dirichlet-finite functions (§ 7).

§ 1. Self-adjoint harmonic space

1.1. Brelot's harmonic space and P-domains

As a base space, we take a connected, locally compact Hausdorff space Ω
with a countable base. On Ω, we consider a structure δ = {«^(ω)}ω:Qpen of
harmonic space satisfying Axioms 1, 2 and 3 of M. Brelot [3]. As usual, a func-
tion in « (̂ω) will be called harmonic on ω. For notions of regular domains
(regular open sets), superharmonic functions and potentials, one may refer to
[3] (also, [1], [5]). The harmonic measure of a regular domain ω at x eω will
be denoted by μ£. For a superharmonic function s on an open set ω in Ω9 its
harmonic support will be denoted by Sh(s) in this paper; that is,

Sh(s) = ω-\J{ω'; open, s|ω' ε3f(ω')}.

Given a domain ω0 in Ω, the restriction of § to ω0 will be denoted by §ωo.
(ω0, §ωo) is again a harmonic space satisfying Brelot's Axioms 1~3. If / is a
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positive continuous function on ω0, then

defines a harmonic structure on ω0, where

This structure also satisfies Brelot's Axioms 1~3 (cf. [3, Part IV, p. 68]). If,

in particular, / is harmonic (resp. superharmonic) on ω0, then the constant func-

tion 1 is harmonic (resp. superharmonic) on ω0 with respect to §ωo//.

A domain ω in Ω is called a P -domain if it is non-compact and there is a po-

sitive potential on ω. The following properties are known in a general theory :

(PJ Any subdomain of a P-domain is a P-domain (cf. [5, Corollary 2.3.3]).

(P2) Ω has a covering by P-domains, namely, every x e Ω is contained in

a P-domain ([5, Theorem 2.3.3]).

(P3) If ω is a P-domain, then there is a continuous positive potential on ω

(cf. [3, Part IV, Proposition 11] or [5, Proposition 2.3.1]).

Furthermore, we have ([1, Satz 2.5.8] or [5, Corollary 2.3.1])

LEMMA 1.1. Let ω be a P-domain and p be a positive potential on ω.

Then there is an increasing sequence {pn} of positive potentials on ω such that

each pn is continuous, each 5Λ(pΛ) is compact in ω and limn^aopn=p on ω.

1.2. Self-adjoint harmonic space

We shall assume

Axiom 4. On any P-domain ω, the condition of proportionality is satisfied,

i.e., for each y e ω, if pl9 p2 are two positive potentials on ω with Sh(p1) = Sh(p2) =

{y}, then px =oφ2 for some constant α>0.

REMARK 1.1. The above axiom is equivalent to the following

Axiom 4'. There is a covering {ωjte/ of Ω by P-domains on each of

which the condition of proportionality is satisfied.

The equivalence of these two axioms can be seen by using [7, Theoreme

16.4 and its remark].

A harmonic space (Ω, §) satisfying Axioms 1~4 is called self-adjoint if

to each P-domain ω there corresponds a function Gω(x, y): ωxω->(0, +00]

having the following properties :

(a) Gω(x, y) = Gω(y, x) for all x, y E ω;
(b) for each y e ω, Gω( , y) is a potential on ω and SΛ(Gω( , y)) = {y};

(c) if ω' is a subdomain of ω and y e ω', then there is uy 6 Jf(ω') such that
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for all x e ω'.
For a P-domain ω, a function Gω: ωxω->(0, +00] satisfying (a) and (b)

above is called a Green function for ω (or, more precisely, for (ω, §ω)). Such
a function, if exists, is positive and lower semicontinuous on ω x ω ([7, Proposi-
tion 18.1]). By Axiom 4, we can easily see that the system of Green functions

{Gω(x, jO}ω: p-domain satisfying (c) is uniquely determined up to a multiplicative
constant independent of ω.

REMARK 1.2. If there is an exhaustion {ωπ}*=1 of Ω such that each ωn is
a P-domain with a Green function, then we can show that (Ω, §) is self-adjoint.
In particular, if Ω itself is a P-domain and has a Green function, then (β, §)
is self-adjoint (cf. [9, §1.2; in particular, Proposition 1.2]).

REMARK 1.3. If, for every xeΩ, there is a P-domain containing x and
possessing a Green function, then we may say that (Ω, §) is locally self-adjoint.
Obviously, a self-adjoint harmonic space is locally self-adjoint. We can show
by examples that the converse is not true.

In the sequel, we shall always assume that (Ω,ξ)) is a self-adjoint harmonic
space and a system of Green functions {Gω(x, j)}ω:P_domain satisfying (c) is
fixed.

1.3. Energy principle

Let ω be a P-domain. For a non-negative measure μ on ω, we denote by
£/£ its potential with respect to the kernel Gω, i.e.,

Uμ

ω(x) = ( Gω(x,y)dμ(y).
Jω

By a general theory of R.-M. Herve [7, Theoremes 18.2 and 18.3], we know that
UM is a potential on ω unless it is constantly infinite, and that any potential on ω
is expressed as l/£ by a uniquely determined measure μ. Let Iω(μ) be the Gω-

energy of μ, i.e., /ω(μ) = \ Uμ

)(x)dμ(x). We consider the following classes of
Jω

measures:

^+(00) = {μ; non-negative measure on ω such that /ω(μ)< + 00},

ΛE(co) = {σ; signed measure on ω such that \σ\e+4

non-negative measure on ω such that
Jμ is bounded on α
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= {σ; signed measure on ω such that |σ|

Obviously, ^ί(ω)c^J(ω) and ̂ B(ω)c:^E(ω). For σe^£(ω), we denote

its Gω-energy by /ω(σ), i.e., Iω(σ)=Iω(

THEOREM 1.1. The Green function Gω(x,y) for a P-domain ω satisfies
the energy principle, i.e., it is of positive type:

VI dv ^ Iω(μ) + /ω(v) for all μ,ve
ω

and the equality holds only when μ=v.

PROOF. Consider a positive continuous potential p0 on ω (cf. (P3)) and let

for x, y e ω. It is a Green function for (ω, §ω//?0) Since 1 is superharmonic
with respect to ξ>JpQ, Gωtpo(x, y) satisfies the energy principle by [10, Theorems

1 and 2]. Noting that μe^|(ω) if and only if PoV (tne measure defined by
d(poμ)=P<)dμ) has finite Gω>po-energy, we obtain the theorem.

COROLLARY 1. On any P-domain ω, the domination principle holds;
in particular, Axiom D of Brelot [3] is fulfilled. Also the continuity principle
holds on ω.

For a proof, cf. [9, Theorem 4. 1].

COROLLARY 2. // μπ, μe^£(ω) (π«=l,2,...) for a P-domain ω and if
Uμ

ω» T Uμ

ω9 then Iω(μn-μ)^Q (n->oo).

1.4. Consequences of the domination principle

A set ecjQ is said to be polar if there is a covering {ωt}te/ of Ω by P-
domains such that for each eel we find a positive superharmonic function st

on ωt with the property that st(x) = + oo for all x e e n ωt. Using [7, Theoreme
13.1], we can easily show that if e is polar then for any P-domain ω there is a
positive potential p on ω such that p(x) = + oo for all x e e n ω. Let

^ = {e c: Ω'9 e: polar} .

We know: if βe^Γ and e'ce, then e' e^Γ; if ene^, n = l, 2,..., then
ΛΛ As usual, "q.e." (quasi-everywhere) will mean "except on a set

Lemma 5.1 and its Corollary 1 in [9] are still valid in the present case.
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Thus, by considering §ω/s0 for a positive continuous superharmonic function
50 on ω and applying [9, Corollary 2 to Lemma 5.1], we have (cf. Corollary 1
to Theorem 1.1 above)

LEMMA 1.2. Let ω be a P-domain and p be a potential on ω which is local-
ly bounded on Sh(p). If s is a non-negative superharmonic function on ω such
that s^.p q.e. on Sh(p), then s^.p on ω.

From this lemma, the next lemma follows in the same manner as [4, Hilfs-
satz 5.1]:

LEMMA 1.3. If e is a polar set in Ω and ω is a P-άomain, then μ(ω Π e)=0
for any

If σ is a signed measure on a P-domain ω such that C/if1 is a potential, then
Uω+ ~~ ^ω is defined q.e. on ω. This function will again be denoted by 17* .
By the above lemma, it is μ-measurable for any μ e Jί\(ω). It also follows that
[/£ is μ-measurable for any non-negative measure μ on ω for which £/£ is
locally bounded.

LEMMA 1.4. Let ω be a P-domain on which there is a bounded positive
superharmonic function. If p is a potential on ω such that Sh(p) is compact in
ω and p is bounded on Sh(p), then it is bounded on ω.

PROOF. Let s0 be a bounded positive superharmonic function on ω. Since
infSh(p)s0>0, there is a constant α>0 such that αs0^p on Sh(p). Hence, by
Lemma 1.2, p^αs0 on ω.

LEMMA 1.5 (cf. [9, Lemma 4.5 and its corollary]). Let ω be a P-domain
and σ be a signed measure on ω such that U\?\ is a potential. Then, there
are sequences {μn} and {vn} in Jέ\(ω) such that their supports S(μn), S(vn)
are compact in ω, U^n, Vv

ω

n are continuous on ω and U^n t U^+ , U^n^U^~9

U^n-^U^ q.e. on ω, where σn=μn — vn. If, furthermore, σe^E(ώ), then

Iω(σn~σ)~^^l tf there is a bounded positive superharmonic function on ω,
then σn e ΛB(ω)for each n.

PROOF. The first half is a consequence of Lemma 1.1 and Herve's results.
The second half follows from Corollary 2 to Theorem 1.1 and Lemma 1.4.

LEMMA 1.6. Let ω be a P-domain on which there is a bounded positive
superharmonic function. If μ is a non-negative measure on ω such that μ(co)<
+ 00, then Uμ

ω is a potential.
The proof of this lemma may be carried out as in the classical theory by

making use of [7, Lemma 3.1] and the above Lemma 1.4 (cf. [9, Lemmas 1,2
and 1.5]).
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LEMMA 1.7. Let ωbea P-domain, ebea subset ofω and s be a non-negative
superharmonic function on ω. Then the reduced function

Rξ ω = inf {v\ superharmonic ^ 0 on ω, v ̂  s on e}

and its regularization R%>ω have the following properties:

(a) Rξ'ω = R%>ω q.e. on ω; everywhere on ω if e is open',
(b) Rξ>ω is non-negative superharmonic on ω; it is a potential on ω if

either e is relatively compact in ω or s is a potential on ω;

(c) R%>ω = s on e (and hence R%*ω=s q.e. on e)\
(d) R%>ω = R%>ω on ω — e and is harmonic there, i.e., Sh(R%'ω)dg (2 denotes

the closure of e in Ω).

For proofs, see [3, Part IV (§13, §15-a, Proposition 10, p. 124 and Pro-
position 23)].

1.5. Inequalities

In this paragraph, we shall establish the following useful inequality:

THEOREM 1.2. Let ω be a P-domaίn and μ be a non-negative measure on
ω such that l/ίi is bounded on ω. Then

for all

To prove this theorem we prepare two lemmas, the first of which is quite
elementary and is used to prove the second lemma.

LEMMA 1.8. Let S be an abstract set, Φ be a non-negative real-valued
function on S and A be a mapping of S into itself. If Φ is bounded on A(S)
and satisfies

(1.1) Φ(Ax)2 ^

for all xeS, then

(1.2) Φ(Ax) ̂

forallxeS.

PROOF. Suppose (1.2) is not true for some x0eS, i.e., Φ(x0)<Φ(A>c0).
By (1.1) and induction, we see that Φ(AnxQ) > 0 for all n = 1, 2,.... Let k = Φ(Ax0)/
Φ(x0). Again by (1.1),
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>- = k.

Hence Φ(AnXQ)^.knΦ(x0), n = l, 2,.... Since fe>l, this contradicts the assump-
tion that Φ is bounded on A(S).

LEMMA 1.9. Let ω be a P-domain and μ be a non-negative measure such
thatU^l. Then

Iω(U°ωμ) ^ 4(<τ)

for any σe^£(ω) such that U^ is bounded and μ-integrable.

PROOF. For simplicity, we omit the subscript ω in Uφ

ω, Iω( ) and \ . Let
Jω

5 = {σe^£(ω); \Uσ\ ^ 1,'

and

Φ(σ) = /(σ), Aσ = Uσμ for σeS.

