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§ 1. Introduction

Let X=(T9 X) be a Hausdorff space with a fixed point free involution T.
By [2, Def. (3.1)], the index of (T, X) is the largest integer n for which there is an
equivariant map of the n-sphere Sn into X. The co-index of (T, X) is the least
integer n for which there is an equivariant map of X into Sn. Here the fixed
point free involution of S" is the antipodal involution A. We abbreviate index
and co-index by ind(Γ, X) and co-ind(T, X), respectively. It may happen for a
particular X that there is no upper bound on the dimension of the sphere which
can be equivariantly mapped into X\ then we write ind(T, X) = co. Also if X
cannot be equivariantly mapped into Sn no matter how large n, write co-ind(T, X)
= 00.

As there is no equivariant map of Sn+ 1 into S", we have

indG4, Sn) = co-indG4, S") = n .

Let VHtm be the Stiefel manifold of orthonormal m-frames in real n-space Rn.
There is a fixed point free involution T2 on FMjm defined by sending an m-frame

(Όl9...9vjto(-vί9...9 -vm).
Let ξk be the canonical line bundle over /c-dimensional real projective space

RPk, and nξk the Whitney sum of n-copies of ξk. Let Span α denote the maximum
number of the linearly independent cross-sections of a vector bundle α.

PROPOSITION 1. ind(Γ2, Vn^^k if and only ifSpannζk^m.

For example, Sρannζfc is studied in [6] and [9].

COROLLARY 2. ind(T2, Fπ>2)=co-ind(T2, Fπ>2) = n-l, for even n.

REMARK. By [2, p. 426],

n-2 = ind(T2, FMj2) < co-ind(T2, FM>2) = n-1, for odd n.

Let Zq = {eίθ\θ=2πh/q,h=Q,...9 q-\} be the cyclic group of order q. Then

an action of Zq on the complex n-space Cn is defined by eiθ(zl9...9 zn)=(eiθzl9...9
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We define an action Tq of Zq on V2rttm such that eiθ acts on each vector of ra-
frames as before.

Similarly, we define ind(Tq, V2tttm) to be the largest integer 2/c + l for which
there is a Z^-equivariant map of S2k+1 =V2k+2,ι into V2ntm. We notice that

Let ηktq be the canonical real 2-plane bundle over the mod q standard lens
space

PROPOSITIONS. ind(Tq, F2Πjm)^2fc+l if and only i

Let p be an odd prime and r be a positive integer.

PROPOSITION 4. Suppose p^k-[k/Z]. // /p)2 (modpr) for

any integer I such that 0^l<pr~1

9 then

Span(fc + l>/fe>p, = Span(τ(L*(pr)) 0 1) = 2fc+l-2[/c/2],

where τ(L*(pr))θl is ί/ie Whitney sum of the tangent bundle τ(Lk(pr)) of Lk(pr)
and the trivial line bundle 1 over Lk(pr).

REMARK. By [7, Th. (1.7)] and [9, Lemma 2.2],

jpr ^ 2k+l-2[fc/2] .

COROLLARY 5. Suppose p^k- [k/2] . // ( ^2~\ ) ̂  (^2 ̂ mo^ ̂  for any

integer I such that 0^/<pr~1, then

md(Tpr,

REMARK. By [7, Th. (1.7)] and [9, Lemma 2.2],

Span(fc+l)^2[fc/2]_1}p^2/c + 3-2[/c/2] > 2fc + 2-2[/c/2],

and so, by Proposition 3,

ind(7>,

The author wishes to express his hearty thanks to Professors M. Sugawara
and T. Kobayashi for their valuable suggestions and discussions.

§ 2. Proofs

PROOF OF PROPOSITION 1. Let T2 be the involution on Sk x Fπ>m defined by
f2(x,v)=(A(x),T2(v))(xεSk

9υεVntml and p be the map from (SkxVnίJ/T2

onto RPk induced by the projection from Sk x Vn>m onto Sk. Then p is the projec-
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tion of the w-frame bundle associated with nξk. It is easily seen that the existence
of a cross-section of this bundle is equivalent to the existence of an equivariant
map from Sk to Vn>w. Thus the proof is complete.

PROOF OF COROLLARY 2. nξn_l is isomorphic to the Whitney sum of the
tangent bundle of RPn~l and the trivial line bundle over RPn~l, and RPn~l

has a tangent 1-field for even n. So, by Proposition 1,

ind(T2, F W ) 2 ) ^ n - l .

