Asymptotic Behavior of Solutions for Large $|x|$ of Weakly Coupled Parabolic Systems with Unbounded Coefficients*)

Lu-San Chen, Jer-San Lin and Cheh-Chih Yeh

(Received January 30, 1974)

§ 1. Introduction.

Let E^{n} be the n-dimensional Euclidean space whose points x is represented by its coordinates $\left(x_{1}, \ldots, x_{n}\right)$. The distance of a point x of E^{n} to the origin is defined by $|x|=\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{\frac{1}{2}}$. Every point in $D \equiv E^{n} \times(0, T]$ is denoted by (x, t), $x \in E^{n}, t \in(0, T](T<+\infty)$.

We say that a function $w(x, t)$ belongs to class $E_{\lambda \mu}(D, M, k)$ or shortly $E_{\lambda \mu}(\lambda, \mu>0$ are constants) in D if there exist positive numbers M, k such that

$$
|w(x, t)| \leqslant M \exp \left\{k\left[\log \left(|x|^{2}+1\right)+1\right]^{\lambda}\left(|x|^{2}+1\right)^{\mu}\right\} .
$$

We say that a function $w(x, t)$ belongs to class $E_{\lambda}(D, M, k)$ or shortly E_{λ} ($\lambda \geqslant 1$ is a constant) in D if there exist positive numbers M, k such that

$$
|w(x, t)| \leqslant M \exp \left\{k\left[\log \left(|x|^{2}+1\right)+1\right]^{\lambda}\right\} .
$$

Consider a weakly coupled parabolic system of the form
(*)

$$
\begin{array}{r}
F^{p}\left[u^{p}\right] \equiv \sum_{i, j=1}^{n} a_{i j}^{p}(x, t) \frac{\partial^{2} u^{p}}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{n} b_{i}^{p}(x, t) \frac{\partial u^{p}}{\partial x_{i}}+\sum_{q=1}^{N} c^{p q}(x, t) u^{q}-\frac{\partial u^{p}}{\partial t} \\
p=1, \ldots, N
\end{array}
$$

with variable coefficients $a_{i j}^{p}\left(=a_{j i}^{p}\right), b_{i}^{p}, c^{p q}$ defined in \bar{D}.
In this paper, we deal with the decay of solutions of

$$
\begin{equation*}
F^{p}\left[u^{p}\right]=0, \quad p=1, \ldots, N, \tag{1}
\end{equation*}
$$

and the growth of solutions of

$$
\begin{equation*}
F^{p}\left[u^{p}\right] \leqslant 0, \quad p=1, \ldots, N, \tag{2}
\end{equation*}
$$

for large $|x|$.

[^0]
§ 2. The maximum Principle.

The following maximum principle due to Kusano-Kuroda-Chen [4] will be important in the later treatment.

Let R be an unbounded domain in E^{n} with closure \bar{R} and the boundary ∂R.
Lemma 1. Suppose that the coefficients of (*) in $\bar{R} \times[0, T]$ satisfy the inequalities

$$
\left\{\begin{array}{l}
0 \leqslant \sum_{i, j=1}^{n} a_{i j}^{p}(x, t) \xi_{i} \xi_{j} \leqslant K_{1}\left[\log \left(|x|^{2}+1\right)+1\right]^{-\lambda}\left(|x|^{2}+1\right)^{1-\mu}|\xi|^{2} \tag{3}\\
\quad \text { for any real vector } \xi=\left(\xi_{1}, \ldots, \xi_{n}\right), \quad p=1, \ldots, N, \\
\left|b_{i}^{p}(x, t)\right| \leqslant K_{2}\left(|x|^{2}+1\right)^{\frac{1}{2}}, \quad i=1, \ldots, n ; p=1, \ldots, N, \\
c^{p q}(x, t) \geqslant 0 \quad \text { for } \quad p \neq q, \quad p, q=1, \ldots, N,
\end{array}\right.
$$

$$
\begin{equation*}
\sum_{q=1}^{N} c^{p q}(x, t) \leqslant K_{3}\left[\log \left(|x|^{2}+1\right)+1\right]^{\lambda}\left(|x|^{2}+1\right)^{\mu}, \quad p=1, \ldots, N \tag{4}
\end{equation*}
$$

where $K_{1}>0, K_{2} \geqslant 0, K_{3}>0, \mu>0$ and λ are constnats. Let $\left\{u^{p}(x, t)\right\}, p=$ $1, \ldots, N$, be a system of functions satisfying $F^{p}\left[u^{p}\right] \geqslant 0, p=1, \ldots, N$, in $R \times(0, T]$ with the properties
(i) $u^{p}(x, t) \leqslant 0 \quad$ for $\quad(x, t) \in\{\partial R \times[0, t]\} \cup\{R \times(t=0)\}, \quad p=1, \ldots, N$
(ii) $u^{p}(x, t) \leqslant M \exp \left\{k\left[\log \left(|x|^{2}+1\right)+1\right]^{\lambda}\left(|x|^{2}+1\right)^{\mu}\right\}$ in $R \times(0, T]$,
for some positive constants M and $k, p=1, \ldots, N$.
Then $u^{p}(x, t) \leqslant 0$ in $\bar{R} \times[0, T], \quad p=1, \ldots, N$.
By the same method, we can prove the following
Lemma 2. Assume that the coefficients of (*) in $\bar{R} \times[0, T]$ satisfy the inequalities

$$
\left\{\begin{array}{l}
0 \leqslant \sum_{i, j=1}^{n} a_{i j}^{p}(x, t) \xi_{i} \xi_{j} \leqslant K_{1}\left[\log \left(|x|^{2}+1\right)+1\right]^{2-\lambda}\left(|x|^{2}+1\right)|\xi|^{2} \tag{5}\\
\quad \text { for any real vector } \xi=\left(\xi_{1}, \ldots, \xi_{n}\right), \quad p=1, \ldots, N, \\
\left|b_{i}^{p}(x, t)\right| \leqslant K_{2}\left[\log \left(|x|^{2}+1\right)+1\right]\left(|x|^{2}+1\right)^{\frac{1}{2}}, \\
i=1, \ldots, n ; p=1, \ldots, N, \\
c^{p q}(x, t) \geqslant 0 \quad \text { for } \quad p \neq q, \quad p, q=1, \ldots, N,
\end{array}\right.
$$

$$
\begin{equation*}
\sum_{q=1}^{N} c^{p q}(x, t) \leqslant K_{3}\left[\log \left(|x|^{2}+1\right)+1\right]^{\lambda}, \quad p=1, \ldots, N \tag{6}
\end{equation*}
$$

where $K_{1}>0, K_{2} \geqslant 0, K_{3}>0$ and $\lambda \geqslant 1$ are constants. Let $\left\{u^{p}(x, t)\right\}, p=1, \ldots$, N, be a system of functions satisfying $F^{p}\left[u^{p}\right] \geqslant 0, p=1, \ldots, N$, in $R \times(0, T]$ with the properties
(i) $u^{p}(x, t) \leqslant 0 \quad$ for $(x, t) \in\{\partial R \times[0, T]\} \cup\{R \times(t=0)\}, \quad p=1, \ldots, N$,
(ii) $u^{p}(x, t) \leqslant M \exp \left\{k\left[\log \left(|x|^{2}+1\right)+1\right]^{\lambda}\right\} \quad$ in $R \times(0, T]$
for some positive constants M and $k, p=1, \ldots, N$.
Then

$$
u^{p}(x, t) \leqslant 0 \quad \text { in } \quad \bar{R} \times[0, T], \quad p=1, \ldots, N .
$$

