Non-triviality of an Element in the Stable Homotopy Groups of Spheres

Shichirô Oka and Hirosi Toda
(Received September 9, 1974)

Statement of results

In the stable homotopy groups G_{*} of spheres, two non-trivial families of p primary elements, called α - and β-series, are known [6] (cf. [12]). These are constructed from the attaching classes α and β of the spectra $V(1)$ and $V(2)$ [12], whose cohomology groups are certain exterior algebras over the Steenrod algebra $\bmod p[11]$. In a similar way, the existence of the spectrum $V\left(2 \frac{1}{2}\right)$ assures to define an element called $\gamma_{1}[12 ; \S 5]$, which is the first element of the third family.

The purpose of this paper is to prove the following result.
Main Theorem. For every prime $p \geqq 5$, the element $\gamma_{1} \in G_{\left(p^{2}-1\right) q-3}, q=$ $2(p-1)$, is non-trivial.

The result is an answer to a problem proposed by one of the authors [12; p. 237], and P. E. Thomas and R. Zahler [7] [13] also have obtained the same result in a quite different method. Our result states that γ_{1} is a non-zero multiple of the element $\alpha_{1} \beta_{p-1}[12 ;(5.12)]$. Also, one of the authors recently has proved more strict relation $\gamma_{1}=\alpha_{1} \beta_{p-1}$.

Originally, this paper was intended to prove $\gamma_{1}=0$ (cf. [4; II, Remark in p. 147], [7; §0]), but the publication has been postponed by a contradiction to the result of P. E. Thomas and R. Zahler. We have re-examined our original proof, and after crucial investigations we have concluded the opposite result.

Corollary $1(p \geqq 5)$. The following relations hold in G_{*} :

$$
\alpha_{1} \beta_{p-1} \beta_{s}=0 \quad \text { for } \quad s \geqq 3
$$

and hence

$$
\begin{aligned}
& \alpha_{1} \beta_{1} \beta_{k}=\alpha_{1} \beta_{2} \beta_{k-1}=0 \quad \text { for } \quad k \not \equiv-2 \bmod p \quad \text { and } \quad k \geqq p+1, \\
& \alpha_{1} \beta_{1}^{2} \beta_{k}=\alpha_{1} \beta_{1} \beta_{2} \beta_{k-1}=0 \quad \text { for } \quad k \geqq p+1 .
\end{aligned}
$$

This is an easy restatement of Proposition 5.9 of [12]. Also, by Corollary 5.7, Theorem 5.1 and (5.4) of [12], we obtain the parallel relations in the algebra
$\mathscr{A}_{*}(M)[5][12]$ of the Moore space $\bmod p$.
Corollary $2(p \geqq 5)$. The following relations hold in $\mathscr{A}_{*}(M)$:

$$
\alpha \delta \beta_{(p-1)} \delta \beta_{(s)}=0 \quad \text { for } \quad s \geqq 3,
$$

and hence

$$
\begin{array}{ll}
\alpha \delta \beta_{(1)} \delta \beta_{(k)}=\alpha \delta \beta_{(2)} \delta \beta_{(k-1)}=0 & \text { for } k \not \equiv-2 \bmod p \text { and } k \geqq p+1, \\
\alpha\left(\delta \beta_{(1)}\right)^{2} \delta \beta_{(k)}=\alpha \delta \beta_{(1)} \delta \beta_{(2)} \delta \beta_{(k-1)}=0 & \text { for } k \geqq p+1 .
\end{array}
$$

§ 1. A secondary composition

Throughout this paper, p denotes a prime integer with $p \geqq 5$, and set $q=$ $2(p-1)$. $\quad n$ denotes a sufficiently large integer so that all spaces and maps considered are in the stable range.

For finite $C W$-complexes (spectra) X and $Y,[X, Y]$ denotes the set of homotopy classes of maps: $X \rightarrow Y$, and $\pi_{k}^{S}(X ; Y)$ the limit group $\lim _{n}\left[\Sigma^{n+k} X, \Sigma^{n} Y\right]$ of stable classes of maps, where Σ^{t} denotes the t-fold suspension. Also denote by $\mathscr{A}_{k}(X)$ the group $\pi_{k}^{S}(X ; X)$. The direct sum $\mathscr{A}_{*}(X)=\sum_{k} \mathscr{A}_{k}(X)$ forms naturally a graded ring, and in particular $G_{*}=\mathscr{A}_{*}\left(S^{0}\right)$ is the stable homotopy ring of spheres. A map and its stable class are written by the same letter.

