Dirichlet Integrals of Functions on a Self-adjoint Harmonic Space

Fumi-Yuki MAEDA (Received May 20, 1974)

Introduction

In the previous papers [9], the author introduced a notion of energy for functions on a self-adjoint harmonic space. Our model there was the harmonic space formed by solutions of the self-adjoint second order partial differential equation $\Delta u = Pu$ with $P \ge 0$ on a Euclidean domain Ω . The energy of a function f with respect to this harmonic space is given by

(1)
$$E[f] = D[f] + \int_{\Omega} f^2 P dx,$$

where D[f] denotes the ordinary Dirichlet integral of f over Ω .

For an abstract harmonic space (Ω, \mathfrak{H}) , its self-adjointness was defined as the property that it admits a symmetric Green function G(x, y), provided that there is a positive potential on Ω . The condition $P \ge 0$ in the above model was interpreted as the condition that the constant function 1 is superharmonic. On a self-adjoint harmonic space satisfying this condition, we defined the notion of energy of a function f in terms of potential representation of f with respect to the kernel G(x, y), in such a way that it coincides with E[f] in the special case of the above model.

The definition of energy in [9] also suggests how a value corresponding to the Dirichlet integral D[f] should be defined on such a harmonic space; but it is not clear whether the value has such good properties as the ordinary Dirichlet integral enjoys — among others, whether it is always non-negative.

On the other hand, solutions of the equation $\Delta u = Pu$ form a harmonic space even if P is not necessarily non-negative on Ω (cf., e.g., [7, Théorème 34.1] and [8, Theorem 2.1]), so that one might ask if the method developed in [9] is applicable to the harmonic space on which 1 is not superharmonic. For such a harmonic space, there may not exist positive potentials even if the boundary is large, so that one had better consider the self-adjointness locally. However, in order to make a consistent definition of Dirichlet integrals, some global consideration is also necessary (see § 1.2).

For a self-adjoint harmonic space thus defined, we shal define (in 4) the notion of *gradient measures* of certain locally bounded functions with the same idea as in the definition of energy measures in [9]; in fact the gradient measure δ_f is given as a generalization of the measure $|\operatorname{grad} f|^2 dx$ on a Euclidean domain, so that $\delta_f(A)$ (A: a Borel set) may be called the *Dirichlet integral* of f over A.

Verification of non-negativeness of energy in [9] was not an easy task. It requires more elaboration to verify that δ_f is a non-negative measure. For functions of potential type, we make a certain estimate (Theorem 1.2), which is a consequence of the energy-principle for Green functions (cf. § 1.3; also cf. [10]). To deal with gradient measures of harmonic functions, we consider (in § 3) a perturbation of the given harmonic space. Perturbations of harmonic spaces were first considered by B. Walsh [12] for a different purpose. What we need is a perturbed harmonic space for which 1 is harmonic; in the model mentioned above, the perturbed space should correspond to the harmonic space of solutions of $\Delta u=0$. With these extra considerations, the non-negativeness of δ_f can be shown by the method developed in [9].

For the equation $\Delta u = Pu$ with $P \ge 0$, M. Nakai [11] studied the space of all Dirichlet-finite solutions (also cf. M. Glasner and M. Nakai [6]) and showed that it is a vector lattice as well as a Hilbert space with respect to the Dirichlet norm. In our axiomatic setting, we can prove Nakai's results in case 1 is super-harmonic (§ 5); but we fail to verify these properties in the general case.

As we did in [9] for energy, we shall extend the definition of gradient measures to more general functions by functional completion (§ 6); the resulting class of functions is the space of Dirichlet functions. Also, along the same lines as in [9], we shall study the lattice structures of this space and the space of locally Dirichlet-finite functions (§ 7).

§1. Self-adjoint harmonic space

1.1. Brelot's harmonic space and P-domains

As a base space, we take a connected, locally compact Hausdorff space Ω with a countable base. On Ω , we consider a structure $\mathfrak{H} = {\mathscr{H}(\omega)}_{\omega:open}$ of harmonic space satisfying Axioms 1, 2 and 3 of M. Brelot [3]. As usual, a function in $\mathscr{H}(\omega)$ will be called harmonic on ω . For notions of regular domains (regular open sets), superharmonic functions and potentials, one may refer to [3] (also, [1], [5]). The harmonic measure of a regular domain ω at $x \in \omega$ will be denoted by μ_x^{ω} . For a superharmonic function s on an open set ω in Ω , its harmonic support will be denoted by $S_h(s)$ in this paper; that is,

$$S_h(s) = \omega - \bigcup \{ \omega'; \text{ open, } s | \omega' \in \mathscr{H}(\omega') \}.$$

Given a domain ω_0 in Ω , the restriction of \mathfrak{H} to ω_0 will be denoted by \mathfrak{H}_{ω_0} . $(\omega_0, \mathfrak{H}_{\omega_0})$ is again a harmonic space satisfying Brelot's Axioms $1 \sim 3$. If f is a positive continuous function on ω_0 , then

$$\mathfrak{H}_{\omega_0}/f = \{(\mathscr{H}/f)(\omega)\}_{\omega:\,\mathsf{open}\subset\omega_0}$$

defines a harmonic structure on ω_0 , where

$$(\mathscr{H}/f)(\omega) = \{u/f; u \in \mathscr{H}(\omega)\}.$$

This structure also satisfies Brelot's Axioms $1 \sim 3$ (cf. [3, Part IV, p. 68]). If, in particular, f is harmonic (resp. superharmonic) on ω_0 , then the constant function 1 is harmonic (resp. superharmonic) on ω_0 with respect to $\mathfrak{H}_{\omega_0}/f$.

A domain ω in Ω is called a *P*-domain if it is non-compact and there is a positive potential on ω . The following properties are known in a general theory:

(P₁) Any subdomain of a P-domain is a P-domain (cf. [5, Corollary 2.3.3]).

(P₂) Ω has a covering by P-domains, namely, every $x \in \Omega$ is contained in a P-domain ([5, Theorem 2.3.3]).

(P₃) If ω is a P-domain, then there is a continuous positive potential on ω (cf. [3, Part IV, Proposition 11] or [5, Proposition 2.3.1]).

Furthermore, we have ([1, Satz 2.5.8] or [5, Corollary 2.3.1])

LEMMA 1.1. Let ω be a P-domain and p be a positive potential on ω . Then there is an increasing sequence $\{p_n\}$ of positive potentials on ω such that each p_n is continuous, each $S_h(p_n)$ is compact in ω and $\lim_{n\to\infty} p_n = p$ on ω .

1.2. Self-adjoint harmonic space

We shall assume

Axiom 4. On any P-domain ω , the condition of proportionality is satisfied, i.e., for each $y \in \omega$, if p_1, p_2 are two positive potentials on ω with $S_h(p_1) = S_h(p_2) = \{y\}$, then $p_1 = \alpha p_2$ for some constant $\alpha > 0$.

REMARK 1.1. The above axiom is equivalent to the following

Axiom 4'. There is a covering $\{\omega_i\}_{i \in I}$ of Ω by P-domains on each of which the condition of proportionality is satisfied.

The equivalence of these two axioms can be seen by using [7, Théorème 16.4 and its remark].

A harmonic space (Ω, \mathfrak{H}) satisfying Axioms $1 \sim 4$ is called *self-adjoint* if to each P-domain ω there corresponds a function $G_{\omega}(x, y): \omega \times \omega \rightarrow (0, +\infty]$ having the following properties:

- (a) $G_{\omega}(x, y) = G_{\omega}(y, x)$ for all $x, y \in \omega$;
- (b) for each $y \in \omega$, $G_{\omega}(\cdot, y)$ is a potential on ω and $S_h(G_{\omega}(\cdot, y)) = \{y\}$;
- (c) if ω' is a subdomain of ω and $y \in \omega'$, then there is $u_y \in \mathscr{H}(\omega')$ such that

Fumi-Yuki MAEDA

$$G_{\omega}(x, y) = G_{\omega'}(x, y) + u_{y}(x)$$

for all $x \in \omega'$.

For a P-domain ω , a function $G_{\omega}: \omega \times \omega \to (0, +\infty]$ satisfying (a) and (b) above is called a *Green function for* ω (or, more precisely, for $(\omega, \mathfrak{H}_{\omega})$). Such a function, if exists, is positive and lower semicontinuous on $\omega \times \omega$ ([7, Proposition 18.1]). By Axiom 4, we can easily see that the system of Green functions $\{G_{\omega}(x, y)\}_{\omega: P-domain}$ satisfying (c) is uniquely determined up to a multiplicative constant independent of ω .

REMARK 1.2. If there is an exhaustion $\{\omega_n\}_{n=1}^{\infty}$ of Ω such that each ω_n is a P-domain with a Green function, then we can show that (Ω, \mathfrak{H}) is self-adjoint. In particular, if Ω itself is a P-domain and has a Green function, then (Ω, \mathfrak{H}) is self-adjoint (cf. [9, § 1.2; in particular, Proposition 1.2]).

REMARK 1.3. If, for every $x \in \Omega$, there is a P-domain containing x and possessing a Green function, then we may say that (Ω, \mathfrak{H}) is locally self-adjoint. Obviously, a self-adjoint harmonic space is locally self-adjoint. We can show by examples that the converse is not true.

In the sequel, we shall always assume that (Ω, \mathfrak{H}) is a self-adjoint harmonic space and a system of Green functions $\{G_{\omega}(x, y)\}_{\omega: P-domain}$ satisfying (c) is fixed.

1.3. Energy principle

Let ω be a P-domain. For a non-negative measure μ on ω , we denote by U^{μ}_{ω} its potential with respect to the kernel G_{ω} , i.e.,

$$U^{\mu}_{\omega}(x) = \int_{\omega} G_{\omega}(x, y) d\mu(y) \, .$$

By a general theory of R.-M. Hervé [7, Théorèmes 18.2 and 18.3], we know that U^{μ}_{ω} is a potential on ω unless it is constantly infinite, and that any potential on ω is expressed as U^{μ}_{ω} by a uniquely determined measure μ . Let $I_{\omega}(\mu)$ be the G_{ω} -energy of μ , i.e., $I_{\omega}(\mu) = \int_{\omega} U^{\mu}_{\omega}(x) d\mu(x)$. We consider the following classes of measures:

 $\mathscr{M}_{E}^{+}(\omega) = \{\mu; \text{ non-negative measure on } \omega \text{ such that } I_{\omega}(\mu) < +\infty\},\$

 $\mathcal{M}_{E}(\omega) = \{\sigma; \text{ signed measure on } \omega \text{ such that } |\sigma| \in \mathcal{M}_{E}^{+}(\omega)\},\$

$$\mathscr{M}_{B}^{+}(\omega) = \left\{ \mu; \begin{array}{l} \text{non-negative measure on } \omega \text{ such that} \\ \mu(\omega) < +\infty \text{ and } U_{\omega}^{\mu} \text{ is bounded on } \omega \right\},\$$

 $\mathscr{M}_{B}(\omega) = \{\sigma; \text{ signed measure on } \omega \text{ such that } |\sigma| \in \mathscr{M}_{B}^{+}(\omega)\}.$

Obviously, $\mathscr{M}_{B}^{+}(\omega) \subset \mathscr{M}_{E}^{+}(\omega)$ and $\mathscr{M}_{B}(\omega) \subset \mathscr{M}_{E}(\omega)$. For $\sigma \in \mathscr{M}_{E}(\omega)$, we denote its G_{ω} -energy by $I_{\omega}(\sigma)$, i.e., $I_{\omega}(\sigma) = I_{\omega}(\sigma^{+}) + I_{\omega}(\sigma^{-}) - 2 \int U_{\omega}^{\sigma^{+}} d\sigma^{-}$.

THEOREM 1.1. The Green function $G_{\omega}(x, y)$ for a P-domain ω satisfies the energy principle, i.e., it is of positive type:

$$2\int_{\omega} U^{\mu}_{\omega} dv \leq I_{\omega}(\mu) + I_{\omega}(v) \quad \text{for all} \quad \mu, v \in \mathcal{M}^{+}_{E}(\omega),$$

and the equality holds only when $\mu = v$.

PROOF. Consider a positive continuous potential p_0 on ω (cf. (P₃)) and let

$$G_{\omega,p_0}(x, y) \equiv \frac{G_{\omega}(x, y)}{p_0(x)p_0(y)}$$

for x, $y \in \omega$. It is a Green function for $(\omega, \mathfrak{H}_{\omega}/p_0)$. Since 1 is superharmonic with respect to $\mathfrak{H}_{\omega}/p_0$, $G_{\omega,p_0}(x, y)$ satisfies the energy principle by [10, Theorems 1 and 2]. Noting that $\mu \in \mathscr{M}_E^+(\omega)$ if and only if $p_0\mu$ (the measure defined by $d(p_0\mu) = p_0d\mu$) has finite G_{ω,p_0} -energy, we obtain the theorem.

COROLLARY 1. On any P-domain ω , the domination principle holds; in particular, Axiom D of Brelot [3] is fulfilled. Also the continuity principle holds on ω .

For a proof, cf. [9, Theorem 4. 1].

COROLLARY 2. If μ_n , $\mu \in \mathscr{M}_E^+(\omega)$ (n=1,2,...) for a P-domain ω and if $U_{\omega}^{\mu_n} \uparrow U_{\omega}^{\mu}$, then $I_{\omega}(\mu_n - \mu) \to 0$ $(n \to \infty)$.

1.4. Consequences of the domination principle

A set $e \subset \Omega$ is said to be *polar* if there is a covering $\{\omega_i\}_{i \in I}$ of Ω by Pdomains such that for each $i \in I$ we find a positive superharmonic function s_i on ω_i with the property that $s_i(x) = +\infty$ for all $x \in e \cap \omega_i$. Using [7, Théorème 13.1], we can easily show that if e is polar then for any P-domain ω there is a positive potential p on ω such that $p(x) = +\infty$ for all $x \in e \cap \omega$. Let

$$\mathcal{N} = \{ e \subset \Omega; e: \text{polar} \}.$$

We know: if $e \in \mathcal{N}$ and $e' \subset e$, then $e' \in \mathcal{N}$; if $e_n \in \mathcal{N}$, n = 1, 2, ..., then $\bigcup_{n=1}^{\infty} e_n \in \mathcal{N}$. As usual, "q.e." (quasi-everywhere) will mean "except on a set $e \in \mathcal{N}$ ". Lemma 5.1 and its Corollary 1 in [9] are still valid in the present case. Thus, by considering $\mathfrak{H}_{\omega}/s_0$ for a positive continuous superharmonic function s_0 on ω and applying [9, Corollary 2 to Lemma 5.1], we have (cf. Corollary 1 to Theorem 1.1 above)

LEMMA 1.2. Let ω be a P-domain and p be a potential on ω which is locally bounded on $S_h(p)$. If s is a non-negative superharmonic function on ω such that $s \ge p$ q.e. on $S_h(p)$, then $s \ge p$ on ω .

From this lemma, the next lemma follows in the same manner as [4, Hilfs-satz 5.1]:

LEMMA 1.3. If e is a polar set in Ω and ω is a P-domain, then $\mu(\omega \cap e) = 0$ for any $\mu \in \mathscr{M}_{E}^{+}(\omega)$.

If σ is a signed measure on a P-domain ω such that $U_{\omega}^{|\sigma|}$ is a potential, then $U_{\omega}^{\sigma^+} - U_{\omega}^{\sigma^-}$ is defined q.e. on ω . This function will again be denoted by U_{ω}^{σ} . By the above lemma, it is μ -measurable for any $\mu \in \mathscr{M}_{E}^{+}(\omega)$. It also follows that U_{ω}^{σ} is μ -measurable for any non-negative measure μ on ω for which U_{ω}^{μ} is locally bounded.

LEMMA 1.4. Let ω be a P-domain on which there is a bounded positive superharmonic function. If p is a potential on ω such that $S_h(p)$ is compact in ω and p is bounded on $S_h(p)$, then it is bounded on ω .

PROOF. Let s_0 be a bounded positive superharmonic function on ω . Since $\inf_{S_h(p)} s_0 > 0$, there is a constant $\alpha > 0$ such that $\alpha s_0 \ge p$ on $S_h(p)$. Hence, by Lemma 1.2, $p \le \alpha s_0$ on ω .

LEMMA 1.5 (cf. [9, Lemma 4.5 and its corollary]). Let ω be a P-domain and σ be a signed measure on ω such that $U_{\omega}^{|\sigma|}$ is a potential. Then, there are sequences $\{\mu_n\}$ and $\{\nu_n\}$ in $\mathscr{M}_E^+(\omega)$ such that their supports $S(\mu_n), S(\nu_n)$ are compact in $\omega, U_{\omega}^{\mu_n}, U_{\omega}^{\nu_n}$ are continuous on ω and $U_{\omega}^{\mu_n} \uparrow U_{\omega}^{\sigma^+}, U_{\omega}^{\nu_n} \uparrow U_{\omega}^{\sigma^-}, U_{\omega}^{\sigma_n} \rightarrow U_{\omega}^{\sigma}$ q.e. on ω , where $\sigma_n = \mu_n - \nu_n$. If, furthermore, $\sigma \in \mathscr{M}_E(\omega)$, then $I_{\omega}(\sigma_n - \sigma) \rightarrow 0$; if there is a bounded positive superharmonic function on ω , then $\sigma_n \in \mathscr{M}_B(\omega)$ for each n.

PROOF. The first half is a consequence of Lemma 1.1 and Hervé's results. The second half follows from Corollary 2 to Theorem 1.1 and Lemma 1.4.

LEMMA 1.6. Let ω be a P-domain on which there is a bounded positive superharmonic function. If μ is a non-negative measure on ω such that $\mu(\omega) < +\infty$, then U^{μ}_{ω} is a potential.

The proof of this lemma may be carried out as in the classical theory by making use of [7, Lemma 3.1] and the above Lemma 1.4 (cf. [9, Lemmas 1.2 and 1.5]).

LEMMA 1.7. Let ω be a P-domain, e be a subset of ω and s be a non-negative superharmonic function on ω . Then the reduced function

 $R_s^{e,\omega} = \inf \{v; \text{ superharmonic } \ge 0 \text{ on } \omega, v \ge s \text{ on } e \}$

and its regularization $\hat{R}_{s}^{e,\omega}$ have the following properties:

(a) $\hat{R}_{s}^{e,\omega} = R_{s}^{e,\omega} q.e.$ on ω ; everywhere on ω if e is open;

(b) $\hat{R}_{s}^{e,\omega}$ is non-negative superharmonic on ω ; it is a potential on ω if either e is relatively compact in ω or s is a potential on ω ;

(c) $R_s^{e,\omega} = s$ on e (and hence $\hat{R}_s^{e,\omega} = s$ q.e. on e);

(d) $R_s^{e,\omega} = \hat{R}_s^{e,\omega}$ on $\omega - \bar{e}$ and is harmonic there, i.e., $S_h(\hat{R}_s^{e,\omega}) \subset \bar{e}$ (\bar{e} denotes the closure of e in Ω).

For proofs, see [3, Part IV (§13, §15-a, Proposition 10, p. 124 and Proposition 23)].

1.5. Inequalities

In this paragraph, we shall establish the following useful inequality:

THEOREM 1.2. Let ω be a P-domain and μ be a non-negative measure on ω such that U^{μ}_{ω} is bounded on ω . Then

$$\int_{\omega} (U_{\omega}^{\sigma})^2 d\mu \leq (\sup_{\omega} U_{\omega}^{\mu}) I_{\omega}(\sigma)$$

for all $\sigma \in \mathcal{M}_{E}(\omega)$.

To prove this theorem we prepare two lemmas, the first of which is quite elementary and is used to prove the second lemma.

LEMMA 1.8. Let S be an abstract set, Φ be a non-negative real-valued function on S and A be a mapping of S into itself. If Φ is bounded on A(S) and satisfies

(1.1)
$$\Phi(Ax)^2 \leq \Phi(x)\Phi(A^2x)$$

for all $x \in S$, then

(1.2)
$$\Phi(Ax) \leq \Phi(x)$$

for all $x \in S$.

PROOF. Suppose (1.2) is not true for some $x_0 \in S$, i.e., $\Phi(x_0) < \Phi(Ax_0)$. By (1.1) and induction, we see that $\Phi(A^n x_0) > 0$ for all n = 1, 2, ... Let $k = \Phi(Ax_0)/\Phi(x_0)$. Again by (1.1), Fumi-Yuki MAEDA

$$\frac{\Phi(A^n x_0)}{\Phi(A^{n-1} x_0)} \ge \frac{\Phi(A^{n-1} x_0)}{\Phi(A^{n-2} x_0)} \ge \dots \ge \frac{\Phi(A x_0)}{\Phi(x_0)} = k$$

Hence $\Phi(A^n x_0) \ge k^n \Phi(x_0)$, n = 1, 2, ... Since k > 1, this contradicts the assumption that Φ is bounded on A(S).

LEMMA 1.9. Let ω be a P-domain and μ be a non-negative measure such that $U^{\mu}_{\omega} \leq 1$. Then

$$I_{\omega}(U^{\sigma}_{\omega}\mu) \leq I_{\omega}(\sigma)$$

for any $\sigma \in \mathscr{M}_{E}(\omega)$ such that $U_{\omega}^{|\sigma|}$ is bounded and μ -integrable.

PROOF. For simplicity, we omit the subscript ω in U_{ω}^{*} , $I_{\omega}(\cdot)$ and \int_{ω}^{∞} . Let

$$S = \{ \sigma \in \mathscr{M}_{E}(\omega); |U^{\sigma}| \leq 1, \int |U^{\sigma}| d\mu \leq 1 \}$$

and

$$\Phi(\sigma) = I(\sigma), \quad A\sigma = U^{\sigma}\mu \quad \text{for} \quad \sigma \in S.$$

Then, for $\sigma \in S$, we have

$$\begin{aligned} |U^{A\sigma}| &\leq U^{|U^{\sigma}|\mu} \leq U^{\mu} \leq 1, \\ \int |U^{A\sigma}| d\mu \leq \int U^{|U^{\sigma}|\mu} d\mu = \int U^{\mu} |U^{\sigma}| d\mu \leq \int |U^{\sigma}| d\mu \leq 1 \end{aligned}$$

and

$$I(|A\sigma|) = \int U^{|A\sigma|} d|A\sigma| = \int U^{|U^{\sigma}|\mu|} |U^{\sigma}| d\mu \leq \int U^{\mu} |U^{\sigma}| d\mu \leq 1.$$

Hence A is a mapping of S into itself and $\Phi(A\sigma) \leq I(|A\sigma|) \leq 1$, i.e., Φ is bounded on A(S). Furthermore,

$$\Phi(A\sigma) = I(A\sigma) = \int U^{A\sigma} U^{\sigma} d\mu = \int U^{A^2\sigma} d\sigma \leq I(A^2\sigma)^{1/2} I(\sigma)^{1/2},$$

where the last inequality follows from the energy principle. Thus, (1.1) in the above lemma is satisfied, and hence

$$I(U^{\sigma}\mu) \leq I(\sigma)$$

for all $\sigma \in S$. If $\sigma \in \mathscr{M}_{E}(\omega)$ and $U^{|\sigma|}$ is bounded, μ -integrable, then, for some $\alpha > 0, \alpha \sigma \in S$. Hence

Dirichlet Integrals of Functions on a Self-adjoint Harmonic Space

$$I(U^{\sigma}\mu) = \frac{1}{\alpha^2} I(U^{\alpha\sigma}\mu) \leq \frac{1}{\alpha^2} I(\alpha\sigma) = I(\sigma) \,.$$

PROOF OF THEOREM 1.1. If $\mu = 0$, then the theorem is trivial. Thus, assume $\mu \neq 0$. Then $\beta \equiv \sup_{\omega} U_{\omega}^{\mu} > 0$. Since $U_{\omega}^{\mu/\beta} \leq 1$, the above lemma implies that

$$I_{\omega}(U_{\omega}^{\sigma}\mu) \leq \beta^2 I_{\omega}(\sigma)$$

for any $\sigma \in \mathscr{M}_{E}(\omega)$ such that $U_{\omega}^{|\sigma|}$ is bounded and μ -integrable. Hence, for such σ we have by the energy principle

(1.3)
$$\int_{\omega} (U_{\omega}^{\sigma})^2 d\mu \leq I_{\omega}(\sigma)^{1/2} I_{\omega} (U_{\omega}^{\sigma}\mu)^{1/2} \leq \beta I_{\omega}(\sigma).$$

Next, let $\sigma \in \mathscr{M}_{E}(\omega)$ be arbitrary. We choose a sequence $\{\sigma_{n}\}$ in $\mathscr{M}_{E}(\omega)$ as described in Lemma 1.5. Since there is a bounded positive superharmonic function $U^{\mu}_{\omega}, \sigma_{n} \in \mathscr{M}_{B}(\omega)$. Furthermore, since $S(\sigma_{n})$ is compact, $\int_{\omega} U^{|\sigma_{n}|}_{\omega} d\mu = \int_{\omega} U^{\mu}_{\omega} d|\sigma_{n}| < +\infty$, i.e., $U^{|\sigma_{n}|}_{\omega}$ is μ -integrable for each n. Therefore, (1.3) holds for $\sigma = \sigma_{n}$ and $|\sigma_{n}|$, so that

$$\int_{\omega} (U_{\omega}^{|\sigma_{n}|})^{2} d\mu \leq \beta I_{\omega}(|\sigma_{n}|) \leq \beta I_{\omega}(|\sigma|) < +\infty,$$

and hence

$$\int_{\omega} (U_{\omega}^{|\sigma|})^2 d\mu < +\infty \,.$$

Since $|U_{\omega}^{\sigma_n}| \leq U_{\omega}^{|\sigma|}$, Lebesgue's convergence theorem implies $\int_{\omega} (U_{\omega}^{\sigma_n})^2 d\mu \rightarrow \int_{\omega} (U_{\omega}^{\sigma_n})^2 d\mu \ (n \rightarrow \infty)$. On the other hand $I_{\omega}(\sigma_n) \rightarrow I_{\omega}(\sigma)$. Hence (1.3) holds for the given σ .