Then, for σ e S, we have

\UAσ\ ^ U\u<τ\μ ^ Uμ ^ 1,

and

I ( \ A σ \ ) =

Hence A is a mapping of S into itself and Φ(^4σ)^/(|^4σ|)^l, i.e., Φ is bounded
on ^4(5). Furthermore,

Φ(Aσ) = I(Aσ) = (^σi7^μ = ( UA2ffdσ

where the last inequality follows from the energy principle. Thus, (1.1) in the
above lemma is satisfied, and hence

/(l/'/i) ̂  /(σ)

for all σe5. If σe^f£(ω) and C/ l < r | is bounded, μ-integrable, then, for some
α>0, ασeS. Hence
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I(U μ) = -prKU μ) :S -—-/(ασ) = /(σ) .

PROOF OF THEOREM 1.1. If μ =0, then the theorem is trivial. Thus, assume
. Then 0 = supω t/£,>0. Since l/£^l, the above lemma implies that

/ω(£7jμ) ^ /?2/»

for any σ e ΛE(ω) such that C/^σl is bounded and μ-integrable. Hence, for such
σ we have by the energy principle

(1.3) ( (Utfdμ ^ In(σγi*In(U ωμ)V* ύ βlω(σ).
Jω

Next, let σe^£(ω) be arbitrary. We choose a sequence {σj in ΛE(ω) as
described in Lemma 1.5. Since there is a bounded positive superharmonic

function l/J, σn e ΛB(ω). Furthermore, since S(σn) is compact, \ ϋjf» lέ/μ =

\ ί/£ d|σn|< + oo, i.e., l/jf"' is μ-integrable for each n. Therefore, (1.3) holds
Jω
for σ=σn and |σn|, so that

( (U} *l)*dμ ^ βlω(\σn\) ^ βlω(\σ\)
Jω

and hence

Since ll/^l^ί/]^1, Lebesgue's convergence theorem implies \ (
Jω

\ (Uσ

ω)2dμ (n->oo). On the other hand 7ω(σw)->/ω(σ). Hence (1.3) holds for
Jω

the given σ.

The next lemma, which is a consequence of the above theorem, will be used
later (in §7).

LEMMA 1.10. Let ω be a P-domaίn and μ be a non-negative measure on
ω such that l/£ is bounded. Then, for any μ-squar e-int eg r able function /, /μe

PROOF. Since /ω(/μ)^/ω(l/lμ)> we may assume /^O. Let {ωπ} be an
exhaustion of ω and let /n=min(/, ή) on ωw,/π=0 on ω — ωn. Then U^nμ is
bounded and S(fjί) c ωn. Therefore, fnμ e ̂ |(ω) and
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By the above theorem,

where β = supω L/£ . Hence

Iω(M^β( f2dμ.
Jω

Letting n-»oo, we obtain the required inequality.

§ 2. Preliminary theory on locally bounded functions

2.1. The space ^Ίoc(
ω) and Axiom 5

A domain ω will be called a PC-domain if it is relatively compact and there
is a P-domain ω* such that ωc=ω*. By (Pj) in §1, a PC-domain is a P-domain.
By (P2), we also see that PC-domains form a base of open sets in Ω.

We consider the following space of locally bounded functions on an open
setω(cf. [9, §6.1]):

{
for any PC-domain ω' such that ω' <=ω, there

/; are two non-negative bounded superhamonic
functions st and s2 such that/|ω'=s1— s2

For each fe ^loc(ω), there is a unique signed measure σf on ω which has the
following property: for any PC-domain ω' such that ω'c=ω, l/i?'' is bounded
on ω' and

with u £ 3ί?(ω'). We call σf the associated measure off.
In this paper, we do not require that the constant function 1 is superharmonic;

but we assume

Axiom 5. The constant function 1 belongs to JΊOC(Ω) and U^ is conti-
nuous for any PC-domain ω, where π is the associated measure of 1 (i.e., πΞσJ.

REMARK 2.1. If 1 is superharmonic, then Axiom 5 is trivially satisfied. This
case, in which π^O, was treated in [9].

REMARK 2.2. The above Axiom 5 is equivalent to the following
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Axiom 5'. There is a covering {ωt}ιel of Ω by domains on each of which
there are two non-negative continuous superharmonic functions s^1 } and s(

t

2)

such that 1 =sί1) — sί2) on ω,.

2.2. PB-domains

A P-domain ω will be called a PB-domain if L/]^1 is bounded on ω. It is
easy to see that a PC-domain is a PB-domain. Note that if 1 is superharmonic,
then any P-domain is a PB-domain.

LEMMA 2.1. // ω is a PB-domain, then l/*+, 17 J~, and hence 17 J, are
bounded continuous on ω and

α bounded non-negative harmonic function uω on ω.

PROOF. It is easy to see by Axiom 5 that l/jj1' is continuous. Since 0 ̂

U£+U*~ = U]*l and ^l*1 is bounded, we see that l/£+, l/J~ are bounded
continuous. Then uω = 1 — 17* is bounded harmonic on ω and uω ̂  — l/*+ implies
that wωg:0 on ω.

By this lemma, for a PB-domain ω, sω = 1 4- 1/£~ = wω -f U^ is bounded
superharmonic on ω. Obviously, sω^l. Let

(2.1) /?ω ω

for any PB-domain ω. Then U«ω

+^βω, U«~^βω-l, l/^ 2/^-1 and

j»«
Using the functions sω for PC-domains ω, we see easily that

^Ioc(ω0) for any open set ω0.

LEMMA 2.2. //ω is α PB-domain9 then for any potential p on ω,

(2.2) sup p ^ βω sup /?.

PROOF. Let M = supSh(p)p. If M = + oo, then (2.2) is trivial. Suppose
M< + oo. Then Msω^p on Sh(p). Hence, by Lemma 1.2, we see that Msω^.p
on ω, and hence (2.2).

LEMMA 2.3. Let ω be a PB-domain and μ, v be two non-negative measures
onω. If U^Uv

ω on ω, then μ(ω)^βωv(ω).

PROOF. G . { X t y ) - . .
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is a Green function for (ω, §ω/O F°r anY non-negative measure μ on ω,

Ui(x)=sω(x)( Oω(x9y)sω(y)dμ(y).
Jω

Hence, U^U^ implies \ (jω(Λ;, y)sω(y)dμ(y)^ \ 6ω(x, y)sω(y)dv(y). Applying
J ω ./CO

[9, Lemma 1.101 with respect to the structure £L/,yω, we see that \ sωdμ^jω
\ sωdv. Therefore,
Jω

μ(ω) ̂  \ ^ωdμ ̂  \ ^ωdv ̂  )8ωv(ω).
Jω Jω

LEMMA 2.4. Let ω be a PB-domain and ω' be a relatively compact open set
such that ω'cω. Then, there is a signed measure λ = λ(ω';ώ) which has the
following properties:

(a) Uω = 0 on ω' and Uω ^ 0 on ω;
(b) S(λ)cωr;
(c) t/ω" ^ βω-1 and Uω

+ ^ βω on ω.

PROOF. Let vί=uω + U^+ and v2 = U%~ (=1;! — 1). By Lemma 1.7, Pi=
Rv't'

ω> ί = l5 25

 ar^ potentials on ω. Let λh i = l, 2, be the associated measures

of Pi and let λ=λί-λ2. Since t>ι<g;f>2» Pi^Pi- Hence 1/^0. Then, by
using Lemma 1.7 we see easily that this λ is the required measure.

2.3. Product of functions in ̂ l

LEMMA 2.5. Lei ω be a PB-domain and she a bounded non-negative super-
harmonic function on ω. Then, for any constant α such that α^supω s,

v

is a bounded non-negative super harmonic function on ω.

PROOF. Obviously, v is bounded. Writing

we see that i ^O. Furthermore, since α— s is non-negative upper semicontinuous,
v is lower semicontinuous. Let ω' be any regular domain such that ω'cω and

let xeω'. Then, since \dμ%' =uω>(x) (see Lemma 2.1), we have
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Hence,

(υdμ"' = <x2(u*~dμ»'+2a(sdμ»'--(s2dμ»'

Since O^fsdμf ^s(x)^a, (a-(sdμf V^(a-s(x))2. Hence

Therefore t; is superharmonic on ω.

COROLLARY. If ω is a PB-domain and s is a bounded non-negative super-
harmonic function on ω, then there are two bounded non-negative superharmonic
functions v{ and v2 such that s2=vί—v2 on ω. Thus, σ = σs2 is well-defined,
s 2 =M + l/ω on ω with ueJί?(ω) and I/if' is bounded. If 9 furthermore, σs(ω)<
+ 00 and π~(ω)< H-oo, then σ+(ω)< +00.

PROOF. Let α>supωs and t;1=2αs-f α2ί/£~. Then vί is bounded non-
negative superharmonic on ω. By the above lemma v2=v1 — s2 is bounded non-
negative superharmonic on ω. Furthermore, it follows that σ+^σt?1=2ασs+
α2π~. Hence we also have the last assertion in the corollary.

PROPOSITION 2.1. ///, g e &loc(co), then fg e &ιoc(ω).

PROOF. Let ω' be any PC-domain such that ω'cω. Then, by definition
/|ω/=s1~s2 with bounded non-negative superharmonic functions st and s2

on ω. Since

the above corollary implies that there are two bounded non-negative superhar-
monic functios v± and v2 such that f2\ω'=vί—v2. Hence f2 e ^loc(ω). Then,
it follows that/0 = {(f+0)2-/2-02}/2 also belongs to &ιoc(ω).
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2.4. Product of bounded potentials on a PR-domain

LEMMA 2.6. Let ω be a PB-domain such that π~(ω)< + oo. Then for any
ω), there is a σ' e^B(ω) such that

(ΓJσ\2 _ Γ/σ'
v1-7 ωJ v ω

PROOF. If μe^B(ω)9 then by Lemma 2.5 (U%)2 = v1 — v2, where υ1 =
α2C/J~ (α = supω£/£,) and v2 is bounded non-negative superharmonic on

ω. Thus we see that vί and v2 are potentials on ω. Let vί and v2 be their respec-
tive assoicated measures. Then vί =2αμ + α2π~ e ̂  J(ω). Since v2^vi9 v2(ώ) <
+ 00 by Lemma 2.3, and hence v2e^(ω). Thus (l/^)2= l/^~V2 and
v t - v2 e ΛB(ω\ For σ e ΛB(ω), writing

and using the above result, we obtain the lemma.

REMARK 2.3. There are PB-domains ω for which π"(ω) = -f oo.

PROPOSITION 2.2. Let ω be a PB-domain such that τr(ω)< + oo. //
ω)9 then σp2e^β(ω) and

σp2(ω) = \ p2dπ.
Jω

PROOF. It is enough to prove the case σe^J(ω) (cf. the proof of the
above lemma). First we note that p2 is |π|-integrable, since

Γ Γ Γ
\ P2d\π\ ^ (supp)\ U^d\π\ = (supp)\ U^dσ < +00.
Jω ω Jω ω Jω

For α>0, let /α=minQ?/α, 1) on ω. Then Og/α^l and /α T 1 as α 0. Let
l=w ω +l/£ and

gΛ = min(p/α+ 17«', Mω+ ί/^+) .

For each α, gfα is a bounded potential on ω (in fact, gΛ^βω) and /α=#α— l/J".
Let μΛ = σga, i.e., gΛ = U^. Since gΛ^p/a+U%~, we see that μβ6urj(ω) by
Lemma 2.3. The above lemma implies that p2 =U% with σ' = σp2
Hence, by Lebesgue's convergence theorem,

'(ω) = limf
α-*θjω

= lim\
α-»θj

->θjω

-\ p2dπ~ .
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Let ωα = {xeω;p(x)>α}. Then ωα is an open set and /α = l on ωα. It follows
that μα|ωα = π+|ωα. Hence

( P

2dμa=( p2dπ+ + ( P

2dμΛ.
Jω Jωα Jω— ωα

Since ωα t ω as α j 0,

limί /?2</π+ = ( /?2</π+.
α-*OJωα Jω

On the other hand,

^ α ( Ufrdσ ^ αjβωσ(ω) -> 0 (α -> 0).
Jω

Thus we obtain the required equality.

COROLLARY. Let ω be a PB-domain such that π~(ω)<+oo. // pL

U% with σt.e^β(ω), i = l, 2, rΛen σpίp2e^B(ω) and

= \ PιP2dπ.
Jω

2.5. The space 3fBE(ω)

LEMMA 2.7. // ω is α PB-domain such that π~(ω)<+oo, ί/ien /or
bounded u e Jf(ω), σ+2(ω)< -f oo.

