Note on Equivariant Maps from Spheres to Stiefel Manifolds

Toshio Yoshida

(Received May 8, 1974)

§1. Introduction

Let X = (T, X) be a Hausdorff space with a fixed point free involution T. By [2, Def. (3.1)], the *index* of (T, X) is the largest integer n for which there is an equivariant map of the *n*-sphere S^n into X. The *co-index* of (T, X) is the least integer n for which there is an equivariant map of X into S^n . Here the fixed point free involution of S^n is the antipodal involution A. We abbreviate *index* and *co-index* by ind(T, X) and co-ind(T, X), respectively. It may happen for a particular X that there is no upper bound on the dimension of the sphere which can be equivariantly mapped into X; then we write $ind(T, X) = \infty$. Also if Xcannot be equivariantly mapped into S^n no matter how large n, write co-ind $(T, X) = \infty$.

As there is no equivariant map of S^{n+1} into S^n , we have

$$\operatorname{ind}(A, S^n) = \operatorname{co-ind}(A, S^n) = n$$
.

Let $V_{n,m}$ be the Stiefel manifold of orthonormal *m*-frames in real *n*-space \mathbb{R}^n . There is a fixed point free involution T_2 on $V_{n,m}$ defined by sending an *m*-frame (v_1, \ldots, v_m) to $(-v_1, \ldots, -v_m)$.

Let ξ_k be the canonical line bundle over k-dimensional real projective space RP^k , and $n\xi_k$ the Whitney sum of *n*-copies of ξ_k . Let Span α denote the maximum number of the linearly independent cross-sections of a vector bundle α .

PROPOSITION 1. ind $(T_2, V_{n,m}) \ge k$ if and only if $\text{Span } n\xi_k \ge m$.

For example, Span $n\xi_k$ is studied in [6] and [9].

COROLLARY 2. ind $(T_2, V_{n,2}) = \operatorname{co-ind}(T_2, V_{n,2}) = n-1$, for even n.

Remark. Ву [2, р. 426],

 $n-2 = ind(T_2, V_{n,2}) < co-ind(T_2, V_{n,2}) = n-1$, for odd n.

Let $Z_q = \{e^{i\theta} | \theta = 2\pi h/q, h = 0, ..., q-1\}$ be the cyclic group of order q. Then an action of Z_q on the complex *n*-space C^n is defined by $e^{i\theta}(z_1,...,z_n) = (e^{i\theta}z_1,...,e^{i\theta}z_n)$. We define an action T_q of Z_q on $V_{2n,m}$ such that $e^{i\theta}$ acts on each vector of *m*-frames as before.

Similarly, we define $\operatorname{ind}(T_q, V_{2n,m})$ to be the largest integer 2k+1 for which there is a Z_q -equivariant map of $S^{2k+1} = V_{2k+2,1}$ into $V_{2n,m}$. We notice that $\operatorname{ind}(T_q, V_{2n,m}) \ge 1$.

Let $\eta_{k,q}$ be the canonical real 2-plane bundle over the mod q standard lens space $L^k(q) = V_{2k+2,1}/Z_q = S^{2k+1}/Z_q$.

PROPOSITION 3. ind $(T_q, V_{2n,m}) \ge 2k+1$ if and only if Span $n\eta_{k,q} \ge m$.

Let p be an odd prime and r be a positive integer.

PROPOSITION 4. Suppose $p \leq k - \lfloor k/2 \rfloor$. If $\binom{k+1}{\lfloor k/2 \rfloor} \equiv (lp)^2 \pmod{p^r}$ for any integer l such that $0 \leq l < p^{r-1}$, then

$$\text{Span}(k+1)\eta_{k,p^r} = \text{Span}(\tau(L^k(p^r)) \oplus 1) = 2k+1-2[k/2],$$

where $\tau(L^k(p^r)) \oplus 1$ is the Whitney sum of the tangent bundle $\tau(L^k(p^r))$ of $L^k(p^r)$ and the trivial line bundle 1 over $L^k(p^r)$.

REMARK. By [7, Th. (1.7)] and [9, Lemma 2.2],

 $\text{Span}(k+1)\eta_{k,p^r} \ge 2k+1-2[k/2].$

COROLLARY 5. Suppose $p \leq k - \lfloor k/2 \rfloor$. If $\binom{k+1}{\lfloor k/2 \rfloor} \equiv (lp)^2 \pmod{p^r}$ for any integer l such that $0 \leq l < p^{r-1}$, then

ind $(T_{p^r}, V_{2k+2,2k+2-2[k/2]}) \leq 2k-1$.