Proof: We introduce the auxiliary functions $v(x, t)$ and $w^{p}(x, t), p=1, \ldots$, N, defined by

$$
v(x, t)=\exp \left\{2 k e^{b t}\left[\log \left(|x|^{2}+1\right)+1\right]^{\lambda}\right\}
$$

and

$$
\begin{gathered}
w^{p}(x, t)=u^{p}(x, t)-M \exp \left\{2 k e^{b t}\left[\log \left(|x|^{2}+1\right)+1\right]^{\lambda}-k\left[\log \left(B^{2}+1\right)+1\right]^{\lambda}\right\}, \\
p=1, \ldots, N,
\end{gathered}
$$

where B is a positive number. It is possible to choose the parameter $b>0$ so large that $F^{p}[v]<0$ in $R \times\left(0, b^{-1}\right]$. Now the proof proceeds exactly as in the proof of Lemma 1.

Remark 1. (i) From the proofs of Lemma 1 and Lemma 2, we see easily that R in those statements can be taken as the whole space E^{n}. In this case the condition (i) of Lemma 1 and Lemma 2 must be replaced by the following:

$$
u^{p}(x, 0) \leqslant 0 \quad \text { for } \quad x \in E^{n}, \quad p=1, \ldots, N .
$$

(ii) Analogues of Lemma 1 and Lemma 2 for a single parabolic inequality have been given by one of the present authors Chen [2] (Theorem 1.1 and Theorem 1.2 respectively).

From Lemma 1, we have the following.
Lemma 3. Suppose that the coefficients of (*) in \bar{D} satisfy the condition (3) and $\sum_{q=1}^{N} c^{p q}(x, t) \leqslant 0, p=1, \ldots, N$. Let $\left\{u^{p}(x, t)\right\}, p=1, \ldots, N$, be a usual solution of $F^{p}\left[u^{p}\right]=0, p=1, \ldots, N$, in \bar{D} such that $u^{p}(x, t) \in E_{\lambda \mu}$ and $\left|u^{p}(x, 0)\right| \leqslant M_{0}$ in E^{n} for a positive constant $M_{0}, p=1, \ldots, N$. Then $\left|u^{p}(x, t)\right| \leqslant M_{0}$ in $\bar{D}, p=1, \ldots, N$.

Proof: Applying Lemma 1 to $v(x, t)=-M_{0} \pm u^{p}(x, t)$, we have out lemma directly.

Similarly, we can prove the following.

Lemma 4. Suppose that the coefficients of (*) in \bar{D} satisfy the condition (5) and $\sum_{q=1}^{N} c^{p q}(x, t) \leqslant 0, p=1, \ldots, N$. Let $\left\{u^{p}(x, t)\right\}, p=1, \ldots, N$, be a usual solution of $F^{p}\left[u^{p}\right]=0$ in \bar{D} such that $u^{p}(x, t) \in E_{\lambda}$ and $\left|u^{p}(x, 0)\right| \leqslant M_{0}$ in E^{n} for a positive constant $M_{0}, p=1, \ldots, N$. Then $\left|u^{p}(x, t)\right| \leqslant M_{0}$ in $\bar{D}, p=1, \ldots, N$.

§ 3. Exponential Decay of Solutions for large $|\boldsymbol{x}|$.

Theorem 1. Suppose that the coefficients of (1) in \bar{D} satisfy the conditions (3) and (4). Assume that the constants $K_{1}, K_{2}, K_{3}, \lambda$ and μ appeared in (3), (4) satisfy

$$
\begin{aligned}
& S_{1}=4 K_{1} K_{3}(\lambda+\mu)^{2}-\left\{K_{2} n(\lambda+\mu)+2[(1-\mu)(\lambda+\mu)+\lambda] K_{1}\right\}^{2}>0, \\
& \quad \text { if } \lambda \geqslant 0, \mu \in(0,1] \\
& S_{1}^{\prime}=4 K_{1} K_{3}(\lambda+\mu)^{2}-\left[K_{2} n(\lambda+\mu)+2 K_{1} \lambda\right]^{2}>0, \quad \text { if } \lambda \geqslant 0, \mu>1 ; \\
& S_{2}=4 K_{1} K_{3}\left(\lambda^{2}+\mu^{2}\right)-(\mu-\lambda)^{2}\left[K_{2} n+2(\mu+\lambda-1) K_{1}\right]^{2}>0, \\
& \text { if } \lambda<0, \mu \in(0,1] ; \\
& S_{2}^{\prime}=4 K_{1} K_{3}\left(\lambda^{2}+\mu^{2}\right)-(\mu-\lambda)^{2}\left[K_{2} n+2(1-\lambda) K_{1}\right]^{2}>0, \quad \text { if } \lambda<0, \mu>1 .
\end{aligned}
$$

Let $\left\{u^{p}(x, t)\right\}, p=1, \ldots, N$, be a usual solution of (1) in \bar{D} such that $u^{p}(x, t) \in$ $E_{\lambda \mu}$ and

$$
\left|u^{p}(x, 0)\right| \leqslant M_{0} \exp \left\{-k_{0}\left[\log \left(|x|^{2}+1\right)+1\right]^{\lambda}\left(|x|^{2}+1\right)^{\mu}\right\}
$$

in E^{n} for some positive constants M_{0} and $k_{0}, p=1, \ldots, N$. Put

$$
T_{0}=\left\{\begin{array}{l}
\min \left(T, \frac{1}{\sqrt{S_{1}}} \tan ^{-1} \frac{\sqrt{S_{1}}}{\left.\overline{K_{2} n\left(\lambda+\mu+2[(1-\mu)(\lambda+\mu)+\lambda] K_{1}+K_{3} k_{0}^{-1}\right.}\right)}\right. \\
\quad \text { if } \lambda \geqslant 0, \quad \mu \in(0,1] \\
\min \left(T, \frac{1}{\sqrt{S_{1}^{\prime}}} \tan ^{-1} \frac{\sqrt{S_{1}^{\prime}}}{K_{2} n(\lambda+\mu)+2 K_{1} \lambda+K_{3} k_{0}^{-1}}\right), \quad \text { if } \lambda \geqslant 0, \mu>1,
\end{array}\right.
$$

or

$$
T_{0}=\left\{\begin{array}{c}
\min \left(T, \frac{1}{\sqrt{S_{2}}} \tan ^{-1} \frac{\sqrt{ } \overline{S_{2}}}{K_{2} n(\mu-\lambda)+2 K_{1}(\mu-\lambda)(\mu+\lambda-1)+K_{3} k_{0}^{-1}}\right) \\
\min \left(T, \frac{1}{\sqrt{S_{2}^{\prime}}} \tan ^{-1} \frac{\sqrt{2} \quad \lambda, \quad \mu \in(0,1]}{K_{2} n(\mu-\lambda)+2 K_{1}(1-\lambda)(\mu-\lambda)+K_{3} k_{0}^{-1}}\right), \\
\text { if } \lambda<0, \quad \mu>1 .
\end{array}\right.
$$