PROOF. Let α=supω |w| and consider the function

on ω. It is obviously a continuous function. Let ω' be any regular domain
such that ω' cω and let x 6 ω'. As in the proof of Lemma 2.5, we have

Since

we have
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U2(X)

Hence

Therefore ι? is superharmonic, that is, σ^O. Hence σu2^a2βωπ~, which implies
σ+2(ω)^α2j8ωπ-(ω)< + oo.

For an open set ω, let

#Wω) = {« e « (̂ω); bounded, σ~2(ω) < + 00} .

PROPOSITION 2.3. Ifω is a PB-domain such that π~(ω)< + oo, then J
is a linear subspace of jf(ω) and is a vector lattice with respect to the natural
order.

PROOF. It is obvious that u e JPBE(ώ) implies αw 6 J^BE(ώ) for any real
α. Let w, v e JfBE(ω). Obviously, u + v and u — v are bounded. Since (u + v)2 +

By the above lemma, σjl_ι;)2(ω)< + 00. Hence σ^tt+tj)2(ω)< + 00, so that

Next, let M6^B£(ω) and α=supjιι|. — |ιι| is superharmonic on ω and
^αsω (5ω = l + ί/ω") Hence the least harmonic majorant w of |w| exists

and |w|^w^αsω. It follows that w is also bounded. For simplicity, let σ=σu2
and τ=σw2. Since w— |tι| is a potential and O^vv2 — M2^2αj?ω(w— |M|), we see
that C/J^ί/ί,. Therefore, U£ ^U£ +Uσ

ω~ . By assumption σ~(ω)<+cx) and
by the above lemma τ+(ω)< + 00. Hence Lemma 2.3 implies that τ~(ω)< + 00.
Therefore we^fB£(ω). Since 3FBE(co) is a linear subspace as proved above,
it follows that J^BE(ω) is a vector lattice.

The next lemma will be used in the later sections.

LEMMA 2.8. ///e ̂ Ioc(ω0) (ω0: an open set) and ω is a PC-domain such
that ωdω0, thenf\ω—U%e3eBE(ω).

PROOF. First, note that π~(ω)< + oo if ω is a PC-domain. For simplicity,
let σ==σf. Let u=/|ω-l/£. It is a bounded harmonic function on ω. We
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can choose another PC-domain ω' such that ωcco', ω'cω0. u' =f\o)' — U%,
is also bounded harmonic on ω'. We can write

u =

Since σ( fΓ)2 is a signed measure on ω', σ^)2(ω)< +00. Thus u'\ωeJί?BE(ω).
Next, we consider ι? = t/J/|ω— I/J. It is bounded harmonic on ω. Since σ|ω' 6

'), there is a σ'euTB(ω') such that (ί/Jθ2 = U& bY Lemma 2.6. Now,

Let τ=σΓ2. By the corollary to Lemma 2.5, we see that v2=h + Uτ

ω with he
Jf(co) (cf. the proof of Proposition 2.1). Since |2(l/£, |ω)l/J + (t/£)2 1 is majorized
by a potential on ω, it follows that

Hence

where α=supω|C/J.|. By Lemma 2.7, τ+(ω)< + 00. Obviously, σ'"(ω)< +00
and |σ|(ω)< + oo. Hence, τ~(ω)< + oo by Lemma 2.3, so that veJfBE(co).
Therefore u

2.6. Product of a bounded harmonic function and a bounded potential

LEMMA 2.9. Let ω be a PB-domain. If σe^B(ώ) and ueje(ώ) is
bounded, then there is a signed measure σ' on ω such that I/if'1 is bounded and
uU% = U% . If, in addition, π~(ω) < + oo and u e JFBE(co), then σ' e

PROOF. As in the proof of Proposition 2.3, the least harmonic majorant of
\u\ on ω exists and is bounded, and hence u =uί —u2 with non-negative bounded
harmonic functions MJ and w2. Thus we may assume that w^O and σe^J(ω).
Since

uϋ% --^-{(u + U'Jz-u2-^2} ,

it follows from the corollary to Lemma 2.5 that uU^ — h + U^ with a signed mea-
sure σ' on ω such that I/if'' is bounded and h e tf(ω). Since uU% is dominated
by a potential, /ι=0, so that uU?0 = U%.

Next, suppose π~(ω)< + oo and u e J^BE(ώ). For simplicity, put s =u + U%

and i? = l/ω Then σ' = -^-(σs2 — σttι — σp2). Since σs=σ, the corollary to
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Lemma 2.5 implies that σ+2(ω)< + 00. By Lemma 2.6, σp2 e^B(ω) and by as-
sumption σ~2(ω)< + oo. Therefore,

' + -

Since l/£^0, £/*"^l/£ + . Hence, by Lemma 2.3, we also have σ'~(ω)< + oo.
Therefore σ' e

The rest of this section is devoted to the proof of the following proposition
(cf. [9, §2.3]):

PROPOSITION 2.4. Let ω be a PB-domain such that π~(ω)< + oo. If p = Uσ

ω

with σ e Jt β(ω) and if ue ̂ (̂co), then

= \ udσ+\ updπ.
Jω Jω

Given an open set ω in Ω, if ω is not compact, then let ωa be the closure
of ω in the one point compactification of Ω; otherwise, let ωa = ω.

We fix a PB-domain ω0 such that π~(ω0)< + oo. For yeω0 and α>0

(α<Gωo(}>, y))9 consider the open set

ωΛ,y = {xeω0; Gωo(x, y) > α}.

By using [2, Corollary 3 and Lemma 1], we see easily that ω%ty is a resolutive
compactification of ωα>r Let #$β»y be the Dirichlet solution of ωα>y for the
boundary function ψ e C(daωΛfy), where daωΛty=ω%)y — ωα<y and C(X) means the
set of continuous functions on X. We shall denote by μΛ>y the harmonic measure
at y for the open set ωα>r By [2, Lemma 1], we see that μΛty(daωΛ)y — ω0)=0
(cf. [9, Lemma 2.6]). We note that each component ω' of ωΛ>y is a PB-domain
and 1 =#?«»>'+U*> on ω'. On account of the fact that l/**g/?ωo, we obtain
the following lemma in the same way as [9, Lemma 2.5]:

LEMMA 2.10. π+(ωΛty) ^ -̂ - and lim απ+(ωα>;μ) = 0.
Oί <χ-»0

By virtue of this lemma and our assumption that π~(ω0)< + oo, we see that

is a bounded linear functional on C(daωa>y). Hence, there is a signed measure
vΛfy on daωΛ>y such that
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for all ψ e C(daωΛty). Since μα>/3Λωαo,-ω0)=0 and hence vα>/dflωαf),-ω0)=0,
we may regard μΛ y and vα>3, as measures on ω0.

LEMMA 2.11. W7ί/j ί/7£ notation given above, let

W = — — TJμ*>y — 7/v« ,y_ι 7Tπ|ω«,yα ° ωo τ L /ω0

α>y = 1 on ωα>y αrcd I wβϊ,(x)| ^4/?ωo - 1 /or 0Π x e ω0.

PROOF. Fix α and y and let μ=μΛty9 v = vΛty9 ω=ωΛίy and w = wα>y. Also,
let β=βωo. We first remark that £/J0(χ) k Gωo(x,' y) for all x e ω0 and Ί/J0(x) =
αH^(x) for x e ω (cf. [9, Lemma 1.4]). Hence

for x φ ω and

for x 6 ω. Therefore, U^^ccβ on ω0.
Next, as in the proof of [9, Lemma 2.8], we have

where ψx(ξ) = Gωo(x, ξ) if ξedaωf]ω0 and ψx(ξ)=Q if ξe^αω-ω0. Since
^ Gωo(x, z) for z e ω, we have

i r / v I < r/ lπl < 2^—1
I ̂  ωo I = ^ ωo = ^ " Γ '

Also \U«[ω\£β. Thus

If x e ω, then let ω' be the component of ω containing x. Then, again as in the
proof of [9, Lemma 2.8], we see that

Therefore,

By virtue of this lemma, we obtain the following lemma in the same way as
[9, Lemma 2.9] :

LEMMA 2.12. With the same notation as above, ίfσ is a signed measure on
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ω0 such that |σ|(ω0)< +00, then

σ(ω0) = lim j \ Uσ

ωQdμΛty — \ U%0dvaty> + \ U%0dπ
α-»0 I # Jωo * Jωo ' J Jωo

for any yeω0.

PROOF OF PROPOSITION 2.4 (cf. the proof of [9, Lemmas 2.10 and 2.11]).
Let σ'=σup. By Lemma 2.9, σfeΛB((o) and up = U£. It follows that up is
|π|-integrable. Let {ωn} be an exhaustion of ω and consider the signed measures
λn==λ(ωn 9ω) given in Lemma 2.4. Then {l/ω

n} is uniformly bounded and
l/ω

n->l on co. Therefore, by Lebesgue's convergence theorem,

σ'(ω) = limf Ufrdσ' = limί up dλn .

Since λn\ωn = π\ωn and \ updπ-*\ up dπ,
Jωn Jω

σ'(ω) = lim\ up dλn+ \ up dπ.
n-*oojω—ωn Jω

Thus, it is enough to show that

f Γ(2.3) lim\ up dλn = \ u dσ.
w-*ooJω—ωn Jω

Consider any yeω and fix it for a while. Choose m such that yeωm.
Let 7=supJceω_ωmGω(x,y) and py(x)=min(Gω(x, y),y). As in the proof of
Lemma 1.4, we see that y< -f-oo. It follows that Py + γu^' is a potential whose
associated measure belongs to ^J(co). Hence, by Lemma 2.9, upy = l/jy for
some τy e c^B(ω). By the same argument as above, we have

(2.4) τy(ω) = lim\ upydλn+\ upydπ
n->oojω-ωn Jω

n-*oojω—ωn Jω

On the other hand, letting ω0=ω and using the notation introduced above, we
obtain from Lemma 2.12 the equality

( I f Γ I fτy(ω) = lim< \ upydμΛty—\ upydvΛty> + \ upydπ.
α->0 I Oί Jω ' Jω ' ) Jω

Now, if 0<α^y, then py=α on dωa>y ( = ωΛty—ωΛ>y). Since S(μΛty)^dωΛ)y and
S(vα>y) c= δωα>3, when we regard μα>y and vΛιy as measures on ω, we have
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— \ upydμΛiy = \
& Jω J

and

\ upy dvΛ>y = α\ u dvΛfy = α\ u dπ -* 0 (α -» 0) ,
Jω Jω Jω<Xίy

where the last convergence follows from Lemma 2.10. Hence

τ,(ω) =u(y)+\ upydπ,
Jω

so that, by (2.4), we have

limί uGω( 9y)dλn = u(y).
«-*ooJω—ωn

Since this is valid for any y e ω, integrating both sides by σ and using Lebesgue's
convergence theorem as well as Fubini's theorem, we obtain (2.3).

§ 3. Perturbation theory

The theory in this section may be regarded as a special case of the perturbation
theory developed by B. Walsh [12]. Since our formulation is slightly different
from his, we shall give some of the details.

3.1. The operator Gω

For an open set ω, let

B(ω) = the linear space of all bounded Borel measurable functions on ω,

Cb(ω)= {/eB(ω);/is continuous on ω}

and for a relatively compact open set ω, let

C(ω) = the linear space of all continuous functions on ω,

C0(ω) = {/eC(ω);/=Oon3ω}.

The space B(ω) is a Banach space with respect to the sup-norm: ||/||ω =supω |/|
Cb(ω) is a closed subspace of B(ω). In case ω is relatively compact, C(ω) and
C0(ω) can be regarded as closed subspaces of B(ω) (or of Cft(ω)).

Given a PB-domain ω, we define an operator Gω by

When π is replaced by π+ (resp. π ), the corresponding operator is denoted by
G+ (resp. G~). These are bounded linear operators of B(ω) into Cb(ώ) and
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their operator norms are evaluated as

IIGJI ̂  Htf lπl L, IIGίll ̂  \\Uπ

ω

+ L and ||G-|| ̂  \\U*ω~ \\ω .

If ω is a regular PB-domain, then these operators map B(ω) into C0(ω).

LEMMA 3.1. Let ω be a PB-domain. If /eC6(ω) and /-Gω/e«^(ω),
then for any regular domain ω' such that ω'cω,

f=Hf+Gω f on ω'.