There exist the following sequences of cofiberings of the spectra $V(0), V(1)$ and $V(2)[12 ;$ p. 217]:

$$
\begin{aligned}
& S^{n} \xrightarrow{p} S^{n} \xrightarrow{i} M^{n+1} \xrightarrow{\pi} S^{n+1}, \\
& M^{n+q} \xrightarrow{\alpha} M^{n} \xrightarrow{i_{1}} V(1)_{n-1} \xrightarrow{\pi_{1}} M^{n+q+1}, \\
& \Sigma^{(p+1) q} V(1)_{n} \xrightarrow{\beta} V(1)_{n} \longrightarrow V(2)_{n} \longrightarrow \Sigma^{(p+1) q+1} V(1)_{n} .
\end{aligned}
$$

Here the Moore space

$$
M^{n}=S^{n-1} \cup \cup_{p} e^{n}
$$

is the ($n-1$)-th component of the spectrum $V(0)$, and $V(k)_{n}$ denotes the n-th component of the spectrum $V(k)$.

In this paper, the notations and the results of the rings $G_{*}, \mathscr{A}_{*}(V(0))(=$ $\left.\mathscr{A}_{*}\left(M^{n}\right)\right)$ and $\mathscr{A}_{*}(V(1))$ are referred to [12] (cf. [4], [5], [8]). In particular, the families $\left\{\alpha_{r}\right\}$ and $\left\{\beta_{r}\right\}$ in G_{*} and $\left\{\beta_{(r)}\right\}$ in $\mathscr{A}_{*}(V(0))$ are defined from the elements α and β by

$$
\alpha_{r}=\pi \alpha^{r} i, \quad \beta_{(r)}=\pi \beta_{1} \beta_{i}, \quad \beta_{r}=\pi \beta_{(r)} i .
$$

Also our element γ_{1} is defined by

$$
\gamma_{1}=\pi \gamma_{(1)} i, \quad \gamma_{(1)}=\pi_{1} \gamma_{[1]} i_{1},
$$

where $\gamma_{[1]} \in \mathscr{A}_{p^{2} q-1}(V(1))$ is the element defined from the attaching class of $V\left(2 \frac{1}{2}\right)$, and the following formula is Theorem 5.5 of [12].

$$
\begin{equation*}
\gamma_{(1)}=x\left(\left(\beta_{(1)} \delta\right)^{p}+\left(\delta \beta_{(1)}\right)^{p}\right)+y \beta_{(p-1)} \delta \alpha \tag{1.1}
\end{equation*}
$$

for some integers $x \not \equiv 0 \bmod p$ and y.
Here we put

$$
\delta=i \pi \in \mathscr{A}_{-1}(V(0))
$$

Now we consider the secondary composition

$$
C=\left\{\pi \beta_{(1)}, \alpha i, \beta_{1}^{p}\right\} \subset G_{\left(p^{2}+p\right) q-3} .
$$

From the results on G_{*} and $\mathscr{A}_{*}(V(0))$, we see that C is well defined and consists of a single element. Hence we have

$$
C=\left\{\pi \beta_{(1)}, \alpha, i \beta_{1}^{p}\right\}
$$

by the formula in [9; Prop. 1.2].
Proposition 1.2.*) The element γ_{1} is non-trivial if and only if

$$
\left\{\pi \beta_{(1)}, \alpha i, \beta_{1}^{p}\right\} \neq 0(\bmod \text { zero }) .
$$