As there is an equivariant map from Vn>2 to S""1 by sending each 2-frame in
FM}2 to the first vector in S""1, we have

co-ind(T2, Vn>2) <Ξ w-1.

By [2, (3.3)],

ind(T2,FΠ 5 2)^co-ind(T2,FΠ j 2).

Thus the proof is complete.

PROOF OF PROPOSITION 3. Zq acts freely on S2k+ί x F2Wjin by the action on
each factor. Let π be the map from (S2k+1 x V2ntm)/Zq onto Lk(q) induced by
the projection from S2fc+1 x V2n>m onto S2k+ί. Then ((S2k+ί x V2n>m)/Zq9 π, Lk(q))
is the m-frame bundle associated with nηk>q9 and the existence of a cross-section of
this bundle is equivalent to the existence of a Z^-equivariant map from S2k+ί to
^2«,m Thus the proof is complete.

PROOF OF PROPOSITION 4. The method of the proof is the same as in [4].

Put q=pr, ί=2/c + 2-2[/c/2]. Suppose Span(τ(Lfe(g))θl)^ί. Then there
is a 2[/c/2]-plane bundle ξ over Lk(q) such that τ(L*(g))©l is isomorphic to the
Whitney sum of the trivial ί-plane bundle and ξ. The square X(ξ)2 of the Euler
class of ξ is equal to the [/c/2]-th Pontrjagin class of ξ, and this is equal to

(rkiΐ])χ2ίk/2Ί for the generator x of H2(Lk(q);Z) =Zq. So, by the assumption,

we have

X(ξ\ = mx^ (m * 0

where zq is the image of z by the mod q reduction.
The following diagram is commutative [8]:

H (E(ξ), E0(ξ); Zq) -JL> Hs(E(ξ); Zq)

φ|« «|π*

>;z4)
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where E(ξ) is the total space of ξ, E0(ξ) is the subspace of E(ξ) which consists of
non-zero vectors, j* is the homomorphism induced by the injection j:E(ξ)^>
(E(ξ), EQ(ξ))9 π* is the isomorphism induced by the projection of ξ, φ is the Thorn
isomorphism, and μ is defined by

μ(y) = yX(ξ\

As X(ξ)q = mxl

q

k/2Ί (m^O(modp)), μ is an isomorphism for
2/c+l. So, for the inclusion map λ from Lk(q) into the Thorn complex Lk(q)ξ

of ξ, we have

; Zq) « H*(Lk(q); Zq) (2[*/2] ^ * ̂

Since Lfc(^f)ξ is (2[fc/2] - l)-connected, there is a map /such that the following
diagram is homotopy commutative :

where p is the projection.
It is easily verified that / induces isomorphisms :

; Zq) K H*(Lk(q)/LW2^(q); ZJ (0 ̂  s£

By [1, Lemma (2.4)], the ί-fold suspension StLk(q)ξ of Lk(q)ξ is homeomor-
phic to Lk(q)^t = Lk(q)^Lk^^ί=Lk(q^k+ί^9 where η=ηk,q. By [3, Th. 1]
and [5, Th. 4.7], Lk(q)(k+1>» is homeomorphic to L2k+1(q)/Lk(q). The complex
St(Lk(q)/Lίk^2Ί-1(q)) has dimension ί + 2/c+l. So, by the cellular approxima-
tion theorem, there exists a map g such that the following diagram is homotopy
commutative:

q) -U L2k+ί(q)lLk(q)

where Sf/is the ί-fold suspension of /and z is the inclusion.
Then we can see that g induces isomorphisms of all cohomology groups with

Zq coefficients. Also g defines a map

where L^(q) is the 2fc-skeleton of Lk(q\ and g0 induces isomorphisms of all co-
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homology groups with Zq coefficients. By the universal coefficient theorem, we
see that g0 induces isomorphisms of all homology groups. As the spaces are
simply connected, g0 is a homotopy equivalence. So, L^(q)/LL

0

k/2\q) and
are stably homotopy equivalent. Therefore k+1-
1)/^-1)3), by [5, Th. 1.1].

But this is impossible by the easy calculations using the assumption p^
fc-[fc/2]. So,

Span(τ(L*(4))Θ 1) ^ ί-1.

By [7, Th. (1.7)],

Thus the proof is complete.
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