PROOF. Gωf—Gω'f is continuous on ω' and harmonic on ω'. Hence
v=f—Gω>f is continuous on ω' and harmonic on ω'. Since v—f on δω',

3.2. Perturbed sheaf §~

For each open set ω in Ω, we define

{ for each x e ω, there is a regular ^
v 6 C(ω); PB-domain ω' such that xeα/, ω'cωi .

and υ =H™'+Gω>v on ω' \

PROPOSITION 3.1. For each open set ω, «^~(ω) is a linear subspace ofC(ω)
and δ~ = {«^~(ω)}ω:open satisfies Axiom 1 of Brelot [3].

This proposition is easily verified by the definition of ^~(ω), Lemma 3.1
and Axiom 2 for §.

PROPOSITION 3.2. 1 e je~(ω)for any open set ω.

PROOF. If ω' is a PB-domain, then 1 =//f + Gω, 1.

PROPOSITION 3.3. Let ω be a PB-domain. If v e JF~(ω) and υ is bounded,
then v-GωveJ^(ω).

PROOF. Let u=v — Gωv. For each x e ω, there is a regular domain ω' such
thatxeω', ω'aω and v=H™' + Gω>v on ω'. Hence

u =H™' + Gω>υ-Gωv on ω',

so that ii |ω' e «^(ω'). Since x is arbitrary, M e 3? (ω).

LEMMA 3.2 (cf. [12, p. 342]). Given xeΩ and <5>0, there is a PB-domain
ω containing x such that \\U\£\\\0)<δ,
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PROOF. Fix x0 e Ω and let ω0 be a PB-domain containing x0. If |π||ω0 =0,
then we may take ω=ω0. Suppose |π||ω0^0. Then Po=u^ is positive
continuous on ω0. Let

0 < ε < minll, -^~4—rl -
1 3/?0Oo)J

By continuity, there is a regular neighborhood ω' of x0 such that ω' cω0 and \p0(x)

— Po(xo)\<£Po(xo) f°Γ all xeω' . Since u = Hf is positive continuous on ω',
there is a domain ω such that x0 e ω c ω' and

inf w ^ sup w .
CO 1 "T 6 CO

Since H% = u on ω, we see that ||l-//ϊ||ω<ε. Then

Hjf0 ^ (1 - ε)po(x0)H<ϊ ^ (1 - β)2/70(*0) on ω.

Hence

tfif1 = Po - HyQ ^ (1 + ε)po(^o) - (1 - β)2Po(^o) ^ 36p0(x0) < δ on ω.

A PB-domain ω will be called a smα// domain if

ll^+L+II^ΊL<i

By the above lemma, small domains form a base of open sets in Ω. If ω is a
small domain, then (/ —G~)~J exists as an operator of Cb(ω) into itself and

IIGίlMK/-^)-1!! ̂  ll̂ sΊLd-IÎ ΊL)"1 < i

Therefore, [12, Lemma 3.2.1] asserts the following

PROPOSITION 3.4. // ω is α small domain, then (I — Gω)~l exists as an
operator on Cb(ώ) and for any non-negative bounded continuous superhar-

monic function s on ω, (I — Gω)~1s'^0.

From this proposition and Lemma 3.1, the next proposition immediately

follows:

PROPOSITION 3.5. Let ω be a small domain, / / w e Jί?(ω) and u is bounded,

then (I - GJ-l u e jp~(ω).

Let ω be a small regular domain. Then, for each φ e C(5ω),

H<$ = (I-GJ-IH%

makes sense and it is continuous on ω if extended by φ on dω. By Propositions
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3.3, 3.4 and 3.5, we see that H$eje~(co), φ^Q implies #$^0 and that if
Ό e C(ω), v=φ on dω and v\ω e #e~(ω) then v =H$. Thus we have

PROPOSITION 3.6 ([12, Proposition 3.2.2]). Small regular domains are
regular with respect to §~, so that $~ satisfies Axioms 2 of Brelot [3].

REMARK 3.1. We know ([12, Proposition 3.2.2]) that ξ>~ has the Bauer
convergence property in the sense of [5, § 1.1]. But it is not clear whether §~
satisfies Axiom 3 of Brelot [3] even in our special case. In this connection,
we note the following: in case π^O, i.e., 1 is superharmonic, any non-negative
§~-harmonic function is superharmonic; and hence §~ is elliptic in the sense
of [5, p. 66] by virtue of Axiom 3 for §.

3.3. S Γ-superharmonic functions

We shall restrict §~-superharmonic functions (superharmonic functions with
respect to §~) to continuous ones; namely, a §~-superharmonic function on an
open set ω is a continuous function s on ω such that for each small regular domain
ω' with ω'cω, s^ίϊf on ω'.

PROPOSITION 3.7 (cf. [12, Proposition 3.3.1]). Let ω be an open set and f
be a continuous function on ω. Then f is ^-superharmonic on ω if and only
i f f e ^loc(ω) and σf^fπ on ω.

PROOF. First suppose /e ̂ loc(ω) and σf^fπ on ω. Let ω' be any small
regular domain such that ω' c=ω. Then

on ω'. Put v=(I — Gω>)f—H°f. Then v is a non-negative bounded continuous
function on ω' and σv=σf— /π^O. Therefore v is superharmonic. Hence,
by Proposition 3.4, (/-G^O'^^O, so that /-#/'^0. Thus / is ^-super-
harmonic on ω.

Conversely, suppose / is §~-superharmonic on ω. Let ε>0. Since /
is continuous, for each x e ω there is a PC-domain ωx such that xeωx<=ωxc:ω
and (0^)/-H^ <ε on ω' for any small regular domain ω' with ω' cω^. Con-
sider the function

on ωx. For any small regular domain ω' with ω' c ωx, since

Hf = Hy'-Gω>Hj'^f-Gω,Hyf ,
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we have

JΪJ = Hγ-Gβhtf+Gβ,f+ε(G+Ml-G*.l)

Now,

Gω.(f-ttf) ^ G+.(f-Bf) ^ εG+Λ .

Hence H™' ^ s. This means that s is superharmonic on ωx, so that/e ̂ Ίoc(ωΛ) and

σf-fπ + επ+ ^ 0

on ωx. Since ωΛ's cover ω,/e^loc(ω) and the above inequality holds on ω.
Thus, ε being arbitrary, we conclude that σr-/π^0 on ω.

COROLLARY, / / w e « "̂(ω), f/ien σtt2 :g w 2π on ω.

PROOF. Since 1 e Jt?~ (ω), we see easily that —u2 is ^"-superharmonic on ω.

§ 4. Gradient measures of locally bounded functions

4.1. Gradient measures

Let ω be an open set in Ω. For/, g e ^loc(ω), we define their mutual gradient
measure on ω by

and the gradient measure of /e ̂ loc(ω) by

By virtue of Proposition 2.1, these are well-defined signed measures on ω. Note
that if c denotes a constant, then

= 0

for any/e ^Ί0c(ω)» an^ hence 5C=0 and δc+f=δf for any/e ^Ίoc(α>).

REMARK 4.1. In case Ω is a Euclidean domain and § is defined by solutions
of JM =Pw, the measure δf is nothing but |grad/|2dx provided that/is continuously
differentiable. (Cf. the introduction of [9]-/.)
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THEOREM 4.1. Let ω0 be an open set. For any /e ^Ίoc(ω0), δf is a non-
negative measure on ω0. In case ω0 is a domain, <5/=0 if and only if f= const.
on ω0.

PROOF. Let ω be any small PC-domain such that ω cω. Then f=u + U%f
on ω with u e « (̂ω). Since u is bounded and ω is a small domain, v = (/ — Gω)~ x M

exists and belongs to ^f"(ω) by Proposition 3.5. Let p = Uσ

ί/ — Gωυ. Then
f=v + p, so that

(4.1) (5, = (5, + 2(5^ + ̂ .

Since ι; = w + Gωι;, σv = vπ. Hence

δΰ = -γ{2v2π-σv2-υ2π] = -i- {ϋ2π- σ y 2} .

By the corollary to Proposition 3.7, we see that <5y^0. Next we have

(4.2) 2δίVtpΊ = ι;σp + pσv - σvp - ϋpπ

= (u + Gωv)σp + υpπ - σvp - vpπ

Since ω is a PC-domain, |σ/|(ω)<+oo and |π|(ω)< + oo. From the bounded-
ness of v it follows that σ(Gωt;)p e Λt B(ω) and σp e ̂ B(ω). Moreover, by Lemma

2.8, u e «#%£(ω). Therefore, we can apply Propositions 2.3 and 2.6 and obtain

σ(Gωι>)P(ω) = \ (Gωv)pdπ
Jω

= \ υp dπ—\ up dπ
Jω Jω

= \ (Gωύ)dσp-\ updπ
Jω Jω

and

σnp(ω) = \ udσp+\ updπ.
Jω Jω

Therefore (4.2) implies

(4.3) Wω)=0.

Also, by Proposition 2.3, σ 2(ω) = \ p2dπ, so that
Jω
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(4.4) δp(ω) = ( pdσp-\ P

2dπ.
Jω Jω

Since l/*+<l, using Theorem 1.2 we have

(4.5) ( P

2dπ ^( p2dπ+ ^ ||t/«+||ω/ω(σp) ^ ( pdσp.
Jω Jω Jω

Therefore, δp(ω)^Q by (4.4), and hence by (4.1),

(4.6) δf(ω) = δv(ω) + 2(5[yjp](ω) + δp(ω) ^ 0 .

Since this is true for any small PC-domain ω such that ω c ω0 and such domains
form a base of open sets in ω0, we conclude that (5/^0.

If f=c (const.), then δc=Q as remarked before. Conversely, suppose ω0

is a domain, /e ̂ Ioc(ω0) and <5/=0. Let ω be any small PC-domain such that
ωcω0 and use the same notation as above. Since <5y^0 and <5p^0 on ω as we
have shown above, (4.3) and (4.6) imply that δv=0 and (5p=0 on ω. It follows
from (4.4) that inequalities in (4.5) become equalities, in particualr,

Since ||t/£+||ω<l, we have /ω(σp)=0; hence p=0 on ω by the energy principle.

Next we shall show that δv=Q on ω implies v== const, on ω. Since δv+xg^Q
on ω for any #e^Ioc(ω) and for any real number α, we see that δlVig]=Q for
any g e ^loc(ω). In particular, if h e jj?{ώ), then

0 = <5[t ;>Λ] = — -{hσv-σvh-vhπ} = --^-σvh.

This means that υhejf(ω) for any heJ^(ω), and hence v2hejf(ω) for any
h e J^(ω). Since ω is a PC-domain, there is h0 e « (̂ω) which is positive on ω
(see [3, p. 94]). Let x0 Eω be fixed and consider the function w=(v — ι;(x0))2/ι0.
By the above observation, weJf(ω). Since w^O, w(x0)=0 and /z0>0, we
conclude that v = v(x0) on ω. Thus we have seen that /= const, on ω. Since
ω0 is connected, it follows that /= const, on ω0.

COROLLARY. Let ω0 be any open set in Ω.

(a) Iff, ge&ίoc(ωQ), then

and δf+g^2(δf + δg).

(b) ///, 0e^loc(ω0) and A is a relatively compact Borel set such that
, then
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and

The value δf(A) may be called the Dirichlet integral of /over A (cf. Remark
4.1).

REMARK 4.2. If u e JT(ω), then δu = - -i- (σu2 + «2π). Hence if u

and π~(ω)< + oo, then δu(ώ)< + oo.

4.2. Gradient measures of max. and min. of functions

LEMMA 4.1. ^ιoc(
ωo) *s α sector lattice with respect to the max. and min.

operations for any open set ω0.

PROOF. Let /e ̂ Ίoc(ω0) and let ω be any PC-domain such that ωcω0.
Then /| 60=5! — 52 with bounded non-negative superharmonic functions st and
52 on ω. Then

max (/, 0) = st — min (sl5 s2)

and min(s1,s2) is bounded non-negative superharmonic on ω. Hence max(/,
0)e^loc(ω0). Since ^Ίoc(

ωo) is a linear space, it follows that it is a vector
lattice with respect to the max. and min. operations.

LEMMA 4.2. ///e ̂ ιoc(
ωo) and f is continuous on ω0, ί/ien

^[max(/,0),min(/,0)] = 0.

PROOF. Let /+ =max (/, 0) and /" = - min (/, 0). Since /+/~ =0,

Let ω+ = {x e ω f ( x ) > 0} and ω~ = {x e ω /(*) < 0} . Then ω+, ω~ are open
sets. Hence we see that σf-\ω+=Q and σ/+|ω~=0. Therefore <5[/+,/-]=0.