Then

$$
\lim _{|x| \rightarrow \infty} u^{p}(x, t)=0 \quad \text { for any } \quad t \in\left[0, T^{\prime}\right] \subset\left[0, T_{0}\right), p=1, \ldots, N .
$$

Proof: We only consider the case $\lambda \geqslant 0, \mu \in(0,1]$. Put

$$
u^{p}(x, t)=w^{p}(x, t) H_{k_{0}}(x, t), \quad p=1, \ldots, N,
$$

where $H_{k_{0}}(x, t) \equiv H=\exp \left\{-k_{0}\left[\log \left(|x|^{2}+1\right)+1\right]^{\lambda}\left(|x|^{2}+1\right)^{\mu} \rho^{b\left(k_{0}\right) t}\right\}, \quad b\left(k_{0}\right)=$ $-\left\{4 k_{0} K_{1}(\lambda+\mu)^{2}+2 n K_{2}(\lambda+\mu)+4[(1-\mu)(\lambda+\mu)+\lambda] K_{1}+K_{3} k_{0}^{-1} \rho\right\} \times(\log \rho)^{-1}$, and ρ is a number greater than 1 . Then it is obvious that $F^{p}[H] \leqslant 0$ in $E^{n} \times$ $\left[0, T_{k_{0}}\right], p=1, \ldots, N$, where $T_{k_{0}}=\min \left(T,\left|b\left(k_{0}\right)\right|^{-1}\right)$. We see that

$$
\sum_{i, j=1}^{n} a_{i j}^{p}(x, t) \frac{\partial^{2} w^{p}}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{n} b_{i}^{* p}(x, t) \frac{\partial w^{p}}{\partial x_{i}}+\frac{F^{p}[H]}{H} w^{p}-\frac{\partial w^{p}}{\partial t}=0
$$

in $E^{n} \times\left[0, T_{k_{0}}\right], p=1, \ldots, N$. Further in $E^{n} \times\left[0, T_{k_{0}}\right]$ we have $\left|b_{i}^{* P}(x, t)\right| \leqslant$ $K_{2}^{\prime}\left(|x|^{2}+1\right)^{\frac{1}{2}}$ for a positive constant K_{2}^{\prime} which is independent of t and clearly $\left|w^{p}(x, 0)\right| \leqslant M_{0}$ for $x \in E^{n}, p=1, \ldots, N$. Hence we conclude from Lemma 3 that $\left|w^{p}(x, t)\right| \leqslant M_{0}, p=1, \ldots, N$. Therefore it holds that in $E^{n} \times\left[0, T_{k_{0}}\right]$

$$
\left|u^{p}(x, t)\right| \leqslant M_{0} \exp \left\{-k_{0}\left[\log \left(|x|^{2}+1\right)+1\right]^{\lambda}\left(|x|^{2}+1\right)^{\mu} \rho^{b\left(k_{0}\right) t}\right\}, \quad p=1, \ldots, N
$$

If $T_{k_{0}}<T$, then we consider $u^{p}\left(x, T_{k_{0}}\right)$ to be the initial data of $u^{p}(x, t)$ in $E^{n} \times\left(T_{k_{0}}, T\right), p=1, \ldots, N$, and repeat the above procedure. Since

$$
\left|u^{p}\left(x, T_{k_{0}}\right)\right| \leqslant M_{0} \exp \left\{-k_{0} \rho^{-1}\left[\log \left(|x|^{2}+1\right)+1\right]^{\lambda}\left(|x|^{2}+1\right)^{\mu}\right\},
$$

we get

$$
\left|u^{p}(x, t)\right| \leqslant M_{0} \exp \left\{-k_{0} \rho^{-1}\left[\log \left(|x|^{2}+1\right)+1\right]^{\lambda}\left(|x|^{2}+1\right)^{\mu} \rho^{b\left(k_{0} \rho^{-1}\right) t}\right\}
$$

in $E^{n} \times\left[T_{k_{0}}, T_{k_{0}}+T_{k_{1}}\right]$, where

$$
T_{k_{1}}=\min \left(T-T_{k_{0}},\left|b\left(k_{0} \rho^{-1}\right)\right|^{-1}\right), \quad p=1, \ldots, N
$$

In general, if $T_{k_{0}}+\cdots+T_{k_{m}}<T$, then by the argument used above, we can conclude that in $E^{n} \times\left[T_{k_{0}}+\cdots+T_{k_{m}}, T_{k_{0}}+\cdots+T_{k_{m}}+T_{k_{m+1}}\right]$

$$
\left|u^{p}(x, t)\right| \leqslant M_{0} \exp \left\{-k_{0} \rho^{-(m+1)}\left[\log \left(|x|^{2}+1\right)+1\right]^{\lambda}\left(|x|^{2}+1\right)^{\mu} \rho^{b\left(k_{0} \rho-(m+1)\right) t}\right\}
$$

where

$$
\begin{array}{r}
T_{k_{m+1}}=\min \left(T-\left(T_{k_{0}}+\cdots+T_{k_{m}}\right), \quad\left|b\left(k_{0} \rho^{-(m+1)}\right)\right|^{-1}\right)>0, \\
p=1, \ldots, N .
\end{array}
$$

Now we suppose

$$
\begin{aligned}
G(\rho)= & \sum_{m=0}^{\infty}\left|b\left(k_{0} \rho^{-m}\right)\right|^{-1}=\log \rho \sum_{m=0}^{\infty}\left\{4 k_{0} K_{1}(\lambda+\mu)^{2} \rho^{-m}+2 K_{2} n(\lambda+\mu)\right. \\
& \left.+4[(1-\mu)(\lambda+\mu)+\lambda] K_{1}+K_{3} k_{0}^{-1} \rho^{m+1}\right\}^{-1} .
\end{aligned}
$$

For brevity we put $f=4 k_{0} K_{1}(\lambda+\mu)^{2}, g=2 K_{2} n(\lambda+\mu)+4[(1-\mu)(\lambda+\mu)+\lambda] K_{1}$, $h=K_{3} k_{0}^{-1}$. Then

$$
G(\rho)=\log \rho \sum_{m=0}^{\infty} \frac{1}{f \rho^{-m-1}+g+h \rho^{m}} .
$$

The function $\left(f \rho^{-m-1}+g+h \rho^{s}\right)^{-1}$ of $s \in(-\infty, \infty)$ has its maximum at $s=s_{0}=$ $\frac{1}{2} \log _{\rho} \frac{f}{h \rho}$.