The next lemma, which is a consequence of the above theorem, will be used later (in \S 7).

LEMMA 1.10. Let ω be a P-domain and μ be a non-negative measure on ω such that U^{μ}_{ω} is bounded. Then, for any μ -square-integrable function f, $f\mu \in \mathscr{M}_{E}(\omega)$; in fact

$$I_{\omega}(f\mu) \leq (\sup_{\omega} U^{\mu}_{\omega}) \int_{\omega} f^2 d\mu$$
.

PROOF. Since $I_{\omega}(f\mu) \leq I_{\omega}(|f|\mu)$, we may assume $f \geq 0$. Let $\{\omega_n\}$ be an exhaustion of ω and let $f_n = \min(f, n)$ on $\omega_n, f_n = 0$ on $\omega - \omega_n$. Then $U_{\omega}^{f_n\mu}$ is bounded and $S(f_n\mu) \subset \overline{\omega}_n$. Therefore, $f_n\mu \in \mathcal{M}_E^+(\omega)$ and

Fumi-Yuki MAEDA

$$I_{\omega}(f_n\mu) = \int_{\omega} U^{f_n\mu}_{\omega} f_n d\mu \leq \left\{ \int_{\omega} (U^{f_n\mu}_{\omega})^2 d\mu \right\}^{1/2} \left\{ \int_{\omega} f^2 d\mu \right\}^{1/2}.$$

By the above theorem,

$$\int_{\omega} (U^{f_n\mu}_{\omega})^2 d\mu \leq \beta I_{\omega}(f_n\mu),$$

where $\beta = \sup_{\omega} U_{\omega}^{\mu}$. Hence

$$I_{\omega}(f_{n}\mu) \leq \beta \int_{\omega} f^{2} d\mu.$$

Letting $n \rightarrow \infty$, we obtain the required inequality.

§ 2. Preliminary theory on locally bounded functions

2.1. The space $\mathscr{B}_{loc}(\omega)$ and Axiom 5

A domain ω will be called a *PC-domain* if it is relatively compact and there is a P-domain ω^* such that $\overline{\omega} \subset \omega^*$. By (P₁) in §1, a PC-domain is a P-domain. By (P₂), we also see that PC-domains form a base of open sets in Ω .

We consider the following space of locally bounded functions on an open set ω (cf. [9, § 6.1]):

 $\mathscr{B}_{1oc}(\omega) = \left\{ f; & \text{for any PC-domain } \omega' \text{ such that } \overline{\omega}' \subset \omega, \text{ there} \\ f; & \text{are two non-negative bounded superhamonic} \\ & \text{functions } s_1 \text{ and } s_2 \text{ such that } f|\omega' = s_1 - s_2 \end{array} \right\} .$

For each $f \in \mathscr{Q}_{loc}(\omega)$, there is a unique signed measure σ_f on ω which has the following property: for any PC-domain ω' such that $\overline{\omega}' \subset \omega$, $U_{\omega'}^{|\sigma_f|}$ is bounded on ω' and

$$f|\omega' = u + U_{\omega'}^{\sigma f}$$

with $u \in \mathscr{H}(\omega')$. We call σ_f the associated measure of f.

In this paper, we do not require that the constant function 1 is superharmonic; but we assume

Axiom 5. The constant function 1 belongs to $\mathscr{B}_{loc}(\Omega)$ and $U_{\omega}^{|\pi|}$ is continuous for any PC-domain ω , where π is the associated measure of 1 (i.e., $\pi \equiv \sigma_1$).

REMARK 2.1. If 1 is superharmonic, then Axiom 5 is trivially satisfied. This case, in which $\pi \ge 0$, was treated in [9].

REMARK 2.2. The above Axiom 5 is equivalent to the following

Axiom 5'. There is a covering $\{\omega_{\iota}\}_{\iota \in I}$ of Ω by domains on each of which there are two non-negative continuous superharmonic functions $s_{\iota}^{(1)}$ and $s_{\iota}^{(2)}$ such that $1 = s_{\iota}^{(1)} - s_{\iota}^{(2)}$ on ω_{ι} .

2.2. PB-domains

A P-domain ω will be called a *PB-domain* if $U_{\omega}^{|\pi|}$ is bounded on ω . It is easy to see that a PC-domain is a PB-domain. Note that if 1 is superharmonic, then any P-domain is a PB-domain.

LEMMA 2.1. If ω is a PB-domain, then $U_{\omega}^{\pi^+}$, $U_{\omega}^{\pi^-}$, and hence U_{ω}^{π} , are bounded continuous on ω and

$$1 = u_{\omega} + U_{\omega}^{\pi}$$

with a bounded non-negative harmonic function u_{ω} on ω .

PROOF. It is easy to see by Axiom 5 that $U_{\omega}^{|\pi|}$ is continuous. Since $0 \leq U_{\omega}^{\pi^+} + U_{\omega}^{\pi^-} = U_{\omega}^{|\pi|}$ and $U_{\omega}^{|\pi|}$ is bounded, we see that $U_{\omega}^{\pi^+}, U_{\omega}^{\pi^-}$ are bounded continuous. Then $u_{\omega} = 1 - U_{\omega}^{\pi}$ is bounded harmonic on ω and $u_{\omega} \geq -U_{\omega}^{\pi^+}$ implies that $u_{\omega} \geq 0$ on ω .

By this lemma, for a PB-domain ω , $s_{\omega} \equiv 1 + U_{\omega}^{\pi^{-}} = u_{\omega} + U_{\omega}^{\pi^{+}}$ is bounded superharmonic on ω . Obviously, $s_{\omega} \ge 1$. Let

(2.1)
$$\beta_{\omega} = \sup_{\omega} s_{\omega} \ (\geq 1)$$

for any PB-domain ω . Then $U_{\omega}^{\pi^+} \leq \beta_{\omega}$, $U_{\omega}^{\pi^-} \leq \beta_{\omega} - 1$, $U_{\omega}^{|\pi|} \leq 2\beta_{\omega} - 1$ and $|U_{\omega}^{\pi}| \leq \beta_{\omega}$.

Using the functions s_{ω} for PC-domains ω , we see easily that $\mathscr{H}(\omega_0) \subset \mathscr{G}_{loc}(\omega_0)$ for any open set ω_0 .

LEMMA 2.2. If ω is a PB-domain, then for any potential p on ω ,

(2.2)
$$\sup_{\omega} p \leq \beta_{\omega} \sup_{S_{1}(p)} p.$$

PROOF. Let $M \equiv \sup_{S_h(p)} p$. If $M = +\infty$, then (2.2) is trivial. Suppose $M < +\infty$. Then $Ms_{\omega} \ge p$ on $S_h(p)$. Hence, by Lemma 1.2, we see that $Ms_{\omega} \ge p$ on ω , and hence (2.2).

LEMMA 2.3. Let ω be a PB-domain and μ , ν be two non-negative measures on ω . If $U^{\mu}_{\omega} \leq U^{\nu}_{\omega}$ on ω , then $\mu(\omega) \leq \beta_{\omega} \nu(\omega)$.

PROOF.
$$\hat{G}_{\omega}(x, y) = \frac{G_{\omega}(x, y)}{s_{\omega}(x)s_{\omega}(y)}$$

is a Green function for $(\omega, \mathfrak{H}_{\omega}/s_{\omega})$. For any non-negative measure μ on ω ,

$$U^{\mu}_{\omega}(x) = s_{\omega}(x) \int_{\omega} \widehat{G}_{\omega}(x, y) s_{\omega}(y) d\mu(y) \, .$$

Hence, $U^{\mu}_{\omega} \leq U^{\nu}_{\omega}$ implies $\int_{\omega} \hat{G}_{\omega}(x, y) s_{\omega}(y) d\mu(y) \leq \int_{\omega} \hat{G}_{\omega}(x, y) s_{\omega}(y) d\nu(y)$. Applying [9, Lemma 1.10] with respect to the structure $\mathfrak{H}_{\omega}/s_{\omega}$, we see that $\int_{\omega} s_{\omega} d\mu \leq \int_{\omega} s_{\omega} d\nu$. Therefore,

$$\mu(\omega) \leq \int_{\omega} s_{\omega} d\mu \leq \int_{\omega} s_{\omega} d\nu \leq \beta_{\omega} v(\omega).$$

LEMMA 2.4. Let ω be a PB-domain and ω' be a relatively compact open set such that $\overline{\omega}' \subset \omega$. Then, there is a signed measure $\lambda \equiv \lambda(\omega'; \omega)$ which has the following properties:

- (a) $U_{\omega}^{\lambda} = 0$ on ω' and $U_{\omega}^{\lambda} \ge 0$ on ω ;
- (b) $S(\lambda) \subset \overline{\omega}'$;
- (c) $U_{\omega}^{\lambda^{-}} \leq \beta_{\omega} 1$ and $U_{\omega}^{\lambda^{+}} \leq \beta_{\omega}$ on ω .

PROOF. Let $v_1 = u_{\omega} + U_{\omega}^{\pi^+}$ and $v_2 = U_{\omega}^{\pi^-}$ ($=v_1 - 1$). By Lemma 1.7, $p_i \equiv R_{v_i}^{\omega',\omega}$, i=1, 2, are potentials on ω . Let λ_i , i=1, 2, be the associated measures of p_i and let $\lambda = \lambda_1 - \lambda_2$. Since $v_1 \ge v_2$, $p_1 \ge p_2$. Hence $U_{\omega}^{\lambda} \ge 0$. Then, by using Lemma 1.7 we see easily that this λ is the required measure.

2.3. Product of functions in $\mathscr{B}_{loc}(\omega)$

LEMMA 2.5. Let ω be a PB-domain and s be a bounded non-negative superharmonic function on ω . Then, for any constant α such that $\alpha \ge \sup_{\omega} s$,

$$v = 2\alpha s + \alpha^2 U_{\omega}^{\pi^-} - s^2$$

is a bounded non-negative superharmonic function on ω .

PROOF. Obviously, v is bounded. Writing

$$v = \alpha^2 (1 + U_{\omega}^{\pi^-}) - (\alpha - s)^2$$
,

we see that $v \ge 0$. Furthermore, since $\alpha - s$ is non-negative upper semicontinuous, v is lower semicontinuous. Let ω' be any regular domain such that $\overline{\omega}' \subset \omega$ and let $x \in \omega'$. Then, since $\int d\mu_x^{\omega'} = u_{\omega'}(x)$ (see Lemma 2.1), we have

$$\left(\int s \, d\mu_x^{\omega'}\right)^2 \leq \left(\int s^2 d\mu_x^{\omega'}\right) \left(\int d\mu_x^{\omega'}\right)$$

$$\leq \left(\int s^2 d\mu_x^{\omega'}\right) \{1 + U_{\omega'}^{\pi}(x)\}.$$

Hence,

$$\begin{split} \int v \, d\mu_{x}^{\omega'} &= \alpha^{2} \int U_{\omega}^{\pi^{-}} d\mu_{x}^{\omega'} + 2\alpha \int s \, d\mu_{x}^{\omega'} - \int s^{2} d\mu_{x}^{\omega'} \\ &\leq \alpha^{2} \{ U_{\omega}^{\pi^{-}}(x) - U_{\omega'}^{\pi^{-}}(x) \} + 2\alpha \int s \, d\mu_{x}^{\omega'} - \left(\int s \, d\mu_{x}^{\omega'} \right)^{2} \{ 1 + U_{\omega'}^{\pi^{-}}(x) \}^{-1} \\ &= \alpha^{2} \{ 1 + U_{\omega}^{\pi^{-}}(x) \} - \left(\alpha - \int s \, d\mu_{x}^{\omega'} \right)^{2} \\ &+ [1 - \{ 1 + U_{\omega'}^{\pi^{-}}(x) \}^{-1}] \left(\int s \, d\mu_{x}^{\omega'} \right)^{2} - \alpha^{2} U_{\omega'}^{\pi^{-}}(x) \, . \end{split}$$

Since $0 \leq \int s \, d\mu_{x}^{\omega'} \leq s(x) \leq \alpha, \, \left(\alpha - \int s \, d\mu_{x}^{\omega'} \right)^{2} \geq (\alpha - s(x))^{2}.$ Hence
 $\int v \, d\mu_{x}^{\omega'} \leq v(x) + \alpha^{2} [1 - U_{\omega'}^{\pi^{-}}(x) - \{ 1 + U_{\omega'}^{\pi^{-}}(x) \}^{-1}] \leq v(x) \, . \end{split}$

Therefore v is superharmonic on ω .

COROLLARY. If ω is a PB-domain and s is a bounded non-negative superharmonic function on ω , then there are two bounded non-negative superharmonic functions v_1 and v_2 such that $s^2 = v_1 - v_2$ on ω . Thus, $\sigma \equiv \sigma_{s^2}$ is well-defined, $s^2 = u + U_{\omega}^{\sigma}$ on ω with $u \in \mathscr{H}(\omega)$ and $U_{\omega}^{|\sigma|}$ is bounded. If, furthermore, $\sigma_s(\omega) < +\infty$ and $\pi^-(\omega) < +\infty$, then $\sigma^+(\omega) < +\infty$.

PROOF. Let $\alpha \ge \sup_{\omega} s$ and $v_1 = 2\alpha s + \alpha^2 U_{\omega}^{\pi^-}$. Then v_1 is bounded nonnegative superharmonic on ω . By the above lemma $v_2 = v_1 - s^2$ is bounded nonnegative superharmonic on ω . Furthermore, it follows that $\sigma^+ \le \sigma_{v_1} = 2\alpha\sigma_s + \alpha^2\pi^-$. Hence we also have the last assertion in the corollary.

PROPOSITION 2.1. If $f, g \in \mathscr{B}_{loc}(\omega)$, then $fg \in \mathscr{B}_{loc}(\omega)$.

PROOF. Let ω' be any PC-domain such that $\overline{\omega}' \subset \omega$. Then, by definition $f|\omega'=s_1-s_2$ with bounded non-negative superharmonic functions s_1 and s_2 on ω . Since

$$f^{2}|\omega' = 2(s_{1}^{2} + s_{2}^{2}) - (s_{1} + s_{2})^{2},$$

the above corollary implies that there are two bounded non-negative superharmonic functios v_1 and v_2 such that $f^2 | \omega' = v_1 - v_2$. Hence $f^2 \in \mathscr{B}_{loc}(\omega)$. Then, it follows that $fg = \{(f+g)^2 - f^2 - g^2\}/2$ also belongs to $\mathscr{B}_{loc}(\omega)$.

2.4. Product of bounded potentials on a PB-domain

LEMMA 2.6. Let ω be a PB-domain such that $\pi^{-}(\omega) < +\infty$. Then for any $\sigma \in \mathcal{M}_{B}(\omega)$, there is a $\sigma' \in \mathcal{M}_{B}(\omega)$ such that

$$(U^{\sigma}_{\omega})^2 = U^{\sigma'}_{\omega}$$
.

PROOF. If $\mu \in \mathscr{M}_{B}^{*}(\omega)$, then by Lemma 2.5 $(U_{\omega}^{\mu})^{2} = v_{1} - v_{2}$, where $v_{1} = 2\alpha U_{\omega}^{\mu} + \alpha^{2} U_{\omega}^{\pi^{-}} (\alpha = \sup_{\omega} U_{\omega}^{\mu})$ and v_{2} is bounded non-negative superharmonic on ω . Thus we see that v_{1} and v_{2} are potentials on ω . Let v_{1} and v_{2} be their respective associated measures. Then $v_{1} = 2\alpha\mu + \alpha^{2}\pi^{-} \in \mathscr{M}_{B}^{+}(\omega)$. Since $v_{2} \leq v_{1}, v_{2}(\omega) < +\infty$ by Lemma 2.3, and hence $v_{2} \in \mathscr{M}_{B}^{+}(\omega)$. Thus $(U_{\omega}^{\mu})^{2} = U_{\omega}^{\nu_{1}-\nu_{2}}$ and $v_{1} - v_{2} \in \mathscr{M}_{B}(\omega)$. For $\sigma \in \mathscr{M}_{B}(\omega)$, writing

$$(U_{\omega}^{\sigma})^{2} = 2\{(U_{\omega}^{\sigma^{+}})^{2} + (U_{\omega}^{\sigma^{-}})^{2}\} - (U_{\omega}^{|\sigma|})^{2}$$

and using the above result, we obtain the lemma.

REMARK 2.3. There are **PB-domains** ω for which $\pi^{-}(\omega) = +\infty$.

PROPOSITION 2.2. Let ω be a PB-domain such that $\pi^-(\omega) < +\infty$. If $p = U^{\sigma}_{\omega}$ with $\sigma \in \mathcal{M}_{B}(\omega)$, then $\sigma_{p^2} \in \mathcal{M}_{B}(\omega)$ and

$$\sigma_{p^2}(\omega) = \int_{\omega} p^2 d\pi \,.$$

PROOF. It is enough to prove the case $\sigma \in \mathscr{M}_B^+(\omega)$ (cf. the proof of the above lemma). First we note that p^2 is $|\pi|$ -integrable, since

$$\int_{\omega} p^2 d|\pi| \leq (\sup_{\omega} p) \int_{\omega} U^{\sigma}_{\omega} d|\pi| = (\sup_{\omega} p) \int_{\omega} U^{|\pi|}_{\omega} d\sigma < +\infty.$$

For $\alpha > 0$, let $f_{\alpha} = \min(p/\alpha, 1)$ on ω . Then $0 \le f_{\alpha} \le 1$ and $f_{\alpha} \uparrow 1$ as $\alpha \downarrow 0$. Let $1 = u_{\omega} + U_{\omega}^{\pi}$ and

$$g_{\alpha} = \min\left(p/\alpha + U_{\omega}^{\pi^{-}}, u_{\omega} + U_{\omega}^{\pi^{+}}\right).$$

For each α , g_{α} is a bounded potential on ω (in fact, $g_{\alpha} \leq \beta_{\omega}$) and $f_{\alpha} = g_{\alpha} - U_{\omega}^{\pi^{-}}$. Let $\mu_{\alpha} = \sigma_{g_{\alpha}}$, i.e., $g_{\alpha} = U_{\omega}^{\mu_{\alpha}}$. Since $g_{\alpha} \leq p/\alpha + U_{\omega}^{\pi^{-}}$, we see that $\mu_{\alpha} \in \mathscr{M}_{B}^{+}(\omega)$ by Lemma 2.3. The above lemma implies that $p^{2} = U_{\omega}^{\sigma'}$ with $\sigma' \equiv \sigma_{p^{2}} \in \mathscr{M}_{B}(\omega)$. Hence, by Lebesgue's convergence theorem,

$$\sigma'(\omega) = \lim_{\alpha \to 0} \int_{\omega} f_{\alpha} d\sigma' = \lim_{\alpha \to 0} \int_{\omega} (U_{\omega}^{\mu} - U_{\omega}^{\pi^{-}}) d\sigma'$$
$$= \lim_{\alpha \to 0} \int_{\omega} p^{2} d\mu_{\alpha} - \int_{\omega} p^{2} d\pi^{-}.$$

Let $\omega_{\alpha} = \{x \in \omega; p(x) > \alpha\}$. Then ω_{α} is an open set and $f_{\alpha} = 1$ on ω_{α} . It follows that $\mu_{\alpha} | \omega_{\alpha} = \pi^{+} | \omega_{\alpha}$. Hence

$$\int_{\omega} p^2 d\mu_{\alpha} = \int_{\omega_{\alpha}} p^2 d\pi^+ + \int_{\omega-\omega_{\alpha}} p^2 d\mu_{\alpha}.$$

Since $\omega_{\alpha} \uparrow \omega$ as $\alpha \downarrow 0$,

$$\lim_{\alpha\to 0}\int_{\omega_{\alpha}}p^{2}d\pi^{+}=\int_{\omega}p^{2}d\pi^{+}.$$

On the other hand,

$$0 \leq \int_{\omega - \omega_{\alpha}} p^{2} d\mu_{\alpha} \leq \alpha \int_{\omega - \omega_{\alpha}} p \, d\mu_{\alpha}$$
$$\leq \alpha \int_{\omega} U^{\mu}_{\omega} d\sigma \leq \alpha \beta_{\omega} \sigma(\omega) \to 0 \quad (\alpha \to 0).$$

Thus we obtain the required equality.

COROLLARY. Let ω be a PB-domain such that $\pi^{-}(\omega) < +\infty$. If $p_i = U_{\omega}^{\sigma_i}$ with $\sigma_i \in \mathcal{M}_B(\omega)$, i = 1, 2, then $\sigma_{p_1 p_2} \in \mathcal{M}_B(\omega)$ and

$$\sigma_{p_1p_2}(\omega) = \int_{\omega} p_1 p_2 \, d\pi$$

2.5. The space $\mathscr{H}_{BE}(\omega)$

LEMMA 2.7. If ω is a PB-domain such that $\pi^-(\omega) < +\infty$, then for any bounded $u \in \mathscr{H}(\omega), \sigma_{u^2}^+(\omega) < +\infty$.

PROOF. Let $\alpha = \sup_{\omega} |u|$ and consider the function

$$v = \alpha^2 \beta_\omega U_\omega^{\pi^-} - u^2$$

on ω . It is obviously a continuous function. Let ω' be any regular domain such that $\overline{\omega}' \subset \omega$ and let $x \in \omega'$. As in the proof of Lemma 2.5, we have

$$u^{2}(x) = \left(\int u \ d\mu_{x}^{\omega'} \right)^{2} \leq \left(\int u^{2} d\mu_{x}^{\omega'} \right) \left\{ 1 + U_{\omega'}^{\pi^{-}}(x) \right\}.$$

Since

$$\int u^2 d\mu_x^{\omega'} \leq \alpha^2 \int d\mu_x^{\omega'} \leq \alpha^2 \{1 + U_{\omega'}^{\pi^-}(x)\} \leq \alpha^2 \beta_{\omega},$$

we have

Fumi-Yuki MAEDA

$$u^{2}(x) \leq \int u^{2} d\mu_{x}^{\omega'} + \alpha^{2} \beta_{\omega} U_{\omega'}^{\pi^{-}}(x) \,.$$

Hence

$$\int v d\mu_x^{\omega'} = -\int u^2 d\mu_x^{\omega'} + \alpha^2 \beta_\omega \int U_\omega^{\pi^-} d\mu_x^{\omega'}$$

$$\leq -u^2(x) + \alpha^2 \beta_\omega U_{\omega'}^{\pi^-}(x) + \alpha^2 \beta_\omega \{ U_\omega^{\pi^-}(x) - U_{\omega'}^{\pi^-}(x) \}$$

$$= v(x) .$$

Therefore v is superharmonic, that is, $\sigma_v \ge 0$. Hence $\sigma_{u^2} \le \alpha^2 \beta_{\omega} \pi^-$, which implies $\sigma_{u^2}^+(\omega) \le \alpha^2 \beta_{\omega} \pi^-(\omega) < +\infty$.