Proof. For x in (1.1), choose an integer x^{\prime} such that $x x^{\prime} \equiv 1 \bmod p$, and put

$$
\lambda=\pi_{0} \beta \quad \text { and } \quad \mu=x^{\prime}\left(\gamma_{[1]}+y \beta^{p-1} \alpha^{\prime}\right) i_{0},
$$

where $\pi_{0}=\pi \pi_{1}, i_{0}=i_{1} i$ and $\alpha^{\prime}=\alpha_{1} \wedge 1_{V(1)}$ [12; pp. 218-219]. Then, $\lambda i_{1}=\pi \beta_{(1)}$ and $\pi_{1} \mu=x^{\prime}\left(\gamma_{(1)}-y \beta_{(p-1)} \delta \alpha\right) i=\left(\delta \beta_{(1)}\right)^{p} i=i \beta_{1}^{p}$, since $\alpha^{\prime} i_{1}=-i_{1} \delta \alpha \quad$ [12; (3.11)]. Therefore $C=\lambda \mu$ by the definition of $C[9 ;$ p. 9]. By (5.11) of [12], the element $\gamma_{[1]}$ satisfies $\beta \gamma_{[1]}=0$, and so

$$
C=\lambda \mu=x^{\prime} y \pi_{0} \beta^{p} \alpha^{\prime} i_{0}=x^{\prime} y \beta_{p} \alpha_{1} .
$$

The element $\beta_{p} \alpha_{1}$ is non-trivial by Theorem A of [4; II] and by the fact $\beta_{p} \neq 0$ of L. Smith [6]. Hence, $C \neq 0$ if and only if $y \not \equiv 0 \bmod p$, which is equivalent to $\gamma_{1} \neq 0$ by (5.12) of [12].
Q.E.D.

§ 2. Extended powers of complexes

For a space X and a map f, we denote by $X^{(t)}$ and $f^{(t)}$ the t-times smash

[^0]products $X \wedge \cdots \wedge X$ and $f \wedge \cdots \wedge f$. Let $\varphi_{M}: M^{m+n} \rightarrow M^{m} \wedge M^{n}$ be the map such that $\left(\pi \wedge 1_{M}\right) \varphi_{M}=\left(1_{M} \wedge \pi\right) \varphi_{M}=1_{M}$ [12; Lemma 1.3]. We define
$$
\varphi_{M}^{t}: M^{(t+1) n} \longrightarrow\left(M^{n}\right)^{(t+1)}
$$
by $\varphi_{M}^{1}=\varphi_{M}$ and $\varphi_{M}^{t}=\left(\varphi_{M}^{t-1} \wedge 1_{M}\right) \varphi_{M}$. Consider the operation $\theta: \mathscr{A}_{k}\left(M^{n}\right) \rightarrow$ $\mathscr{A}_{k+1}\left(M^{n}\right)$ of [12].

Proposition 2.1. For any element $\xi \in \mathscr{A}_{*}\left(M^{n}\right)$ satisfying $\theta(\xi)=0$, the relations

$$
(\pi \xi)^{(t)} \varphi_{M}^{t-1}=\pi \xi^{t}
$$

hold.
Proof. If $\theta(\xi)=0$, then $\left(1_{M} \wedge \pi \xi\right) \varphi_{M}=\xi$ by [12; Th. 2.2, Lemma 1.3]. So we have inductively

$$
\begin{aligned}
(\pi \xi)^{(t+1)} \varphi_{M}^{t} & =(\pi \xi)^{(t)}\left(1_{M}(t)\right. \\
& \pi \xi)\left(\varphi_{M}^{t-1} \wedge 1_{M}\right) \varphi_{M} \\
& =(\pi \xi)^{(t)} \varphi_{M}^{t-1}\left(1_{M} \wedge \pi \xi\right) \varphi_{M}=\pi \xi^{t+1}
\end{aligned}
$$

Q.E.D.

We consider the extended p-th power functor $e p^{r}()$ in [10]. In particular, $e p^{0}$ is the p-times smash product. Since the element $\alpha \in \mathscr{A}_{q}\left(M^{n}\right)$ lies in $\operatorname{Ker} \theta$, we have

$$
\begin{equation*}
e p^{0}(\pi \alpha) \varphi_{M}^{p-1}=\pi \alpha^{p} \tag{2.2}
\end{equation*}
$$

The $(\bmod p)$ cell decomposition for $e p^{r}\left(S^{n}\right)$ is studied in [10; Lemmas 1-2]. For $r=q-1, q+1$, we have

Lemma 2.3. $e p^{q-1}\left(S^{n}\right)$ has $a \bmod p$ summand $S^{n p} \vee S^{n p+q-1}$. If $n \equiv 0$ $\bmod p$, so is ep $p^{q+1}\left(S^{n}\right)$.

Here we say that X has $a \bmod p$ summand Y if X is p-equivalent to a wedge $Y \vee Z$ for some Z.