REMARK. By [7, Th. (1.7)] and [9, Lemma 2.2],

 $\operatorname{Span}(k+1)\eta_{2[k/2]-1,p^{r}} \ge 2k+3-2[k/2] > 2k+2-2[k/2],$

and so, by Proposition 3,

ind
$$(T_{p^r}, V_{2k+2,2k+2-2\lceil k/2\rceil}) \ge 4\lceil k/2\rceil - 1$$
.

The author wishes to express his hearty thanks to Professors M. Sugawara and T. Kobayashi for their valuable suggestions and discussions.

§2. Proofs

PROOF OF PROPOSITION 1. Let \tilde{T}_2 be the involution on $S^k \times V_{n,m}$ defined by $\tilde{T}_2(x, v) = (A(x), T_2(v)) \ (x \in S^k, v \in V_{n,m})$, and p be the map from $(S^k \times V_{n,m})/\tilde{T}_2$ onto RP^k induced by the projection from $S^k \times V_{n,m}$ onto S^k . Then p is the projec-

tion of the *m*-frame bundle associated with $n\xi_k$. It is easily seen that the existence of a cross-section of this bundle is equivalent to the existence of an equivariant map from S^k to $V_{n,m}$. Thus the proof is complete.

PROOF OF COROLLARY 2. $n\xi_{n-1}$ is isomorphic to the Whitney sum of the tangent bundle of RP^{n-1} and the trivial line bundle over RP^{n-1} , and RP^{n-1} has a tangent 1-field for even n. So, by Proposition 1,

$$\operatorname{ind}\left(T_{2}, V_{n,2}\right) \geq n-1.$$

As there is an equivariant map from $V_{n,2}$ to S^{n-1} by sending each 2-frame in $V_{n,2}$ to the first vector in S^{n-1} , we have

$$\operatorname{co-ind}(T_2, V_{n,2}) \leq n-1$$
.

By [2, (3.3)],

$$\operatorname{ind}(T_2, V_{n,2}) \leq \operatorname{co-ind}(T_2, V_{n,2})$$

Thus the proof is complete.

PROOF OF PROPOSITION 3. Z_q acts freely on $S^{2k+1} \times V_{2n,m}$ by the action on each factor. Let π be the map from $(S^{2k+1} \times V_{2n,m})/Z_q$ onto $L^k(q)$ induced by the projection from $S^{2k+1} \times V_{2n,m}$ onto S^{2k+1} . Then $((S^{2k+1} \times V_{2n,m})/Z_q, \pi, L^k(q))$ is the *m*-frame bundle associated with $n\eta_{k,q}$, and the existence of a cross-section of this bundle is equivalent to the existence of a Z_q -equivariant map from S^{2k+1} to $V_{2n,m}$. Thus the proof is complete.

PROOF OF PROPOSITION 4. The method of the proof is the same as in [4]. Put $q = p^r$, $t = 2k + 2 - 2\lfloor k/2 \rfloor$. Suppose $\text{Span}(\tau(L^k(q)) \oplus 1) \ge t$. Then there is a $2\lfloor k/2 \rfloor$ -plane bundle ξ over $L^k(q)$ such that $\tau(L^k(q)) \oplus 1$ is isomorphic to the Whitney sum of the trivial *t*-plane bundle and ξ . The square $X(\xi)^2$ of the Euler class of ξ is equal to the $\lfloor k/2 \rfloor$ -th Pontrjagin class of ξ , and this is equal to $\binom{k+1}{\lfloor k/2 \rfloor} x^{2\lfloor k/2 \rfloor}$ for the generator x of $H^2(L^k(q); Z) = Z_q$. So, by the assumption, we have

$$X(\xi)_a = m x_a^{\lfloor k/2 \rfloor} \qquad (m \equiv 0 \pmod{p})$$

where z_q is the image of z by the mod q reduction.

The following diagram is commutative [8]:

$$\begin{array}{c} H^{s}(E(\xi), E_{0}(\xi); Z_{q}) \xrightarrow{j^{*}} H^{s}(E(\xi); Z_{q}) \\ \phi \uparrow \approx \qquad \approx \uparrow \pi^{*} \\ H^{s-2[k/2]}(L^{k}(q); Z_{q}) \xrightarrow{\mu} H^{s}(L^{k}(q); Z_{q}) \end{array}$$

Toshio Yoshida

where $E(\xi)$ is the total space of ξ , $E_0(\xi)$ is the subspace of $E(\xi)$ which consists of non-zero vectors, j^* is the homomorphism induced by the injection $j: E(\xi) \rightarrow (E(\xi), E_0(\xi)), \pi^*$ is the isomorphism induced by the projection of ξ , ϕ is the Thom isomorphism, and μ is defined by

$$\mu(y) = yX(\xi)_{a} \qquad (y \in H^{s-2[k/2]}(L^{k}(q); Z_{a})).$$

As $X(\xi)_q = m x_q^{\lfloor k/2 \rfloor}$ $(m \equiv 0 \pmod{p})$, μ is an isomorphism for $2\lfloor k/2 \rfloor \leq s \leq 2k+1$. So, for the inclusion map λ from $L^k(q)$ into the Thom complex $L^k(q)^{\xi}$ of ξ , we have

$$\lambda^* \colon H^s(L^k(q)^{\xi}; Z_q) \approx H^s(L^k(q); Z_q) \qquad (2\lfloor k/2 \rfloor \leq s \leq 2k+1).$$