For an open set ω , let

$$\mathscr{H}_{BE}(\omega) = \{ u \in \mathscr{H}(\omega); \text{ bounded}, \sigma_{u^2}(\omega) < +\infty \}.$$

PROPOSITION 2.3. If ω is a PB-domain such that $\pi^-(\omega) < +\infty$, then $\mathscr{H}_{BE}(\omega)$ is a linear subspace of $\mathscr{H}(\omega)$ and is a vector lattice with respect to the natural order.

PROOF. It is obvious that $u \in \mathscr{H}_{BE}(\omega)$ implies $\alpha u \in \mathscr{H}_{BE}(\omega)$ for any real α . Let $u, v \in \mathscr{H}_{BE}(\omega)$. Obviously, u + v and u - v are bounded. Since $(u + v)^2 + (u - v)^2 = 2(u^2 + v^2)$,

$$\sigma_{(u+v)^2}^- \leq 2(\sigma_{u^2}^- + \sigma_{v^2}^-) + \sigma_{(u-v)^2}^+.$$

By the above lemma, $\sigma_{(u-v)^2}^+(\omega) < +\infty$. Hence $\sigma_{(u+v)^2}^-(\omega) < +\infty$, so that $u+v \in \mathscr{H}_{BE}(\omega)$.

Next, let $u \in \mathscr{H}_{BE}(\omega)$ and $\alpha = \sup_{\omega} |u|$. -|u| is superharmonic on ω and $0 \leq |u| \leq \alpha s_{\omega} (s_{\omega} = 1 + U_{\omega}^{\pi^{-}})$. Hence the least harmonic majorant w of |u| exists and $|u| \leq w \leq \alpha s_{\omega}$. It follows that w is also bounded. For simplicity, let $\sigma = \sigma_{u^{2}}$ and $\tau = \sigma_{w^{2}}$. Since w - |u| is a potential and $0 \leq w^{2} - u^{2} \leq 2\alpha \beta_{\omega}(w - |u|)$, we see that $U_{\omega}^{\sigma} \leq U_{\omega}^{\tau}$. Therefore, $U_{\omega}^{\tau^{-}} \leq U_{\omega}^{\tau^{+}} + U_{\omega}^{\sigma^{-}}$. By assumption $\sigma^{-}(\omega) < +\infty$ and by the above lemma $\tau^{+}(\omega) < +\infty$. Hence Lemma 2.3 implies that $\tau^{-}(\omega) < +\infty$. Therefore $w \in \mathscr{H}_{BE}(\omega)$. Since $\mathscr{H}_{BE}(\omega)$ is a linear subspace as proved above, it follows that $\mathscr{H}_{BE}(\omega)$ is a vector lattice.

The next lemma will be used in the later sections.

LEMMA 2.8. If $f \in \mathscr{B}_{loc}(\omega_0)$ (ω_0 : an open set) and ω is a PC-domain such that $\overline{\omega} \subset \omega_0$, then $f | \omega - U_{\omega}^{\sigma f} \in \mathscr{H}_{BE}(\omega)$.

PROOF. First, note that $\pi^{-}(\omega) < +\infty$ if ω is a PC-domain. For simplicity, let $\sigma \equiv \sigma_f$. Let $u = f | \omega - U_{\omega}^{\sigma}$. It is a bounded harmonic function on ω . We

can choose another PC-domain ω' such that $\overline{\omega} \subset \omega'$, $\overline{\omega}' \subset \omega_0$. $u' = f | \omega' - U_{\omega'}^{\sigma}$, is also bounded harmonic on ω' . We can write

$$u = u' | \omega + (U^{\sigma}_{\omega'} | \omega - U^{\sigma}_{\omega}).$$

Since $\sigma_{(u')^2}$ is a signed measure on ω' , $\sigma_{(u')^2}^{-}(\omega) < +\infty$. Thus $u'|\omega \in \mathscr{H}_{BE}(\omega)$. Next, we consider $v = U_{\omega'}^{\sigma}|\omega - U_{\omega}^{\sigma}$. It is bounded harmonic on ω . Since $\sigma|\omega' \in \mathscr{M}_B(\omega')$, there is a $\sigma' \in \mathscr{M}_B(\omega')$ such that $(U_{\omega'}^{\sigma})^2 = U_{\omega'}^{\sigma'}$ by Lemma 2.6. Now,

$$v^{2} = U_{\omega'}^{\sigma'} | \omega - 2(U_{\omega'}^{\sigma} | \omega)U_{\omega}^{\sigma} + (U_{\omega}^{\sigma})^{2}.$$

Let $\tau = \sigma_{v^2}$. By the corollary to Lemma 2.5, we see that $v^2 = h + U_{\omega}^{\tau}$ with $h \in \mathscr{H}(\omega)$ (cf. the proof of Proposition 2.1). Since $|2(U_{\omega'}^{\sigma}|\omega)U_{\omega}^{\sigma} + (U_{\omega}^{\sigma})^2|$ is majorized by a potential on ω , it follows that

$$U^{\tau}_{\omega} = U^{\sigma'}_{\omega} - 2(U^{\sigma}_{\omega'} | \omega) U^{\sigma}_{\omega} + (U^{\sigma}_{\omega})^2.$$

Hence

$$U_{\omega}^{\tau^{-}} \leq U_{\omega}^{\tau^{+}} + U_{\omega}^{\sigma^{\prime}} + 2\alpha U_{\omega}^{|\sigma|},$$

where $\alpha = \sup_{\omega} |U_{\omega'}^{\sigma}|$. By Lemma 2.7, $\tau^{+}(\omega) < +\infty$. Obviously, $\sigma'^{-}(\omega) < +\infty$ and $|\sigma|(\omega) < +\infty$. Hence, $\tau^{-}(\omega) < +\infty$ by Lemma 2.3, so that $v \in \mathscr{H}_{BE}(\omega)$. Therefore $u \in \mathscr{H}_{BE}(\omega)$.

2.6. Product of a bounded harmonic function and a bounded potential

LEMMA 2.9. Let ω be a PB-domain. If $\sigma \in \mathscr{M}_B(\omega)$ and $u \in \mathscr{H}(\omega)$ is bounded, then there is a signed measure σ' on ω such that $U_{\omega}^{|\sigma'|}$ is bounded and $uU_{\omega}^{\sigma} = U_{\omega}^{\sigma'}$. If, in addition, $\pi^{-}(\omega) < +\infty$ and $u \in \mathscr{H}_{BE}(\omega)$, then $\sigma' \in \mathscr{M}_B(\omega)$.

PROOF. As in the proof of Proposition 2.3, the least harmonic majorant of |u| on ω exists and is bounded, and hence $u = u_1 - u_2$ with non-negative bounded harmonic functions u_1 and u_2 . Thus we may assume that $u \ge 0$ and $\sigma \in \mathscr{M}_B^+(\omega)$. Since

$$uU_{\omega}^{\sigma} = \frac{1}{2} \left\{ (u + U_{\omega}^{\sigma})^2 - u^2 - (U_{\omega}^{\sigma})^2 \right\},\,$$

it follows from the corollary to Lemma 2.5 that $uU_{\omega}^{\sigma} = h + U_{\omega}^{\sigma'}$ with a signed measure σ' on ω such that $U_{\omega}^{|\sigma'|}$ is bounded and $h \in \mathscr{H}(\omega)$. Since uU_{ω}^{σ} is dominated by a potential, h = 0, so that $uU_{\omega}^{\sigma} = U_{\omega}^{\sigma'}$.

Next, suppose $\pi^{-}(\omega) < +\infty$ and $u \in \mathscr{H}_{BE}(\omega)$. For simplicity, put $s = u + U_{\omega}^{\sigma}$ and $p = U_{\omega}^{\sigma}$. Then $\sigma' = \frac{1}{2} (\sigma_{s^{2}} - \sigma_{u^{2}} - \sigma_{p^{2}})$. Since $\sigma_{s} = \sigma$, the corollary to Lemma 2.5 implies that $\sigma_{s^2}^+(\omega) < +\infty$. By Lemma 2.6, $\sigma_{p^2} \in \mathcal{M}_B(\omega)$ and by assumption $\sigma_{u^2}^-(\omega) < +\infty$. Therefore,

$$\sigma'^{+}(\omega) \leq \frac{1}{2} \left\{ \sigma_{s^{2}}^{+}(\omega) + \sigma_{u^{2}}^{-}(\omega) + \sigma_{p^{2}}^{-}(\omega) \right\} < +\infty.$$

Since $U_{\omega}^{\sigma'} \ge 0$, $U_{\omega}^{\sigma'-} \le U_{\omega}^{\sigma'+}$. Hence, by Lemma 2.3, we also have $\sigma'^{-}(\omega) < +\infty$. Therefore $\sigma' \in \mathcal{M}_{B}(\omega)$.

The rest of this section is devoted to the proof of the following proposition (cf. $[9, \S 2.3]$):

PROPOSITION 2.4. Let ω be a PB-domain such that $\pi^{-}(\omega) < +\infty$. If $p = U_{\omega}^{\sigma}$ with $\sigma \in \mathcal{M}_{B}(\omega)$ and if $u \in \mathcal{H}_{BE}(\omega)$, then

$$\sigma_{up}(\omega) = \int_{\omega} u \, d\sigma + \int_{\omega} u p \, d\pi \, .$$

Given an open set ω in Ω , if $\overline{\omega}$ is not compact, then let ω^a be the closure of ω in the one point compactification of Ω ; otherwise, let $\omega^a \equiv \overline{\omega}$.

We fix a PB-domain ω_0 such that $\pi^-(\omega_0) < +\infty$. For $y \in \omega_0$ and $\alpha > 0$ $(\alpha < G_{\omega_0}(y, y))$, consider the open set

$$\omega_{\alpha,y} = \{x \in \omega_0; G_{\omega_0}(x, y) > \alpha\}$$

By using [2, Corollary 3 and Lemma 1], we see easily that $\omega_{\alpha,y}^a$ is a resolutive compactification of $\omega_{\alpha,y}$. Let $H_{\psi}^{\omega_{\alpha,y}}$ be the Dirichlet solution of $\omega_{\alpha,y}$ for the boundary function $\psi \in \mathbf{C}(\partial^a \omega_{\alpha,y})$, where $\partial^a \omega_{\alpha,y} = \omega_{\alpha,y}^a - \omega_{\alpha,y}$ and $\mathbf{C}(X)$ means the set of continuous functions on X. We shall denote by $\mu_{\alpha,y}$ the harmonic measure at y for the open set $\omega_{\alpha,y}$. By [2, Lemma 1], we see that $\mu_{\alpha,y}(\partial^a \omega_{\alpha,y} - \omega_0) = 0$ (cf. [9, Lemma 2.6]). We note that each component ω' of $\omega_{\alpha,y}$ is a PB-domain and $1 = H_{1}^{\omega_{\alpha,y}} + U_{\omega'}^{\pi}$ on ω' . On account of the fact that $U_{\omega_0}^{\pi+y} \leq \beta_{\omega_0}$, we obtain the following lemma in the same way as [9, Lemma 2.5]:

Lemma 2.10.
$$\pi^+(\omega_{\alpha,y}) \leq \frac{\beta_{\omega_0}}{\alpha} \quad and \quad \lim_{\alpha \to 0} \alpha \pi^+(\omega_{\alpha,y}) = 0.$$

By virtue of this lemma and our assumption that $\pi^{-}(\omega_0) < +\infty$, we see that

$$\psi \longrightarrow \int_{\omega_{\alpha,y}} H^{\omega_{\alpha,y}}_{\psi} d\pi$$

is a bounded linear functional on $\mathbb{C}(\partial^a \omega_{\alpha,y})$. Hence, there is a signed measure $v_{\alpha,y}$ on $\partial^a \omega_{\alpha,y}$ such that

$$\int_{\omega_{\alpha,y}} H^{\omega_{\alpha,y}}_{\psi} d\pi = \int \psi \, dv_{\alpha,y}$$

for all $\psi \in \mathbb{C}(\partial^a \omega_{\alpha,y})$. Since $\mu_{\alpha,y}(\partial^a \omega_{\alpha,y} - \omega_0) = 0$ and hence $v_{\alpha,y}(\partial^a \omega_{\alpha,y} - \omega_0) = 0$, we may regard $\mu_{\alpha,y}$ and $v_{\alpha,y}$ as measures on ω_0 .

LEMMA 2.11. With the notation given above, let

$$w_{\alpha,y} = \frac{1}{\alpha} U^{\mu_{\alpha,y}}_{\omega_0} - U^{\nu_{\alpha,y}}_{\omega_0} + U^{\pi|\omega_{\alpha,y}}_{\omega_0}.$$

Then $w_{\alpha,y} = 1$ on $\omega_{\alpha,y}$ and $|w_{\alpha,y}(x)| \leq 4\beta_{\omega_0} - 1$ for all $x \in \omega_0$.

PROOF. Fix α and y and let $\mu = \mu_{\alpha,y}$, $v = v_{\alpha,y}$, $\omega = \omega_{\alpha,y}$ and $w = w_{\alpha,y}$. Also, let $\beta = \beta_{\omega_0}$. We first remark that $U^{\mu}_{\omega_0}(x) \leq G_{\omega_0}(x, y)$ for all $x \in \omega_0$ and $U^{\mu}_{\omega_0}(x) = \alpha H^{\omega}_{\Omega}(x)$ for $x \in \omega$ (cf. [9, Lemma 1.4]). Hence

$$U^{\mu}_{\omega_0}(x) \leq G_{\omega_0}(x, y) \leq \alpha$$

for $x \notin \omega$ and

$$U^{\mu}_{\omega_0}(x) = \alpha H^{\omega}_1(x) \leq \alpha \{1 + U^{\pi^-}_{\omega_0}(x)\} \leq \alpha \beta$$

for $x \in \omega$. Therefore, $U^{\mu}_{\omega_0} \leq \alpha \beta$ on ω_0 .

Next, as in the proof of [9, Lemma 2.8], we have

$$U^{\nu}_{\omega_0}(x) = \int_{\omega} H^{\omega}_{\psi_x} d\pi \,,$$

where $\psi_x(\xi) = G_{\omega_0}(x,\xi)$ if $\xi \in \partial^a \omega \cap \omega_0$ and $\psi_x(\xi) = 0$ if $\xi \in \partial^a \omega - \omega_0$. Since $H^{\omega}_{\psi_x}(z) \leq G_{\omega_0}(x,z)$ for $z \in \omega$, we have

$$|U_{\omega_0}^{\nu}| \leq U_{\omega_0}^{|\pi|} \leq 2\beta - 1.$$

Also $|U_{\omega_0}^{\pi|\omega}| \leq \beta$. Thus

$$|w| \leq \beta + (2\beta - 1) + \beta = 4\beta - 1.$$

If $x \in \omega$, then let ω' be the component of ω containing x. Then, again as in the proof of [9, Lemma 2.8], we see that

$$U_{\omega_0}^{\nu}(x) = U_{\omega_0}^{\pi|\omega}(x) - U_{\omega'}^{\pi}(x).$$

Therefore,

$$w(x) = H_1^{\omega}(x) + U_{\omega'}^{\pi}(x) = 1$$
.

By virtue of this lemma, we obtain the following lemma in the same way as [9, Lemma 2.9]:

LEMMA 2.12. With the same notation as above, if σ is a signed measure on

 ω_0 such that $|\sigma|(\omega_0) < +\infty$, then

$$\sigma(\omega_0) = \lim_{\alpha \to 0} \left\{ \frac{1}{\alpha} \int_{\omega_0} U^{\sigma}_{\omega_0} d\mu_{\alpha,y} - \int_{\omega_0} U^{\sigma}_{\omega_0} dv_{\alpha,y} \right\} + \int_{\omega_0} U^{\sigma}_{\omega_0} d\pi$$

for any $y \in \omega_0$.

PROOF OF PROPOSITION 2.4 (cf. the proof of [9, Lemmas 2.10 and 2.11]). Let $\sigma' = \sigma_{up}$. By Lemma 2.9, $\sigma' \in \mathscr{M}_B(\omega)$ and $up = U_{\omega}^{\sigma'}$. It follows that up is $|\pi|$ -integrable. Let $\{\omega_n\}$ be an exhaustion of ω and consider the signed measures $\lambda_n \equiv \lambda(\omega_n; \omega)$ given in Lemma 2.4. Then $\{U_{\omega}^{\lambda_n}\}$ is uniformly bounded and $U_{\omega}^{\lambda_n} \rightarrow 1$ on ω . Therefore, by Lebesgue's convergence theorem,

$$\sigma'(\omega) = \lim_{n\to\infty} \int_{\omega} U_{\omega}^{\lambda_n} d\sigma' = \lim_{n\to\infty} \int_{\omega} u p \, d\lambda_n \, .$$

Since $\lambda_n | \omega_n = \pi | \omega_n$ and $\int_{\omega_n} up \, d\pi \rightarrow \int_{\omega} up \, d\pi$,

$$\sigma'(\omega) = \lim_{n \to \infty} \int_{\omega - \omega_n} up \ d\lambda_n + \int_{\omega} up \ d\pi \,.$$

Thus, it is enough to show that

(2.3)
$$\lim_{n\to\infty}\int_{\omega-\omega_n}up\ d\lambda_n=\int_{\omega}u\ d\sigma\ .$$

Consider any $y \in \omega$ and fix it for a while. Choose *m* such that $y \in \omega_m$. Let $\gamma = \sup_{x \in \omega - \omega_m} G_{\omega}(x, y)$ and $p_y(x) = \min(G_{\omega}(x, y), \gamma)$. As in the proof of Lemma 1.4, we see that $\gamma < +\infty$. It follows that $p_y + \gamma U_{\omega}^{\pi^-}$ is a potential whose associated measure belongs to $\mathcal{M}_B^+(\omega)$. Hence, by Lemma 2.9, $up_y = U_{\omega}^{\tau_y}$ for some $\tau_y \in \mathcal{M}_B(\omega)$. By the same argument as above, we have

(2.4)
$$\tau_{y}(\omega) = \lim_{n \to \infty} \int_{\omega - \omega_{n}} u p_{y} d\lambda_{n} + \int_{\omega} u p_{y} d\pi$$
$$= \lim_{n \to \infty} \int_{\omega - \omega_{n}} u G_{\omega}(\cdot, y) d\lambda_{n} + \int_{\omega} u p_{y} d\pi$$

On the other hand, letting $\omega_0 = \omega$ and using the notation introduced above, we obtain from Lemma 2.12 the equality

$$\tau_{y}(\omega) = \lim_{\alpha \to 0} \left\{ \frac{1}{\alpha} \int_{\omega} u p_{y} d\mu_{\alpha, y} - \int_{\omega} u p_{y} d\nu_{\alpha, y} \right\} + \int_{\omega} u p_{y} d\pi.$$

Now, if $0 < \alpha \leq \gamma$, then $p_y = \alpha$ on $\partial \omega_{\alpha,y} (= \overline{\omega}_{\alpha,y} - \omega_{\alpha,y})$. Since $S(\mu_{\alpha,y}) \subset \partial \omega_{\alpha,y}$ and $S(\nu_{\alpha,y}) \subset \partial \omega_{\alpha,y}$ when we regard $\mu_{\alpha,y}$ and $\nu_{\alpha,y}$ as measures on ω , we have

$$\frac{1}{\alpha}\int_{\omega}up_{y}\,d\mu_{\alpha,y}=\int_{\omega}u\,d\mu_{\alpha,y}=u(y)$$

and

$$\int_{\omega} u p_{y} dv_{\alpha,y} = \alpha \int_{\omega} u dv_{\alpha,y} = \alpha \int_{\omega_{\alpha,y}} u d\pi \to 0 \ (\alpha \to 0) ,$$

where the last convergence follows from Lemma 2.10. Hence

$$\tau_{\mathbf{y}}(\omega) = u(\mathbf{y}) + \int_{\omega} u p_{\mathbf{y}} d\pi,$$

so that, by (2.4), we have

$$\lim_{n\to\infty}\int_{\omega-\omega_n}uG_{\omega}(\cdot, y)d\lambda_n=u(y).$$

Since this is valid for any $y \in \omega$, integrating both sides by σ and using Lebesgue's convergence theorem as well as Fubini's theorem, we obtain (2.3).

§ 3. Perturbation theory

The theory in this section may be regarded as a special case of the perturbation theory developed by B. Walsh [12]. Since our formulation is slightly different from his, we shall give some of the details.

3.1. The operator G_{ω}

For an open set ω , let

 $\mathbf{B}(\omega)$ = the linear space of all bounded Borel measurable functions on ω , $\mathbf{C}_{b}(\omega) = \{f \in \mathbf{B}(\omega); f \text{ is continuous on } \omega\}$

and for a relatively compact open set ω , let

 $C(\overline{\omega})$ = the linear space of all continuous functions on $\overline{\omega}$,

$$\mathbf{C}_{\mathbf{0}}(\overline{\omega}) = \{f \in \mathbf{C}(\overline{\omega}); f = 0 \text{ on } \partial \omega\}.$$

The space $\mathbf{B}(\omega)$ is a Banach space with respect to the sup-norm: $||f||_{\omega} = \sup_{\omega} |f|$; $\mathbf{C}_{b}(\omega)$ is a closed subspace of $\mathbf{B}(\omega)$. In case ω is relatively compact, $\mathbf{C}(\overline{\omega})$ and $\mathbf{C}_{0}(\overline{\omega})$ can be regarded as closed subspaces of $\mathbf{B}(\omega)$ (or of $\mathbf{C}_{b}(\omega)$).

Given a PB-domain ω , we define an operator G_{ω} by

$$(G_{\omega}f)(x) = \int_{\omega} G_{\omega}(x, y) f(y) d\pi(y) \, .$$

When π is replaced by π^+ (resp. π^-), the corresponding operator is denoted by G_{ω}^+ (resp. G_{ω}^-). These are bounded linear operators of **B**(ω) into **C**_b(ω) and

their operator norms are evaluated as

$$||G_{\omega}|| \leq ||U_{\omega}^{|\pi|}||_{\omega}, ||G_{\omega}^{+}|| \leq ||U_{\omega}^{\pi^{+}}||_{\omega} \text{ and } ||G_{\omega}^{-}|| \leq ||U_{\omega}^{\pi^{-}}||_{\omega}.$$

If ω is a regular PB-domain, then these operators map $\mathbf{B}(\omega)$ into $\mathbf{C}_0(\overline{\omega})$.

LEMMA 3.1. Let ω be a PB-domain. If $f \in \mathbf{C}_b(\omega)$ and $f - G_{\omega} f \in \mathscr{H}(\omega)$, then for any regular domain ω' such that $\overline{\omega}' \subset \omega$,

$$f = H_f^{\omega'} + G_{\omega'}f \qquad on \quad \omega'.$$

PROOF. $G_{\omega}f - G_{\omega'}f$ is continuous on $\overline{\omega}'$ and harmonic on ω' . Hence $v = f - G_{\omega'}f$ is continuous on $\overline{\omega}'$ and harmonic on ω' . Since v = f on $\partial \omega'$, $v = H_{0f}^{\omega'}$.

3.2. Perturbed sheaf \mathfrak{H}^{\sim}

For each open set ω in Ω , we define

 $\mathscr{H}^{\sim}(\omega) = \left\{ \begin{array}{cc} \text{for each } x \in \omega, \text{ there is a regular} \\ v \in \mathbf{C}(\omega); & \text{PB-domain } \omega' \text{ such that } x \in \omega', \ \overline{\omega}' \subset \omega \\ \text{and } v = H_v^{\omega'} + G_{\omega'}v \quad \text{on } \omega' \end{array} \right\}.$

PROPOSITION 3.1. For each open set ω , $\mathscr{H}^{\sim}(\omega)$ is a linear subspace of $\mathbf{C}(\omega)$ and $\mathfrak{H}^{\sim} = \{\mathscr{H}^{\sim}(\omega)\}_{\omega: \text{open}}$ satisfies Axiom 1 of Brelot [3].

This proposition is easily verified by the definition of $\mathscr{H}^{\sim}(\omega)$, Lemma 3.1 and Axiom 2 for \mathfrak{H} .