First suppose that $f>h$. Then we can find $\rho_{0}(>1)$ such that $\rho_{0}>\rho>1$ implies $\frac{f}{h \rho}>1$ and $4 f h \rho-g^{2}>0$, that is $s_{0}>0$, Let r be the nonnegative integer such that $r<s_{0} \leqslant r+1$. Then

$$
\begin{aligned}
& G(\rho) \geqslant \log \rho \int_{1}^{r} \frac{d s}{f^{-s}+g+h^{s+1}}+\log \rho \int_{r+1}^{\infty} \frac{d s}{f^{-s}+g+h^{s+1}}=\frac{2}{\sqrt{4 h f \rho-g^{2}}} \times \\
& \tan ^{-1} \frac{\sqrt{4 h f \rho-g^{2}}\left[4 h f \rho-g^{2}+\left(2 h \rho^{r+1}+g\right)(2 h \rho+g)+2 h \rho\left(\rho^{r}-1\right)\left(2 h \rho^{r+2}+g\right)\right]}{\left(2 h \rho^{r+2}+g\right)\left[4 h f \rho-g^{2}+\left(2 h \rho^{r+1}+g\right)(2 h \rho+g)\right]-\left(4 h f \rho-g^{2}\right) 2 h \rho\left(\rho^{r}-1\right)} \\
& \quad \frac{d f}{=} T^{*}(\rho) .
\end{aligned}
$$

In the case when $f \leqslant h$, we see that $f \leqslant h \rho, s_{0} \leqslant 0$ and that

$$
G(\rho) \geqslant \log \rho \int_{1}^{\infty} \frac{d s}{f \rho^{-s}+g+h^{s+1}}=\frac{2}{\sqrt{4 h f \rho-g^{2}}} \tan ^{-1} \frac{\sqrt{4 h f \rho-g^{2}}}{2 h \rho+g} \stackrel{d f}{=} T^{* *}(\rho) .
$$

$T^{*}(\rho), T^{* *}(\rho)$ are all continuous in $[1, \infty)$. Putting

$$
\tilde{T}(\rho)= \begin{cases}T^{*}(\rho), & (f>h) \\ T^{* *}(\rho), & (f \leqslant h)\end{cases}
$$

we see easily from the continuity of $\widetilde{T}(\rho)$ in $[1, \infty)$ that there exist a positive integer L and a positive number $\rho(>1)$ such that

$$
T^{\prime} \leqslant \sum_{m=0}^{L}\left|b\left(k_{0} \rho^{-m}\right)\right|^{-1}
$$

Therefore, for $k^{\prime}=\max _{0<m<L}\left(k_{0} \rho^{-m+b\left(k_{0} \rho^{-m}\right) t}\right)$, we have

$$
\left|u^{p}(x, t)\right| \leqslant M_{0} \exp \left\{-k^{\prime}\left[\log \left(|x|^{2}+1\right)+1\right]^{\lambda}\left(|x|^{2}+1\right)^{\mu}\right\}, \quad p=1, \ldots, N,
$$

at every point $(x, t) \in E^{n} \times\left[0, T^{\prime}\right]$, which proves the theorem.

Similarly, we can prove the following.
Theorem 2. Suppose that the coefficients of (1) in \bar{D} satisfy the conditions (5) and (6). Assume that the constants K_{1}, K_{2}, K_{3} and λ appeared in (5),
(6) satisfy

$$
S=\lambda^{2}\left[4 K_{1} K_{3}-\left(n K_{2}+2 K_{1}\right)^{2}\right]>0 .
$$

Let $\left\{u^{p}(x, t)\right\}, p=1, \ldots, N$, be a usual solution of (1) in \bar{D} such that $u^{p}(x, t) \in E_{\lambda}$ and $\left|u^{p}(x, 0)\right| \leqslant M_{0} \exp \left\{-k_{0}\left[\log \left(|x|^{2}+1\right)+1\right]^{\lambda}\right\}$ in E^{n} for some positive constants M_{0} and $k_{0}, p=1, \ldots, N$. Put

$$
T_{0}=\min \left(T, \frac{1}{\sqrt{S}} \tan ^{-1} \frac{\sqrt{S}}{n K_{2} \lambda+2 K_{1} \lambda+K_{3} k_{0}^{-1}}\right)
$$

Then for any $t \in\left[0, T^{\prime}\right) \subset\left[0, T_{0}\right)$ there exists a positive constant k^{\prime} such that

$$
\left|u^{p}(x, t)\right| \leqslant M_{0} \exp \left\{-k^{\prime}\left[\log \left(|x|^{2}+1\right)+1\right]^{\lambda}\right\} \quad \text { for any } x \in E^{n}, p=1, \ldots, N .
$$

§ 4. Unbounded growth of solutions for large $|\boldsymbol{x}|$.

From Lemma 1, we have the following.
Lemma 5. Assume that the coefficients of (2) in \bar{D} satisfy the condition (3) and

$$
\begin{align*}
& k_{3}\left[\log \left(|x|^{2}+1\right)+1\right]^{\lambda}\left(|x|^{2}+1\right)^{\mu} \leqslant \sum_{q=1}^{N} c^{p q}(x, t) \tag{7}\\
& \quad \leqslant K_{3}\left[\log \left(|x|^{2}+1\right)+1\right]^{\lambda}\left(|x|^{2}+1\right)^{\mu}, \quad p=1, \ldots, N,
\end{align*}
$$

where $k_{3}>0, K_{3}>0, \mu>0$ and λ are constants. Let $\left\{u^{p}(x, t)\right\}, p=1, \ldots, N$, be a usual solution of (2) in \bar{D} with the properties:
(i) $u^{p}(x, t) \geqslant-M \exp \left\{k\left[\log \left(|x|^{2}+1\right)+1\right]^{\lambda}\left(|x|^{2}+1\right)^{\mu}\right\}, \quad p=1, \ldots, N$, in D for some positive constants M and k,
(ii) $u^{p}(x, 0) \geqslant M_{0}$ in E^{n} for a positive constant $M_{0}, p=1, \ldots, N$.