Since $L^k(q)^{\xi}$ is $(2\lfloor k/2 \rfloor - 1)$ -connected, there is a map f such that the following diagram is homotopy commutative:

where p is the projection.

It is easily verified that f induces isomorphisms:

$$f^*: H^s(L^k(q)^{\xi}; Z_q) \approx H^s(L^k(q)/L^{[k/2]-1}(q); Z_q) \qquad (0 \le s \le 2k+1).$$

By [1, Lemma (2.4)], the t-fold suspension $S^t L^k(q)^{\xi}$ of $L^k(q)^{\xi}$ is homeomorphic to $L^k(q)^{\xi \oplus t} = L^k(q)^{\tau(L^k(q)) \oplus 1} = L^k(q)^{(k+1)\eta}$, where $\eta = \eta_{k,q}$. By [3, Th. 1] and [5, Th. 4.7], $L^k(q)^{(k+1)\eta}$ is homeomorphic to $L^{2k+1}(q)/L^k(q)$. The complex $S^t(L^k(q)/L^{\lfloor k/2 \rfloor - 1}(q))$ has dimension t + 2k + 1. So, by the cellular approximation theorem, there exists a map g such that the following diagram is homotopy commutative:

where $S^t f$ is the *t*-fold suspension of *f* and *i* is the inclusion.

Then we can see that g induces isomorphisms of all cohomology groups with Z_q coefficients. Also g defines a map

$$g_0: S^t(L_0^k(q)/L_0^{\lceil k/2 \rceil}(q)) \longrightarrow L_0^{2k+1-\lceil k/2 \rceil}(q)/L_0^{k+1}(q)$$

where $L_0^k(q)$ is the 2k-skeleton of $L^k(q)$, and g_0 induces isomorphisms of all co-

homology groups with Z_q coefficients. By the universal coefficient theorem, we see that g_0 induces isomorphisms of all homology groups. As the spaces are simply connected, g_0 is a homotopy equivalence. So, $L_0^k(q)/L_0^{[k/2]}(q)$ and $L_0^{2k+1-\lceil k/2 \rceil}(q)/L_0^{k+1}(q)$ are stably homotopy equivalent. Therefore $k+1-\lceil k/2 \rceil \equiv 0 \pmod{p^{\lceil (k-\lceil k/2 \rceil - 1)/(p-1) \rceil}}$, by [5, Th. 1.1].

But this is impossible by the easy calculations using the assumption $p \le k - \lfloor k/2 \rfloor$. So,

$$\operatorname{Span}(\tau(L^k(q)) \oplus 1) \leq t-1.$$

By [7, Th. (1.7)],

$$\operatorname{Span}\left(\tau(L^{k}(q))\oplus 1\right) \geq t-1.$$

Thus the proof is complete.

References

- [1] M. F. Atiyah: Thom complexes, Proc. London Math. Soc., 11 (1961), 291-310.
- P. E. Conner and E. E. Floyd: Fixed point free involutions and equivariant maps, Bull. Amer. Math. Soc., 66 (1960), 416-441.
- [3] T. Kambe, H. Matsunaga and H. Toda: A note on stunted lens space, J. Math. Kyoto Univ., 5 (1966), 143-149.
- [4] T. Kobayashi: Non-immersion theorems for lens spaces, J. Math. Kyoto Univ., 6 (1966), 91-108.
- [5] T. Kobayashi and M. Sugawara: On stable homotopy types of stunted lens spaces, Hiroshima Math. J., 1 (1971), 287-304.
- [6] K. Y. Lam: Sectioning vector bundles over real projective spaces, Quart. J. Math., 23 (1972), 97-106.
- [7] D. Sjerve: Vector bundles over orbit manifolds, Trans. Amer. Math. Soc., 138 (1969), 97–106.
- [8] R. Thom: Espaces fibrés en sphères et carrés de Steenrod, Ann. Sci. Ecole Norm. Sup., 69 (1952), 109–182.
- [9] T. Yoshida: On the vector bundles $m\xi_n$ over real projective spaces, J. Sci. Hiroshima Univ. Ser. A-I, **32** (1968), 5-16.

Department of Mathematics, Faculty of General Education, Hiroshima University