PROPOSITION 3.2. $1 \in \mathscr{H}^{\sim}(\omega)$ for any open set ω .

PROOF. If ω' is a PB-domain, then $1 = H_1^{\omega'} + G_{\omega'} 1$.

PROPOSITION 3.3. Let ω be a PB-domain. If $v \in \mathscr{H}^{\sim}(\omega)$ and v is bounded, then $v - G_{\omega}v \in \mathscr{H}(\omega)$.

PROOF. Let $u = v - G_{\omega}v$. For each $x \in \omega$, there is a regular domain ω' such that $x \in \omega'$, $\overline{\omega}' \subset \omega$ and $v = H_v^{\omega'} + G_{\omega'}v$ on ω' . Hence

$$u = H_v^{\omega'} + G_{\omega'}v - G_{\omega}v \qquad \text{on} \quad \omega',$$

so that $u|\omega' \in \mathscr{H}(\omega')$. Since x is arbitrary, $u \in \mathscr{H}(\omega)$.

LEMMA 3.2 (cf. [12, p. 342]). Given $x \in \Omega$ and $\delta > 0$, there is a PB-domain ω containing x such that $\|U_{\omega}^{|\pi|}\|_{\omega} < \delta$.

PROOF. Fix $x_0 \in \Omega$ and let ω_0 be a PB-domain containing x_0 . If $|\pi||\omega_0=0$, then we may take $\omega = \omega_0$. Suppose $|\pi||\omega_0 \neq 0$. Then $p_0 \equiv U_{\omega_0}^{|\pi|}$ is positive continuous on ω_0 . Let

$$0 < \varepsilon < \min\left\{1, \frac{\delta}{3p_0(x_0)}\right\}.$$

By continuity, there is a regular neighborhood ω' of x_0 such that $\overline{\omega}' \subset \omega_0$ and $|p_0(x) - p_0(x_0)| < \varepsilon p_0(x_0)$ for all $x \in \overline{\omega}'$. Since $u \equiv H_1^{\omega'}$ is positive continuous on $\overline{\omega}'$, there is a domain ω such that $x_0 \in \omega \subset \omega'$ and

$$\inf_{\omega} u \leq \frac{1}{1+\varepsilon} \sup_{\omega} u.$$

Since $H_u^{\omega} = u$ on ω , we see that $||1 - H_1^{\omega}||_{\omega} < \varepsilon$. Then

$$H_{p_0}^{\omega} \ge (1-\varepsilon)p_0(x_0)H_1^{\omega} \ge (1-\varepsilon)^2 p_0(x_0)$$
 on ω .

Hence

$$U_{\omega}^{|\pi|} = p_0 - H_{p_0}^{\omega} \leq (1+\varepsilon)p_0(x_0) - (1-\varepsilon)^2 p_0(x_0) \leq 3\varepsilon p_0(x_0) < \delta \quad \text{on} \quad \omega.$$

A PB-domain ω will be called a *small domain* if

$$\|U_{\omega}^{\pi^{+}}\|_{\omega} + \|U_{\omega}^{\pi^{-}}\|_{\omega} < 1.$$

By the above lemma, small domains form a base of open sets in Ω . If ω is a small domain, then $(I - G_{\omega})^{-1}$ exists as an operator of $C_b(\omega)$ into itself and

$$\|G_{\omega}^{+}\| \cdot \|(I - G_{\omega}^{-})^{-1}\| \leq \|U_{\omega}^{\pi^{+}}\|_{\omega}(1 - \|U_{\omega}^{\pi^{-}}\|_{\omega})^{-1} < 1.$$

Therefore, [12, Lemma 3.2.1] asserts the following

PROPOSITION 3.4. If ω is a small domain, then $(I - G_{\omega})^{-1}$ exists as an operator on $\mathbf{C}_{b}(\omega)$ and for any non-negative bounded continuous superharmonic function s on ω , $(I - G_{\omega})^{-1} s \ge 0$.

From this proposition and Lemma 3.1, the next proposition immediately follows:

PROPOSITION 3.5. Let ω be a small domain. If $u \in \mathscr{H}(\omega)$ and u is bounded, then $(I - G_{\omega})^{-1}u \in \mathscr{H}^{\sim}(\omega)$.

Let ω be a small regular domain. Then, for each $\phi \in \mathbf{C}(\partial \omega)$,

$$\tilde{H}^{\omega}_{\phi} \equiv (I - G_{\omega})^{-1} H^{\omega}_{\phi}$$

makes sense and it is continuous on $\overline{\omega}$ if extended by ϕ on $\partial \omega$. By Propositions

3.3, 3.4 and 3.5, we see that $\tilde{H}^{\omega}_{\phi} \in \mathscr{H}^{\sim}(\omega)$, $\phi \ge 0$ implies $\tilde{H}^{\omega}_{\phi} \ge 0$ and that if $v \in \mathbb{C}(\overline{\omega})$, $v = \phi$ on $\partial \omega$ and $v | \omega \in \mathscr{H}^{\sim}(\omega)$ then $v = \tilde{H}^{\omega}_{\phi}$. Thus we have

PROPOSITION 3.6 ([12, Proposition 3.2.2]). Small regular domains are regular with respect to \mathfrak{H}^{\sim} , so that \mathfrak{H}^{\sim} satisfies Axioms 2 of Brelot [3].

REMARK 3.1. We know ([12, Proposition 3.2.2]) that \mathfrak{H}^{\sim} has the Bauer convergence property in the sense of [5, § 1.1]. But it is not clear whether \mathfrak{H}^{\sim} satisfies Axiom 3 of Brelot [3] even in our special case. In this connection, we note the following: in case $\pi \ge 0$, i.e., 1 is superharmonic, any non-negative \mathfrak{H}^{\sim} -harmonic function is superharmonic; and hence \mathfrak{H}^{\sim} is elliptic in the sense of [5, p. 66] by virtue of Axiom 3 for \mathfrak{H} .

3.3. \mathfrak{H}^{\sim} -superharmonic functions

We shall restrict \mathfrak{H}^{\sim} -superharmonic functions (superharmonic functions with respect to \mathfrak{H}^{\sim}) to continuous ones; namely, a \mathfrak{H}^{\sim} -superharmonic function on an open set ω is a continuous function s on ω such that for each small regular domain ω' with $\overline{\omega}' \subset \omega$, $s \ge \widetilde{H}_s^{\omega'}$ on ω' .

PROPOSITION 3.7 (cf. [12, Proposition 3.3.1]). Let ω be an open set and f be a continuous function on ω . Then f is \mathfrak{H}^{\sim} -superharmonic on ω if and only if $f \in \mathscr{B}_{loc}(\omega)$ and $\sigma_f \geq f\pi$ on ω .

PROOF. First suppose $f \in \mathscr{B}_{loc}(\omega)$ and $\sigma_f \ge f\pi$ on ω . Let ω' be any small regular domain such that $\overline{\omega}' \subset \omega$. Then

$$f = H_f^{\omega'} + U_{\omega'}^{\sigma_f} \ge H_f^{\omega'} + G_{\omega'}f$$

on ω' . Put $v = (I - G_{\omega'})f - H_{f}^{\omega'}$. Then v is a non-negative bounded continuous function on ω' and $\sigma_v = \sigma_f - f\pi \ge 0$. Therefore v is superharmonic. Hence, by Proposition 3.4, $(I - G_{\omega'})^{-1}v \ge 0$, so that $f - \tilde{H}_{f}^{\omega'} \ge 0$. Thus f is \mathfrak{H}^{\sim} -superharmonic on ω .

Conversely, suppose f is \mathfrak{H}^{\sim} -superharmonic on ω . Let $\varepsilon > 0$. Since f is continuous, for each $x \in \omega$ there is a PC-domain ω_x such that $x \in \omega_x \subset \overline{\omega}_x \subset \omega$ and $(0 \leq)f - \tilde{H}_{g}^{\omega'} < \varepsilon$ on ω' for any small regular domain ω' with $\overline{\omega}' \subset \omega_x$. Consider the function

$$s = f - G_{\omega_r} f + \varepsilon G_{\omega_r}^+ 1$$

on ω_x . For any small regular domain ω' with $\overline{\omega}' \subset \omega_x$, since

$$H_f^{\omega'} = \tilde{H}_f^{\omega'} - G_{\omega'} \tilde{H}_f^{\omega'} \leq f - G_{\omega'} \tilde{H}_f^{\omega'},$$

we have

$$H_s^{\omega'} = H_f^{\omega'} - G_{\omega_x} f + G_{\omega'} f + \varepsilon (G_{\omega_x}^+ 1 - G_{\omega'}^+ 1)$$
$$\leq s + G_{\omega'} (f - \tilde{H}_f^{\omega'}) - \varepsilon G_{\omega'}^+ 1.$$

Now,

$$G_{\omega'}(f - \widetilde{H}_f^{\omega'}) \leq G_{\omega'}^+(f - \widetilde{H}_f^{\omega'}) \leq \varepsilon G_{\omega'}^+ 1.$$

Hence $H_s^{\omega'} \leq s$. This means that s is superharmonic on ω_x , so that $f \in \mathscr{B}_{loc}(\omega_x)$ and

$$\sigma_f - f\pi + \varepsilon \pi^+ \ge 0$$

on ω_x . Since ω_x 's cover $\omega, f \in \mathscr{B}_{loc}(\omega)$ and the above inequality holds on ω . Thus, ε being arbitrary, we conclude that $\sigma_f - f\pi \ge 0$ on ω .

```
COROLLARY. If u \in \mathscr{H}^{\sim}(\omega), then \sigma_{u^2} \leq u^2 \pi on \omega.
```

PROOF. Since $1 \in \mathscr{H}^{\sim}(\omega)$, we see easily that $-u^2$ is \mathfrak{H}^{\sim} -superharmonic on ω .

§4. Gradient measures of locally bounded functions

4.1. Gradient measures

Let ω be an open set in Ω . For $f, g \in \mathscr{B}_{loc}(\omega)$, we define their mutual gradient measure on ω by

$$\delta_{[f,g]} = \frac{1}{2} \left\{ f\sigma_g + g\sigma_f - \sigma_{fg} - fg\pi \right\}$$

and the gradient measure of $f \in \mathscr{B}_{loc}(\omega)$ by

$$\delta_f \equiv \delta_{[f,f]} = \frac{1}{2} \left\{ 2f\sigma_f - \sigma_{f^2} - f^2 \pi \right\}$$

By virtue of Proposition 2.1, these are well-defined signed measures on ω . Note that if c denotes a constant, then

$$\delta_{[c,f]} = \frac{1}{2} \left\{ c\sigma_f + f\sigma_c - \sigma_{cf} - cf\pi \right\} = \frac{1}{2} \left\{ c\sigma_f + cf\pi - c\sigma_f - cf\pi \right\} = 0$$

for any $f \in \mathscr{B}_{loc}(\omega)$, and hence $\delta_c = 0$ and $\delta_{c+f} = \delta_f$ for any $f \in \mathscr{B}_{loc}(\omega)$.

REMARK 4.1. In case Ω is a Euclidean domain and \mathfrak{H} is defined by solutions of $\Delta u = Pu$, the measure δ_f is nothing but $|\operatorname{grad} f|^2 dx$ provided that f is continuously differentiable. (Cf. the introduction of [9]–I.)

THEOREM 4.1. Let ω_0 be an open set. For any $f \in \mathscr{B}_{loc}(\omega_0)$, δ_f is a nonnegative measure on ω_0 . In case ω_0 is a domain, $\delta_f = 0$ if and only if $f \equiv const.$ on ω_0 .

PROOF. Let ω be any small PC-domain such that $\overline{\omega} \subset \omega$. Then $f = u + U_{\omega}^{\sigma f}$ on ω with $u \in \mathscr{H}(\omega)$. Since u is bounded and ω is a small domain, $v = (I - G_{\omega})^{-1}u$ exists and belongs to $\mathscr{H}^{\sim}(\omega)$ by Proposition 3.5. Let $p = U_{\omega}^{\sigma f} - G_{\omega}v$. Then f = v + p, so that

(4.1)
$$\delta_f = \delta_v + 2\delta_{[v,p]} + \delta_p.$$

Since $v = u + G_{\omega}v$, $\sigma_v = v\pi$. Hence

$$\delta_{v} = \frac{1}{2} \left\{ 2v^{2}\pi - \sigma_{v^{2}} - v^{2}\pi \right\} = \frac{1}{2} \left\{ v^{2}\pi - \sigma_{v^{2}} \right\}.$$

By the corollary to Proposition 3.7, we see that $\delta_v \ge 0$. Next we have

(4.2)
$$2\delta_{[v,p]} = v\sigma_p + p\sigma_v - \sigma_{vp} - vp\pi$$
$$= (u + G_\omega v)\sigma_p + vp\pi - \sigma_{vp} - vp\pi$$
$$= u\sigma_p + (G_\omega v)\sigma_p - \sigma_{up} - \sigma_{(G_\omega v)p}.$$

Since ω is a PC-domain, $|\sigma_f|(\omega) < +\infty$ and $|\pi|(\omega) < +\infty$. From the boundedness of v it follows that $\sigma_{(G_{\omega}v)_p} \in \mathscr{M}_B(\omega)$ and $\sigma_p \in \mathscr{M}_B(\omega)$. Moreover, by Lemma 2.8, $u \in \mathscr{H}_{BE}(\omega)$. Therefore, we can apply Propositions 2.3 and 2.6 and obtain

$$\sigma_{(G_{\omega}v)p}(\omega) = \int_{\omega} (G_{\omega}v)p \, \mathrm{d}\pi$$
$$= \int_{\omega} vp \, \mathrm{d}\pi - \int_{\omega} up \, \mathrm{d}\pi$$
$$= \int_{\omega} (G_{\omega}v) \mathrm{d}\sigma_p - \int_{\omega} up \, \mathrm{d}\pi$$

and

$$\sigma_{up}(\omega) = \int_{\omega} u \, d\sigma_p + \int_{\omega} up \, d\pi \, .$$

Therefore (4.2) implies

(4.3)
$$\delta_{[\nu,p]}(\omega) = 0.$$

Also, by Proposition 2.3, $\sigma_{p^2}(\omega) = \int_{\omega} p^2 d\pi$, so that

Dirichlet Integrals of Functions on a Self-adjoint Harmonic Space

(4.4)
$$\delta_p(\omega) = \int_{\omega} p \, d\sigma_p - \int_{\omega} p^2 d\pi \, .$$

Since $U_{\omega}^{\pi+} < 1$, using Theorem 1.2 we have

(4.5)
$$\int_{\omega} p^2 d\pi \leq \int_{\omega} p^2 d\pi^+ \leq \|U_{\omega}^{\pi+}\|_{\omega} I_{\omega}(\sigma_p) \leq \int_{\omega} p \, d\sigma_p \, .$$

Therefore, $\delta_p(\omega) \ge 0$ by (4.4), and hence by (4.1),

(4.6)
$$\delta_f(\omega) = \delta_v(\omega) + 2\delta_{[v,p]}(\omega) + \delta_p(\omega) \ge 0.$$

Since this is true for any small PC-domain ω such that $\overline{\omega} \subset \omega_0$ and such domains form a base of open sets in ω_0 , we conclude that $\delta_f \ge 0$.

If $f \equiv c$ (const.), then $\delta_c = 0$ as remarked before. Conversely, suppose ω_0 is a domain, $f \in \mathscr{B}_{loc}(\omega_0)$ and $\delta_f = 0$. Let ω be any small PC-domain such that $\overline{\omega} \subset \omega_0$ and use the same notation as above. Since $\delta_v \ge 0$ and $\delta_p \ge 0$ on ω as we have shown above, (4.3) and (4.6) imply that $\delta_v = 0$ and $\delta_p = 0$ on ω . It follows from (4.4) that inequalities in (4.5) become equalities, in particular,

$$\|U_{\omega}^{\pi^+}\|_{\omega}I_{\omega}(\sigma_p)=I_{\omega}(\sigma_p).$$

Since $||U_{\omega}^{\pi^+}||_{\omega} < 1$, we have $I_{\omega}(\sigma_p) = 0$; hence p = 0 on ω by the energy principle.

Next we shall show that $\delta_v = 0$ on ω implies $v \equiv \text{const. on } \omega$. Since $\delta_{v+\alpha g} \ge 0$ on ω for any $g \in \mathscr{B}_{1oc}(\omega)$ and for any real number α , we see that $\delta_{[v,g]} = 0$ for any $g \in \mathscr{B}_{1oc}(\omega)$. In particular, if $h \in \mathscr{H}(\omega)$, then

$$0 = \delta_{[v,h]} = \frac{1}{2} \{ h\sigma_v - \sigma_{vh} - vh\pi \} = -\frac{1}{2} \sigma_{vh}$$

This means that $vh \in \mathscr{H}(\omega)$ for any $h \in \mathscr{H}(\omega)$, and hence $v^2h \in \mathscr{H}(\omega)$ for any $h \in \mathscr{H}(\omega)$. Since ω is a PC-domain, there is $h_0 \in \mathscr{H}(\omega)$ which is positive on ω (see [3, p. 94]). Let $x_0 \in \omega$ be fixed and consider the function $w = (v - v(x_0))^2 h_0$. By the above observation, $w \in \mathscr{H}(\omega)$. Since $w \ge 0$, $w(x_0) = 0$ and $h_0 > 0$, we conclude that $v \equiv v(x_0)$ on ω . Thus we have seen that $f \equiv \text{const.}$ on ω . Since ω_0 is connected, it follows that $f \equiv \text{const.}$ on ω_0 .

COROLLARY. Let ω_0 be any open set in Ω . (a) If $f, g \in \mathscr{B}_{loc}(\omega_0)$, then

$$|\delta_{[f,g]}| \leq \frac{1}{2} \left(\delta_f + \delta_g \right) \quad and \qquad \delta_{f+g} \leq 2 \left(\delta_f + \delta_g \right) + \delta_g = 0$$

(b) If $f, g \in \mathscr{B}_{loc}(\omega_0)$ and A is a relatively compact Borel set such that $\overline{A} \subset \omega_0$, then

$$|\delta_{[f,g]}(A)| \leq \delta_f(A)^{1/2} \, \delta_g(A)^{1/2}$$

and

$$\delta_{f+g}(A)^{1/2} \leq \delta_f(A)^{1/2} + \delta_g(A)^{1/2}.$$

The value $\delta_f(A)$ may be called the *Dirichlet integral* of f over A (cf. Remark 4.1).

REMARK 4.2. If $u \in \mathscr{H}(\omega)$, then $\delta_u = -\frac{1}{2} (\sigma_{u^2} + u^2 \pi)$. Hence if $u \in \mathscr{H}_{BE}(\omega)$ and $\pi^-(\omega) < +\infty$, then $\delta_u(\omega) < +\infty$.

4.2. Gradient measures of max. and min. of functions

LEMMA 4.1. $\mathscr{B}_{1oc}(\omega_0)$ is a vector lattice with respect to the max. and min. operations for any open set ω_0 .

PROOF. Let $f \in \mathscr{P}_{loc}(\omega_0)$ and let ω be any PC-domain such that $\overline{\omega} \subset \omega_0$. Then $f|\omega=s_1-s_2$ with bounded non-negative superharmonic functions s_1 and s_2 on ω . Then

$$\max\left(f,0\right) = s_1 - \min\left(s_1,s_2\right)$$

and $\min(s_1, s_2)$ is bounded non-negative superharmonic on ω . Hence $\max(f, 0) \in \mathscr{B}_{loc}(\omega_0)$. Since $\mathscr{B}_{loc}(\omega_0)$ is a linear space, it follows that it is a vector lattice with respect to the max. and min. operations.

LEMMA 4.2. If $f \in \mathscr{B}_{loc}(\omega_0)$ and f is continuous on ω_0 , then

 $\delta_{[\max(f,0),\min(f,0)]} = 0.$

PROOF. Let $f^+ = \max(f, 0)$ and $f^- = -\min(f, 0)$. Since $f^+f^- = 0$,

$$\delta_{[f^+,f^-]} = \frac{1}{2} \left\{ f^+ \sigma_{f^-} + f^- \sigma_{f^+} \right\} \,.$$

Let $\omega^+ = \{x \in \omega; f(x) > 0\}$ and $\omega^- = \{x \in \omega; f(x) < 0\}$. Then ω^+, ω^- are open sets. Hence we see that $\sigma_{f^-} | \omega^+ = 0$ and $\sigma_{f^+} | \omega^- = 0$. Therefore $\delta_{ff^+, f^-} = 0$.

COROLLARY. For a continuous $f \in \mathscr{B}_{loc}(\omega_0), \, \delta_{|f|} = \delta_f$.

REMARK 4.3. We shall see later (§7) that the above results hold for any $f \in \mathscr{B}_{loc}(\omega_0)$.

4.3. Dirichlet integrals of locally bounded potentials on a PB-domain

LEMMA 4.3. Let ω be a PB-domain and let $p = U_{\omega}^{\sigma}$ with $\sigma \in \mathscr{M}_{E}(\omega)$. Suppose $U_{\omega}^{|\sigma|}$ is locally bounded on ω . Then p is $|\pi|$ -square-integrable on ω ,

$$\delta_{p}(\omega) \leq \beta_{\omega} I_{\omega}(\sigma)$$

and

$$\delta_p(\omega) = I_{\omega}(\sigma) - \int_{\omega} p^2 d\pi$$

PROOF. Theorem 1.2 implies that p is $|\pi|$ -square-integrable. First, suppose $\sigma \ge 0$. Let $\{\omega_n\}$ be an exhaustion of ω . For each n, $p_n \equiv R_p^{\omega_n,\omega}$ is a potential on ω , $S_h(p_n) \subset \overline{\omega}_n$ and $p_n = p$ on ω_n by virtue of Lemma 1.7. Since p is bounded on $\overline{\omega}_n$, Lemma 1.4 implies that each p_n is bounded. Hence $\mu_n \equiv \sigma_{p_n} \in \mathscr{M}_B^+(\omega)$. Since $p_n \uparrow p$, we have $I_{\omega}(\mu_n) \uparrow I_{\omega}(\sigma)$ and $I_{\omega}(\mu_n - \sigma) \rightarrow 0$ (Corollary 2 to Theorem 1.1). By Proposition 2.2 (cf. (4.4) in the proof of Theorem 4.1), we see that

(4.7)
$$\delta_{p_n}(\omega) = I_{\omega}(\mu_n) - \int_{\omega} p_n^2 d\pi.$$

By Theorem 2.1, $\int_{\omega} p^2 d\pi^- \leq (\beta_{\omega} - 1)I_{\omega}(\sigma)$. Hence

$$\delta_{p_n}(\omega) \leq I_{\omega}(\mu_n) + \int_{\omega} p_n^2 d\pi^- \leq I_{\omega}(\sigma) + \int_{\omega} p^2 d\pi^- \leq \beta_{\omega} I_{\omega}(\sigma).$$

Since $p_n = p$ on ω_n , $\delta_p(\omega_n) = \delta_{p_n}(\omega_n) \le \delta_{p_n}(\omega) \le \beta_\omega I_\omega(\sigma)$, which implies that $\delta_p(\omega) \le \beta_\omega I_\omega(\sigma)$.

Similarly, we see that $\delta_{p_n-p_m}(\omega) \leq \beta_{\omega} I_{\omega}(\mu_n-\mu_m)$, and hence

$$\delta_{p_n-p}(\omega_m) = \delta_{p_n-p_m}(\omega_m) \leq \beta_{\omega} I_{\omega}(\mu_n-\mu_m).$$

Therefore

$$\delta_{p_n-p}(\omega) \leq \beta_{\omega} I_{\omega}(\mu_n - \sigma) \to 0 \qquad (n \to \infty)$$

It follows that $\delta_{p_n}(\omega) \rightarrow \delta_p(\omega)$. Since $I_{\omega}(\mu_n) \rightarrow I_{\omega}(\sigma)$ and $\int_{\omega} p_n^2 d\pi \rightarrow \int_{\omega} p^2 d\pi$, (4.7) implies that

$$\delta_p(\omega) = I_{\omega}(\sigma) - \int_{\omega} p^2 d\pi$$

Next, let σ be arbitrary. Applying the above result to $f_1 = U_{\omega}^{\sigma^+}$, $f_2 = U_{\omega}^{\sigma^-}$ and $f_3 = U_{\omega}^{|\sigma|}$, we see that Fumi-Yuki MAEDA

$$\begin{split} \delta_p(\omega) &= 2\delta_{f_1}(\omega) + 2\delta_{f_2}(\omega) - \delta_{f_3}(\omega) \\ &= 2I_{\omega}(\sigma^+) + 2I_{\omega}(\sigma^-) - I_{\omega}(|\sigma|) - \int_{\omega} (2f_1^2 + 2f_2^2 - f_3^2) d\pi \\ &= I_{\omega}(\sigma) - \int_{\omega} p^2 d\pi \,. \end{split}$$

Finally, applying Theorem 1.2 again, we see that $\delta_p(\omega) \leq \beta_{\omega} I_{\omega}(\sigma)$ in the same way as above.

