Note on Equivariant Maps from Spheres to Stiefel Manifolds

Toshio Yoshida
(Received May 8, 1974)

§ 1. Introduction

Let $X=(T, X)$ be a Hausdorff space with a fixed point free involution T. By [2, Def. (3.1)], the index of (T, X) is the largest integer n for which there is an equivariant map of the n-sphere S^{n} into X. The co-index of (T, X) is the least integer n for which there is an equivariant map of X into S^{n}. Here the fixed point free involution of S^{n} is the antipodal involution A. We abbreviate index and co-index by ind (T, X) and co-ind (T, X), respectively. It may happen for a particular X that there is no upper bound on the dimension of the sphere which can be equivariantly mapped into X; then we write ind $(T, X)=\infty$. Also if X cannot be equivariantly mapped into S^{n} no matter how large n, write co-ind (T, X) $=\infty$.

As there is no equivariant map of S^{n+1} into S^{n}, we have

$$
\operatorname{ind}\left(A, S^{n}\right)=\operatorname{co-ind}\left(A, S^{n}\right)=n .
$$

Let $V_{n, m}$ be the Stiefel manifold of orthonormal m-frames in real n-space R^{n}. There is a fixed point free involution T_{2} on $V_{n, m}$ defined by sending an m-frame $\left(v_{1}, \ldots, v_{m}\right)$ to $\left(-v_{1}, \ldots,-v_{m}\right)$.

Let ξ_{k} be the canonical line bundle over k-dimensional real projective space $R P^{k}$, and $n \xi_{k}$ the Whitney sum of n-copies of ξ_{k}. Let Span α denote the maximum number of the linearly independent cross-sections of a vector bundle α.

Proposition 1. ind $\left(T_{2}, V_{n, m}\right) \geqq k$ if and only if $\operatorname{Span} n \xi_{k} \geqq m$.
For example, Span $n \breve{\xi}_{k}$ is studied in [6] and [9].
$\operatorname{Corollary} 2 . \operatorname{ind}\left(T_{2}, V_{n, 2}\right)=\operatorname{co-ind}\left(T_{2}, V_{n, 2}\right)=n-1$, for even n.
Remark. By [2, p. 426],

$$
n-2=\operatorname{ind}\left(T_{2}, V_{n, 2}\right)<\operatorname{co-ind}\left(T_{2}, V_{n, 2}\right)=n-1, \quad \text { for odd } n .
$$

Let $Z_{q}=\left\{e^{i \theta} \mid \theta=2 \pi h / q, h=0, \ldots, q-1\right\}$ be the cyclic group of order q. Then an action of Z_{q} on the complex n-space C^{n} is defined by $e^{i \theta}\left(z_{1}, \ldots, z_{n}\right)=\left(e^{i \theta} z_{1}, \ldots\right.$, $e^{i \theta} z_{n}$).

We define an action T_{q} of Z_{q} on $V_{2 n, m}$ such that $e^{i \theta}$ acts on each vector of m frames as before.

Similarly, we define ind ($T_{q}, V_{2 n, m}$) to be the largest integer $2 k+1$ for which there is a Z_{q}-equivariant map of $S^{2 k+1}=V_{2 k+2,1}$ into $V_{2 n, m}$. We notice that $\operatorname{ind}\left(T_{q}, V_{2 n, m}\right) \geqq 1$.

Let $\eta_{k, q}$ be the canonical real 2-plane bundle over the $\bmod q$ standard lens space $L^{k}(q)=V_{2 k+2,1} / Z_{q}=S^{2 k+1} / Z_{q}$.