Next we consider the complex $e p^{r}\left(M^{n}\right)$. Let $a \in H_{n-1}\left(M^{n} ; Z_{p}\right)$ and $b \in$ $H_{n}\left(M^{n} ; Z_{p}\right)$ be the generators corresponding to the cells of M^{n}. Then a Z_{p}-basis for $\tilde{H}_{*}\left(e p^{r}\left(M^{n}\right) ; Z_{p}\right)$ is given by the following cycles [2; pp. 45-47][10]:
(2.4) (i) $e_{i} \otimes_{\pi} a^{p}, e_{i} \otimes_{\pi} b^{p} \quad$ for $0 \leqq i \leqq r$,
(ii) $e_{0} \otimes_{\pi}\left(x_{1} \otimes \cdots \otimes x_{p}\right)$,
(iii) $\partial\left(e_{r+1} \otimes_{\pi}\left(x_{1} \otimes \cdots \otimes x_{p}\right)\right)$,
where $\pi=Z_{p}, x^{p}=x \otimes \cdots \otimes x$ (p-times), $x_{j}=a$ or $b, x_{j} \neq x_{k}$ for some j, k, and in (ii) and (iii) for odd r (resp. (iii) for even $r),\left(x_{1}, \ldots, x_{p}\right)$ runs representatives of the classes obtained by the cyclic permutations; one representative (resp. $p-1$ reprepresentatives) being chosen from each class.

We consider the operation $P_{*}^{1}: H_{i} \rightarrow H_{i-q}$, the dual to the reduced power P^{1}, on $H_{*}\left(e p^{r}\left(M^{n}\right) ; Z_{p}\right)$. By using [10; Th. 1] (cf. [3]), we can calculate P_{*}^{1} on (2.4)(i). For example, we have

$$
\begin{aligned}
& P_{*}^{1}\left\{e_{i} \otimes_{\pi} a^{p}\right\}= \begin{cases}0 & \text { for } i<q, \\
-(n-1) / 2\left\{e_{0} \otimes_{\pi} a^{p}\right\} & \text { for } i=q,\end{cases} \\
& P_{*}^{1}\left\{e_{i} \otimes_{\pi} b^{p}\right\}= \begin{cases}0 & \text { for even } i<q, \\
\mu\left\{e_{i-p+2} \otimes_{\pi} a^{p}\right\}, \mu \neq 0 \bmod p, & \text { for odd } i<q, \\
-n / 2\left\{e_{0} \otimes_{\pi} b^{p}\right\} & \text { for } i=q .\end{cases}
\end{aligned}
$$

By dimensional reason, P_{*}^{1} on (2.4)(ii) is trivial. Since the elements (2.4)(iii) vanish in $H_{*}\left(e p^{r+1}\left(M^{n}\right) ; Z_{p}\right)$, it follows from the naturality of P_{*}^{1} that P_{*}^{1} on (2.4) (iii) is also trivial.

For the homology Bockstein operation Δ, the following relations are verified, up to sign ([10], [1; §5]):

$$
\begin{aligned}
& \Delta\left\{e_{i} \otimes_{\pi} a^{p}\right\}= \begin{cases}0 & \text { for odd } i \text { and for } i=0, \\
\left\{e_{i-1} \otimes_{\pi} a^{p}\right\} & \text { for even } i>0,\end{cases} \\
& \Delta\left\{e_{i} \otimes_{\pi} b^{p}\right\}= \begin{cases}0 & \text { for odd } i<r \text { and for } i=0, \\
\left\{e_{i-1} \otimes_{\pi} b^{p}\right\} & \text { for even positive } i<r,\end{cases} \\
& \Delta\left\{e_{r} \otimes_{\pi} b^{p}\right\}=\left\{\partial\left(e_{r+1} \otimes_{\pi}\left(a b^{p-1}\right)\right)\right\} \\
& \Delta_{2}\left\{e_{0} \otimes_{\pi} b^{p}\right\}=\left\{e_{0} \otimes_{\pi}\left(a b^{p-1}\right)\right\},
\end{aligned}
$$

where $\Delta_{2}: \operatorname{Ker} \Delta \rightarrow$ Coker Δ is the secondary Bockstein operation.
We use the following notations of complexes:

$$
\begin{align*}
& N^{n}=S^{n-1} \cup_{p^{2}} e^{n}, \tag{2.5}\\
& L_{n}^{\prime}=M^{n p-1} \cup_{\alpha \delta} C M^{n p+p-2}, \quad L_{n}=M^{n p-1} \cup_{\alpha i} e^{n p+q-1}, \\
& P_{n}=\left(N^{n p} \vee M^{n p-1}\right) \cup \cup_{(n \lambda \alpha \delta, \alpha)} C M^{n p+q-1} \\
& \quad\left(=\left(N^{n p} \vee L_{n}\right) \cup \cup_{(n \lambda \alpha i, \tilde{p})} e^{n p+q}\right),
\end{align*}
$$

where $\lambda: M^{n} \rightarrow N^{n}$ is the map of degree 1 on the top cells [5; §§2-3], and \tilde{p} :
$S^{n p+q-1} \rightarrow L_{n}$ is the coextension of p.
From the above discussion of the operations Δ, Δ_{2} and P^{1} on $e p^{r}\left(M^{n}\right)$, we obtain the following three lemmas.

Lemma 2.6. $e p^{q-1}\left(M^{n}\right)$ has $a \bmod p$ summand $N^{n p} \vee L_{n}^{\prime}$.
In fact, the summands $N^{n p}$ and L_{n}^{\prime} are obtained from the elements $e_{0} \otimes_{\pi} a b^{p-1}$, $e_{0} \otimes_{\pi} b^{p}$ and $e_{p-2} \otimes_{\pi} a^{p}, e_{p-1} \otimes_{\pi} a^{p}, \partial\left(e_{q} \otimes_{\pi} a b^{p-1}\right), e_{q-1} \otimes_{\pi} b^{p}$, respectively.

Lemma 2.7. $e p^{q-1}\left(M^{n}\right)$ is p-equivalent to a wedge

$$
L_{n}^{\prime} \vee X_{n} \vee Y_{n},
$$

where $X_{n}=M^{n p-3} U_{\alpha} C M^{n p+q-3}$, and Y_{n} is $(n p-p-1)$-connected and of dimension $n p+q-3$.

In fact, X_{n} is obtained from the elements $e_{p-4} \otimes_{\pi} a^{p}, e_{p-3} \otimes_{\pi} a^{p}, e_{q-3} \otimes_{\pi} b^{p}$ and $e_{q-2} \otimes_{\pi} b^{p}$, and the complementary summand Y_{n} has the bottom cell corresponding to $e_{0} \otimes a^{p}$ and the top cells corresponding to the elements (2.4) (iii) with $x_{i}=x_{j}=a, x_{k}=b(k \neq i, j)$ for some $i \neq j$.

Lemma 2.8. $\quad e p^{q+1}\left(M^{n}\right)$ has $a \bmod p$ summand P_{n}. The inclusion $e p^{q-1}\left(M^{n}\right) \subset e p^{q+1}\left(M^{n}\right)$ is identical on $N^{n p}$ and is the following composition on L_{n}^{\prime} :

$$
L_{n}^{\prime} \xrightarrow{h} L_{n} \subset P_{n},
$$

where h is the map smashing the subcomplex $S^{n p+q-2}$ of L_{n}^{\prime} to the base point (vertex).

In fact P_{n} is obtained from $N^{n p} \vee M^{n p-1}$ by removing $\partial\left(e_{q} \otimes_{\pi} a b^{p-1}\right)$ and adding $e_{q} \otimes_{\pi} b^{p}$.

Now we notice that the complex $e p^{0}\left(M^{n}\right)=\left(M^{n}\right)^{(p)}$ has a mod p summand $M^{n p}$ and the map φ_{M}^{p-1} in (2.2) is the inclusion to this summand. Furthermore, by considering the induced homomorphism of the inclusion $e p^{0}\left(M^{n}\right) \subset e p^{r}\left(M^{n}\right)$, we see that the following diagram is commutative for $r=q-1, q+1$:

where j and k are the inclusions.
For the complexes L_{m}^{\prime} and L_{m} of (2.5), we have the following commutative diagram of the cofiberings:

Applying [, $S^{n p}$] to this diagram, we obtain the following lemma, from the known results on G_{*} and $\mathscr{A}_{*}\left(M^{n}\right)$ ([4], [5], [8], [12]).