LEMMA 4.4. Let ω be a PB-domain and $p = U_{\omega}^{\sigma}$ with $\sigma \in \mathscr{M}_{E}(\omega)$. Let $\{\omega_{n}\}$ be an exhaustion of ω and let $p_{n} = U_{\omega_{n}}^{\sigma}$. Suppose $U_{\omega}^{|\sigma|}$ is locally bounded on ω . Then

$$\delta_{p-p_n}(\omega_n) + \int_{\omega_n} (p-p_n)^2 d|\pi| \to 0 \qquad (n \to \infty).$$

PROOF. We may assume that $\sigma \ge 0$. Since $\int_{\omega} p^2 d|\pi| < +\infty$, $0 \le p_n \le p$ on ω_n and $p_n \to p$, Lebesgue's convergence theorem implies that $\int_{\omega_n} (p-p_n)^2 d|\pi| \to 0$ $(n \to \infty)$. Thus it remains to show that $\delta_{p-p_n}(\omega_n) \to 0$ $(n \to \infty)$. First we remark that $u_n \equiv p - p_n$ belongs to $\mathscr{H}_{BE}(\omega_n)$ by virtue of Lemma 2.8. Since $\sigma |\omega_n \in \mathscr{M}_B^+(\omega_n)$ and $\pi^-(\omega_n) < +\infty$, the definition of $\delta_{[f,g]}$ and Proposition 2.4 yield

$$\delta_{[p-p_n,p_n]}(\omega_n) = \delta_{[u_n,p_n]}(\omega_n)$$

$$= \frac{1}{2} \left\{ \int_{\omega_n} u_n d\sigma - \sigma_{u_n p_n}(\omega_n) - \int_{\omega_n} u_n p_n d\pi \right\}$$

$$= -\int_{\omega_n} u_n p_n d\pi$$

$$= -\int_{\omega_n} (p-p_n) p_n d\pi.$$

On the other hand, by the above lemma,

$$\delta_{p_n}(\omega_n) = I_{\omega_n}(\sigma) - \int_{\omega_n} p_n^2 d\pi$$

and

$$\delta_p(\omega) = I_{\omega}(\sigma) - \int_{\omega} p^2 d\pi \,.$$

Therefore

Dirichlet Integrals of Functions on a Self-adjoint Harmonic Space

$$\begin{split} \delta_{p-p_n}(\omega_n) &= \delta_p(\omega_n) - \delta_{p_n}(\omega_n) - 2\delta_{[p-p_n,p_n]}(\omega_n) \\ &\leq \delta_p(\omega) - I_{\omega_n}(\sigma) + \int_{\omega_n} p_n^2 d\pi + 2\int_{\omega_n} (p-p_n)p_n d\pi \\ &= I_{\omega}(\sigma) - I_{\omega_n}(\sigma) - \int_{\omega_n} (p-p_n)^2 d\pi - \int_{\omega-\omega_n} p^2 d\pi \\ &\to 0 \quad (n \to \infty) \; . \end{split}$$

LEMMA 4.5. Let ω be a PB-domain, $p = U_{\omega}^{\sigma}$ with $\sigma \in \mathscr{M}_{E}(\omega)$ and $u \in \mathscr{H}(\omega)$ with $\delta_{u}(\omega) + \int_{\omega} u^{2} d|\pi| < +\infty$. Suppose $U_{\omega}^{|\sigma|}$ is locally bounded on ω . Then

$$\delta_{[u,p]}(\omega) = -\int_{\omega} u p \, d\pi \, .$$

PROOF. By the corollary to Theorem 4.1, we see that $\delta_{[u,p]}(\omega)$ has a definite finite value. Obviously, $\int_{\omega} up \, d\pi$ is also definite. Let $\{\omega_n\}$ be an exhaustion of ω and let $p_n = U^{\sigma}_{\omega_n}$. By Proposition 2.4 (cf. the proof of the previous lemma),

$$\delta_{[u,p_n]}(\omega_n) = -\int_{\omega_n} u p_n d\pi.$$

By Lebesgue's convergence theorem,

$$\int_{\omega_n} u p_n d\pi \to \int_{\omega} u p \, d\pi \qquad (n \to \infty) \, .$$

On the other hand, by the corollary to Theorem 4.1, we have

$$\begin{aligned} |\delta_{[u,p_n]}(\omega_n) - \delta_{[u,p]}(\omega)| \\ &\leq |\delta_{[u,p-p_n]}(\omega_n)| + |\delta_{[u,p]}(\omega - \omega_n)| \\ &\leq \delta_u(\omega)^{1/2} \, \delta_{p-p_n}(\omega_n)^{1/2} + \delta_u(\omega - \omega_n)^{1/2} \, \delta_p(\omega - \omega_n)^{1/2} \\ &\rightarrow 0 \quad (n \rightarrow \infty) , \end{aligned}$$

where we used the previous lemma to conclude the convergence.

§ 5. The spaces of harmonic functions with finite Dirichlet integral and with finite energy

5.1. Lattice structures

Given an open set ω , we consider the following spaces of harmonic functions:

Fumi-Yuki MAEDA

$$\begin{aligned} \mathscr{H}_{D}(\omega) &= \left\{ u \in \mathscr{H}(\omega); \delta_{u}(\omega) < +\infty \right\}, \\ \mathscr{H}_{D'}(\omega) &= \left\{ u \in \mathscr{H}(\omega); \delta_{u}(\omega) + \int_{\omega} u^{2} d\pi^{-} < +\infty \right\}, \\ \mathscr{H}_{E}(\omega) &= \left\{ u \in \mathscr{H}(\omega); \delta_{u}(\omega) + \int_{\omega} u^{2} d|\pi| < +\infty \right\}. \end{aligned}$$

Since $(u+v)^2 + (u-v)^2 = 2(u^2+v^2)$ and $\delta_{u+v} + \delta_{u-v} = 2(\delta_u + \delta_v)$, we see that these are linear subspaces of $\mathscr{H}(\omega)$. Note that if 1 is superharmonic on ω , then $\mathscr{H}_{D'}(\omega) = \mathscr{H}_D(\omega)$. Let

$$\|u\|_{D,\omega} = \delta_u(\omega)^{1/2},$$

$$\|u\|_{D',\omega} = \{\delta_u(\omega) + \int_{\omega} u^2 d\pi^{-1}\}^{1/2},$$

$$\|u\|_{E,\omega} = \{\delta_u(\omega) + \int_{\omega} u^2 d|\pi|\}^{1/2}.$$

These are semi-norms on $\mathscr{H}_D(\omega)$, $\mathscr{H}_{D'}(\omega)$ and $\mathscr{H}_E(\omega)$, respectively, They are norms if and only if $|\pi||\omega' \neq 0$ for every component ω' of ω .

LEMMA 5.1. Let ω be a PB-domain. Then

$$I_{\omega}(\sigma_{|u|}) \leq 2(\beta_{\omega}-1) \|u\|_{D',\omega}^2$$

for any $u \in \mathcal{H}_{D'}(\omega)$.

PROOF. For any PC-domain ω' such that $\overline{\omega}' \subset \omega$, $u|\omega' \in \mathscr{H}_{BE}(\omega')$. Hence, by Proposition 2.3, the least harmonic majorant v of |u| on ω' exists. Let $p = -U_{\omega}^{\sigma_1|u_1}$. Then $p \ge 0$ and |u| = v - p on ω' . By Lemma 4.5,

$$\delta_{[v,p]}(\omega') + \int_{\omega'} v p \, d\pi = 0 \, .$$

Hence, using Lemma 4.3, we deduce

$$\begin{split} I_{\omega'}(\sigma_{|u|}) &= \delta_p(\omega') + \int_{\omega'} p^2 d\pi \\ &= -\delta_{[|u|,p]}(\omega') - \int_{\omega'} |u| p \, d\pi \\ &\leq -\delta_{[|u|,p]}(\omega') + \int_{\omega'} |u| p \, d\pi^- \\ &\leq \delta_{|u|}(\omega')^{1/2} \delta_p(\omega')^{1/2} + \left(\int_{\omega'} u^2 d\pi^-\right)^{1/2} \left(\int_{\omega'} p^2 d\pi^-\right)^{1/2} \end{split}$$

By the corollary to Lemma 4.1, $\delta_{|u|} = \delta_u$. By Lemma 4.3,

$$\delta_{p}(\omega') \leq \beta_{\omega'} I_{\omega'}(\sigma_{|\boldsymbol{u}|}) \leq \beta_{\omega} I_{\omega'}(\sigma_{|\boldsymbol{u}|}).$$

By Theorem 1.2,

$$\int_{\omega'} p^2 d\pi^- \leq (\beta_{\omega'} - 1) I_{\omega'}(\sigma_{|\boldsymbol{u}|}) \leq (\beta_{\omega} - 1) I_{\omega'}(\sigma_{|\boldsymbol{u}|}).$$

Hence,

$$I_{\omega'}(\sigma_{|u|}) \leq \left[\{\beta_{\omega}\delta_{|u|}(\omega')\}^{1/2} + \{(\beta_{\omega}-1)\int_{\omega'}u^2d\pi^{-}\}^{1/2} \right] I_{\omega'}(\sigma_{|u|})^{1/2},$$

so that

$$I_{\omega'}(\sigma_{|\boldsymbol{u}|}) \leq (2\beta_{\omega} - 1) \|\boldsymbol{u}\|_{\boldsymbol{D}',\omega'}^2.$$

Letting $\omega' \uparrow \omega$, we obtain the required inequality.

Given $u, v \in \mathscr{H}(\omega)$, if $\max(u, v)$ (resp. $\min(u, v)$) has a harmonic majorant (resp. harmonic minorant) on ω , then its least harmonic majorant (resp. its greatest harmonic minorant) will be denoted by $u \vee_{\omega} v$ (resp. $u \wedge_{\omega} v$).

THEOREM 5.1. (cf. [9, Lemma 3.3 and Theorem 3.1]). If ω is a PB-domain, then $\mathscr{H}_{D'}(\omega)$ and $\mathscr{H}_{E}(\omega)$ are vector lattices with respect to the operations \vee_{ω} and \wedge_{ω} . Furthermore, we have the following estimates:

$$\|u \vee_{\omega}(-u)\|_{D',\omega} \leq \{1+3(\beta_{\omega}-1)\}\|u\|_{D',\omega} \quad for \quad u \in \mathscr{H}_{D'}(\omega)$$

and

$$\|u \vee_{\omega}(-u)\|_{E,\omega} \leq \{1+3(\beta_{\omega}-1)\}\|u\|_{E,\omega} \quad \text{for} \quad u \in \mathscr{H}_{E}(\omega).$$

PROOF. Let $u \in \mathscr{H}_{D'}(\omega)$ and $v = -\sigma_{|u|}(\geq 0)$. By the above lemma, we see that $p = U_{\omega}^{v}$ is a potential, and hence $v = u \vee_{\omega}(-u)$ exists; in fact v = |u| + p. Since $I_{\omega}(v) < +\infty$ by the above lemma, it follows from Theorem 1.2 and Lemma 4.3 that

$$\delta_p(\omega) + \int_{\omega} p^2 d|\pi| < +\infty.$$

Therefore $v \in \mathcal{H}_{D'}(\omega)$, and if in particular $u \in \mathcal{H}_{E}(\omega)$ then $v \in \mathcal{H}_{E}(\omega)$. Thus, $\mathcal{H}_{D'}(\omega)$ and $\mathcal{H}_{E}(\omega)$ are vector lattices with respect to \vee_{ω} and \wedge_{ω} .

Now, let $\{\omega_n\}$ be an exhaustion of ω , $p_n = U_{\omega_n}^{\nu}$ and $u_n = p|\omega_n - p_n$. Then $u_n \in \mathscr{H}_{BE}(\omega_n)$ ($\subset \mathscr{H}_E(\omega_n)$; cf. Remark 4.2), $v = |u| + u_n + p_n$ and $v - u_n \ge |u|$ on ω_n . By Lemmas 4.3 and 4.5 and the corollary to Lemma 4.2, we deduce

$$\delta_{v-u_n}(\omega_n) + \int_{\omega_n} (v-u_n)^2 d\pi = \delta_u(\omega_n) + \int_{\omega_n} u^2 d\pi - I_{\omega_n}(v).$$

Hence,

$$\begin{split} \delta_{v-u_{n}}(\omega_{n}) + & \int_{\omega_{n}} (v-u_{n})^{2} d\pi^{-} \\ &= \delta_{u}(\omega_{n}) + \int_{\omega_{n}} u^{2} d\pi^{-} + \int_{\omega_{n}} \{u^{2} - (v-u_{n})^{2}\} d\pi^{+} \\ &\quad + 2 \int_{\omega_{n}} \{(v-u_{n})^{2} - u^{2}\} d\pi^{-} - I_{\omega_{n}}(v) \\ &\leq \delta_{u}(\omega) + \int_{\omega} u^{2} d\pi^{-} + 2 \int_{\omega_{n}} \{(v-u_{n})^{2} - u^{2}\} d\pi^{-} - I_{\omega_{n}}(v) \end{split}$$

and

$$\begin{split} \delta_{v-u_n}(\omega_n) + &\int_{\omega_n} (v-u_n)^2 d|\pi| \\ &= \delta_u(\omega_n) + \int_{\omega_n} u^2 d|\pi| + 2 \int_{\omega_n} \{(v-u_n)^2 - u^2\} d\pi^- - I_{\omega_n}(v) \\ &\leq \delta_u(\omega) + \int_{\omega} u^2 d|\pi| + 2 \int_{\omega_n} \{(v-u_n)^2 - u^2\} d\pi^- - I_{\omega_n}(v) \,. \end{split}$$

By Lemma 4.4, $\delta_{u_n}(\omega_n) \rightarrow 0$ and $\int_{\omega_n} u_n^2 d|\pi| \rightarrow 0 \ (n \rightarrow \infty)$. Hence

(5.1)
$$\|v\|^{2} \leq \|u\|^{2} + 2 \int_{\omega} (v^{2} - u^{2}) d\pi^{-} - I_{\omega}(v),$$

where $||u|| = ||u||_{D',\omega}$ if $u \in \mathscr{H}_{D'}(\omega)$, $= ||u||_{E,\omega}$ if $u \in \mathscr{H}_{E}(\omega)$. If $\pi^{-}=0$, then (5.1) immediately implies the required estimates. If $\pi^{-}\neq 0$, then $\beta_{\omega}>1$. Since $v^{2} - u^{2} \leq ku^{2} + (1+k^{-1})p^{2}$ for any k > 0,

$$2\int_{\omega} (v^{2} - u^{2}) d\pi^{-} \leq 2k \int_{\omega} u^{2} d\pi^{-} + 2\left(1 + \frac{1}{k}\right) \int_{\omega} p^{2} d\pi^{-}$$
$$\leq 2k \|u\|^{2} + 2\left(1 + \frac{1}{k}\right) (\beta_{\omega} - 1) I_{\omega}(v) .$$

Letting $k=2(\beta_{\omega}-1)$ and using Lemma 5.1, we have from (5.1)

$$\|v\|^{2} \leq \{1 + 4(\beta_{\omega} - 1) + 2(\beta_{\omega} - 1)(2\beta_{\omega} - 1)\}\|u\|^{2}$$
$$\leq \{1 + 3(\beta_{\omega} - 1)\}^{2}\|u\|^{2}.$$

COROLLARY (cf. [11, Theorem 2] and [6, Theorem 10 D]). If 1 is super-

harmonic on a domain ω , then $\mathscr{H}_D(\omega)$ is a vector lattice with respect to \vee_{ω} and \wedge_{ω} and

$$\|u \vee_{\omega}(-u)\|_{D,\omega} \leq \|u\|_{D,\omega}.$$

REMARK 5.1. We do not know whether this corollary remains valid in case 1 is not superharmonic.

5.2. Bounded families in $\mathscr{H}_{D'}(\omega)$ and $\mathscr{H}_{E}(\omega)$

THEOREM 5.2. If ω is a PB-domain such that $|\pi||\omega \neq 0$, then the family

$$\mathscr{H}_{\mathbf{D}'}^{1}(\omega) \equiv \{ u \in \mathscr{H}_{\mathbf{D}'}(\omega); \| u \|_{\mathbf{D}',\omega} \leq 1 \}$$

is locally uniformly bounded on ω .

PROOF. First suppose $\pi^{-}|\omega \neq 0$. Consider the family

$$\mathscr{U} = \{ u \in \mathscr{H}_{D'}(\omega); u \ge 0, \|u\|_{D',\omega} \le 1 + 3(\beta_{\omega} - 1) \}.$$

If $u \in \mathscr{H}_{D'}^{-}(\omega)$, then $|u| \leq u \lor_{\omega}(-u)$ and $||u \lor_{\omega}(-u)||_{D',\omega} \leq 1+3(\beta_{\omega}-1)$ by the previous theorem. Hence it is enough to show that \mathscr{U} is locally uniformly bounded. Fix $x_0 \in \omega$. We shall show that $\{u(x_0); u \in \mathscr{U}\}$ is bounded. Supposing the contrary, we would find $u_n \in \mathscr{U}$, n=1, 2, ..., such that $u_n(x_0) \geq n$. Let $v_n = u_n/u_n(x_0)$. Then, Harnack's principle (cf. [9, § 3.3, (B)]) implies that there is a subsequence $\{v_{nj}\}$ converging to a $v \in \mathscr{H}(\omega)$ locally uniformly on ω . In particular, $v(x_0) = 1$ and v > 0 on ω . Now,

$$\int_{\omega} v_n^2 d\pi^- = \frac{1}{u_n(x_0)^2} \int_{\omega} u_n^2 d\pi^-$$

$$\leq \frac{1}{n^2} \|u_n\|_{D',\omega}^2$$

$$\leq \frac{1}{n^2} \{1 + 3(\beta_{\omega} - 1)\} \to 0 \quad (n \to \infty) .$$

Therefore, we may assume that $v_{n_j} \rightarrow 0 \pi^- - a.e.$ on ω . It follows that $v = 0 \pi^- - a.e.$ on ω , which is a contradiction. Thus we have seen that $\{u(x_0); u \in \mathscr{U}\}$ is bounded. Then, by Harnack's inequality (cf. [9, § 3.3, (A)]), we conclude that \mathscr{U} is locally uniformly bounded on ω .

Next, suppose $\pi^{-}|\omega=0$, i.e., $\pi\geq 0$ on ω . Let ω' be any PC-domain such that $\overline{\omega}' \subset \omega$ and $\pi|\omega'\neq 0$. Choose another PC-domain ω^* such that $\overline{\omega}' \subset \omega^*$ and $\overline{\omega}^* \subset \omega$. Let $\alpha = \inf_{\omega'} U^{\pi}_{\omega^*}$. By our assumption, $\alpha > 0$. Given $u \in \mathscr{H}(\omega)$, let $\mu = \sigma_{-\mu^2} (\geq 0)$. Then $u^2 = h - U^{\mu}_{\omega^*}$ on ω^* with $h \in \mathscr{H}_{BE}(\omega^*)$ (cf. [9, Lemma

2.12]). In the proof of [9, Proposition 2.2], we showed that

$$\mu(\omega^*) \ge \int_{\omega^*} h \, d\pi \ge \int_{\omega^*} u^2 d\pi.$$

Hence

$$\|u\|_{D,\omega^*}^2 = \delta_u(\omega^*)$$

$$= \frac{1}{2} \left\{ \mu(\omega^*) - \int_{\omega^*} u^2 d\pi \right\}$$

$$\geq \frac{1}{2} \int_{\omega^*} (h - u^2) d\pi$$

$$= \frac{1}{2} \int_{\omega^*} U^{\mu}_{\omega^*} d\pi$$

$$= \frac{1}{2} \int_{\omega^*} U^{\pi}_{\omega^*} d\mu \geq \frac{\alpha}{2} \mu(\omega')$$

,

so that

$$\|u\|_{E,\omega'}^2 = \frac{1}{2} \left\{ \mu(\omega') + \int_{\omega'} u^2 d\pi \right\}$$
$$= \mu(\omega') - \delta_u(\omega') \leq \mu(\omega') \leq \frac{2}{\alpha} \|u\|_{D,\omega^*}^2.$$

Hence,

$$\left\{ u \,|\, \omega' \,;\, u \in \mathcal{H}^1_{D'}(\omega) \right\} \subset \left\{ v \in \mathcal{H}_E(\omega') \,;\, \|v\|_{E,\omega'} \leq \left(\frac{2}{\alpha}\right)^{1/2} \right\}.$$

The family on the right is locally uniformly bounded by virtue of [9, Thoerem 3.2], and hence $\mathscr{H}_{D'}^{1}(\omega)$ is locally uniformly bounded on ω' . Since ω' can be chosen arbitrarily close to ω , we obtain the theorem.

COROLLARY 1 (cf. [9, Theorem 3.2]). If ω is a PB-domain such that $|\pi||\omega \neq 0$, then the family

$$\mathscr{H}^{1}_{E}(\omega) = \{ u \in \mathscr{H}_{E}(\omega); \| u \|_{E,\omega} \leq 1 \}$$

is locally uniformly bounded on ω .

COROLLARY 2. If ω is a PB-domain and 1 is superharmonic on ω , but not harmonic on ω , then the family

$$\mathscr{H}_{D}^{1}(\omega) = \{ u \in \mathscr{H}_{D}(\omega); \|u\|_{D,\omega} \leq 1 \}$$

is locally uniformly bounded on ω .

COROLLARY 3 (cf. [9, Corollary to Theorem 3.2]). Let ω be a PB-domain such that $|\pi||\omega \neq 0$. If $u_n \in \mathscr{H}_{D'}(\omega)$ and $||u_n||_{D',\omega} \to 0$ (in particular, $u_n \in \mathscr{H}_E(\omega)$ and $||u_n||_{E,\omega} \to 0$), then $u_n \to 0$ and $u_n \vee \omega(-u_n) \to 0$ both locally uniformly on ω .

REMARK 5.2. In Theorem 5.2 and its three corollaries given above, the condition that $|\pi||\omega \neq 0$ cannot be omitted; though we obtain the same assertions if we normalize functions (see [9, § 3.1 and § 3.3]).

COROLLARY 4. Let ω be a PB-domain and let ω' be a PC-domain such that $\overline{\omega}' \subset \omega$. Then there is a constant M > 0 such that

$$\|u\|_{E,\omega'} \leq M \|u\|_{D',\omega}$$

for all $u \in \mathscr{H}_{D'}(\omega)$.

PROOF. If $|\pi||\omega=0$, then $||u||_{E,\omega'}=||u||_{D',\omega'}\leq ||u||_{D',\omega}$. Suppose $|\pi||\omega\neq 0$. Then, by the theorem, $|u|\leq M'$ on ω' for all $u\in \mathscr{H}_{D'}^{-1}(\omega)$ for some M'>0. Hence

$$\int_{\omega'} u^2 d\pi^+ \leq M'^2 ||u||_{D',\omega}^2 \pi^+(\omega'),$$

so that

$$\|u\|_{E,\omega'}^2 = \|u\|_{D',\omega'}^2 + \int_{\omega'} u^2 d\pi^+ \leq \{1 + M'^2 \pi^+(\omega')\} \|u\|_{D',\omega}^2.$$

For a PB-domain ω and $u \in \mathscr{H}_{E}(\omega)$, $U_{\omega}^{\delta_{u}}$ and $U_{\omega}^{u^{2}|\pi|}$ are potentials on ω by virtue of Lemma 1.6. Since $\sigma_{u^{2}} = -2\delta_{u} - u^{2}\pi$,

$$h_{u}^{\omega} \equiv u^{2} + 2U_{\omega}^{\delta_{u}} + U_{\omega}^{u^{2}\pi} \in \mathscr{H}(\omega).$$

Since $u^2 \ge 0$, it follows that $h_u^{\omega} \ge 0$.