COROLLARY. For a continuous /e ^Ί0c(ωo)> ^ι/ι =^/

REMARK 4.3. We shall see later (§7) that the above results hold for any
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4.3. Dirichlet integrals of locally bounded potentials on a PB-domain

LEMMA 4.3. Let ω be a PB-domain and let p = U%) with σeΛE(ω). Sup-
pose 17j^1 is locally bounded on ω. Then p is \π\-square-integrable on ω,

δp(ώ) ^ βωlω(σ)

and

PROOF. Theorem 1.2 implies that p is |π|-square-integrable. First, suppose
σ^O. Let {ωn} be an exhaustion of ω. For each n, pn = R$n>ω is a potential on
ω, Sh(pn)c:ωn and pn=p on ωn by virtue of Lemma 1.7. Since p is bounded on
ωn, Lemma 1.4 implies that each pn is bounded. Hence μn = σpne^J(ω).
Since pn t p, we have /ω(μn) ΐ Iω(σ) and /ω(μπ-σ)-»0 (Corollary 2 to Theorem
1.1). By Proposition 2.2 (cf. (4.4) in the proof of Theorem 4.1), we see that

(4.7) <5p>)=/ωGO- P2

ndπ.
Jω

By Theorem 2.1, ( p2dπ'^(βω-l)Iω(σ). Hence
Jω

δpn(ω) ^ Iω(μnϊ + \ Plan- g lω(σ) + \ P

2dπ~ g βjjσ) .
Jω Jω

Since pn=p on ωn, δp(ωn)=δpn(ωn)^δpn(ω)^βωlω(σ\ which implies that δp(ώ)^

βωlω(*)

Similarly, we see that δpn_pm(ω)^βωlω(μn-μm), and hence

δpn-p(ωm) = δpn_pm(ωm) ̂  βjω(μn-μj

Therefore

<5pn_p(ω) ^ βωlω(μn-σ) -* 0 (n->oo) .

It follows that δpn(ω)-^δp(ω). Since /ω(μn)^/ω(σ) and ί pϊdπ-*( p2dπ, (4.7)
Jω Jω

implies that

Next, let σ be arbitrary. Applying the above result to /ι=t7ω

+,
and/3 = (7|0

σl, we see that
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δp(ώ) = 2<5/l(ω) + 2<5/2(ω)-<5/3(ω)

σ-)-/ω(|σ|)- (2f\+2fl-fl)dπ

= Iω(σ)-\ P

2dπ.
Jω

Finally, applying Theorem 1.2 again, we see that δp(ω) ̂  βωlω(σ) in the same
way as above.

LEMMA 4.4. Let ω be a PB-domain and p = U^ with σe^E(ώ). Let
{ωn} be an exhaustion of ω and let pn = U^n. Suppose U\£\ is locally bounded
on ω. Then

PROOF. We may assume that σ^O. Since \ p2d\π\< + 00, Q^pn^p on
Jω

ωn and pn-+p, Lebesgue's convergence theorem implies that \ (p — pn)
2d\π\^>

Jωn

0(n->oo). Thus it remains to show that <5p_pn(ωM)->0 (n->oo). First we
remark that un = p — pn belongs to ^Bε(ωn) by virtue of Lemma 2.8. Since
σ|ωπe^J(ω«) anc* π~(ωπ)< -f oo, the definition of δ[/>&] and Proposition 2.4
yield

undσ-σUnpn(ωn)-\ unpndπ\
Jωn >

= -\ unpndπ
Jωn

= -\ (p-Pn)Pndπ-
Jωn

On the other hand, by the above lemma,

and

δp(ώ) = /»- p*dπ.

Therefore
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δp-pn(ωn) = δp(ωn)-δpn(ωn)-2δίp-pntpnι(ωn)

(p-pn)pndπ

-/»»-( (p-pn)
2dπ-( P

2dπ
Jωn Jω—ωn

LEMMA 4.5. Let ω be a PB-domaίn, p = U%) with σe^£(ω) and u

with δu(ω)+\ u2d\π\< + ao. Suppose U\£\ is locally bounded on ω. Then
Jω

<Wι(ω) = -\ updπ.
Jω

PROOF. By the corollary to Theorem 4.1, we see that <5[M,p](ω) has a definite

finite value. Obviously, \ up dπ is also definite. Let {ωn} be an exhaustion of
Jω

ω and let j?M = l/«n- % Proposition 2.4 (cf. the proof of the previous lemma),

δc«,P»](ω») = ~ \ uPndπ -
Jωn

By Lebesgue's convergence theorem,

\ upndπ -> \ up dπ (n-> oo).
Jθ)n Jω

On the other hand, by the corollary to Theorem 4.1, we have

where we used the previous lemma to conclude the convergence.

§ 5. The spaces of harmonic functions with finite Dirichlet integral

and with finite energy

5.1. Lattice structures

Given an open set ω, we consider the following spaces of harmonic functions :
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•̂ D(ω) = {w 6 je(ω)'9 δu(ω) < + 00} ,

jeD,(ω) = {u e Jf (ω); <5M(ω) + \ u2dπ~ < + 00} ,
Jω

u2d\π\ < +00}.

Since (u + υ)2+ (u-v)2=2(u2 + v2) and δu+v+δu-v=2(δu + δυ), we see that these
are linear subspaces of « (̂ω). Note that if 1 is superharmonic on ω, then

). Let

These are semi-norms on JFD(ω), ^D'(ώ) and JfE(ω), respectively, They are
norms if and only if |π||ωVO for every component ω' of ω.

LEMMA 5.1. Let ω be a PB-domain. Then

/or any M e 3ί?D>(ω).

PROOF. For any PC-domain ω' such that ω' ceo, w|ω' e «^B£(ω/) Hence,
by Proposition 2.3, the least harmonic majorant v of |w| on ω' exists. Let p =

— l/J1/"'. Then p^O and \u\=v— p on ω'. By Lemma 4.5,

Hence, using Lemma 4.3, we deduce

-\ Npdπ
Jω

ω'
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By the corollary to Lemma 4.1, δ\u\ =δu. By Lemma 4.3,

By Theorem 1.2,

\ p2dπ~ g (βω. - l)Mσ(ll|) ̂  (βω-
Jω'

Hence,

/« (σ|.|) ̂

so that

/β'(σH)^(2/ϊω-l)||ιι||ί^^.

Letting ω' t a), we obtain the required inequality.

Given M, ue.^(ω), if max (w, t;) (resp. min(M,ι?)) has a harmonic majorant
(resp. harmonic minorant) on ω, then its least harmonic majorant (resp. its
greatest harmonic minorant) will be denoted by u V ωv (resp. u Λ ωv).

THEOREM 5.1. (cf. [9, Lemma 3.3 and Thoerem 3.1]). // ω is a PB-domain,
then «#V(ω) and dί?E(ω) are vector lattices wΐί/i respect to the operations V ω

and Λ ω . Furthermore, we have the following estimates:

and

||£)ω for

PROOF. Let u e Jf D*(co) and v = —σ\u\ (^0). By the above lemma, we see
that p = U^ is a potential, and hence v=uVω( — u) exists; in fact v = \u\+p.
Since /ω(v)< + oo by the above lemma, it follows from Theorem 1.2 and Lemma
4.3 that

/•
P2d\π\ < + oo .

0

Therefore VE3>rD>(co), and if in particular ueJ^E(ω) then veJFE(ω). Thus,
3?D,(ω) and J^E(ω) are vector lattices with respect to V ω and Λ ω.

Now, let {ωj be an exhaustion of ω, pn = U^n and un=p\ωn-pn. Then
w n e Jf'̂ ω,,) (c^f£(ωπ);cf. Remark 4.2), v = \u\+un + pn and υ — un^.\u\ on ωπ.
By Lemmas 4.3 and 4.5 and the corollary to Lemma 4.2, we deduce
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δυ-Un(ωJ + ̂  (v-un)
2dn = δu(ωn) + ̂  u2dπ-Iωn(v).

Hence,

=<5BK)+( u2dπ- + ( (u2-(v-un)
2}dπ+

Jωn Jωn

+ 2\ {(v-Ua)
2-u2}dπ--Iωn(v)

Jωn

( u2dπ- + 2\ {(v-un)
2-u2}dπ--Iωn(v)

Jω J ωn

and

(v-un)
2d\π\

ωn

{(v-un)*-u2}dπ--Iωn(v)
n

u2d\π\+2\ {(v-Un)
2-u2}dπ--Iωn(v).

ω Jωn

By Lemma 4.4, δUn(ωn)^>0 and \ u2

nd\π\-+Q (n^oo). Hence
Jωn

(5.1) \\v\\2 g ||«||2+2( (υ2-u2)dπ--Iω(v),
Jω

where \\u\\ =||M||D%ω if ue^D.(ώ), =||«||£(β, if « 6 Jf^ω). If τr=0, then (5.1)
immediately implies the required estimates. If π~,έO, then βω>ί. Since t»2 —

for any fc>0,

(v2-u2)dπ- ^

Letting k=2(βω— 1) and using Lemma 5.1, we have from (5.1)

COROLLARY (cf. [11, Theorem 2] and [6, Theorem 10 D]). // 1 is super-
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harmonic on a domain ω, then 3ί?D(ω) is a vector lattice wiί/i respect to V ω and

Λ ω and

l |wVω(-ιι) | |D,ω^ NID,»

REMARK 5.1. We do not know whether this corollary remains valid in case
1 is not superharmonic.

5.2. Bounded families in 3FD,(ω) and 3

THEOREM 5.2. If ω is a PB-domain such that Iπllω^O, then the family

*}>.(ω) = {uεJfD,(ω) , \\u\\D..m £ 1}

is locally uniformly bounded on ω.

PROOF. First suppose π~"|ω^0. Consider the family

flr = {uejrD.(ω);u^ 0, \\u\\D,,ω ̂

If iieJTMω), then \u\^uVω(-u) and \\u Vω(-ιι)||^ fω^l + 3(/ίω-l) by the
previous theorem. Hence it is enough to show that ^ is locally uniformly

bounded. Fix x0

 e ω We shall show that (u(x0) ;ue<%} is bounded. Suppos-
ing the contrary, we would find une<%9 n = l, 2,..., such that wn(x0)^n Let
vn=un/un(xo). Then, Harnack's principle (cf. [9, §3.3, (B)]) implies that there
is a subsequence {vnj} converging to a vej^(ώ) locally uniformly on ω. In
particular, t;(x0) = l and v>0 on ω. Now,

Therefore, we may assume that ι?nj.->0 π — a.e. on ω. It follows that v=0 π —
a.e. on ω, which is a contradiction. Thus we have seen that {u(x0);we^} is
bounded. Then, by Harnack's inequality (cf. [9, § 3.3, (A)]), we conclude
that ^ is locally uniformly bounded on ω.

Next, suppose π~|ω=0, i.e., πΞ>0 on ω. Let ω' be any PC-domain such

that ω'cω and π|ω'^0. Choose another PC-domain ω* such that ω'cω*
and ω*crω. Let α=infωΛ7j*. By our assumption, α>0. Given w6«/f(ω),

let μ=σ_ M 2 (^0). Then ιι2=/ι-C7£. on ω* with /ιe«^β£(ω*) (cf. [9, Lemma
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2.12]). In the proof of [9, Proposition 2.2], we showed that

μ(ω*)^ ( hdπ^( u2dπ.
Jω" Jω*

Hence

^ - (h-u2)dπ
£ Jω*

so that

= μ(ω')-δu(ω') ^ μ(ω') ^ -~-\\u\\2

D,ω>.

Hence,

The family on the right is locally uniformly bounded by virtue of [9, Thoerem 3.2],
and hence J^D'(ώ) is locally uniformly bounded on α>'. Since ω' can be chosen
arbitrarily close to ω, we obtain the theorem.

COROLLARY 1 (cf. [9, Theorem 3.2]). // ω is a PB-domain such that
, then the family

; ι ι £ § ω ̂

is locally uniformly bounded on ω.

COROLLARY 2. // ω is a PB-domain and 1 is superharmonic on ω, but
not harmonic on ω, then the family

; \\u\\D,ω ^ 1}
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is locally uniformly bounded on ω.

COROLLARY 3 (cf. [9, Corollary to Theorem 3.2]). Let ω be a PB-domain
such that Iπllω^O. // Mne«#V(ω) and \\un\\D>tω-*Q(in particular, unej^E(ω)
and ||ttJlE,ω->0), then wn-»0 and wrtVω(-ιO->0 both locally uniformly on ω.