Then it holds that

$$
u^{p}(x, t) \geqslant M_{0} \exp \left\{k_{0}\left[\log \left(|x|^{2}+1\right)+1\right]^{\lambda}\left(|x|^{2}+1\right)^{u} t\right\}
$$

$p=1, \ldots, N$, in \bar{D} for a positive constant k_{0}.
Proof: We employ the method as described in [2]. We only prove the case $\lambda \geqslant 0, \mu \in(0,1]$, because the other cases: $\lambda \geqslant 0, \mu \in[1, \infty) ; \lambda<0, \mu \in(0,1]$; $\lambda<0, \mu \in[1, \infty)$ can be discussed similarly. Take k_{0} as such as

$$
0<k_{0} \leqslant \frac{k_{3}}{\left\{4[(1-\mu)(\lambda+\mu)+\lambda] K_{1}+2 K_{2} n(\lambda+\mu)\right\} T+1} .
$$

Put

$$
v(x, t)=M_{0} \exp \left\{k_{0}\left[\log \left(|x|^{2}+1\right)+1\right]^{\lambda}\left(|x|^{2}+1\right)^{\mu} t\right\}
$$

Then, from (3) and (7) we see easily that

$$
\begin{aligned}
& \frac{F^{p}[v]}{v} \geqslant\left[\log \left(|x|^{2}+1\right)+1\right]^{\lambda}\left(|x|^{2}+1\right)^{\mu} \\
& \quad \times\left\{k_{0}\left[-4[(1-\mu)(\lambda+\mu)+\lambda] T K_{1}-2 K_{2} n(\lambda+\mu) T-1\right]+k_{3}\right\} \geqslant 0
\end{aligned}
$$

in D. Putting $w^{p}(x, t)=v(x, t)-u^{p}(x, t), p=1, \ldots, N$, and applying Lemma 1 to $w^{p}(x, t)$, we have $w^{p}(x, t) \leqslant 0$ in \bar{D}, that is, $u^{p}(x, t) \geqslant v(x, t)$ in $\bar{D}, p=1, \ldots, N$, which proves the Lemma.

By the same method, we can prove
Lemma 6. Assume that the coefficients of (2) in \bar{D} satisfy the condition (5) and

$$
\begin{equation*}
k_{3}\left[\log \left(|x|^{2}+1\right)+1\right]^{\lambda} \leqslant \sum_{q=1}^{N} c^{p q}(x, t) \leqslant K_{3}\left[\log \left(|x|^{2}+1\right)+1\right]^{\lambda} \tag{8}
\end{equation*}
$$

$p=1, \ldots, N$, where $k_{3}>0, K_{3}>0$ and $\lambda \geqslant 1$ are constants. Let $\left\{u^{p}(x, t)\right\}, p=$ $1, \ldots, N$, be a usual solution of (2) in \bar{D} with the properties:
(i) $u^{p}(x, t) \geqslant-M \exp \left\{k\left[\log \left(|x|^{2}+1\right)+1\right]^{\lambda}\right\}, \quad p=1, \ldots, N$, in D for some positive constants M and k,
(ii) $u^{p}(x, 0) \geqslant M_{0}$ in E^{n} for a positive constant $M_{0}, \quad p=1, \ldots, N$.

Then $u^{p}(x, t) \geqslant M_{0} \exp \left\{k_{0}\left[\log \left(|x|^{2}+1\right)+1\right]^{\lambda} t\right\}$ in \bar{D} for a positive constant $k_{0}, p=1, \ldots, N$.

Theorem 3. Suppose that the coefficients of (2) in \bar{D} satisfy the condition (7) and the inequalities

$$
\begin{aligned}
& k_{1}\left[\log \left(|x|^{2}+1\right)+1\right]^{-\lambda}\left(|x|^{2}+1\right)^{1-\mu}|\xi|^{2} \leqslant \sum_{i, j=1}^{n} a_{i j}^{p}(x, t) \xi_{i} \xi_{j} \\
& \quad \leqslant K_{1}\left[\log \left(|x|^{2}+1\right)+1\right]^{-\lambda}\left(|x|^{2}+1\right)^{1-\mu}|\xi|^{2}, \quad \text { for all } \xi \in E^{n}, p=1, \ldots, N, \\
& \left|b_{i}^{p}(x, t)\right| \leqslant K_{2}\left(|x|^{2}+1\right)^{\frac{1}{2}}, \quad i=1, \ldots, n ; p=1, \ldots, N, \\
& c^{p q}(x, t) \geqslant 0 \quad \text { for } \quad p \neq q, p, q=1, \ldots, N,
\end{aligned}
$$

where $k_{1}>0, K_{1}>0, K_{2} \geqslant 0, \mu>0$ and λ are constants. Let $\left\{u^{p}(x, t)\right\}, p=$ $1, \ldots, N$, be a usual solution of (2) in \bar{D} with the property (i) mentioned in Lemma 5 and such that

$$
u^{p}(x, 0) \geqslant M_{0} \exp \left\{-k_{0}\left[\log \left(|x|^{2}+1\right)+1\right]^{\lambda}\left(|x|^{2}+1\right)^{\mu}\right\} \text { in } E^{n},
$$

$p=1, \ldots, N$, for some positive constants M_{0} and k_{0}. Assume that if $\lambda \geqslant 0$, then

$$
\begin{gather*}
-2 K_{2} n(\lambda+\mu)+k_{3} k_{0}^{-1}>0, \tag{9}\\
H_{1}=4 k_{1} k_{3} \mu^{2}-K_{2}^{2} n^{2}(\lambda+\mu)^{2}>0, \tag{10}
\end{gather*}
$$

or if $\lambda<0$, then

$$
\begin{gathered}
-2(\mu-\lambda) K_{2} n+k_{3} k_{0}^{-1}>0, \\
H_{2}=-4 k_{1} k_{3} \lambda \mu-K_{2}^{2} n^{2}(\mu-\lambda)^{2}>0 .
\end{gathered}
$$

Put

$$
\begin{aligned}
& T_{0}^{*}=\frac{1}{\sqrt{H_{1}}} \tan ^{-1} \frac{\sqrt{H_{1}}}{-K_{2} n(\lambda+\mu)+k_{3} k_{0}^{-1}}<T, \quad \text { if } \lambda \geqslant 0, \\
& T_{0}^{*}=\frac{1}{\sqrt{H_{2}}} \tan ^{-1} \frac{\sqrt{H_{2}}}{-K_{2} n(\mu-\lambda)+k_{3} k_{0}^{-1}}<T, \quad \text { if } \lambda<0 .
\end{aligned}
$$