LEMMA 5.2 (cf. [9, Lemma 3.5]). If ω is a PB-domain such that $|\pi||\omega \neq 0$, then the family $\{h_u^{\omega}; u \in \mathcal{H}_E^1(\omega)\}$ is locally uniformly bounded on ω .

PROOF. Let K be any compact set in ω such that $|\pi|(K) > 0$. By the above Corollary 1, there is M > 0 such that $|u(x)| \leq M$ for all $u \in \mathscr{H}^1_E(\omega)$ and $x \in K$. Since $h^{\omega}_u \geq 0$, Harnack's inequality implies

$$\sup_{x \in K} h_u^{\omega}(x) \leq \alpha \inf_{x \in K} h_u^{\omega}(x)$$
$$\leq \alpha \{ M^2 + \inf_K (2U_{\omega}^{\delta_u} + U_{\omega}^{u^2 \pi^+}) \}$$

for some $\alpha > 0$ which is independent of *u*. Now,

$$\begin{split} &\inf_{K} \left(2U_{\omega}^{\delta_{u}} + U_{\omega}^{u^{2}\pi^{+}} \right) \\ & \leq \frac{1}{|\pi|(K)} \int_{\omega} (2U_{\omega}^{\delta_{u}} + U_{\omega}^{u^{2}\pi^{+}}) d |\pi| \\ & = \frac{1}{|\pi|(K)} \int_{\omega} U_{\omega}^{|\pi|} d (2\delta_{u} + u^{2}\pi^{+}) \\ & \leq \frac{2\beta_{\omega} - 1}{|\pi|(K)} \left(2\delta_{u}(\omega) + \int_{\omega} u^{2} d\pi^{+} \right) \leq \frac{2(2\beta_{\omega} - 1)}{|\pi|(K)} \end{split}$$

for $u \in \mathscr{H}^{1}_{E}(\omega)$. Hence

$$\sup_{x \in K} h_u^{\omega}(x) \leq \alpha \left\{ M^2 + \frac{2(2\beta_{\omega} - 1)}{|\pi|(K)} \right\}$$

for all $u \in \mathcal{H}^1_E(\omega)$.

5.3. Completeness of the spaces $\mathscr{H}_{D'}(\omega)$ and $\mathscr{H}_{E}(\omega)$.

LEMMA 5.3. Let ω be a PB-domain. If $u_n \in \mathscr{H}_E(\omega)$, $n = 1, 2, ..., \{ \|u_n\|_{E,\omega} \}$ is bounded and $u_n \rightarrow u$ locally uniformly on ω , then $u \in \mathscr{H}_E(\omega)$ and

$$\|u\|_{E,\omega} \leq \beta_{\omega}^{1/2} \liminf_{n \to \infty} \|u_n\|_{E,\omega}.$$

PROOF. The case $\pi |\omega| \ge 0$ is given in [9, Proposition 3.3]. Thus we shall prove the case $\pi^{-}|\omega \ne 0$. Taking a subsequence, we may assume that $\lim_{n\to\infty} ||u_n||_{E,\omega}$ exists. Let ω' be any PC-domain such that $\overline{\omega}' \subset \omega$ and $\pi^{-}|\omega' \ne 0$. Since $u_n \rightarrow u$ uniformly on ω' , u is bounded on ω' and $|\pi||(\omega') < +\infty$, we see that $\int_{\omega'} u_n^2 d|\pi| \rightarrow \int_{\omega'} u^2 d|\pi|$ and $U_{\omega'}^{u_n^2\pi} \rightarrow U_{\omega'}^{u^2\pi}$ uniformly on ω' . Consider the sequence $\{h_{u_n}^{\omega'}\}$ in the notation in § 5.2. By Lemma 5.2, it is locally uniformly bounded on ω' . Hence, by Axiom 3, we can choose a subsequence $\{v_j\}$ of $\{u_n\}$ such that $\{h_{v_j}^{\omega'}\}$ converges locally uniformly on ω' . For simplicity, let $\delta_j \equiv \delta_{v_j}$ and $h_j \equiv h_{v_j}^{\omega'}$. Obviously, $h^* \equiv \lim_{j\to\infty} h_j$ is harmonic on ω' .

$$v = h^* - u^2 - U^{u^2 \pi}_{\omega'}.$$

Since $\sigma_v = -\sigma_{u^2} - u^2 \pi = 2\delta_u \ge 0$, v is superharmonic on ω' . Furthermore,

(5.2)
$$v = \lim_{j \to \infty} \left\{ h_j - v_j^2 - U_{\omega'}^{\nu_j^2 \pi} \right\} = 2 \lim_{j \to \infty} U_{\omega'}^{\delta_j} \ge 0$$

It then follows that

Dirichlet Integrals of Functions on a Self-adjoint Harmonic Space

$$2U_{\omega'}^{\delta_u} = U_{\omega'}^{\sigma_v} \leq v = 2\lim_{j \to \infty} U_{\omega'}^{\delta_j}.$$

Given any open set ω'' such that $\overline{\omega}'' \subset \omega'$, let $\lambda \equiv \lambda(\omega''; \omega')$ in the notation in Lemma 2.4. Since $S(\lambda) \subset \overline{\omega}''$ and the convergence in (5.2) is uniform on ω'' , we deduce

$$\begin{split} \delta_{u}(\omega'') &\leq \int_{\omega'} U_{\omega'}^{\lambda} d\delta_{u} \\ &= \int_{\omega'} U_{\omega'}^{\delta_{u}} d\lambda^{+} - \int_{\omega'} U_{\omega'}^{\delta_{u}} d\lambda^{-} \\ &\leq \lim_{j \to \infty} \int_{\omega'} U_{\omega'}^{\delta_{j}} d\lambda^{+} \\ &= \lim_{j \to \infty} \int_{\omega'} U_{\omega'}^{\lambda^{+}} d\delta_{j} \leq \beta_{\omega'} \liminf_{j \to \infty} \delta_{j}(\omega') \,. \end{split}$$

Letting $\omega'' \uparrow \omega'$, we have

$$\delta_{u}(\omega') \leq \beta_{\omega} \liminf_{j \to \infty} \delta_{j}(\omega').$$

Hence,

$$\|u\|_{E,\omega'}^{2} \leq \beta_{\omega} \liminf_{j \to \infty} \delta_{j}(\omega') + \int_{\omega'} u^{2} d|\pi|$$
$$\leq \beta_{\omega} \liminf_{j \to \infty} \left(\delta_{j}(\omega') + \int_{\omega'} v_{j}^{2} d|\pi| \right)$$
$$= \beta_{\omega} \lim_{n \to \infty} \|u_{n}\|_{E,\omega}^{2}.$$

Since we can choose ω' arbitrarily close to ω , we obtain the required inequality.

THEOREM 5.3 (cf. [9, Theorem 3.3]). If ω is an open set such that $|\pi||\omega_1 \neq 0$ for every component ω_1 of ω , then $\mathscr{H}_E(\omega)$ is a Hilbert space with respect to the norm $\|\cdot\|_{E,\omega}$.

PROOF. Obviously,

$$(u, v)_{E,\omega} = \delta_{[u,v]}(\omega) + \int_{\omega} uv \, d|\pi|$$

is well-defined for any $u, v \in \mathscr{H}_{E}(\omega)$ and is an inner product in $\mathscr{H}_{E}(\omega)$ such that $(u, u)_{E,\omega} = ||u||_{E,\omega}^{2}$. To prove the completeness of $\mathscr{H}_{E}(\omega)$, let $\{u_{n}\}$ be a Cauchy sequence in $\mathscr{H}_{E}(\omega)$, i.e., $||u_{n}-u_{m}||_{E,\omega} \to 0$ $(n, m \to \infty)$. Let ω_{1} be any component of ω and consider the set

$$A = \{x \in \omega_1; \lim_{n \to \infty} u_n(x) \text{ exists}\}.$$

If ω' is a PB-domain such that $\omega' \subset \omega_1$ and $|\pi||\omega' \neq 0$, then, by Corollary 1 to Theorem 5.2, u_n converges to a $u \in \mathscr{H}(\omega')$ locally uniformly on ω' , so that $\omega' \subset A$. Furthermore, using the previous lemma, we see that $u \in \mathscr{H}_E(\omega')$ and $||u_n - u||_{E,\omega'} \rightarrow 0$ $(n \rightarrow \infty)$ (cf. the proof of [9, Theorem 3.3]). If ω' is a subdomain of ω_1 such that $|\pi||\omega'=0$, then by [9, Theorem 3.2], $\{u_n - u_n(x_0)\}$ is convergent locally uniformly on ω' for a fixed $x_0 \in \omega'$, and hence either $\omega' \subset A$ or $\omega' \subset \omega_1 - A$. If $\omega' \subset A$, then, by [9, Theorem 3.3], $u = \lim_{n \to \infty} u_n \in \mathscr{H}_E(\omega')$ and $||u_n - u||_{E,\omega'} \rightarrow 0$ $(n \rightarrow \infty)$. Since PB-domains form a base of open sets, the above results show that A and $\omega_1 - A$ are both open. Since $|\pi||\omega_1 \neq 0$, it follows that $A = \omega_1$. Therefore, $u = \lim_{n \to \infty} u_n$ exists on ω_1 and $||u - u_n||_{E,\omega'} \rightarrow 0$ $(n \rightarrow \infty)$ for any PB-domain ω' contained in ω_1 .

For any compact set K in ω , the above result implies that

$$\delta_{u_n-u}(K) + \int_K (u_n-u)^2 d|\pi| \to 0.$$

Hence

$$\delta_{u}(K) + \int_{K} u^{2} d |\pi| = \lim_{n \to \infty} \left\{ \delta_{u_{n}}(K) + \int_{K} u_{n}^{2} d |\pi| \right\}$$
$$\leq \lim_{n \to \infty} \|u_{n}\|_{E,\omega} < +\infty.$$

Thus, $u \in \mathscr{H}_{E}(\omega)$. Furthermore, for each m,

$$\delta_{u-u_m}(K) + \int_K (u-u_m)^2 d|\pi| = \lim_{n \to \infty} \left\{ \delta_{u_n-u_m}(K) + \int_K (u_n-u_m)^2 d|\pi| \right\}$$
$$\leq \lim_{n \to \infty} \|u_n-u_m\|_{E,\omega} \to 0 \quad (m \to \infty) .$$

Hence $||u - u_m||_{E,\omega} \rightarrow 0$. Thus, $\mathscr{H}_E(\omega)$ is complete.

THEOREM 5.4. If ω is an open set such that $|\pi||\omega_1 \neq 0$ for every component ω_1 of ω , then $\mathscr{H}_{D'}(\omega)$ is a Hilbert space with respect to the norm $\|\cdot\|_{D',\omega}$.

PROOF. For $u, v \in \mathcal{H}_{D'}(\omega)$.

$$(u, v)_{D', \omega} = \delta_{[u,v]}(\omega) + \int_{\omega} uv \, d\pi^{-}$$

is well-defined and is an inner product in $\mathscr{H}_{D'}(\omega)$ such that $(u, u)_{D',\omega} = ||u||_{D',\omega}^2$. Let $\{u_n\}$ be a Cauchy sequence in $\mathscr{H}_{D'}(\omega)$. If ω' is a PB-domain contained in ω and ω'' is a PC-domain such that $\overline{\omega}'' \subset \omega'$, then Corollary 4 to Theorem 5.2

implies that

$$\|u_n - u_m\|_{E,\omega''} \leq M \|u_n - u_m\|_{D',\omega'} \to 0 \qquad (n, m \to \infty)$$

for some constant M > 0. Hence, by the previous theorem, there is $u \in \mathscr{H}_{E}(\omega'')$ such that $||u_n - u||_{E,\omega''} \to 0$ $(n \to \infty)$ and $u_n \to u$ locally uniformly on ω'' . Since such ω'' 's cover ω , an argument similar to the last part of the proof of the previous theorem shows that $u = \lim_{n \to \infty} u_n \in \mathscr{H}_{D'}(\omega)$ and $||u_n - u||_{D',\omega} \to 0$ $(n \to \infty)$.

COROLLARY (cf. [11, Theorems 3 and 4]). If 1 is superharmonic on ω and is not harmonic on any component of ω , then $\mathscr{H}_D(\omega)$ is a Hilbert space with respect to the norm $\|\cdot\|_{D,\omega}$.

REMARK 5.3. If $\pi = 0$ on some component of ω , then $\|\cdot\|_{E,\omega}$ and $\|\cdot\|_{D',\omega}$ fail to be norms; though $\mathscr{H}_{E}(\omega)$ and $\mathscr{H}_{D'}(\omega)$ are still complete with respect to these semi-norms respectively (see [9, Theorem 3.3]).

REMARK 5.4. The above corollary may remain valid in case 1 is not superharmonic on ω . In fact, if the harmonic space is given by solutions of $\Delta u = Pu$ on a Euclidean domain, then we can show that the space of Dirichlet-finite solutions is complete with respect to the Dirichlet norm.

§ 6. Dirichlet potentials and Dirichlet functions on a PB-domain

6.1. Quasi-continuous functions

Let ω be a PB-domain. We consider the capacity \hat{C}_{ω} on ω relative to the kernel

$$\hat{G}_{\omega}(x, y) = \frac{G_{\omega}(x, y)}{s_{\omega}(x)s_{\omega}(y)} \qquad (s_{\omega} \equiv 1 + U_{\omega}^{\pi^{-}}),$$

i.e.,

$$\hat{C}_{\omega}(K) = \sup \left\{ \mu(K); \ \mu \in \mathscr{M}_{B}^{+}(\omega), \ \int_{\omega} \hat{G}_{\omega}(x, y) d\mu(y) \leq 1 \text{ for all } x \in \omega \right\}$$
$$= \sup \left\{ \int_{K} s_{\omega} dv; \ v \in \mathscr{M}_{B}^{+}(\omega), \ U_{\omega}^{v} \leq s_{\omega} \text{ on } \omega \right\}$$

for every compact set K in ω . \hat{C}_{ω} defines a Choquet capacity on ω (cf. [9, Proposition 5.2]). By [9, Lemma 5.5], we see

LEMMA 6.1. A set $e \subset \Omega$ is polar if and only if $\hat{G}_{\omega}(e \cap \omega) = 0$ for every PBdomain ω . Next we prove

LEMMA 6.2. Let ω and ω' be two PB-domains such that $\omega' \subset \omega$ and let K_0 be a compact set in ω' . Then there are constants $c_1 = c_1(\omega, \omega') \ge 1$ and $c_2 = c_2(\omega, \omega', K_0) \ge 1$ such that

$$\hat{C}_{\omega}(A) \leq c_1 \hat{C}_{\omega'}(A)$$

for all Borel sets A in ω' and

$$\hat{C}_{\omega'}(A) \leq c_2 \hat{C}_{\omega}(A)$$

for all Borel sets A contained in K_0 .

PROOF. It is enough to prove the inequalities for compact sets A. If $U_{\omega}^{\nu} \leq s_{\omega}$ on A with $\nu \in \mathcal{M}_{B}^{+}(\omega)$, then $U_{\omega}^{\nu} \leq U_{\omega}^{\nu} \leq s_{\omega} \leq \beta_{\omega} s_{\omega'}$ on A. Hence

$$\hat{C}_{\omega'}(A) \geq \frac{1}{\beta_{\omega}} \int_A s_{\omega'} dv \geq \frac{1}{\beta_{\omega}^2} \int_A s_{\omega} dv.$$

Thus,

$$\hat{C}_{\omega'}(A) \ge rac{1}{eta_{\omega}^2} \hat{C}_{\omega}(A)$$
.

Next, suppose $A \subset K_0$. Let $G_{\omega}(x, y) = G_{\omega'}(x, y) + h(x, y)$ for $x, y \in \omega'$. Then, h(x, y) is positive and continuous on $\omega \times \omega$. Put $M = \sup_{x \in K_0, y \in K_0} h(x, y)$ and $m = \inf_{x \in K_0, y \in K_0} G_{\omega'}(x, y)$. Then $0 < M < +\infty$ and $0 < m < +\infty$. Let $c_2 = 1$ +M/m. Then $G_{\omega}(x, y) \le c_2 G_{\omega'}(x, y)$ for all $x, y \in K_0$. Thus, if $v \in \mathcal{M}_B^+(\omega)$ and $S(v) \subset K_0$, then $U_{\omega}^v \le c_2 U_{\omega'}^v$ on K_0 . Let $v \in \mathcal{M}_B^+(\omega)$, $S(v) \subset A$ and $U_{\omega'}^v \le s_{\omega'}$ on A. Then $U_{\omega}^v \le c_2 s_{\omega}$ on A, so that

$$\widehat{C}_{\omega}(A) \geq \frac{1}{c_2} \int_A s_{\omega} dv \geq \frac{1}{c_2} \int_A s_{\omega'} dv.$$

It then follows that

$$\hat{C}_{\omega}(A) \geq \frac{1}{c_2} \, \hat{C}_{\omega'}(A) \, .$$

An extended real valued function f on an open set ω_0 is said to be *quasi*continuous there if, for any PB-domain ω contained in ω_0 , $f|\omega$ is quasi-continuous with respect to the capacity \hat{C}_{ω} . By virtue of the above lemma, a function on a PB-domain ω_0 is quasi-continuous in the above sense if and only if it is quasicontinuous with respect to \hat{C}_{ω_0} . By Lemma 6.1, a quasi-continuous function is finite q.e.; if f is quasi-continuous and g=f q.e., then g is quasi-continuous.

LEMMA 6.3. Let ω_0 be an open set and f be a quasi-continuous function on ω_0 . Then f is μ -measurable for any non-negative measure μ on ω_0 such that $\mu|\omega \in \mathscr{M}_E(\omega)$ for each PC-domain ω with $\overline{\omega} \subset \omega_0$; in particular, f is $|\pi|$ -measurable.

This lemma is easily verified by the definition of quasi-continuity and Lemmas 1.3 and 6.1 (cf. [4, p. 52]).

LEMMA 6.4. Let ω_0 be an open set and let f be a quasi-continuous function on ω_0 . If f is μ -integrable and $\int_{\omega} f d\mu = 0$ for any $\mu \in \mathscr{M}^+_B(\omega)$ with a PCdomain ω such that $\overline{\omega} \subset \omega_0$, then f = 0 q.e. on ω_0 .

PROOF. Let ω' be any PB-domain contained in ω_0 . If $\mu \in \mathscr{M}^+_B(\omega')$ and $S(\mu)$ is compact in ω' , then f is μ -integrable and $\int_{\omega'} f d\mu = 0$ by assumption. Hence, [9, Corollary to Lemma 5.7] implies that f=0 q.e. on ω' with respect to the capacity $\hat{C}_{\omega'}$. This means that f=0 q.e. on ω_0 .

REMARK 6.1. Similarly, we also see that [9, Lemma 5.7] is valid in the present case.

6.2. Dirichlet potentials

Let ω be a PB-domain and consider the classes

$$\mathcal{M}_{BC}(\omega) = \left\{ \sigma \in \mathcal{M}_{B}(\omega); U_{\omega}^{|\sigma|} \text{ is continuous} \right\},$$
$$\mathcal{P}_{BC}(\omega) = \left\{ U_{\omega}^{\sigma}; \sigma \in \mathcal{M}_{BC}(\omega) \right\}.$$

Every function in $\mathcal{P}_{BC}(\omega)$ is bounded continuous on ω . $\mathcal{P}_{BC}(\omega)$ is a normed space with respect to the norm

$$\|U_{\omega}^{\sigma}\|_{I,\omega} = I_{\omega}(\sigma)^{1/2} \qquad (\text{i.e., } \|f\|_{I,\omega} = I_{\omega}(\sigma_f)^{1/2}).$$

THEOREM 6.1. Let ω be a PB-domain and let

$$\mathcal{D}_{0}(\omega) = \left\{ f; \begin{array}{l} \text{there is a sequence } \{f_{n}\} \text{ in } \mathcal{P}_{BC}(\omega) \text{ such that} \\ f_{n} \rightarrow f \text{ q.e. on } \omega \text{ and } \|f_{n} - f_{m}\|_{I,\omega} \rightarrow 0 \quad (n, m \rightarrow \infty) \end{array} \right\}$$

Then $\mathcal{D}_0(\omega)$ has the following properties:

(a) If $f \in \mathcal{D}_0(\omega)$ and f_1 is a function on ω such that $f_1 = f$ q.e. on ω , then $f_1 \in \mathcal{D}_0(\omega)$.

- (b) Any function in $\mathcal{D}_0(\omega)$ is quasi-continuous on ω .
- (c) For $f \in \mathcal{D}_0(\omega)$, if $\{f_n\}$ is a sequence in $\mathcal{P}_{BC}(\omega)$ such that $f_n \to f$ q.e.

on ω and $||f_n - f_m||_{I,\omega} \to 0$ $(n, m \to \infty)$, then

$$\|f\|_{I,\omega} \equiv \lim_{n \to \infty} \|f_n\|_{I,\omega}$$

exists and is independent of the choice of $\{f_n\}$.

(d) If we identify functions which are equal q.e. on ω , then $\mathcal{D}_0(\omega)$ is a Hilbert space with respect to the above norm $\|\cdot\|_{I,\omega}$ and contains $\mathcal{P}_{BC}(\omega)$ as a dense subspace.

(e) If $f_n, f \in \mathcal{D}_0(\omega), f_n \to f$ q.e. on ω and $||f_n - f_m||_{I,\omega} \to 0$ $(n, m \to \infty)$, then $||f_n - f||_{I,\omega} \to 0$ $(n \to \infty)$.

(f) If $f_n, f \in \mathcal{D}_0(\omega)$ and $||f_n - f||_{I,\omega} \to 0$, then there is a subsequence of $\{f_n\}$ converging to f q.e. on ω .

(g) For any $f \in \mathcal{D}_0(\omega)$, there is a potential p on ω such that $|f| \leq p$ on ω .

PROOF. For $\sigma \in \mathcal{M}_B(\omega)$, let

$$\widehat{U}_{\omega}^{\sigma}(x) \equiv \int_{\omega} \widehat{G}_{\omega}(x, y) d\sigma(y) = \frac{1}{s_{\omega}(x)} \int_{\omega} \frac{G_{\omega}(x, y)}{s_{\omega}(y)} d\sigma(y) \,.$$

Since ω is a PB-domain, we see that $\sigma \in \mathcal{M}_{BC}(\omega)$ if and only if $\hat{U}_{\omega}^{|\sigma|}(x)$ is bounded and continuous. Let

$$\hat{\mathscr{P}}_{BC}(\omega) = \left\{ \hat{U}^{\sigma}_{\omega}; \sigma \in \mathscr{M}_{BC}(\omega) \right\},\$$
$$\|\hat{U}^{\sigma}_{\omega}\|_{\hat{E},\omega} = I_{\omega}(s_{\omega}^{-1}\sigma)^{1/2}$$

and

$$\hat{\mathscr{D}}_{0}(\omega) = \left\{ \begin{array}{l} g \\ g \\ g_{n} \rightarrow g \\ q.e. \text{ on } \omega \text{ and } \|g_{n} - g_{m}\|_{E,\omega} \rightarrow 0 \quad (n, m \rightarrow \infty) \end{array} \right\}.$$

Since $\mathscr{P}_{BC}(\omega) = \{s_{\omega}g; g \in \widehat{\mathscr{P}}_{BC}(\omega)\}$ and $\|s_{\omega}g\|_{I,\omega} = \|g\|_{\mathcal{E},\omega}$ for $g \in \widehat{\mathscr{P}}_{BC}(\omega)$, we see that $\mathscr{D}_0(\omega) = \{s_{\omega}g; g \in \widehat{\mathscr{D}}_0(\omega)\}$. Now, applying [9, Theorem 5.1 and Propositions 5.3 and 5.4] to the harmonic structure $\mathfrak{H}_{\omega}/s_{\omega}$ and noting that s_{ω} is positive continuous, we obtain the required results.

REMARK 6.2. In case 1 is superharmonic on ω , the space $\mathscr{D}_0(\omega)$ is the same as $\mathscr{E}_0(\omega)$ given in [9].