Proposition 3. ind $\left(T_{q}, V_{2 n, m}\right) \geqq 2 k+1$ if and only if $\operatorname{Span} n \eta_{k, q} \geqq m$.
Let p be an odd prime and r be a positive integer.
Proposition 4. Suppose $p \leqq k-[k / 2]$. If $\binom{k+1}{[k / 2]} \neq(l p)^{2}\left(\bmod p^{r}\right)$ for any integer l such that $0 \leqq l<p^{r-1}$, then

$$
\operatorname{Span}(k+1) \eta_{k, p^{r}}=\operatorname{Span}\left(\tau\left(L^{k}\left(p^{r}\right)\right) \oplus 1\right)=2 k+1-2[k / 2],
$$

where $\tau\left(L^{k}\left(p^{r}\right)\right) \oplus 1$ is the Whitney sum of the tangent bundle $\tau\left(L^{k}\left(p^{r}\right)\right)$ of $L^{k}\left(p^{r}\right)$ and the trivial line bundle 1 over $L^{k}\left(p^{r}\right)$.

Remark. By [7, Th. (1.7)] and [9, Lemma 2.2],

$$
\operatorname{Span}(k+1) \eta_{k, p^{r}} \geqq 2 k+1-2[k / 2] .
$$

Corollary 5. Suppose $p \leqq k-[k / 2]$. If $\binom{k+1}{[k / 2]} \neq(l p)^{2}\left(\bmod p^{r}\right)$ for any integer l such that $0 \leqq l<p^{r-1}$, then

$$
\operatorname{ind}\left(T_{p^{r}}, V_{2 k+2,2 k+2-2[k / 2]}\right) \leqq 2 k-1
$$

Remark. By [7, Th. (1.7)] and [9, Lemma 2.2],

$$
\operatorname{Span}(k+1) \eta_{2[k / 2]-1, p^{r}} \geqq 2 k+3-2[k / 2]>2 k+2-2[k / 2],
$$

and so, by Proposition 3,

$$
\operatorname{ind}\left(T_{p^{r}}, V_{2 k+2,2 k+2-2[k / 2]}\right) \geqq 4[k / 2]-1
$$

The author wishes to express his hearty thanks to Professors M. Sugawara and T. Kobayashi for their valuable suggestions and discussions.

§ 2. Proofs

Proof of Proposition 1. Let \tilde{T}_{2} be the involution on $S^{k} \times V_{n, m}$ defined by $\tilde{T}_{2}(x, v)=\left(A(x), T_{2}(v)\right)\left(x \in S^{k}, v \in V_{n, m}\right)$, and p be the map from $\left(S^{k} \times V_{n, m}\right) / \tilde{T}_{2}$ onto $R P^{k}$ induced by the projection from $S^{k} \times V_{n, m}$ onto S^{k}. Then p is the projec-
tion of the m-frame bundle associated with $n \xi_{k}$. It is easily seen that the existence of a cross-section of this bundle is equivalent to the existence of an equivariant map from S^{k} to $V_{n, m}$. Thus the proof is complete.

Proof of Corollary 2. $n \xi_{n-1}$ is isomorphic to the Whitney sum of the tangent bundle of $R P^{n-1}$ and the trivial line bundle over $R P^{n-1}$, and $R P^{n-1}$ has a tangent 1 -field for even n. So, by Proposition 1,

$$
\operatorname{ind}\left(T_{2}, V_{n, 2}\right) \geqq n-1
$$

As there is an equivariant map from $V_{n, 2}$ to S^{n-1} by sending each 2-frame in $V_{n, 2}$ to the first vector in S^{n-1}, we have

$$
\operatorname{co-ind}\left(T_{2}, V_{n, 2}\right) \leqq n-1
$$

By $[2,(3.3)]$,

$$
\operatorname{ind}\left(T_{2}, V_{n, 2}\right) \leqq \operatorname{co-ind}\left(T_{2}, V_{n, 2}\right)
$$

Thus the proof is complete.
Proof of Proposition 3. Z_{q} acts freely on $S^{2 k+1} \times V_{2 n, m}$ by the action on each factor. Let π be the map from ($\left.S^{2 k+1} \times V_{2 n, m}\right) / Z_{q}$ onto $L^{k}(q)$ induced by the projection from $S^{2 k+1} \times V_{2 n, m}$ onto $S^{2 k+1}$. Then $\left(\left(S^{2 k+1} \times V_{2 n, m}\right) / Z_{q}, \pi, L^{k}(q)\right)$ is the m-frame bundle associated with $n \eta_{k, q}$, and the existence of a cross-section of this bundle is equivalent to the existence of a Z_{q}-equivariant map from $S^{2 k+1}$ to $V_{2 n, m}$. Thus the proof is complete.