LemmA 2.10. Let $m=n+q$. Then

$$
\begin{aligned}
& h^{*}:\left[L_{m}, S^{n p}\right] \longrightarrow\left[L_{m}^{\prime}, S^{n p}\right], \\
& i_{L}^{*}:\left[L_{m}, S^{n p}\right] \longrightarrow\left[M^{m p-1}, S^{n p}\right]
\end{aligned}
$$

are isomorphisms of the p-components, and the p-component of the group $\left[L_{m}\right.$, $\left.S^{n p}\right]$ is isomorphic to $Z_{p}+Z_{p}$, generated by ξ and η satisfying $i_{L}^{*} \xi=\pi \beta_{(1)}$ and $i_{L}^{*} \eta=\pi \alpha^{p-1} \delta \alpha$.

Also we obtain
Lemma 2.11. Let $l=m+p q-2$. Then the p-primary part of $\pi_{l p+q-1}\left(L_{m}\right)$ is isomorphic to Z_{p} generated by ζ satisfying $q_{L *} \zeta=\beta_{1}^{p}$.

Now we consider the map $e p^{q-1}(\pi \alpha)$. Set $m=n+q$ and

$$
\phi^{\prime}=r \circ e p^{q-1}(\pi \alpha) \circ j^{\prime}: L_{m}^{\prime} \longrightarrow e p^{q-1}\left(M^{m}\right) \longrightarrow e p^{q-1}\left(S^{n}\right) \longrightarrow S^{n p},
$$

where r and j^{\prime} are the retraction and the inclusion obtained from Lemma 2.3 and Lemma 2.6 respectively. By Lemma 2.10, there exists

$$
\begin{equation*}
\phi: L_{m} \longrightarrow S^{n p} \tag{2.12}
\end{equation*}
$$

such that $\phi=\phi^{\prime} h$ and we can put

$$
\phi=a \xi+b \eta . \quad a, b \in Z_{p}
$$

Lemma 2.13. The coefficient a is ± 1.
Proof. The lemma means that the restriction $\phi\left|S^{m p-2}=\phi^{\prime}\right| S^{m p-2}$ represents $\pm \beta_{1}$. This is proved quite similarly as [10; Lemma 4] by calculating the functional P^{p}-operation for $e p^{q-1}(\pi \alpha)$.
Q.E.D.

For the complex N^{n} of (2.5), let

$$
S^{n-1} \xrightarrow{i^{\prime}} N^{n} \xrightarrow{\pi^{\prime}} S^{n}
$$

be the cofibering. N^{n} is a Moore space $\bmod p^{2}$, and hence by [5; §4, §7], the group $\mathscr{A}_{p q}\left(N^{n}\right)$ is generated by an element α^{\prime} of order p^{2} satisfying $\alpha^{\prime} \lambda=\lambda \alpha^{p}$ and $\rho \alpha^{\prime}=\alpha^{p} \rho$, where $\lambda: M^{n} \rightarrow N^{n}$ and $\rho: N^{n} \rightarrow M^{n}$ satisfy $\pi^{\prime} \lambda=\pi, \lambda i=p i^{\prime}, \rho i^{\prime}=i$ and $\pi \rho=p \pi^{\prime}$. The element $\alpha_{p}^{\prime}=\pi^{\prime} \alpha^{\prime} i^{\prime}$ generates the p-component of $G_{p q-1}$ and satisfies $p \alpha_{p}^{\prime}=\alpha_{p}$, and α^{\prime} is determined up to $p \alpha^{\prime}$.

Lemma 2.14. Let $m=n+q$. For $t=q-1, q+1$, the composition

$$
N^{m p} \xrightarrow{j} e p^{t}\left(M^{m}\right) \xrightarrow{e p t(\pi \alpha)} e p^{t}\left(S^{n}\right) \xrightarrow{r} S^{n p}
$$

(j is the inclusion and r is the retraction) represents $\pi^{\prime} \alpha^{\prime}$ for some choice of α^{\prime}.
Proof. Let $k: e p^{0}\left(M^{m}\right) \rightarrow e p^{t}\left(M^{m}\right)$ be the inclusion. Then we have

$$
\begin{aligned}
\operatorname{roep}^{t}(\pi \alpha) \circ j \circ \lambda & =r \circ e p^{t}(\pi \alpha) \circ k \circ \varphi_{M}^{p-1} & & \text { by (2.9) } \\
& =e p^{0}(\pi \alpha) \circ \varphi_{M}^{p-1} & & \\
& =\pi \alpha^{p} & & \text { by (2.2) } \\
& =\pi^{\prime} \alpha^{\prime} \lambda . & &
\end{aligned}
$$