PROPOSITION 6.1. If ω is a PB-domain and $\sigma \in \mathscr{M}_{E}(\omega)$, then $f \equiv U_{\omega}^{\sigma} \in \mathscr{D}_{0}(\omega)$ and $||f||_{I,\omega}^{2} = I_{\omega}(\sigma)$.

PROOF. By Lemma 1.5, we can choose $\sigma_n \in \mathscr{M}_{BC}(\omega)$, n = 1, 2, ..., such that

 $U_{\omega}^{\sigma_n} \to f$ q.e. on ω and $I_{\omega}(\sigma - \sigma_n) \to 0$ $(n \to \infty)$. Hence $f \in \mathcal{D}_0(\omega)$ and $||f||_{I,\omega}^2 = \lim_{n \to \infty} I_{\omega}(\sigma_n) = I_{\omega}(\sigma)$.

The following three lemmas will be used in the next section.

LEMMA 6.5. Let ω be a PB-domain. If $f \in \mathscr{P}_{BC}(\omega)$, then $|f| \in \mathscr{P}_{BC}(\omega)$ and $|||f|||_{I,\omega} = ||f||_{I,\omega}$.

PROOF. If $f = U_{\omega}^{\sigma}$ with $\sigma \in \mathscr{M}_{BC}(\omega)$, then $|f| = U_{\omega}^{|\sigma|} - 2\min(U_{\omega}^{\sigma^{+}}, U_{\omega}^{\sigma^{-}})$. It follows that $|f| \in \mathscr{P}_{BC}(\omega)$. By the corollary to Lemma 4.2, $\delta_{|f|} = \delta_{f}$. Hence, by Lemma 4.3, we have

$$\||f|\|_{I,\omega}^{2} = \delta_{|f|}(\omega) + \int_{\omega} |f|^{2} d\pi = \delta_{f}(\omega) + \int_{\omega} f^{2} d\pi = \|f\|_{I,\omega}^{2}.$$

LEMMA 6.6. Let ω be a PB-domain. Then, for any $\mu \in \mathscr{M}_{E}^{+}(\omega)$ and $f \in \mathscr{D}_{0}(\omega)$,

$$\int_{\omega} |f| d\mu \leq ||f||_{I,\omega} I_{\omega}(\mu)^{1/2} .$$

PROOF. Let $\{f_n\}$ be a sequence in $\mathscr{P}_{BC}(\omega)$ such that $f_n \to f$ q.e. on ω and $\|f - f_n\|_{I,\omega} \to 0$ $(n \to \infty)$. Let $\sigma_n = \sigma_{|f_n|}$. By the above lemma, $\sigma_n \in \mathscr{M}_{BC}(\omega)$ and $I_{\omega}(\sigma_n) = \|f_n\|_{I,\omega}^2$. Hence

$$\int_{\omega} |f_n| d\mu = \int_{\omega} U_{\omega}^{\sigma_n} d\mu \leq I(\sigma_n)^{1/2} I_{\omega}(\mu)^{1/2} = ||f_n||_{I,\omega} I_{\omega}(\mu)^{1/2}.$$

By Lemma 1.3, $\mu(e) = 0$ for a polar set e. Hence, Fatou's lemma implies

$$\begin{split} \int_{\omega} |f| d\mu &\leq \liminf_{n \to \infty} \int_{\omega} |f_n| d\mu \\ &\leq \{ \lim_{n \to \infty} \|f_n\|_{I,\omega} \} I_{\omega}(\mu)^{1/2} = \|f\|_{I,\omega} I_{\omega}(\mu)^{1/2} \,. \end{split}$$

LEMMA 6.7. Let ω be a PB-domain and ω' be a PC-domain such that $\overline{\omega}' \subset \omega$. If $f \in \mathcal{D}_0(\omega')$, then

$$f^* = \begin{cases} f & on \ \omega' \\ 0 & on \ \omega - \omega' \end{cases}$$

is an element of $\mathcal{D}_0(\omega)$.

PROOF. Let $\{f_n\}$ be a sequence in $\mathscr{P}_{BC}(\omega')$ such that $f_n \to f$ q.e. on ω' and $\|f_n - f_m\|_{I,\omega'} \to 0$ $(n, m \to \infty)$. By virtue of Lemma 1.5, we may assume that $S(\sigma_{f_n})$ is compact in ω' for each n. Let $\sigma_n \equiv \sigma_{f_n}$ for simplicity. Each σ_n can be

Fumi-Yuki MAEDA

regarded as a measure on ω . Using Lemma 2.2, we see that $p_n \equiv U_{\omega}^{\sigma_n^+}$ and $q_n \equiv U_{\omega}^{\sigma_n^-}$ are bounded on ω , so that $\sigma_n \in \mathcal{M}_B(\omega)$. By Lemma 1.7,

$$\tilde{p}_n \equiv \hat{R}_{p_n}^{\omega - \omega', \omega}$$
 and $\tilde{q}_n \equiv \hat{R}_{q_n}^{\omega - \omega', \omega}$

are bounded potentials on ω and $p_n - q_n = \tilde{p}_n - \tilde{q}_n$ q.e. on $\omega - \omega'$. Let μ_n and ν_n be the associated measures of \tilde{p}_n and \tilde{q}_n respectively, and let $\tau_n = \mu_n - \nu_n$. Since $\tilde{p}_n | \omega - \overline{\omega}' = p_n | \omega - \overline{\omega}'$ and $\tilde{q}_n | \omega - \overline{\omega}' = q_n | \omega - \overline{\omega}'$ and they are harmonic on $\omega - \overline{\omega}'$, we see that $S(\mu_n) \subset \partial \omega'$ and $S(\nu_n) \subset \partial \omega'$. Therefore $\tau_n \in \mathscr{M}_B(\omega)$ for each n. Let $g_n \equiv p_n - q_n - \tilde{p}_n + \tilde{q}_n = U_{\omega}^{\sigma_n - \tau_n}$. Then $g_n \in \mathscr{D}_0(\omega)$ by Proposition 6.1. Furthermore, $g_n = 0$ q.e. on $\omega - \omega'$. On the other hand, by Axiom D (see Corollary 1 to Theorem 1.1), we see that $p_n - \tilde{p}_n = U_{\omega'}^{\sigma_n^+}$ and $q_n - \tilde{q}_n = U_{\omega'}^{\sigma_n^-}$ on ω' (see, e.g., [3, p. 129] or [5, p. 225]). Hence $g_n = f_n$ on ω' . It then follows that $g_n \to f^*$ q.e. on ω . Furthermore, using the fact that $S(\tau_n) \subset \partial \omega'$, Lemma 1.3 and Proposition 6.1, we deduce

$$\begin{aligned} \|g_n - g_m\|_{I,\omega} &= \int_{\omega} (g_n - g_m) \, d(\sigma_n - \tau_n - \sigma_m + \tau_m) \\ &= \int_{\omega'} (f_n - f_m) \, d(\sigma_n - \sigma_m) = \|f_n - f_m\|_{I,\omega'} \to 0 \end{aligned}$$

 $(n, m \to \infty)$. Thus, it follows from Theorem 6.1 that $f^* \in \mathcal{D}_0(\omega)$.

6.3. Dirichlet functions and gradient measures

For a PB-domain ω , let

$$\mathscr{D}(\omega) \equiv \mathscr{H}_{D}(\omega) + \mathscr{D}_{0}(\omega) = \{ u + f_{0} ; u \in \mathscr{H}_{D}(\omega), f_{0} \in \mathscr{D}_{0}(\omega) \}.$$

This is a linear space consisting of quasi-continuous functions on ω .

THEOREM 6.2. Let ω be a PB-domain. For each $f \in \mathscr{D}(\omega)$, there is a unique non-negative measure δ_f^{ω} on ω having the following property: if $f = u + f_0$ with $u \in \mathscr{H}_D(\omega)$ and $g \in \mathscr{D}_0(\omega)$ and if $\{f_n\}$ is a sequence in $\mathscr{P}_{BC}(\omega)$ such that $f_n \to f_0$ q.e. on ω and $||f_n - f_m||_{I,\omega} \to 0$ $(n, m \to \infty)$, then $\delta_{u+f_n}(A) \to \delta_f^{\omega}(A)$ for any Borel set A in ω .

PROOF. Let $\{f_n\}$ be a sequence in $\mathcal{P}_{BC}(\omega)$ as described in the theorem. By Lemma 4.3,

$$\delta_{f_n}(\omega) \leq \beta_{\omega} \|f_n\|_{I,\omega}^2, \qquad n = 1, 2, \dots$$

and

$$\delta_{f_n - f_m}(\omega) \leq \beta_{\omega} \|f_n - f_m\|_{I,\omega}^2, \qquad n, m = 1, 2, \dots$$

Since $\delta_{u+f_n} \leq 2(\delta_u + \delta_{f_n})$, it follows that $\{\delta_{u+f_n}(A)\}$ is bounded for any Borel set A in ω . Furthermore,

$$\begin{aligned} |\delta_{u+f_n}(A)^{1/2} - \delta_{u+f_m}(A)^{1/2} | \\ &\leq \delta_{f_n - f_m}(A)^{1/2} \leq \delta_{f_n - f_m}(\omega)^{1/2} \leq \beta_{\omega}^{1/2} ||f_n - f_m||_{I,\omega} \\ &\to 0 \ (n, \ m \to \infty) \,. \end{aligned}$$

Therefore, $\{\delta_{u+f_n}(A)\}$ is a Cauchy sequence, so that

$$\delta_f^{\omega}(A) \equiv \lim_{n \to \infty} \delta_{u+f_n}(A)$$

exists. The uniform convergence with respect to A implies that δ_f^{ω} is also a measure on ω . Obviously $\delta_f^{\omega} \ge 0$. If $\{f_n^*\}$ is another sequence in $\mathscr{P}_{BC}(\omega)$ such that $f_n^* \to f_0$ q.e. on ω and $\|f_n^* - f_m^*\|_{I,\omega} \to 0$ $(n, m \to \infty)$, then by Theorem 6.1, we see that $\|f_n - f_n^*\|_{I,\omega} \to 0$ $(n \to \infty)$. Then, by an argument similar to the above, we see that $\delta_{u+f_n}(A) - \delta_{u+f_n}(A) \to 0$ $(n \to \infty)$. Thus δ_f^{ω} is uniquely determined by f.

For $f, g \in \mathcal{D}(\omega)$, let

$$\delta^{\omega}_{[f,g]} = \frac{1}{2} \left(\delta^{\omega}_{f+g} - \delta^{\omega}_{f} - \delta^{\omega}_{g} \right).$$

We can easily see that the mapping $(f, g) \rightarrow \delta^{\omega}_{[f,g]}$ is symmetric and bilinear on $\mathscr{D}(\omega) \times \mathscr{D}(\omega)$.

Note that if $f \in \mathcal{P}_{BC}(\omega)$, then $\delta_f^{\omega} = \delta_f$; and hence if $f, g \in \mathcal{P}_{BC}(\omega)$, then $\delta_{[f,g]}^{\omega} = \delta_{[f,g]}$.

THEOREM 6.3. Let ω be a PB-domain and let $f \in \mathcal{D}_0(\omega)$. Then,

(6.1)
$$\int_{\omega} f^2 d|\pi| \leq (2\beta_{\omega} - 1) ||f||_{I,\omega}^2,$$

(6.2)
$$\int_{\omega} f^2 d\pi^- \leq (\beta_{\omega} - 1) \|f\|_{I,\omega}^2,$$

(6.3)
$$\delta_f^{\omega}(\omega) \leq \beta_{\omega} \|f\|_{I,\omega}^2$$

(6.4)
$$\delta^{\omega}_{f}(\omega) + \int_{\omega} f^{2} d\pi = \|f\|^{2}_{I,\omega}$$

and

(6.5)
$$\delta^{\omega}_{[u,f]}(\omega) + \int_{\omega} uf \, d\pi = 0$$

for $u \in \mathcal{H}_{E}(\omega)$.

PROOF. Let $\{f_n\}$ be a sequence in $\mathscr{P}_{BC}(\omega)$ such that $f_n \to f$ q.e. on ω and $||f_n - f_m||_{I,\omega} \to 0$ $(n, m \to \infty)$. By Theorem 1.2,

$$\begin{split} &\int_{\omega} f_n^2 d \, | \, \pi \, | \, \leq (2\beta_{\omega} - 1) \| f_n \|_{I,\omega}^2, \\ &\int_{\omega} f_n^2 d \, \pi^- \leq (\beta_{\omega} - 1) \| f_n \|_{I,\omega}^2 \end{split}$$

and

$$\int_{\omega} (f_n - f_m)^2 d|\pi| \leq (2\beta_{\omega} - 1) \|f_n - f_m\|_{I,\omega}^2 \to 0 \qquad (n, m \to \infty).$$

Since $f_n \rightarrow f$ q.e. on ω and $|\pi|(e) = 0$ for a polar set e, Fatou's lemma implies (6.1) and (6.2), and furthermore,

$$\int_{\omega} (f_n - f)^2 d|\pi| \to 0 \qquad (n \to \infty).$$

Then (6.4) is easily seen by Lemma 4.3. The inequality (6.3) immediately follows from (6.2) and (6.4). Finally, if $u \in \mathscr{H}_{E}(\omega)$, then, by Lemma 4.5,

$$\delta_{[u,f_n]}(\omega) + \int_{\omega} u f_n d\pi = 0, \qquad n = 1, 2, \dots$$

By the definition of $\delta^{\omega}_{[u,f]}$, we see that $\delta_{[u,f_n]}(\omega) \rightarrow \delta^{\omega}_{[u,f]}(\omega) (n \rightarrow \infty)$. By the above result, we also see that $\int_{\omega} uf_n d\pi \rightarrow \int_{\omega} uf d\pi (n \rightarrow \infty)$. Hence we obtain (6.5).

THEOREM 6.4. Let $f \in \mathscr{H}_{E}(\omega) + \mathscr{D}_{0}(\omega)$. If

$$\delta^{\omega}_{[f,g]}(\omega) + \int_{\omega} fg \ d\pi = 0$$

for all $g \in \mathcal{D}_0(\omega)$, then f = u q.e. on ω with $u \in \mathcal{H}_E(\omega)$.

PROOF. Let $f = u + f_0$ with $u \in \mathscr{H}_E(\omega)$ and $f_0 \in \mathscr{D}_0(\omega)$. By assumption

$$\delta^{\omega}_{[f,f_0]}(\omega) + \int_{\omega} ff_0 d\pi = 0$$

and by the above theorem

$$\delta^{\omega}_{[u,f_0]}(\omega) + \int_{\omega} u f_0 d\pi = 0.$$

Hence

$$\|f_0\|_{I,\omega}^2 = \delta^{\omega}_{f_0}(\omega) + \int_{\omega} f_0^2 d\pi = 0,$$

and hence $f_0 = 0$ q.e. on ω by Theorem 6.1.

§7. Locally Dirichlet-finite functions

7.1. Preliminary lemmas

LEMMA 7.1. Let ω be a PB-domain and ω' be a PC-domain such that $\overline{\omega}' \subset \omega$. Then, for any $\sigma \in \mathscr{M}_E(\omega)$ such that $U_{\omega}^{|\sigma|}$ is locally bounded on ω ,

$$I_{\omega'}(\sigma) \leq (2\beta_{\omega} - 1)^2 I_{\omega}(\sigma)$$

PROOF. Put $p = U_{\omega}^{\sigma}$, $p' = U_{\omega'}^{\sigma}$ and $u = p | \omega' - p'$. By Lemma 2.8, $u \in \mathcal{H}_{BE}(\omega')$. By Lemmas 4.3 and 4.5,

(7.1)
$$\delta_{p'}(\omega') = \int_{\omega'} p'^2 d\pi = I_{\omega'}(\sigma),$$

(7.2)
$$\delta_{[u,p']}(\omega') + \int_{\omega'} u p' d\pi = 0.$$

Hence

$$\begin{split} I_{\omega'}(\sigma) &= \delta_{[p,p']}(\omega') + \int_{\omega'} pp' d\pi \\ &\leq \left\{ \delta_p(\omega') + \int_{\omega'} p^2 d\pi^+ \right\}^{1/2} \left\{ \delta_{p'}(\omega') + \int_{\omega'} p'^2 d\pi^+ \right\}^{1/2} \\ &\quad + \left\{ \int_{\omega'} p^2 d\pi^- \right\}^{1/2} \left\{ \int_{\omega'} p'^2 d\pi^- \right\}^{1/2} \\ &\leq \left\{ I_{\omega}(\sigma) + \int_{\omega} p^2 d\pi^- \right\}^{1/2} \left\{ I_{\omega'}(\sigma) + \int_{\omega'} p'^2 d\pi^- \right\}^{1/2} \\ &\quad + \left\{ \int_{\omega} p^2 d\pi^- \right\}^{1/2} \left\{ \int_{\omega'} p'^2 d\pi^- \right\}^{1/2} . \end{split}$$

Since $\int_{\omega'} p'^2 d\pi^- \leq (\beta_{\omega} - 1)I_{\omega'}(\sigma)$ and $\int_{\omega} p^2 d\pi^- \leq (\beta_{\omega} - 1)I_{\omega}(\sigma)$ (Theorem 1.2), we deduce that

$$\begin{split} I_{\omega'}(\sigma) &\leq \beta_{\omega} I_{\omega}(\sigma)^{1/2} I_{\omega'}(\sigma)^{1/2} + (\beta_{\omega} - 1) I_{\omega}(\sigma)^{1/2} I_{\omega'}(\sigma)^{1/2} \\ &= (2\beta_{\omega} - 1) I_{\omega}(\sigma)^{1/2} I_{\omega'}(\sigma)^{1/2} \,, \end{split}$$

from which the required inequality follows.

LEMMA 7.2. Let ω , ω' and σ be as in the previous lemma. Then, for $u = U^{\sigma}_{\omega} | \omega' - U^{\sigma}_{\omega'}$,

$$\delta_{\mathbf{u}}(\omega') + \int_{\omega'} u^2 d|\pi| \leq (2\beta_{\omega} - 1)^3 I_{\omega}(\sigma).$$

PROOF. With the same notation as in the above proof, (7.1) and (7.2) imply

$$\delta_{u}(\omega') + \int_{\omega'} u^2 d\pi = \delta_{p}(\omega') + \int_{\omega'} p^2 d\pi - I_{\omega'}(\sigma) d\sigma$$

Hence, using Lemma 4.3, we have

$$\begin{split} \delta_{u}(\omega') + & \int_{\omega'} u^{2} d |\pi| \\ & \leq \delta_{p}(\omega') + \int_{\omega'} p^{2} d\pi^{+} - \int_{\omega'} p^{2} d\pi^{-} + 2 \int_{\omega'} u^{2} d\pi^{-} - I_{\omega'}(\sigma) \\ & \leq I_{\omega}(\sigma) + \int_{\omega} p^{2} d\pi^{-} - \int_{\omega'} p^{2} d\pi^{-} + 2 \int_{\omega'} (p - p')^{2} d\pi^{-} - I_{\omega'}(\sigma) \\ & \leq I_{\omega}(\sigma) + 2 \int_{\omega} p^{2} d\pi^{-} - 4 \int_{\omega'} pp' d\pi^{-} + 2 \int_{\omega'} p'^{2} d\pi^{-} - I_{\omega'}(\sigma) . \end{split}$$

If $\pi^{-}|\omega=0$, then the required inequality is now obvious. If $\pi^{-}|\omega\neq 0$, then $\beta_{\omega}>1$. Noting that

$$-2pp' \leq 2(\beta_{\omega} - 1)p^{2} + [2(\beta_{\omega} - 1)]^{-1}p'^{2}$$

and using Theorem 1.2, we have

$$\begin{split} \delta_{u}(\omega') + & \int_{\omega'} u^{2} d|\pi| \\ & \leq I_{\omega}(\sigma) + (4\beta_{\omega} - 2) \int_{\omega} p^{2} d\pi^{-} + \left(\frac{1}{\beta_{\omega} - 1} + 2\right) \int_{\omega'} p'^{2} d\pi^{-} - I_{\omega'}(\sigma) \\ & \leq \{1 + (\beta_{\omega} - 1)(4\beta_{\omega} - 2)\} I_{\omega}(\sigma) + \{1 + (2\beta_{\omega} - 1) - 1\} I_{\omega'}(\sigma) \\ & \leq (2\beta_{\omega} - 1)^{2} I_{\omega}(\sigma) + 2(\beta_{\omega} - 1) I_{\omega'}(\sigma). \end{split}$$

Then the required inequality follows from the previous lemma.

LEMMA 7.3. Let ω be a PB-domain and ω' be a PC-domain such that $\overline{\omega}' \subset \omega$. Then, for any $f \in \mathscr{D}(\omega)$, $f | \omega' \in \mathscr{H}_E(\omega') + \mathscr{D}_0(\omega') \ (\subset \mathscr{D}(\omega'))$ and $\delta_{f | \omega'}^{\omega'} = \delta_{g}^{\omega} | \omega'$.

PROOF. Let $f = u + f_0$ with $u \in \mathscr{H}_D(\omega)$ and $f_0 \in \mathscr{D}_0(\omega)$. Choose $f_n \in \mathscr{P}_{BC}(\omega)$

such that $f_n \to f_0$ q.e. on ω and $||f_n - f_m||_{I,\omega} \to 0$ $(n, m \to \infty)$. Put $\sigma_n = \sigma_{f_n}, g_n = U_{\omega'}^{\sigma_n}$ and $u_n = f_n | \omega' - g_n \ (\in \mathscr{H}_{BE}(\omega'))$. By the previous two lemmas, we have

$$\|g_n - g_m\|_{I,\omega'} \le (2\beta_\omega - 1)\|f_n - f_m\|_{I,\omega} \to 0 \qquad (n, m \to \infty)$$

and

$$\|u_n - u_m\|_{E,\omega'} \le (2\beta_{\omega} - 1)^{3/2} \|f_n - f_m\|_{I,\omega} \to 0 \qquad (n, m \to \infty).$$

First assume $|\pi||\omega' \neq 0$. Then $\mathscr{H}_E(\omega')$ is complete by Theorem 5.3. Hence, $u^* = \lim_{n \to \infty} u_n$ exists, $u^* \in \mathscr{H}_E(\omega')$ and $||u_n - u^*||_{E,\omega'} \to 0$ $(n \to \infty)$. Then $g_n \to g^* \equiv f_0|\omega' - u^* q.e.$ on ω' . By definition, $g^* \in \mathscr{D}_0(\omega')$. Therefore, $f|\omega' = u|\omega' + u^* + g^* \in \mathscr{H}_E(\omega') + \mathscr{D}_0(\omega')$. If $|\pi||\omega' = 0$, then we first choose $g^* \in \mathscr{D}_0(\omega')$ such that $||g_n - g^*||_{I,\omega'} \to 0$ $(n \to \infty)$, which exists by Theorem 6.1 (or [9, Theorem 5.1]). By the same theorem, we see that there is a subsequence $\{g_{n_k}\}$ of $\{g_n\}$ such that $g_{n_k} \to g^*$ q.e. on $\omega' (k \to \infty)$. It follows that $\{u_{n_k}(x_0)\}$ is convergent for some $x_0 \in \omega'$. Hence, by [9, Theorem 3.3], there is $u^* \in \mathscr{H}_E(\omega')$ such that $||u_{n_k} - u^*||_{E,\omega'} \to 0$ $(k \to \infty)$ and $u_{n_k} \to u$ (locally uniformly) on ω' . Hence,

$$f|\omega' = u|\omega' + u^* + g^* \in \mathscr{H}_E(\omega') + \mathscr{D}_0(\omega').$$

From Theorem 6.2, it follows that

$$\delta_{f|\omega'}^{\omega'}(A) = \lim_{n \to \infty} \delta_{u+u^*+g_n}(A) = \lim_{n \to \infty} \delta_{(u+f_n)+(u^*-u_n)}(A)$$

for any Borel set A in ω' . Since

$$\begin{aligned} |\delta_{(u+f_n)+(u^*-u_n)}(A)^{1/2} - \delta_{u+f_n}(A)^{1/2}| \\ &\leq \delta_{u^*-u_n}(A)^{1/2} \leq ||u^*-u_n||_{E,\omega'} \to 0 \qquad (n \to \infty), \end{aligned}$$

we see that

$$\delta_{f|\omega'}^{\omega'}(A) = \lim_{n \to \infty} \delta_{u+f_n}(A) = \delta_f^{\omega}(A).$$

Therefore $\delta_{f|\omega'}^{\omega'} = \delta_{f}^{\omega} | \omega'$.