Then there exists a positive constant M^{*} such that $u^{p}\left(x, T^{*}\right) \geqslant M^{*}$. Further if $t \in\left(T_{0}^{*}, T\right)$, then there exists a positive constant k^{*} such that

$$
u^{p}(x, t) \geqslant M^{*} \exp \left\{k^{*}\left(t-T_{0}^{*}\right)\left[\log \left(|x|^{2}+1\right)+1\right]^{\lambda}\left(|x|^{2}+1\right)^{\mu}\right\}
$$

for any $x \in E^{n}, p=1, \ldots, N$.
Proof: We only prove the case $\lambda \geqslant 0, \mu \in(0,1]$, because other cases $\lambda \geqslant 0$, $\mu \in[1, \infty) ; \lambda<0, \mu \in(0,1]$ and $\lambda<0, \mu \in[1, \infty)$ can be discussed analogously. Now we use the idea of [3] and put

$$
\begin{aligned}
v(x, t) & =M_{0} \exp \left\{-k_{0}\left[\log \left(|x|^{2}+1\right)+1\right]^{\lambda}\left(|x|^{2}+1\right)^{\mu} \rho^{-r_{0} t}\right. \\
- & \left.-\frac{2(\lambda+\mu)(n+2 \lambda) K_{1} k_{0}}{r_{0} \log \rho}\left(1-\rho^{-r_{0} t}\right)-\frac{2 \mu^{2} k_{1} k_{0}^{2}}{r_{0} \log \rho}\left(1-\rho^{-2 r_{0} t}\right)\right\},
\end{aligned}
$$

where $r_{0}=\left[4 \mu^{2} k_{1} k_{0} \rho^{-1}-2(\lambda+\mu) n K_{2}+k_{3} k_{0}^{-1}\right](\log \rho)^{-1}$ and $\rho>1$ is a number.
From (9) we see $r_{0}>0$. Since $\lambda \geqslant 0, \mu \in(0,1]$, it is easy to see that

$$
\frac{F^{p}[v]}{v} \geqslant k_{0} \rho^{-r_{0} t}\left[\log \left(|x|^{2}+1\right)+1\right]^{\lambda}\left(|x|^{2}+1\right)^{\mu}
$$

$$
\times\left[4 k_{1} k_{0} \mu^{2} \rho^{-r_{0} t}-2(\lambda+\mu) K_{2} n+k_{3}\left(k_{0} \rho^{-r_{0} t}\right)^{-1}-r_{0} \log \rho\right]
$$

If $0 \leqslant t<r_{0}^{-1}$, then

$$
4 k_{1} k_{0} \mu^{2} \rho^{-r_{0} t}-2(\lambda+\mu) n K_{2}+k_{3}\left(k_{0} \rho^{-r_{0} t}\right)^{-1}-r_{0} \log \rho \geqslant 0 .
$$

Hence it follows that $F^{p}[v] \geqslant 0$ provided that $0 \leqslant t \leqslant r_{0}^{-1}$. In the following we assume $r_{0}^{-1}<T$. Putting $w^{p}(x, t)=v(x, t)-u^{p}(x, t), p=1, \ldots, N$, we see easily $w^{p}(x, 0) \leqslant 0, F^{p}\left[w^{p}\right] \geqslant 0$ and $w^{p}(x, t) \leqslant M^{\prime} \exp \left\{k\left[\log \left(|x|^{2}+1\right)+1\right]^{\lambda}\left(|x|^{2}+1\right)^{\mu}\right\}$ in $E^{n} \times\left[0, r_{0}^{-1}\right]$ for a suitable positive constant $M^{\prime}, p=1, \ldots, N$. Therefore Lemma 1 implies $w^{p}(x, t) \leqslant 0$, that is, $u^{p}(x, t) \geqslant v(x, t)$ in $E^{n} \times\left[0, r_{0}^{-1}\right], p=1, \ldots, N$. Hence

$$
\begin{gather*}
u^{p}\left(x, r_{0}^{-1}\right) \geqslant v\left(x, r_{0}^{-1}\right)=M_{0} \exp \left\{-k_{0} \rho^{-1}\left[\log \left(|x|^{2}+1\right)+1\right]^{\lambda}\left(|x|^{2}+1\right)^{\mu}\right. \tag{11}\\
\left.-\frac{2(\lambda+\mu)(n+2 \lambda) K_{1} k_{0}}{r_{0} \log \rho}\left(1-\rho^{-1}\right)-\frac{2 \mu^{2} k_{1} k_{0}^{2}}{r_{0} \log \rho}\left(1-\rho^{-2}\right)\right\} \\
p=1, \ldots, N .
\end{gather*}
$$

If $r_{0}^{-1}<T$, then we consider $t=r_{0}^{-1}$ to be the initial time and (11) to be the initial data of $u^{p}(x, t)$. Repeating the above procedure, we obtain

$$
\begin{aligned}
u^{p}(x, t) & \geqslant M_{1} \exp \left\{-k_{0} \rho^{-1}\left[\log \left(|x|^{2}+1\right)+1\right]^{\lambda}\left(|x|^{2}+1\right)^{\mu} \rho^{-r_{1}\left(t-r 0^{-1}\right)}\right. \\
& -\frac{2(\lambda+\mu)(n+2 \lambda) K_{1} k_{0} \rho^{-1}}{r_{1} \log \rho}\left(1-\rho^{-r_{1}\left(t-r_{0}^{-1}\right)}\right) \\
& \left.-\frac{2 \mu^{2} k_{1} k_{0}^{2} \rho^{-2}}{r_{1} \log \rho}\left(1-\rho^{-2 r_{1}\left(t-r_{0}^{-1}\right)}\right)\right\}, \quad p=1, \ldots, N,
\end{aligned}
$$

in $E^{n} \times\left[r_{0}^{-1}, r_{0}^{-1}+r_{1}^{-1}\right]$, where

$$
\begin{aligned}
& r_{1}=\left(4 \mu^{2} k_{1} k_{0} \rho^{-2}-2(\lambda+\mu) K_{2} n+k_{3} k_{0}^{-1}\right)(\log \rho)^{-1}, \\
& \quad M_{1}=M_{0} \exp \left\{-\frac{2(\lambda+\mu)(n+2 \lambda) K_{1} k_{0}}{r_{0} \log \rho}\left(1-\rho^{-1}\right)-\frac{2 \mu^{2} k_{1} k_{0}^{2}}{r_{0} \log \rho}\left(1-\rho^{-2}\right)\right\}
\end{aligned}
$$

provided that $r_{0}^{-1}+r_{1}^{-1}<T$. Hence

$$
\begin{aligned}
& u^{p}\left(x, r_{0}^{-1}+r_{1}^{-1}\right) \geqslant M_{0} \exp \left\{\frac{-2(\lambda+\mu)(n+2 \lambda) K_{1} k_{0}}{\log \rho}\left(1-\rho^{-1}\right)\left(r_{0}^{-1}+\rho^{-1} r_{1}^{-1}\right)\right. \\
& \left.\quad-\frac{2 \mu^{2} k_{1} k_{0}^{2}}{\log \rho}\left(1-\rho^{-2}\right)\left(r_{0}^{-1}+\rho^{-2} r_{1}^{-1}\right)\right\} \times \\
& \quad \exp \left\{-k_{0} \rho^{-2}\left[\log \left(|x|^{2}+1\right)+1\right]^{\lambda}\left(|x|^{2}+1\right)^{\mu}\right\}
\end{aligned}
$$