REMARK 5.2. In Theorem 5.2 and its three corollaries given above, the con-
dition that Iπl lω^O cannot be omitted; though we obtain the same assertions
if we normalize functions (see [9, § 3.1 and § 3.3]).

COROLLARY 4. Let ω be a PB-domain and let ω' be a PC-domain such
that ω'czω. Then there is a constant M>0 such that

\\u\\E,a. ^M||u||D%(0

for all u

PROOF. If |π||ω=0, then ||M||E>ω. = ||u||D- jω-g||M||D.ι0). Suppose |π||
Then, by the theorem, |u|^M' on ω' for all ueJίf^ (ώ) for some M'>0. Hence

so that

For a PB-domain ω and ueJ>i?E(co), Ufr and f/£2 |πl are potentials on ω by
virtue of Lemma 1.6. Since σu2 = —2δu — u2π,

Since u2 ̂  0, it follows that h™ ̂  0.

LEMMA 5.2 (cf. [9, Lemma 3.5]). If ω is a PB-domain such that Iπl

then the family {h^ιueJ^E(ώ)} is locally uniformly bounded on ω.

PROOF. Let K be any compact set in ω such that |π|(K)>0. By the above
Corollary 1, there is M>0 such that |u(x)|^M for all uE3eE(ω) and xeK.
Since /ι£^0, Harnack's inequality implies

suph^(x) ^ a i
xeK xeK
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for some α>0 which is independent of u. Now,

>-υ
= \π\(K)

foruejel(ω). Hence

sup
*eκ

for all M e

5.3. Completeness of the spaces J(?D,(ω) and «?f £(co).

LEMMA 5.3. Let ω be a PB-domain. If une^E(ώ), n = l, 2,..., {||«J|£>(1)}
/s bounded and «„->« locally uniformly on ω, then uεJ>FE((o) and

PROOF. The case π|ω^0 is given in [9, Proposition 3.3]. Thus we shall prove
the case π~|ω^0. Taking a subsequence, we may assume that lim^ojMj^

exists. Let ω' be any PC-domain such that ω'czω and π~|ωVO. Since un-*u

uniformly on ω', u is bounded on ω' and |π||(ω')< + oo, we see that \ u%d\π\^>
Jω'

\ u2d\π\ and U^ί2π-^ U^π uniformly on ω' '. Consider the sequence {h%'n}
Jω'
in the notation in §5.2. By Lemma 5.2, it is locally uniformly bounded on ω' '.

Hence, by Axiom 3, we can choose a subsequence {Vj} of {un} such that {h^}
converges locally uniformly on ω'. For simplicity, let δj = δvj and hj = h^'r
Obviously, h^^limj^^hj is harmonic on ω'. Consider the function

v = h*-u2-U£π.

Since σv = —σu2 — w2π=2(5α^0, v is superharmonic on ω'. Furthermore,

(5.2) Ό = lim {hj - ΌJ - Uv/π} = 2 lim V**. ^ 0 .
j*-»oo ,/-*oo

It then follows that
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2C7£« = U'j ^ v = 2 lim 17 *Λ .

Given any open set ω" such that ω" <= ω', let λ = A(ω" ω') in the notation in Lemma
2.4. Since S(λ)cω" and the convergence in (5.2) is uniform on ω", we deduce

5M(ω") ^ \
Jωr

gl imί
J'-XJD Jω'

= lim f Uftdδj ^ βω> lim inf δj
— ' ~j—xx>J

Letting ω" ί ω', we have

j-»oo

Hence,

u2d\π\

Since we can choose ω' arbitrarily close to ω, we obtain the required inequality.

THEOREM 5.3 (cf. [9, Theorem 3.3]). If ω is an open set such that IπHω^
0 for every component ωx of ω, then J^E(ω) is a Hilbert space with respect to

the norm \\-\\ Etώ.

PROOF. Obviously,

0, V)E,O> = <5[«f«;](ω)+ \ uv d\π\
Jω

is well-defined for any u9 v e J^E(ω) and is an inner product in J^E(ω) such that

(u9u)E,ω = \\u\\E,ω To prove the completeness of 3? £(ω), let {un} be a Cauchy
sequence in j^E(ω)9 i.e., ||wn — wm | |£jω^0 (n, m->oo). Let ωl be any component
of ω and consider the set



724 Fumi-Yuki MAEDA

A = {x E ωί lim un(x) exists} .

If ω' is a PB-domain such that co'cα^ and |π||ω'τ£θ, then, by Corollary 1 to
Theorem 5.2, un converges to a u e jF(ω') locally uniformly on co', so that ω'<^A.
Furthermore, using the previous lemma, we see that u e 3$?E(ω') and \\un — u \\ Et(0> -»
0 (n->oo) (cf. the proof of [9, Theorem 3.3]). If ω' is a subdomain of ωί such
that |π||ω'=0, then by [9, Theorem 3.2], {un — un(x0)} is convergent locally
uniformly on ω' for a fixed x0eω', and hence either ω'<=.A or ω'c:ωί— A. If
ω'cA, then, by [9, Theorem 3.3], u=limn^aΰune^E(ωf) and \\un — u\\Ei(0>-*§
(Π-+CQ). Since PB-domains form a base of open sets, the above results show that
A and ωί—A are both open. Since Iπllω^O, it follows that A=ω^. There-
fore, M=limΠ^00MΠ exists on ω1 and \\u-un\\Et(0,-+Q (n->oo) for any PB-domain
ω' contained in ωi.

For any compact set K in ω, the above result implies that

Hence

u*d\π\\
)

Thus, u E j^E(ώ). Furthermore, for each m,

(u-umyd\n\ =lim\δun _ M
w-*oo I

un-um\\Etω ->0 (m->oo).

Hence \\u — Mm||f;>ω->0. Thus, « £̂(ω) is complete.

THEOREM 5.4. If ω is an open set such that \π\\ω1^0for every component
ωx 0/ω, then j^D>(ώ) is a Hubert space with respect to the norm || ||D',ω.

PROOF. For M, v e ̂ V(ω).

(u, v)D,>ω = δM(co)+ \ uv dπ-

is well-defined and is an inner product in 3PD,(ω) such that (M, tt)j>',ω = ||tt||έ',ω
Let {un} be a Cauchy sequence in «#V(ω). If ω; is a PB-domain contained in
ω and ω" is a PC-domain such that ω"dα/, then Corollary 4 to Theorem 5.2
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implies that

IK-Wmlkω- ^ M\\un-um\\D.tω. -> 0 (n, m-> oo)

for some constant M>0. Hence, by the previous theorem, there is uej>ί?E(ω")
such that \\un — w||£}0,»-*0 (n->oo) and un-+u locally uniformly on ω". Since
such ω"'s cover ω, an argument similar to the last part of the proof of the previous
theorem shows that u=\\mn^^uneJ^D'(ώ) and \\un — w||D',ω-»0 (n-»oo).

COROLLARY (cf. [11, Theorems 3 and 4]). // 1 is superharmonic on ω
and is not harmonic on any component of ω, then J^D(ω) is a Hίlbert space with

respect to the norm || ||ι>,ω.

REMARK 5.3. If π=0 on some component of ω, then \\-\\Etω and || | | jχ f ω.
fail to be norms; though J^E(ω) and 3?Ό.(ω) are still complete with respect to
these semi-norms respectively (see [9, Theorem 3.3]).

REMARK 5.4. The above corollary may remain valid in case 1 is not super-
harmonic on ω. In fact, if the harmonic space is given by solutions of Δu =Pu
on a Euclidean domain, then we can show that the space of Dirichlet-finite solu-
tions is complete with respect to the Dirichlet norm.

§ 6. Dirichlet potentials and Dirichlet functions on a PB-domain

6.1. Quasi-continuous functions

Let ω be a PB-domain. We consider the capacity Cω on ω relative to the
kernel

i.e.,

for allCω(K) = supjμ(^); μ e ufί(ω), Jω<?ω(jc, y)dμ(y) ^ I

= supjl \ v 6

for every compact set K in ω. Cω defines a Choquet capacity on ω (cf . [9, Pro-
position 5.2]). By [9, Lemma 5.5], we see

LEMMA 6.1. A set e<=Ω is polar if and only if 6ω(e fl ω)=0/0r every PB-

domain ω,
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Next we prove

LEMMA 6.2. Let ω and ω' be two PB-domains such that ω'ciω and let
K0 be a compact set in ω' . Then there are constants cl=cl(ω,ω')^\ and
c2=c2(ω, ω', KQ)^.! such that

Cω(A) ί ClCω,(A)

for all Bore I sets A in ωf and

Cω\A) ^ c2Cω(A)

for all Borel sets A contained in K0.

PROOF. It is enough to prove the inequalities for compact sets A. If U^^
sω on A with ve^J(ω), then Uv

ω>^Uv

ω^sω^βωsω> on A. Hence

Thus,

-- s ω , v - sωdv.
Pω JA pω JA

Next, suppose AdK0. Let Gω(x, y) = Gω'(x, y) + /?(x, y) for x, yeω'. Then,

/ι(x, y) is positive and continuous on ωxω. Put M=supxeXo>3,eKo/?(x, y) and
/π=infx ε A : o > J ? e / C oGω '(x, y). Then 0<M<+oo and 0<m< + oo. Let c2 = l
+ M/m. Then Gω(x,y)^c2Gω>(x9 y) for all x, y e K0. Thus, if ve^5(ω) and
S(v)aKθ9 then Uv

ω^c2U^ on X0. Let ve^J(ω), S(v)cA and l/J^sω,
on A. Then U^^c2sω on ^4, so that

-- sω.dv.
c2 JA

It then follows that

An extended real valued function / on an open set ω0 is said to be quasi-
continuous there if, for any PB-domain ω contained in ω0, f\ω is quasi-continuous
with respect to the capacity Cω. By virtue of the above lemma, a function on a
PB-domain ω0 is quasi-continuous in the above sense if and only if it is quasi-
continuous with respect to Cωo. By Lemma 6.1, a quasi-continuous function is

finite q.e.; if /is quasi-continuous and #=/q.e., then g is quasi-continuous.
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LEMMA 6.3. Let ω0 be an open set and f be a quasi-continuous function on
α>0. Then f is μ-measurable for any non-negative measure μ on ω0 such that
μ\ωe^E(ώ) for each PC-domain ω with ωcω0; in particular, f is \π\-mea-
surable.

This lemma is easily verified by the definition of quasi-continuity and Lemmas
1.3 and 6.1 (cf. [4, p. 52]).

LEMMA 6.4. Let ω0 be an open set and let f be a quasi-continuous function

on ω0. // / is μ-integrable and \ fdμ=0 for any μe^^ω) with a PC-
Jω

domain ω such that ωc:ω0, thenf^Q q.e. on ω0.

PROOF. Let ω' be any PB-domain contained in ω0. // μe^β(ω') and

S(μ) is compact in ω', then/is μ-integrable and \ fdμ =0 by assumption. Hence,
Jω'

[9, Corollary to Lemma 5.7] implies that /=0 q.e. on ω' with respect to the
capacity Cω,. This means that/=0 q.e. on ω0.

REMARK 6.1. Similarly, we also see that [9, Lemma 5.7] is valid in the
present case.

6.2. Dirichlet potentials

Let ω be a PB-domain and consider the classes

-^flc(ω) = {σ e ̂  B(ω)\ U\^ is continuous} ,

Every function in & βc(ω) is bounded continuous on ω. ^Bc(ω) ιs a normed
space with respect to the norm

\\Ul\\ ,,ω = /.(σ)1/2 (i.e., | |/||/ jω = ̂ (

THEOREM 6.1. Let ω be a PB-domain and let

there is a sequence {/„} in 3? BC(ω) such that
; fn-+fq.e.onωand\\fn-fm\\I>ω^O (n,m-.o

Then ^0(
ω) nas the following properties:

(a) ///e^0(ω) and fί is a function on ω such that /i =/ q.e. on ω, then

/ιe^o(ω).
(b) Any function in &Q(CO) is quasi-continuous on ω.

(c) For /e^0(ω), if {fn} is a sequence in ^βc(
ω) sucn tnat fn~*f <ί'e
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on ω and ||/n-/w||/jω->0 (rc, m-»oo), then

exists and is independent of the choice of {/„}.

(d) // we identify functions which are equal q.e. on ω, then &0(ω) is a
Hίlbert space with respect to the above norm \\-\\ 1>ω and contains ^Bc(ω) as a

dense subspace.

(e) ///rt,/e^0(ω),/n--»/ q.e. on ω and ||/Λ-/J|/.ω-»0 (n, m-»oo), then

(f) ///π,/e ^0(ω) and \\fn-f\\Itio->Q, then there is a subsequence of
{/„} converging to f q.e. on ω.