7.2. Locally Dirichlet-finite functions and their gradient measures

For an open set ω , we define

 $\mathscr{D}_{loc}(\omega) = \{f; \text{ for any PC-domain } \omega' \text{ such that } \bar{\omega}' \subset \omega, f | \omega' \in \mathscr{D}(\omega') \}.$

By virtue of Lemma 7.3, the space $\mathscr{D}(\omega')$ in the above definition may be replaced by $\mathscr{H}_{E}(\omega') + \mathscr{D}_{0}(\omega')$. Thus, in case 1 is superharmonic on ω , $\mathscr{D}_{loc}(\omega)$ coincides with the space $\mathscr{E}_{loc}(\omega)$ introduced in [9, §6.2]. Also, Lemma 7.3 asserts that $\mathscr{D}(\omega) \subset \mathscr{D}_{loc}(\omega)$ in case ω is a PB-domain, and furthermore it implies the following

THEOREM 7.1. For any $f \in \mathcal{D}_{loc}(\omega)$, there is a unique non-negative measure δ_f such that $\delta_f | \omega' = \delta_f^{\omega'}$ for any PC-domain ω' such that $\bar{\omega}' \subset \omega$.

The measure δ_f may be called the gradient measure of $f \in \mathscr{D}_{loc}(\omega)$. For $f, g \in \mathscr{D}_{loc}(\omega)$, their mutual gradient measure is defined by

$$\delta_{[f,g]} = \frac{1}{2} \left(\delta_{f+g} - \delta_f - \delta_g \right),$$

which is a signed measue on ω . Obviously, $\mathscr{P}_{loc}(\omega) \subset \mathscr{P}_{loc}(\omega)$ and the above definitions of δ_f and $\delta_{[f,g]}$ are compatible with those for $f, g \in \mathscr{P}_{loc}(\omega)$. We can easily verify that the mapping $(f,g) \rightarrow \delta_{[f,g]}$ is symmetric and bilinear on $\mathscr{P}_{loc}(\omega) \times \mathscr{P}_{loc}(\omega)$ and the same inequalities as in the corollary to Theorem 4.1 hold for $f, g \in \mathscr{P}_{loc}(\omega_0)$.

From Theorem 6.3, we obtain

PROPOSITION 7.1. Every $f \in \mathscr{D}_{loc}(\omega)$ is locally $|\pi|$ -square-integrable on ω . Next we prove

PROPOSITION 7.2. If ω is a PB-domain, then

$$\left\{f\in\mathscr{D}_{\rm loc}(\omega); \delta_f(\omega) + \int_{\omega} f^2 d|\pi| < +\infty\right\} = \mathscr{H}_{\rm E}(\omega) + \mathscr{D}_{\rm 0}(\omega).$$

PROOF. Let

$$\mathscr{D}_{E}(\omega) = \{ f \in \mathscr{D}_{loc}(\omega); \delta_{f}(\omega) + \int_{\omega} f^{2} d|\pi| < +\infty \}.$$

By Lemma 7.3 and Theorem 6.3, we see that $\mathscr{H}_{E}(\omega) + \mathscr{D}_{0}(\omega) \subset \mathscr{D}_{E}(\omega)$. Now, let $f \in \mathscr{D}_{E}(\omega)$ be given. Consider the linear form

$$l(g) = \delta_{[f,g]}(\omega) + \int_{\omega} fg \ d\pi$$

defined on $\mathscr{D}_0(\omega)$. It is continuous in view of Theorem 6.4. Hence, by Theorem 6.1 (d), there is $f_0 \in \mathscr{D}_0(\omega)$ such that

$$l(g) = \delta_{[f_0,g]}(\omega) + \int_{\omega} f_0 g \, d\pi$$

for all $g \in \mathcal{D}_0(\omega)$. Then

$$\delta_{[f-f_0,g]}(\omega) + \int_{\omega} (f-f_0)g \ d\pi = 0$$

for all $g \in \mathcal{D}_0(\omega)$. Now, using Lemma 6.7, we see that for any PC-domain ω' such that $\bar{\omega}' \subset \omega$ and for any $g \in \mathcal{D}_0(\omega')$

$$\delta_{[f-f_0,g]}(\omega') + \int_{\omega'} (f-f_0)g \,d\pi = 0.$$

By Lemma 7.3, $(f-f_0)|\omega' \in \mathscr{H}_E(\omega') + \mathscr{D}_0(\omega')$. Hence Theorem 6.4 asserts that $f-f_0 = u$ q.e. on ω' for some $u \in \mathscr{H}_E(\omega')$. It follows that there is $u \in \mathscr{H}(\omega)$ such that $f-f_0 = u$ q.e. on ω . By modifying the values of f_0 on a polar set, we have $f = u + f_0$ on ω . Since $\delta_u \leq 2(\delta_f + \delta_{f_0})$ and $u^2 \leq 2(f^2 + f_0^2)$, we see that $\delta_u(\omega) + \int_{\omega} u^2 d|\pi| < +\infty$, i.e., $u \in \mathscr{H}_E(\omega)$. Thus $f \in \mathscr{H}_E(\omega) + \mathscr{D}_0(\omega)$, and hence $\mathscr{D}_E(\omega) \subset \mathscr{H}_E(\omega) + \mathscr{D}_0(\omega)$.

REMARK 7.1. It is clear that $\mathscr{D}(\omega) \subset \{f \in \mathscr{D}_{loc}(\omega); \delta_f(\omega) < +\infty\}$; but it is not clear if these spaces coincide.

PROPOSITION 7.3. If ω is a P-domain and σ is a signed measure on ω such that $U_{\omega}^{|\sigma|}$ is a potential and $\sigma|\omega' \in \mathscr{M}_{E}(\omega')$ for each PC-domain ω' with $\bar{\omega}' \subset \omega$, then $U_{\omega}^{\sigma} \in \mathcal{D}_{loc}(\omega)$.

PROOF. By Proposition 6.1, $U_{\omega'}^{\sigma} \in \mathscr{D}_0(\omega')$ for any PC-domain ω' such that $\bar{\omega}' \subset \omega$. Hence $U_{\omega}^{\sigma} \in \mathscr{D}_0(\omega') + \mathscr{H}(\omega') \subset \mathscr{D}_{loc}(\omega')$ for such ω' . It then follows that $U_{\omega}^{\sigma} \in \mathscr{D}_{loc}(\omega)$.

7.3. The space $\mathscr{S}_{E,\text{loc}}(\omega)$ and its lattice structure

For a PB-domain ω , we consider the spaces

$$\mathcal{P}_{E}(\omega) = \{f; f = U_{\omega}^{\sigma} \text{ q.e. on } \omega \text{ with } \sigma \in \mathcal{M}_{E}(\omega)\}$$

and

$$\mathscr{S}_{E}(\omega) = \mathscr{K}_{E}(\omega) + \mathscr{P}_{E}(\omega)$$

(cf. [9, §6.4], where \mathscr{P}_E is denoted by \mathbf{Q}_E). $\mathscr{P}_E(\omega)$ is a subspace of $\mathscr{D}_0(\omega)$ (Proposition 6.1), and hence $\mathscr{S}_E(\omega)$ is a subspace of $\mathscr{D}(\omega)$. For an open set ω in Ω , let

$$\mathscr{S}_{E,\text{loc}}(\omega) = \left\{ f; \text{ for any PC-domain } \omega' \text{ such that } \bar{\omega}' \subset \omega, \right\}$$

Obviously, $\mathscr{B}_{loc}(\omega) \subset \mathscr{S}_{E,loc}(\omega) \subset \mathscr{D}_{loc}(\omega)$. Furthermore, by using Proposition

6.1 and Lemma 7.3, we can show that $\mathscr{P}_{E}(\omega) \subset \mathscr{P}_{E,loc}(\omega)$ for a PB-domain ω (cf. the proof of Proposition 7.3).

THEOREM 7.2 (cf. [9, Theorem 6.3 and its corollary]). The spaces $\mathscr{P}_{E}(\omega)$ and $\mathscr{S}_{E}(\omega)$ for a PB-domain ω and $\mathscr{S}_{E,loc}(\omega)$ for an open set ω are vector lattices with respect to the max. and min. operations and

$$\delta_{|f|} = \delta_f$$

for any $f \in \mathscr{S}_{E, loc}(\omega)$.

PROOF. Let ω be a PB-domain and $f \in \mathscr{S}_{E}(\omega)$. By definition, $f = u + f_{0}$ with $u \in \mathscr{H}_{E}(\omega)$ and $f_{0} \in \mathscr{P}_{E}(\omega)$. By Theorem 5.1, $u_{1} \equiv u \vee_{\omega} 0$ and $u_{2} \equiv (-u) \vee_{\omega} 0$ exist and belong to $\mathscr{H}_{E}(\omega)$. Let $\tau = \sigma_{u_{1}-\max(u,0)}$. By Lemma 5.1, we see that $\tau \in \mathscr{M}_{E}^{+}(\omega)$. Note that $u_{1} = \max(u, 0) + U_{\omega}^{\tau}$ and $u_{2} = \max(-u, 0) + U_{\omega}^{\tau}$. Put

$$p = \min\left(U_{\omega}^{\sigma^+} + u_1, U_{\omega}^{\sigma^-} + u_2\right),$$

where $\sigma \equiv \sigma_{f_0} = \sigma_f$. Then, p is non-negative superharmonic on ω and $p \leq U_{\omega}^{|\sigma|} + U_{\omega}^{\tau}$, so that p is a potential on ω . Since $|\sigma|, \tau \in \mathcal{M}_E^+(\omega)$, it follows that $p \in \mathcal{P}_E(\omega)$. Hence

$$|f| = u_1 + u_2 + U_{\omega}^{|\sigma|} - 2p \in \mathscr{S}_E(\omega).$$

If, in particular, $f \in \mathscr{P}_E(\omega)$, then u = 0, so that $|f| = U_{\omega}^{|\sigma|} - 2p \in \mathscr{P}_E(\omega)$. Thus, $\mathscr{P}_E(\omega)$ and $\mathscr{S}_E(\omega)$ are vector lattices.

Now, for the above f and $\sigma = \sigma_f$, choose $\{\mu_n\}$ and $\{\nu_n\}$ in $\mathscr{M}^+_{BC}(\omega)$ such that $U^{\mu_n}_{\omega} \uparrow U^{\sigma^+}_{\omega}$ and $U^{\nu_n}_{\omega} \uparrow U^{\sigma^-}_{\omega}$ (cf. Lemma 1.5). Put $f_n = u + U^{\mu_n - \nu_n}_{\omega}$ and $p_n = \min(U^{\mu_n}_{\omega} + u_1, U^{\nu_n}_{\omega} + u_2)$, n = 1, 2, ... As above, each p_n is a potential and $p_n \uparrow p$. Since

$$|f_n| = u_1 + u_2 + U_{\omega}^{\mu_n + \nu_n},$$

we have

$$|f| - |f_n| = (U_{\omega}^{\sigma^+} - U_{\omega}^{\mu_n}) + (U_{\omega}^{\sigma^-} - U_{\omega}^{\nu_n}) - 2(p - p_n)$$

and

$$f-f_n=(U_{\omega}^{\sigma^+}-U_{\omega}^{\mu_n})-(U_{\omega}^{\sigma^-}-U_{\omega}^{\nu_n}).$$

By Corollary 2 to Theorem 1.1, $I_{\omega}(\sigma^{+}-\mu_{n}) \rightarrow 0$, $I_{\omega}(\sigma^{-}-\nu_{n}) \rightarrow 0$ and $I_{\omega}(\sigma_{p}-\sigma_{p_{n}}) \rightarrow 0$ $(n \rightarrow \infty)$. Thus, Proposition 6.1 and Theorem 6.3 imply that $\delta_{|f|-|f_{n}|}(\omega) \rightarrow 0$ and $\delta_{f-f_{n}}(\omega) \rightarrow 0$ $(n \rightarrow \infty)$. Since $f_{n} \in \mathscr{B}_{loc}(\omega)$ and f_{n} is continuous, $\delta_{|f_{n}|} = \delta_{f_{n}}$ by the corollary to Lemma 4.2. Hence we conclude that $\delta_{|f|} = \delta_{f}$ on ω .

Now the assertions for $f \in \mathscr{S}_{E, loc}(\omega)$ are easily verified.

REMARK 7.2. The above proof shows that $\mathscr{H}_{D'}(\omega) + \mathscr{P}_{E}(\omega)$ is also a vector lattice for a PB-domain ω .

COROLLARY. If $f, g \in \mathcal{S}_{E,loc}(\omega)$, then

$$\delta_{\max(f,g)} + \delta_{\min(f,g)} = \delta_f + \delta_g;$$

in particular, if c is a constant, then

$$\delta_{\max(f,c)} + \delta_{\min(f,c)} = \delta_f.$$

As an application of Theorem 7.2 (or its corollary), we here prove

THEOREM 7.3. Let ω be any domain in Ω . For $f \in \mathcal{D}_{loc}(\omega)$, $\delta_f = 0$ if and only if $f \equiv const.$ q.e. on ω .

PROOF. The "if" part is trivial (cf. Theorem 4.1). We shall show the "only if" part. Let ω' be any PC-domain such that $\bar{\omega}' \subset \omega$. By Proposition 7.1, f is $|\pi|$ -square-integrable on ω' . Hence, Lemma 1.10 implies that $f\pi \in \mathscr{M}_E(\omega')$, so that $p_0 \equiv U_{\omega}^{\pi}$ belongs to $\mathscr{P}_E(\omega') \subset \mathscr{D}_0(\omega')$. It follows from Theorem 6.3 that

$$\delta_{[p_0,p]}(\omega') + \int_{\omega'} p_0 p \, d\pi = \int_{\omega'} pf \, d\pi$$

for any $p \in \mathcal{D}_0(\omega')$. Since $\delta_f = 0$ by assumption, $\delta_{[f,p]}(\omega') = 0$. Hence we have

$$\delta_{[p_0-f,p]}(\omega') + \int_{\omega'} (p_0-f)p \, d\pi = 0$$

for all $p \in \mathcal{D}_0(\omega')$. Then, Theorem 6.4 implies that $f - p_0 = u$ q.e. on ω' with $u \in \mathscr{H}_E(\omega')$, i.e., $f | \omega' \in \mathscr{S}_E(\omega')$. Therefore $f \in \mathscr{S}_{E, loc}(\omega)$. For $\alpha > 0$, put $f_{\alpha}^+ = \min(\max(f, \alpha), 0)$ and $f_{\alpha}^- = \min(\max(-f, \alpha), 0)$. By the above corollary, we see that $\delta_{f_{\alpha}^+} = 0$ and $\delta_{f_{\alpha}^-} = 0$ for each $\alpha > 0$. Since $f \in \mathscr{S}_{E, loc}(\omega)$, we see that f_{α}^+ and f_{α}^- are equal q.e. to functions in $\mathscr{B}_{loc}(\omega)$. Hence, Theorem 4.1 implies that $f_{\alpha}^+ \equiv \text{const. q.e. and } f_{\alpha}^- \equiv \text{const. q.e. on } \omega$ for each $\alpha > 0$. This is possible only when $f \equiv \text{const. q.e. on } \omega$.

7.4. Lattice structure of $\mathcal{D}_{loc}(\omega)$

Finally, we study the lattice structure of $\mathcal{D}_{loc}(\omega)$.

THEOREM 7.4 (cf. [9, Theorem 6.4 and its corollary]). The spaces $\mathcal{D}_0(\omega)$ and $\mathcal{H}_E(\omega) + \mathcal{D}_0(\omega)$ for a PB-domain ω and $\mathcal{D}_{loc}(\omega)$ for an open set ω are vector lattices with respect to the max. and min. operations and

 $\delta_{|f|} \leq \delta_f$

for any $f \in \mathscr{D}_{loc}(\omega)$.

PROOF. Let ω be a PB-domain and $f = u + f_0$ with $u \in \mathscr{H}_E(\omega)$ and $f_0 \in \mathscr{D}_0(\omega)$. There is a sequence $\{f_n\}$ in $\mathscr{P}_{BC}(\omega)$ such that $f_n \to f_0$ q.e. on ω and $||f_n - f_0||_{I,\omega} \to 0$ $(n \to \infty)$. If μ is a measure in $\mathscr{M}_E^+(\omega)$ and $S(\mu)$ is compact in ω , then by Lemma 6.6,

$$\int_{\omega} |f_0 - f_n| d\mu \leq ||f_n - f_0||_{I,\omega} \cdot I_{\omega}(\mu)^{1/2} \to 0 \quad (n \to \infty) .$$

Hence, u being μ -integrable,

$$\left| \int_{\omega} \{ |f| - |u + f_n| \} d\mu \right| \leq \int_{\omega} |f - (u + f_n)| d\mu$$
$$= \int_{\omega} |f_0 - f_n| d\mu \to 0 \qquad (n \to \infty)$$

Therefore,

(7.3)
$$\int_{\omega} |u+f_n| d\mu \to \int_{\omega} |f| d\mu \qquad (n \to \infty).$$

Put $v = u \lor_{\omega}(-u)$ and $g_n = |u + f_n| - v$ (n = 1, 2, ...). Since $u + f_n \in \mathscr{S}_E(\omega)$, $|u + f_n| \in \mathscr{S}_E(\omega)$ and $\delta_{|u+f_n|} = \delta_{u+f_n}$ by Theorem 7.2. Hence

$$\delta_{g_n}(\omega) \leq 2\{\delta_{|u+f_n|}(\omega) + \delta_v(\omega)\}$$
$$= 2\{\delta_{u+f_n}(\omega) + \delta_v(\omega)\}$$
$$\leq 4\delta_{f_n}(\omega) + 4\delta_u(\omega) + 2\delta_v(\omega)$$

On the other hand,

$$\begin{split} \int_{\omega} g_n^2 d |\pi| &\leq 2 \left\{ \int_{\omega} (u+f_n)^2 d |\pi| + \int_{\omega} v^2 d |\pi| \right\} \\ &\leq 4 \int_{\omega} f_n^2 d |\pi| + 4 \int_{\omega} u^2 d |\pi| + 2 \int_{\omega} v^2 d |\pi| \end{split}$$

Hence, using Lemma 4.3 (or Theorem 6.3) and Theorem 5.1, we obtain

(7.4)
$$\delta_{g_n}(\omega) + \int_{\omega} g_n^2 d |\pi| \leq 4(2\beta_{\omega} - 1) \|f_n\|_{I,\omega}^2 + 6\beta_{\omega} \|u\|_{E,\omega}^2$$

Since $g_n \in \mathscr{S}_E(\omega)$ and $|g_n| \leq |f_n| + (v - |u|)$, we see that $g_n \in \mathscr{P}_E(\omega)$ $(\subset \mathscr{D}_0(\omega))$. $\{||g_n||_{I,\omega}\}$ is bounded by virtue of (7.4). Hence, we can choose a subsequence $\{g_{n_k}\}$ of $\{g_n\}$ converging to a $g \in \mathscr{D}_0(\omega)$ weakly in $\mathscr{D}_0(\omega)$ as a Hilbert space. By Lemma 6.6, the linear functional $f \rightarrow \int_{\omega} f d\mu$ is continuous on $\mathscr{D}_0(\omega)$. Therefore

$$\int_{\omega}g_{n_k}d\mu\to\int_{\omega}gd\mu\qquad (k\to\infty)\,.$$

This, together with (7.3), implies that

$$\int_{\omega} |f| d\mu = \int_{\omega} (g+v) d\mu.$$

Both |f| and g+v are quasi-continuous on ω . Therefore, applying Lemma 6.4, we conclude that

$$|f| = g + v$$
 q.e. on ω ,

which means that $|f| \in \mathscr{H}_{E}(\omega) + \mathscr{D}_{0}(\omega)$. If in particular $|f| \in \mathscr{D}_{0}(\omega)$, then v = 0, and hence $|f| \in \mathscr{D}_{0}(\omega)$. Thus, $\mathscr{D}_{0}(\omega)$ and $\mathscr{H}_{E}(\omega) + \mathscr{D}_{0}(\omega)$ are vector lattices with respect to the max. and min. operations.

Furthermore, since $g_{n_k} \rightarrow g$ weakly in $\mathcal{D}_0(\omega)$,

$$\|g\|_{I,\omega} \leq \liminf_{k\to\infty} \|g_{n_k}\|_{I,\omega}.$$

Then, it follows from Theorem 6.3 that

$$\begin{split} \delta_{|f|}(\omega) + \int_{\omega} f^2 d\pi &= \|g\|_{I,\omega}^2 + \delta_v(\omega) + \int_{\omega} v^2 d\pi \\ &\leq \liminf_{k \to \infty} \left\{ \|g_{n_k}\|_{I,\omega}^2 + \delta_v(\omega) + \int_{\omega} v^2 d\pi \right\} \\ &= \liminf_{k \to \infty} \left\{ \delta_{|u+p_k|}(\omega) + \int_{\omega} (u+p_k)^2 d\pi \right\} \\ &= \liminf_{k \to \infty} \left\{ \delta_{u+p_k}(\omega) + \int_{\omega} (u+p_k)^2 d\pi \right\}, \end{split}$$

where $p_k \equiv f_{n_k}$. Theorem 6.3 also implies that $\delta_{u+p_k}(\omega) \rightarrow \delta_{u+f_0}(\omega) = \delta_f(\omega)$ and $\int_{\omega} (u+p_k)^2 d\pi \rightarrow \int_{\omega} (u+f_0)^2 d\pi = \int_{\omega} f^2 d\pi$. Therefore,

$$\delta_{|f|}(\omega) + \int_{\omega} f^2 d\pi \leq \delta_f(\omega) + \int_{\omega} f^2 d\pi$$

that is $\delta_{|f|}(\omega) \leq \delta_f(\omega)$. Now the last assertion of the theorem is easily verified

(cf. the last part of the proof of Proposition 3.7).

REMARK 7.3. The above proof and Remark 7.2 show that $\mathscr{H}_{D'}(\omega) + \mathscr{D}_{0}(\omega)$ is also a vector lattice for a PB-domain ω .

REMARK 7.4. In the classical case, $\delta_{|f|} = \delta_f$ holds for every $f \in \mathscr{D}_{loc}(\omega)$. We fail to verify it in our general situation.

COROLLARY. If f, $g \in \mathcal{D}_{loc}(\omega)$, then

 $\delta_{\max(f,g)} + \delta_{\min(f,g)} \leq \delta_f + \delta_g.$

References

- [1] H. Bauer, Harmonische Räume und ihre Potentialtheorie, Lecture Notes in Math. 22, Springer-Verlag, Berlin-Heidelberg-New York, 1966.
- [2] N. Boboc, C. Constantinescu and A. Cornea, On the Dirichlet problem in the axiomatic theory of harmonic functions, Nagoya Math. J. 23 (1963), 73–96.
- [3] M. Brelot, Lectures on potential theory, Tata Inst. of F. R., Bombay, 1960 (reissued 1967).
- [4] C. Constantinescu and A. Cornea, Ideale Ränder Riemannscher Flächen, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963.
- [5] C. Constantinescu and A. Cornea, Potential theory on harmonic spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1972.
- [6] M. Glasner and M. Nakai, Riemannian manifolds with discontinuous metrics and the Dirichlet integral, Nagoya Math. J. 46 (1972), 1-48.
- [7] R.-M. Hervé, Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel, Ann. Inst. Fourier 12 (1962), 415-571.
- [8] F-Y. Maeda, Harmonic and full-harmonic structures on a differentiable manifold, J. Sci. Hiroshima Univ., Ser. A-I 34 (1970), 271-312.
- [9] F-Y. Maeda, Energy of functions on a self-adjoint harmonic space I and II, Hiroshima Math. J. 2 (1972), 313-337 and 3 (1973), 37-60.
- [10] F-Y. Maeda, On the Green function of a self-adjoint harmonic space, Ibid. 3 (1973), 361-366.
- [11] M. Nakai, The space of Dirichlet-finite solutions of the equation $\Delta u = Pu$ on a Riemann surface, Nagoya Math. J. 18 (1961), 111-131.
- [12] B. Walsh, Perturbation of harmonic structures and an index-zero theorem, Ann. Inst. Fourier 20, 1 (1970), 317–359.

Department of Mathematics, Faculty of Science, Hiroshima University