$p=1, \ldots, N$.
In general, if $r_{0}^{-1}+\cdots+r_{j}^{-1}<T$, then it holds that

$$
\begin{align*}
& u^{p}\left(x, r_{0}^{-1}+\cdots+r_{j}^{-1}\right) \geqslant M_{0} \exp \left\{-\frac{2(\lambda+\mu)(n+2 \lambda) K_{1} k_{0}}{\log \rho}\left(1-\rho^{-1}\right)\right. \tag{12}\\
& \quad \times\left(r_{0}^{-1}+\rho^{-1} r_{1}^{-1}+\cdots+\rho^{-j} r_{j}^{-1}\right) \\
& \left.\quad-\frac{2 \mu^{2} k_{1} k_{0}^{2}}{\log \rho}\left(1-\rho^{-2}\right)\left(r_{0}^{-1}+\rho^{-2} r_{1}^{-1}+\cdots+\rho^{-2 j} r_{j}^{-1}\right)\right\} \\
& \quad \times \exp \left\{-k_{0} \rho^{-j-1}\left[\log \left(|x|^{2}+1\right)+1\right]^{\lambda}\left(|x|^{2}+1\right)^{\mu}\right\}, \quad p=1, \ldots, N,
\end{align*}
$$

where $r_{j}=\left(4 \mu^{2} k_{1} k_{0} \rho^{-j-1}-2(\lambda+\mu) K_{2} n+k_{3} k_{0}^{-1} \rho^{j}\right)(\log \rho)^{-1}$.
Now suppose

$$
G(\rho)=\sum_{j=0}^{\infty} r_{j}^{-1}<T
$$

First we estimate the sum $G(\rho)$ from above and below. For brevity we put $f=4 \mu^{2} k_{1} k_{0}, g=-2(\lambda+\mu) K_{2} n, h=k_{3} k_{0}^{-1}$. Then

$$
G(\rho)=\log \rho \sum_{j=0}^{\infty}\left(f \rho^{-j-1}+g+h \rho^{j}\right)^{-1}
$$

The function $\left(f \rho^{-s-1}+g+h \rho^{s}\right)^{-1}$ of $s \in(-\infty, \infty)$ has its maximum at $s=s_{0}=\frac{1}{2} \log _{\rho} \frac{f}{h \rho}$. From (10) we see that

$$
\begin{equation*}
4 h f-g^{2}=4 h_{1}>0 \tag{13}
\end{equation*}
$$

There are two cases: (i) $f>h$ and (ii) $f \leqslant h$.
In case (i), we can find a number $\rho_{0}(>1)$ such that $\rho_{0}>\rho>1$ implies $f>h \rho$ and such that $4 f h \rho^{-1}-g^{2}>0$. For such a number ρ it is evident that $s_{0}>0$. Let d be the non-negative integer such that $d<s_{0} \leqslant d+1$. Then

$$
\begin{aligned}
& G(\rho) \geqslant \log \rho\left[\int_{s}^{d}\left(f \rho^{-s-1}+g+h \rho^{s}\right)^{-1} d s+\int_{d+1}^{\infty}\left(f \rho^{-s-1}+g+h \rho^{s}\right)^{-1} d s\right] \\
& \quad=\frac{2}{\sqrt{4 f h \rho^{-1}-g^{2}}} \times \\
& \tan ^{-1} \frac{\sqrt{4 f h \rho^{-1}-g^{2}}\left[4 f h \rho^{-1}-g^{2}+\left(2 h \rho^{d}+g\right)(2 h+g)+2 h\left(\rho^{d}-1\right)\left(2 h \rho^{d+1}+g\right)\right]}{\left(2 h \rho^{d+1}+g\right)\left[4 f h \rho^{-1}-g^{2}+\left(2 h \rho^{d}+g\right)(2 h+g)\right]-\left(4 f h \rho^{-1}-g^{2}\right) 2 h\left(\rho^{d}-1\right)} \\
& \quad d f \\
& \quad=T_{1}(\rho) .
\end{aligned}
$$

It is easy to see that

$$
\begin{aligned}
& G(\rho) \leqslant T_{1}(\rho)+r_{d+1}^{-1}+r_{d}^{-1} \\
& \left.=T_{1}(\rho)+\log \rho\left[f \rho^{-d-1}+g+h \rho^{d}\right)^{-1}+\left(f \rho^{-d-2}+g+h \rho^{d+1}\right)^{-1}\right] \\
& \\
& \quad\left(1<\rho<\rho_{0}\right)
\end{aligned}
$$

In the case (ii), it is obvious that $s_{0}<0$ for any $\rho>1$. As in the case (i), there is a $\rho_{0}(>1)$ such that $4 f h \rho^{-1}-g^{2}>0$ for any ρ satisfying $\rho_{0}>\rho>1$. So for such a ρ we get

$$
\begin{aligned}
& G(\rho) \geqslant \log \rho \int_{0}^{\infty}\left(f \rho^{-s-1}+g+h \rho^{s}\right)^{-1} d s \\
& \quad=\frac{2}{\sqrt{4 f h \rho^{-1}-g^{2}}} \tan ^{-1} \frac{\sqrt{4 f h \rho^{-1}-g^{2}}}{2 h+g} \stackrel{d f}{=} T_{2}(\rho)
\end{aligned}
$$

We see easily that

$$
G(\rho) \leqslant T_{2}(\rho)+\left(f \rho^{-1}+g+h\right)^{-1} \log \rho, \quad\left(1<\rho<\rho_{0}\right)
$$

Therefore, in both cases (i) and (ii), from the assumption (9), we have

$$
\begin{equation*}
\lim _{\rho \rightarrow 1} G(\rho)=\frac{2}{\sqrt{4 f h-g^{2}}} \tan ^{-1} \frac{\sqrt{4 f h-g^{2}}}{2 h+g}=T_{0}^{*} . \tag{14}
\end{equation*}
$$

It is easy to see from (9) that

$$
\begin{align*}
\sum_{j=0}^{\infty} \rho^{-j} r_{j}^{-1} & =\log \rho \sum_{j=0}^{\infty} \frac{\rho^{-j}}{4 \mu^{2} k_{1} k_{0} \rho^{-j-1}-2(\lambda+\mu) K_{2} n+k_{3} k_{0}^{-1} \rho^{j}} \tag{15}\\
& \leqslant \log \rho \sum_{j=0}^{\infty} \rho^{-j} \frac{1}{-2(\lambda+\mu) K_{2} n+k_{3} k_{0}^{-1}} \\
& =\frac{1}{-2(\lambda+\mu) K_{2} n+k_{3} k_{0}^{-1}} \frac{\log \rho}{1-\rho^{-1}} .
\end{align*}
$$

By the same reasoning as above, it follows that

$$
\begin{equation*}
\sum_{j=0}^{\infty} \rho^{-2 j_{r}-1} \leqslant \frac{1}{-2(\lambda+\mu) K_{2} n+k_{3} k_{0}^{-1}} \frac{\log \rho}{1-\rho^{-2}} \tag{16}
\end{equation*}
$$