(g) For any /e^0(ω), there is a potential p on ω such that \f\^p on ω.

PROOF. For σ e ̂ B(ω), let

Ui(x) s ( Gω(x, y)dσ(y) = —

Since ω is a PB-domain, we see that σ e J?BC(ω) if and only if U\£ '(x) is bounded
and continuous. Let

and

ί there is a sequence {gn} in ̂ Bc(ω) su°h
U;
I 9n~>9 q.e. on ω and ||0n-0wlkω-»0 («, m->oo)J

Since ^βc(ω) = {sω^; ^e β c (ω)} and ||sω^||/,ω = ||^||Je,ω for

we see that &0(co) = {sωgιg e &0(co)}. Now, applying [9, Theorem 5.1 and
Propositions 5.3 and 5.4] to the harmonic structure ξ>ω/sω and noting that sω

is positive continuous, we obtain the required results.

REMARK 6.2. In case 1 is superharmonic on ω, the space ^0(
ω) is the same

as <f 0(
ω) given in [9].

PROPOSITION 6.1. If ω is a PB-domain and σ e ΛE(ω), then /= Vσ

ω

||/||/
2,ω=/».

PROOF. By Lemma 1.5, we can choose σnε^BC(ω), n = l, 2,..., such that
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^>n->/q e. on ω and lω(σ-σn)->0 (n-»oo). Hence fe®0(ώ) and ||/||?.ω =
limw_00/ω(σπ)=/ω(σ).

The following three lemmas will be used in the next section.

LEMMA 6.5. Let ω be a PB-domain. If fe0>BC(ω), then \f\e^BC(ω)

PROOF. If / = 17J with σe^BC(ω), then |/| =l/lfl-2min(l/J+, tfj').
It follows that |/| e ̂ Bc(ω} By the corollary to Lemma 4.2, δ^ =δf. Hence,
by Lemma 4.3, we have

\ \ \ f \ \ \ l ω = δ]fl(ω) + \f\2dπ = <5/ω) + f*dπ =
Jω Jω

LEMMA 6.6. Lei ω be a PB-domain. Then, for any μe^|(ω) and fe

PROOF. Let {/„} be a sequence in ^BC(ώ) such that /π->/q.e. on ω and
||/—/Jlι,ω-»0(n-*oo). Let σn = σ\fn\. By the above lemma, σne^BC(ω) and

= ί / 2 . Hence

By Lemma 1.3, μ(e)=0 for a polar set e. Hence, Fatou's lemma implies

\fn\dμ
π-*oo Jω

LEMMA 6.7. Let ω be a PB-domain and ω' be a PC-domain such that ω' c
ω. Iffe &0(ω'), then

{ f on ω'

0 on ω — ω'

is an element of &Q(ω).

PROOF. Let {/„} be a sequence in ^Bc(ω') such that /„->/ q.e. on ω' and

ll/rt~/JI/,ω'~*0 (n> m-+<x>) By virtue of Lemma 1.5, we may assume that
S(σfn) is compact in ω' for each n. Let σn = σfn for simplicity. Each σn can be
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regarded as a measure on ω. Using Lemma 2.2, we see that pn = Uσ

ω

n+ and qn =
Uσ

ω

n~ are bounded on ω, so that σne^B(ω). By Lemma 1.7,

P~ = Pω—ω',fo αnH /r = ί?fo—ω',ω
ft = Apn

 anα ^/ι = *Sn

are bounded potentials on ω and pn — qn = pn — qn q e on ω—ω'. Let μπ and
vn be the associated measures of pn and qn respectively, and let τn =μn — vn. Since
pn\ω—ω'=pn\ω—ω' and qn\ω—ω'=qn\ω—ωf and they are harmonic onω—ω',
we see that S(μn)c:dω' and S(vw)c:dω'. Therefore τne^B(ω) for each n. Let
9n=Pn-<ln-Pn + cίn=V0

ω

n-τ». Then gne&Q(ώ) by Proposition 6.1. Fur-
thermore, gf n =0 q.e. on ω — ωr. On the other hand, by Axiom D (see Corollary
1 to Theorem 1.1), we see that pn — pn = U<^+ and qn — qn = U^~ on ω' (see, e.g.,

[3, p. 129] or [5, p. 225]). Hence gn=fn on ω'. It then follows that #„-»/*
q.e. on ω. Furthermore, using the fact that S(τM)cιdω', Lemma 1.3 and Pro-
position 6.1, we deduce

H0π-0JI/,ω = \ (0n~9m)d(σn-τn-σm + τm)
Jω

= \ (fn-fJd(σn-σ,n) = ||/n-/m||ί>ω.^0
Jω'

(n, m-»oo). Thus, it follows from Theorem 6.1 that/* e ̂ 0(
ω)

6.3. Dirichlet functions and gradient measures

For a PB-domain ω, let

0(ω) ΞΞ jf D(ω) + ̂ 0(ω) = {w +/0 u e JrD(ω),f0 e ̂ 0(ω)} .

This is a linear space consisting of quasi-continuous functions on ω.

THEOREM 6.2. Let ω be α PB-domαin. For each fe &(co), there is a uni-
que non-negative measure δj on ω having the following property: iff=u+f0

with ue3ί?D((o) and #e^0(ω) and if {/„} is a sequence in ^Bc(ω^ such that

fn-*fo<l e on ω and ll/Λ-/mll/,ω-^0(n,m->oo), then δu+fn(A)-+δJ(A) for any
Borel set A in ω.

PROOF. Let {/„} be a sequence in έPBc(ω) as described in the theorem. By
Lemma 4.3,

δfn(ώ) ^ βω\\fn\\2ι^ n = l,2,...

and
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Since δlt+fn ^ 2(δu + δfn)9 it follows that {δu+fn(A)} is bounded for any Borel set
A in ω. Furthermore,

< βlJ2\\fn-fm\\,.m

-> 0 («, m -> oo ) .

Therefore, {δu+fn(A)} is a Cauchy sequence, so that

δJ(A) = limδu+fn(A)
n-*ao

exists. The uniform convergence with respect to A implies that δj is also a

measure on ω. Obviously δJ^Q. If {/*} is another sequence in «^βc(
ω) SUCΓ1

that /*-»/o q.e. on ω and ||/ί — /Jj||/,ω-*0 (n, m->oo), then by Theorem 6.1,
we see that \\fn— /ίll/,ω-»0 (n->oo). Then, by an argument similar to the
above, we see that δu+fn(A) — δu+fn*(A)-^>Q (n->oo). Thus δj is uniquely deter-
mined by/.

For /, g e ^(ω), let

We can easily see that the mapping (/>#)-><ί>[/,0] is symmetric and bilinear
on ^(ω) x ^(ω).

Note that if fG^BC(ω)9 then δj = δf; and hence if /, 0 e 0>BC(ω), then

THEOREM 6.3. Let ω be a PB-domain and letfe ®Q(ω). Then,

(6.1) \ f2d\π\^
Jω

(6.2) \ f2dπ~^(βω-
Jω

(6.3)

(6.4)

(6.5)
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for u 6 jeE(ω).

PROOF. Let {/„} be a sequence in 0>Bc(ω} such that/Λ-*/q.e. on ω and
IIΛ-/J/,ω-»0 (π, m-κx>). By Theorem 1.2,

i
$/••

and

( (fn-LYd\π\ <; (2βn-mf.-fJ1.» -» 0 (», m^ oo).
Jω

Since /π->/q.e. on ω and |π|(e)=0 for a polar set e, Fatou's lemma implies (6.1)
and (6.2), and furthermore,

/„— f)2d\π\ -> 0 (n->oo).

Then (6.4) is easily seen by Lemma 4.3. The inequality (6.3) immediately fol-
lows from (6.2) and (6.4). Finally, if u e J^E(ώ)9 then, by Lemma 4.5,

ufndπ =0, n = 1, 2,... .

By the definition of <5ftt>/], we see that <5[M,/n](ω)-+<5ω

M)/](ω) (n->oo). By the

above result, we also see that \ ufndπ-+\ ufdπ (n-»oo). Hence we obtain (6.5).
Jω Jω

THEOREM 6.4. Let /e ̂ E(ώ) + 3>0(ω). If

for all g e ^0(
ω)» then f=u q.e. on ω with u e «

PROOF. Let f=u +/0 with M e J^E(ω) and /0 e &0(ω). By assumption

and by the above theorem

Hence
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and hence /0=0 q.e. on ω by Theorem 6.1.

§7. Locally Dirichlet-finite functions

7.1. Preliminary lemmas

LEMMA 7.1. Let ω be a PB-domain and ω' be a PC-domain such that ω'
cω. Then, for any σeΛE (ω) such that U\g\ is locally bounded on ω,

PROOF. Put p = Uσ

ω9 p' = U^, and u =p\ω' - pr. By Lemma 2.8, u e Jt?BE(ωf)>
By Lemmas 4.3 and 4.5,

(7.1) δp,(ω')

(7.2)

Hence

Since ( ^2</π-g(^m- !)/„.(*) and f p2dπ-£(β0-ϊ)IJίσ) (Theorem 1.2), we
Jω' Jω ϊ

deduce that

σ)^/2/ω,(σ

from which the required inequality follows.
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LEMMA 7.2. Let ω, ω' and σ be as in the previous lemma. Then, for

δtt(ω')+\ u2d\π\Z(2βω-
Jω'

PROOF. With the same notation as in the above proof, (7.1) and (7.2) imply

δu(ω')+( u2dπ = δp(ω')+( p2dπ-Iω,(σ).
Jω' Jω'

Hence, using Lemma 4.3, we have

u2d\π\
'

+ ( p2dπ+-( p2dπ~ + 2( u2dπ~-Iω.(σ)
Jω' Jω' Jω'

P

2dπ--{ p2dπ- + 2( (p- p')2dπ~-Iω.(σ)
Jω' Jω'

p2dπ--4{ pp'dπ- + 2( p'2dπ--Iω.(σ) .
ω Jω' Jω'

If π~|ω=0, then the required inequality is now obvious. If π'lω^O, then βω>l.
Noting that

-2pp' g 2(βω-l)

and using Theorem 1.2, we have

δu(ω')+( u2d\π\
Jω'

g Jω(σ) + (4βω - 2) ί p2dπ~ + (-^r + 2)( p' 2dπ~ - Iω, (σ)
Jω \ Pω

 A / Jω'

^ {1 +(βω- l)(4βω-2)}Iω(σ) + {1 +(2/?ω- 1)- l}Jω,(σ)

^ (2βω - 1)2/» + 2(βω - l)/ω,(σ) .

Then the required inequality follows from the previous lemma.

LEMMA 7.3. Let ω be a PB-domain and ω' be a PC-domain such that
ω'czω. Then, for any fe&(ω),f\ω'ejj?E(ω') + &0(ω') (c^α/)) and δ°j \ω,

PROOF. Let f=u +/0 with u e JfD(ω) and /0 e &0(ω). Choose /„
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such that /n-*/Ό q.e. on ω and ||/n-/w||j,ω->0 (n,m-*oo). Put σn=σ/n, gn =
U%t and un=fn\ωf — gn(ejj?BE(ωfy). By the previous two lemmas, we have

fm\\ι.ω-+0 (n,ι?ι-> oo)

and

\\Un-* JE.» £(2β»-V3^fu-fJι.» -0 (n,m->oo).

First assume |π||ωVO. Then «^£(ω') is complete by -Theorem 5.3. Hence,
u*=limΛ_> 0 0MΠ exists, u*ejeE(ω') and \\un-u*\\Etto>-*0 (n-»oo). Then gn^g* =
/0|ω' — w* q.e. on ω'. By definition, g*e&0(ω'). Therefore, /|ω'=w|ω' +

u* + 0*e«?T£(ω') + ̂ o(ω') If |π||ω'=0, then we first choose g*e&0(ω') such
that || #„ — 0*||/,ω'-»0 (n-^oo), which exists by Theorem 6.1 (or [9, Theorem
5.1]). By the same theorem, we see that there is a subsequence {gnk} of {gn}
such that gnk-+g* q.e. on ω' (/c-»oo). It follows that {wΠk(x0)} is convergent for
some x0eω'. Hence, by [9, Theorem 3.3], there is u*e3i?E(ω') such that
||wΠk — w*||Ej(0<-»0 (/c->oo) and unk-+u (locally uniformly) on ω'. Hence,

From Theorem 6.2, it follows that

for any Borel set A in ω'. Since

^ i|M*-un||£,ω- -. 0 (n-» oo),

we see that

Therefore ^j ω»= δω

f \ ω'.