Proof of Proposition 4. The method of the proof is the same as in [4].
Put $q=p^{r}, t=2 k+2-2[k / 2]$. Suppose $\operatorname{Span}\left(\tau\left(L^{k}(q)\right) \oplus 1\right) \geqq t$. Then there is a $2[k / 2]$-plane bundle ξ over $L^{k}(q)$ such that $\tau\left(L^{k}(q)\right) \oplus 1$ is isomorphic to the Whitney sum of the trivial t-plane bundle and ξ. The square $X(\xi)^{2}$ of the Euler class of ξ is equal to the [$k / 2]$-th Pontrjagin class of ξ, and this is equal to $\binom{k+1}{[k / 2]} x^{2[k / 2]}$ for the generator x of $H^{2}\left(L^{k}(q) ; Z\right)=Z_{q}$. So, by the assumption, we have

$$
X(\xi)_{q}=m x_{q}^{[k / 2]} \quad(m \neq 0(\bmod p))
$$

where z_{q} is the image of z by the $\bmod q$ reduction.
The following diagram is commutative [8]:

$$
\begin{gathered}
H^{s}\left(E(\xi), E_{0}(\xi) ; Z_{q}\right) \xrightarrow{j^{*}} H^{s}\left(E(\xi) ; Z_{q}\right) \\
\phi \uparrow \approx \underset{\pi^{*}}{\approx} \\
H^{s-2[k / 2]}\left(L^{k}(q) ; Z_{q}\right) \xrightarrow{\mu} H^{s}\left(L^{k}(q) ; Z_{q}\right)
\end{gathered}
$$

where $E(\xi)$ is the total space of $\xi, E_{0}(\xi)$ is the subspace of $E(\xi)$ which consists of non-zero vectors, j^{*} is the homomorphism induced by the injection $j: E(\xi) \rightarrow$ $\left(E(\xi), E_{0}(\xi)\right), \pi^{*}$ is the isomorphism induced by the projection of ξ, ϕ is the Thom isomorphism, and μ is defined by

$$
\mu(y)=y X(\xi)_{q} \quad\left(y \in H^{s-2[k / 2]}\left(L^{k}(q) ; Z_{q}\right)\right) .
$$

As $X(\xi)_{q}=m x_{q}^{[k / 2]}(m \neq 0(\bmod p)), \mu$ is an isomorphism for $2[k / 2] \leqq s \leqq$ $2 k+1$. So, for the inclusion map λ from $L^{k}(q)$ into the Thom complex $L^{k}(q)^{\xi}$ of ξ, we have

$$
\lambda^{*}: H^{s}\left(L^{k}(q)^{\xi} ; Z_{q}\right) \approx H^{s}\left(L^{k}(q) ; Z_{q}\right) \quad(2[k / 2] \leqq s \leqq 2 k+1)
$$

Since $L^{k}(q)^{\xi}$ is $(2[k / 2]-1)$-connected, there is a map f such that the following diagram is homotopy commutative:

where p is the projection.
It is easily verified that f induces isomorphisms:

$$
f^{*}: H^{s}\left(L^{k}(q)^{\xi} ; Z_{q}\right) \approx H^{s}\left(L^{k}(q) / L^{[k / 2]-1}(q) ; Z_{q}\right) \quad(0 \leqq s \leqq 2 k+1)
$$