From (14), for any given positive number ε, we can find $\rho_{0}(>1)$ such that if $\rho_{0}>\rho>1$, then $u^{p}\left(x, T_{0}^{*}\right)>u^{p}(x, G(\rho))-\frac{1}{2} \varepsilon, p=1, \ldots, N$. On the other hand, there exists a positive integer N_{0} such that $L \geqslant N_{0}$ implies $u^{p}(x, G(\rho))>$ $u^{p}\left(x, \sum_{j=0}^{L} r_{j}^{-1}\right)-\frac{1}{2} \varepsilon, p=1, \ldots, N$. Therefore it holds that $u^{p}\left(x, T_{0}\right)>u^{p}\left(x, \sum_{j=0}^{L} r_{j}^{-1}\right)$ $-\varepsilon, p=1, \ldots, N$. From (12), (15) and (16), we get

$$
\begin{aligned}
& u^{p}\left(x, T_{0}^{*}\right)>M_{0} \exp \left[-\frac{2(\lambda+\mu)(n+2 \lambda) K_{1} k_{0}+2 \mu^{2} k_{1} k_{0}^{2}}{-2(\lambda+\mu) K_{2} n+k_{3} k_{0}^{-1}}\right] \\
& \quad \times \exp \left\{-k_{0} \rho^{-L-1}\left[\log \left(|x|^{2}+1\right)+1\right]^{\lambda}\left(|x|^{2}+1\right)^{\mu}\right\}-\varepsilon \quad p=1, \ldots, N .
\end{aligned}
$$

We fix $x \in E^{n}$ arbitrarily. Letting L tend to infinity and ε to zero, we have

$$
\begin{array}{r}
u^{p}\left(x, T_{0}^{*}\right) \geqslant M_{0} \exp \left\{\frac{-2(\lambda+\mu)(n+2 \lambda) K_{1} k_{0}-2 \mu^{2} k_{1} k_{0}^{2}}{-2(\lambda+\mu) K_{2} n+k_{3} k_{0}^{-1}}\right\} \stackrel{d f}{=} M^{*}, \\
p=1, \ldots, N .
\end{array}
$$

For this M^{*}, it suffices from Lemma 5, to show the existence of a positive constant k^{*} such that

$$
u^{p}(x, t) \geqslant M^{*} \exp \left\{k^{*}\left(t-T_{0}^{*}\right)\left[\log \left(|x|^{2}+1\right)+1\right]^{\lambda}\left(|x|^{2}+1\right)^{\mu}\right\}
$$

for $(x, t) \in E^{n} \times\left(T_{0}^{*}, T\right), p=1, \ldots, N$.
By the same method, we can prove
Theorem 4. Suppose that the coefficients of (2) in \bar{D} satisfy the condition (8) and the inequalities

$$
\begin{aligned}
& k_{1}\left[\log \left(|x|^{2}+1\right)+1\right]^{2-\lambda}\left(|x|^{2}+1\right)|\xi|^{2} \leqslant \sum_{i, j=1}^{n} a_{i j}^{p}(x, t) \xi_{i} \xi_{j} \\
& \leqslant K_{1}\left[\log \left(|x|^{2}+1\right)+1\right]^{2-\lambda}\left(|x|^{2}+1\right)|\xi|^{2}, \quad \text { for } \quad \xi \in E^{n}, p=1, \ldots, N, \\
& \left|b_{i}^{p}(x, t)\right| \leqslant K_{2}\left[\log \left(|x|^{2}+1\right)+1\right]\left(|x|^{2}+1\right)^{\frac{1}{2}}, \quad i=1, \ldots, n ; p=1, \ldots, N, \\
& c^{p q}(x, t) \geqslant 0 \quad \text { for } \quad p \neq q, p, q=1, \ldots, N,
\end{aligned}
$$

where $k_{1}>0, K_{1}>0, K_{2} \geqslant 0$ and $\lambda \geqslant 1$ are constants. Let $\left\{u^{p}(x, t)\right\}, p=1, \ldots, N$, be a usual solution of (2) with the property (i) mentioned in Lemma 6 and such that

$$
u^{p}(x, 0) \geqslant M_{0} \exp \left\{-k_{0}\left[\log \left(|x|^{2}+1\right)+1\right]^{\lambda}\right\} \quad \text { in } \quad E^{n}, p=1, \ldots, N
$$

for some positive constants M_{0} and k_{0}. Assume that the inequalities $-2 n\left(K_{1}+\right.$ $\left.K_{2}\right) \lambda+k_{3} k_{0}^{-1}>0$ and $4 k_{1} k_{3}-\left(K_{1}+K_{2}\right)^{2} n^{2}>0$ hold. Put

$$
T^{*}=\frac{1}{\lambda \sqrt{4 k_{1} k_{3}-\left(K_{1}+K_{2}\right)^{2} n^{2}}} \tan ^{-1} \frac{\lambda \sqrt{4 k_{1} k_{3}-\left(K_{1}+K_{2}\right)^{2} n^{2}}}{-n\left(K_{1}+K_{2}\right) \lambda+k_{3} k_{0}^{-1}}<T
$$

Then there exists a positive constant M^{*} such that $u^{p}\left(x, T_{0}^{*}\right) \geqslant M^{*}$. Further if $t \in\left(T_{0}^{*}, T\right)$, then there exists a positive constant k^{*} such that

$$
u^{p}(x, t) \geqslant M^{*} \exp \left\{k^{*}\left(t-T_{0}^{*}\right)\left[\log \left(|x|^{2}+1\right)+1\right]^{\lambda}\right\}
$$

for $x \in E^{n}, p=1, \ldots, N$.
Remark 2. In the case $\lambda=0, N=1$, Theorem 1 coincides with a result stated in [1].

Remark 3. In the case $\lambda=0, N=1$, Theorem [3] is a special case of our Theorem 3.

Remark 4. If $N=1$, then Theorem 4.1, 4.2, 4.5, 4.6 of [2] are special cases of our Theorem 1, 3, 2, 4 respectively.

References

[1] Lu-San Chen: On the behavior of solutions for large $|x|$ of parabolic equations with unbounded coefficients, Tôhoku Math. J., 20 (1968), 589-595.
[2] Lu-San Chen, T. Kuroda and T. Kusano: Some parabolic equations with unbounded coefficients, Funkc. Ekvac., 16, 1 (1973), 1-28.
[3] T. Kuroda and Lu-San Chen: On the behavior of solutions of parabolic equations with unbounded coefficients, Ann. Polon. Math., 23 (1970), 57-64.
[4] T. Kusano, T. Kuroda and Lu-San Chen: Weakly coupled parabolic systems with unbounded coefficients, Hiroshima Math. J., 3 (1973), 1-14.

De partment of Mathematics, National Central University, Chung-Li, Taiwan

[^0]: *) This research was supported by the National Science Council.