7.2. Locally Dirichlet-finite functions and their gradient measures

For an open set ω, we define

^ioc(ω) = {/; for any PC-domain ω' such that ώ' cω, /|ω; e &(ω')} .

By virtue of Lemma 7.3, the space 3>(ω'} in the above definition may be replaced
by 3f E(ω') + &0(ωf). Thus, in case 1 is superharmonic on ω, ^loc(ω) coincides
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with the space <floc(ω) introduced in [9, §6.2]. Also, Lemma 7.3 asserts that
^(ω)c^loc(ω) in case ω is a PB-domain, and furthermore it implies the follow-

ing

THEOREM 7.1. For any fe ^loc(ω), there is a unique non-negative measure
δf such that δf\ω' =δj' for any PC-domain ω' such that ω' cω.

The measure δf may be called the gradient measure of /e ̂ loc(ω). For
/, # e^loc(ω), their mutual gradient measure is defined by

1

which is a signed measue on ω. Obviously, ^loc(ω)c^loc(ω) and the above
definitions of δf and <5[/)ί7] are compatible with those for /, 0e^?loc(ω). We

can easily verify that the mapping (/? 0)-><5[/,0] is symmetric and bilinear on

^ioc(ω) x ^ioc(ω) and the same inequalities as in the corollary to Theorem 4.1
hold for/, g e ̂ Ioc(ω0).

From Theorem 6.3, we obtain

PROPOSITION 7.1. Every /e^loc(ω) is locally \n\-square-integrable on ω.

Next we prove

PROPOSITION 7.2. If ω is a PB-domain, then

( f 2 I

PROOF. Let

f f2d\π\< +0)}.

By Lemma 7.3 and Theorem 6.3, we see that j^E(ω) + ̂ 0(ω)cι^E(ω). Now,
let/6 @E(oS) be given. Consider the linear form

f g d π
!>

defined on ̂ 0(
ω) It is continuous in view of Theorem 6.4. Hence, by Theorem

6.1 (d), there is/0 e &Q(ω) such that

•r

Jω

forall 0 e00(ω).. Then
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(f-fo)gdπ = 0

for all ge&0(ω). Now, using Lemma 6.7, we see that for any PC-domain ω'
such that ά>' ciω and for any g e ̂ 0(

ω/)

ω'

By Lemma 7.3, (f-fo)\ωf ejeE(ω') + ̂ Q(ωf). Hence Theorem 6.4 asserts that
/— /o =w q.e. on ω' for some u E 3fE(ω'). It follows that there is u e J^(ώ) such
that/— /0=M q.e. on ω. By modifying the values of/0 on a polar set, we have
/=w+/o on ω. Since <5M^2(<5/ + (5/0) and w2^2(/2+/§), we see that <5M(ω) +

\ u2d\π\< + 00, i.e., we^^ω). Thus feJί?E(ω) + &0(ω)9 and hence ^£(ω)c

REMARK 7.1. It is clear that ^(ω)c{/e^loc(ω);^/(ω)< + 00}; but it
is not clear if these spaces coincide.

PROPOSITION 7.3. If ω is a P-domain and σ is a signed measure on ω such
that t/W is a potential and σ\ω' e Λ E(ω') for each PC-domain ω' with cD'cω,
then t/je^loc(ω).

PROOF. By Proposition 6.1, U^ e^0(ω') for any PC-domain ω' such that
ώ'ciω. Hence Uσ

ωe &Q(ω') + Jf(ω')cι&loc(ω') for such ω'. It then follows
that l

7.3. The space ^£,ιoc(
ω) an^ its lattice structure

For a PB-domain ω, we consider the spaces

^£(ω) = {/;/ = l/S q.e. on ω with σ e ̂

and

(cf. [9, §6.4], where ^£ is denoted by Q£). ^E(co) is a subspace of @0(ω)
(Proposition 6.1), and hence &*E(ω) is a subspace of ^(ω). For an open set ω
in Ω, let

for any PC-domain ω' such that ά)' cω,)
;/|ω/€^(ω/) |.

Obviously, &\ΌC(ω) c:^£,ioc(ω) ̂  ̂ ioc(ω) Furthermore, by using Proposition
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6.1 and Lemma 7.3, we can show that &Έ(ω)c&Έ jloc(ω) for a PB-domain ω
(cf. the proof of Proposition 7.3).

THEOREM 7.2 (cf. [9, Theorem 6.3 and its corollary]). The spaces ^E(ω)

and &Έ(ω) for a PB-domain ω and &Έ,ioc(ω) for an °Pen set ω are vector
lattices with respect to the max. and min. operations and

δ\f\ = δf

foranyfe#Έiloc(ω).

PROOF. Let ω be a PB-domain and fe^E(ω). By definition, f =u+f0

with uejeE(ω) and/0e^£(ω). By Theorem 5.1, u^u V ω O and M2 = (-w)V ω O
exist and belong to j^E(ώ). Let τ = σ M l _ m a x ( u > 0 ) . By Lemma 5.1, we see
that τtJt\(ω). Note that u^ =max(w,0)+l/J, and w 2=max(-w,0) + Uτ

ω.
Put

p = min(l/J++tt1, ί/J" + ιι2),

where σ = σ/0=σ/. Then, p is non-negative superharmonic on ω and p^
l/lfl + £/£,, so that p is a potential on ω. Since |σ|, τ e ̂ J(ω), it follows that

Hence

If, in particular, /e «^£(ω), then w=0, so that \f\ = V}*\-2pe&E(ω). Thus,

Now, for the above /and σ=σ/? choose {μrt} and {vj in ̂ ίc(
ω) suc^

ί£/£+ and ί/-« ί tfj" (cf. Lemma 1.5). Put /n = M+C/^-v» and pπ =

ίl/^ + M!, ί/ωn + M2X w = l, 2,... . As above, each pn is a potential and
pn t p. Since

we have

I / I - I Λ I =d/S+-y

and

/- fn = (u°: -u^)- (u ω- - uir) .

By Corollary 2 to Theorem 1.1, Iω(σ+-μn)-*Q9 /ω(σ~~vπ)-^0 and Iω(σp-σpn)-+

0(n->oo). Thus, Proposition 6.1 and Theorem 6.3 imply that <5|/|-|/n|(ω)-»0
and ^/_/n(ω)->0 (H->OO). Since /πe^loc(ω) and /„ is continuous, <5|/n|=<5/n

by the corollary to Lemma 4.2, Hence we conclude that <5|/( =5y on ω.
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Now the assertions forfe^E)loc(ω) are easily verified.

REMARK 7.2. The above proof shows that jfD'(ω) + &E(ώ) is also a vector
lattice for a PB-domain ω.

COROLLARY. ///, g e^£,ιoc(
ω)>

in particular, if c is a constant, then

As an application of Theorem 7.2 (or its corollary), we here prove

THEOREM 7.3. Let ω be any domain in Ω. For fe^ίoc(ω), δf=Q if
and only if f= const. q.e. on ω.

PROOF. The "if" part is trivial (cf. Theorem 4.1). We shall show the
"only if" part. Let ω' be any PC-domain such that ω' c=ω. By Proposition 7.1,
/ is |π|-square-integrable on ω'. Hence, Lemma 1.10 implies that /πe^£(ω'),
so that PQ = U{? belongs to ^£(ω')c^0(ω'). It follows from Theorem 6.3 that

δ\.Po,Pi(ω">+\ Popdπ = \ pfdπ
Jω' J ω'

for any pe^0(α/). Since <5/=0 by assumption, <5[/jp](ω')=0. Hence we have

for all pe@0(ω'). Then, Theorem 6.4 implies that f—p0=u q.e. on ω' with
u e 3fE(ωf\ i.e., f\ω' e &>E(ω'). Therefore /e^£>loc(ω). For α>0, put
/i=min(max(/, α), 0) and /ά=min(max(— /, α),Ό). By the above corollary,

we see that δfκ+ =0 and <5/α- =0 for each α>0. Since /e ̂ £,ιoc(
ω)> we see t^at

/ί and/" are equal q.e. to functions in ^loc(ω). Hence, Theorem 4.1 implies
that /+ = const, q.e. and /" = const, q.e. on ω for each α>0. This is possible
only when /== const, q.e. on ω.

7.4. Lattice structure of ̂ loc(ω)

Finally, we study the lattice structure of ^loc(ω).

THEOREM 7.4 (cf. [9, Theorem 6.4 and its corollary]). The spaces &0(ω)
and J>FE(ω)-\-00(ώ)for a PB-domain ω and ^ioc(ω)for an open set ω are vector



740 Γumi-Yuki MAEDA

lattices with respect to the max. and min. operations and

δ\f\^δf

foranyfe&loc(oj).

PROOF. Let ω be a PB-domain and /= u +/0 with u e 3?E(ώ) and/0

There is a sequence {/„} in ̂ BC(°^ sucn tnat/«~^/o Q e on ω and ll/π~-/oll/,ω~*0
(n-»oo). If μ is a measure in Jt\(ω) and S(μ) is compact in ω, then by Lemma
6.6,

ί |/o-/Jdμ ^ Il/π-/oll/,ω-/ω(μ)1/2 -> 0 (Λ-* oo) .
Jω

Hence, M being μ-integrable,

K {l/|-|«+/,|}dμ| £\ |/-(tt+Λ)|dμ
' ^ω I Jeo

- ( l/o-/Jdμ -» 0 (n-*oo).
Jω

Therefore,

(7.3) f lu-H/j^^f |/|dμ (n-,00).
Jω Jω

Put v=uVω(-u) and flrB = |w+/B|-o (n = l,2,...) Since u+fne#'E(ώ),\u +
/n| e5"£(ω) and 5|B+/n| =δu+fn by Theorem 7.2. Hence

δβn(ω) ^ 2{δ]u+fn](ώ)+δv(ω)}

= 2{δu+fn(ω)+δv(ώ)}

£4δfn(ω)+4δtt(ω)+2δv(ω).

On the other hand,

n\ g2J( (u+fnyd\π\+\ V2d\π\\
Uω Jω )

u2d\n\+2{ υ2d\π\ .
Jω

Hence, using Lemma 4.3 (or Theorem 6.3) and Theorem 5.1, we obtain

(7.4) ^n(ω) + ί g*d\π\ < 4(2βω- 1)|| fn\\lω + 6βju\\ 2

E>ω .
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Since gne#>E(ω) and \gn\£\fn\ + (υ-\u\)9 we see that gne&E(ω)
{H0J/,ω} is bounded by virtue of (7.4). Hence, we can choose a subsequence
{gnk} of {gn} converging to a g e ^0(ω) weakly in ̂ 0(

ω) as a Hubert space. By

Lemma 6.6, the linear functional /-M fdμ is continuous on &Q(CO). Therefore
Jω

\ 9nkdμ -» \ gdμ (£-> oo) .
Jω Jω

This, together with (7.3), implies that

\f\dμ =

Both I/I and g + v are quasi-continuous on ω. Therefore, applying Lemma 6.4,
we conclude that

I/I = g + v q.e. onω,

which means that \f\ejeE(ω) + @0(ω). If in particular |/| e ®Q(ω\ then ι;=0,
and hence |/|e^0(

ω) Thus, &o(ω) and 3? £(ω) + ̂ 0(ω) are vector lattices
with respect to the max. and min. operations.

Furthermore, since g»k-*g weakly in &0(ω),

H 0 l l / , ω ^ limin
fe->

Then, it follows from Theorem 6.3 that

g liminf {||ff,t||/
2.ω + ίβ(ω) + ( v*dπ\

fc-*oo ( Jω )

= lim inf I δ , tt+ , (ω) + \ (u + /?fc)
 2</π>

fe-^c» I Jω )

= lim inf jδB+ (ω) + \ (u + pk)
2dπ\ ,

fc-*oo ( Jω )

where pk=fnk Theorem 6.3 also implies that δu+pk(ώ)^δu+fo(ω)=δf(ώ) and

u + pk)
2dπ-+( (u+fo)2dπ = ( f2dπ. Therefore,

Jω Jω

that is δ\f\(ω)^δf(co). Now the last assertion of the theorem is easily verified
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(cf. the last part of the proof of Proposition 3.7).

REMARK 7.3. The above proof and Remark 7.2 show that ̂ D>
is also a vector lattice for a PB-domain ω.

REMARK 7.4. In the classical case, δ^=δf holds for every
We fail to verify it in our general situation.

COROLLARY. ///, g e ^loc(ω), then
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