By [1, Lemma (2.4)], the t-fold suspension $S^{t} L^{k}(q)^{\xi}$ of $L^{k}(q)^{\xi}$ is homeomorphic to $L^{k}(q)^{\xi \oplus t}=L^{k}(q)^{\tau\left(L^{k}(q) \oplus 1\right.}=L^{k}(q)^{(k+1) \eta}$, where $\eta=\eta_{k, q}$. By [3, Th. 1] and [5, Th. 4.7], $L^{k}(q)^{(k+1) \eta}$ is homeomorphic to $L^{2 k+1}(q) / L^{k}(q)$. The complex $S^{t}\left(L^{k}(q) / L^{[k / 2]-1}(q)\right)$ has dimension $t+2 k+1$. So, by the cellular approximation theorem, there exists a map g such that the following diagram is homotopy commutative:

where $S^{t} f$ is the t-fold suspension of f and i is the inclusion.
Then we can see that g induces isomorphisms of all cohomology groups with Z_{q} coefficients. Also g defines a map

$$
g_{0}: S^{t}\left(L_{0}^{k}(q) / L_{0}^{[k / 2]}(q)\right) \longrightarrow L_{0}^{2 k+1-[k / 2]}(q) / L_{0}^{k+1}(q)
$$

where $L_{0}^{k}(q)$ is the $2 k$-skeleton of $L^{k}(q)$, and g_{0} induces isomorphisms of all co-
homology groups with Z_{q} coefficients. By the universal coefficient theorem, we see that g_{0} induces isomorphisms of all homology groups. As the spaces are simply connected, g_{0} is a homotopy equivalence. So, $L_{0}^{k}(q) / L_{0}^{[k / 2]}(q)$ and $L_{0}^{2 k+1-[k / 2]}(q) / L_{0}^{k+1}(q)$ are stably homotopy equivalent. Therefore $k+1-$ $[k / 2] \equiv 0\left(\bmod p^{[(k-[k / 2]-1) /(p-1)]}\right)$, by [5, Th. 1.1].

But this is impossible by the easy calculations using the assumption $p \leqq$ $k-[k / 2]$. So,

$$
\operatorname{Span}\left(\tau\left(L^{k}(q)\right) \oplus 1\right) \leqq t-1
$$

By [7, Th. (1.7)],

$$
\operatorname{Span}\left(\tau\left(L^{k}(q)\right) \oplus 1\right) \geqq t-1
$$

Thus the proof is complete.

References

[1] M. F. Atiyah: Thom complexes, Proc. London Math. Soc., 11 (1961), 291-310.
[2] P. E. Conner and E. E. Floyd: Fixed point free involutions and equivariant maps, Bull. Amer. Math. Soc., 66 (1960), 416-441.
[3] T. Kambe, H. Matsunaga and H. Toda: A note on stunted lens space, J. Math. Kyoto Univ., 5 (1966), 143-149.
[4] T. Kobayashi: Non-immersion theorems for lens spaces, J. Math. Kyoto Univ., 6 (1966), 91-108.
[5] T. Kobayashi and M. Sugawara: On stable homotopy types of stunted lens spaces, Hiroshima Math. J., 1 (1971), 287-304.
[6] K. Y. Lam: Sectioning vector bundles over real projective spaces, Quart. J. Math., 23 (1972), 97-106.
[7] D. Sjerve: Vector bundles over orbit manifolds, Trans. Amer. Math. Soc., 138 (1969), 97106.
[8] R. Thom: Espaces fibrés en sphères et carrés de Steenrod, Ann. Sci. Ecole Norm. Sup., 69 (1952), 109-182.
[9] T. Yoshida: On the vector bundles $m \xi_{n}$ over real projective spaces, J. Sci. Hiroshima Univ. Ser. A-I, 32 (1968), 5-16.

> Department of Mathematics, Faculty of General Education, Hiroshima University