The sequence

$$
\left[M^{m p}, S^{n p}\right] \xrightarrow{\rho^{*}}\left[N^{m p}, S^{n p}\right] \xrightarrow{\lambda^{*}}\left[M^{m p}, S^{n p}\right]
$$

is exact since $M^{m p} \rightarrow N^{m p} \rightarrow M^{m p}$ is the cofibering. The groups [$M^{m p}, S^{n p}$] and [$N^{m p}$, $S^{n p}$] are generated by $\pi \alpha^{p}$ and $\pi^{\prime} \alpha^{\prime}$, and $\rho^{*}\left(\pi \alpha^{p}\right)=p \pi^{\prime} \alpha^{\prime}$. So, replacing α^{\prime} we obtain the lemma.

Proposition 2.15. Let $m=n+q$ and assume that $n \equiv 0 \bmod p$. Then we have $a= \pm 1$ and $b=-2$ in the equality $\phi=a \xi+b \eta$.

Proof. By Lemma 2.13, we only prove $b=-2$. By Lemma 2.10, $\phi \mid M^{m p-1}$ $=\phi^{\prime} \mid M^{m p-1}$ represents $\phi^{\prime \prime}=a \pi \beta_{(1)}+b \pi \alpha^{p-1} \delta \alpha$, and the composition

$$
N^{m p} \vee M^{m p-1} \longrightarrow e p^{q-1}\left(M^{m}\right) \xrightarrow{e p^{q-1}(\pi \alpha)} e p^{q \rightarrow 1}\left(S^{n}\right) \longrightarrow S^{n p}
$$

represents $\pi^{\prime} \alpha^{\prime} \vee \phi^{\prime \prime}$ by Lemma 2.14. $N^{m p} \vee M^{m p-1}$ is the subcomplex of P_{m} in (2.5), which is the mapping cone of ($m \lambda \alpha \delta, \alpha$). By Lemma 2.8, ep $p^{q+1}\left(M^{m}\right)$ has a summand P_{m}, and by Lemma 2.3, e $p^{q+1}\left(S^{n}\right)$ has a summand $S^{n p}$ if $n \equiv 0 \bmod p$. Let $\bar{\phi}: P_{m} \rightarrow S^{n p}$ be the component of $e p^{q+1}(\pi \alpha)$ with respect to these summands. By Lemma 2.14, the element $\pi^{\prime} \alpha^{\prime} \vee \phi^{\prime}$ is the component of $e p^{q-1}(\pi \alpha)$, and so we have the commutative diagram:

by Lemma 2.8, where the right vertical arrow is the inclusion. Since $\pi^{\prime} \alpha^{\prime} \vee \phi^{\prime}=$ $(1 \vee h)^{*}\left(\pi^{\prime} \alpha^{\prime} \vee \phi\right)$ and $(1 \vee h)^{*}$ is isomorphic by Lemma 2.10 , we see that the element $\pi^{\prime} \alpha^{\prime} \vee \phi$ has an extension $\bar{\phi}$. Therefore $\pi^{\prime} \alpha^{\prime} \vee \phi^{\prime \prime}$ is extensible to P_{m} if $n \equiv$ $0 \bmod p$, and so

$$
\begin{aligned}
0=\left(\pi^{\prime} \alpha^{\prime} \vee \phi^{\prime \prime}\right)(-2 \lambda \alpha \delta, \alpha) & =-2 \pi^{\prime} \alpha^{\prime} \lambda \alpha \delta+\left(a \pi \beta_{(1)}+b \pi \alpha^{p-1} \delta \alpha\right) \alpha \\
& =-(2+b) \pi \alpha^{p+1} \delta .
\end{aligned}
$$

Since $\pi \alpha^{p+1} \delta \neq 0$, we obtain $b=-2$ as desired.
Q.E.D.

Finally we consider $e p^{q-1}\left(\beta_{(1)} i\right)$. Set $l=m+p q-2(m:$ large $)$, and put

$$
\begin{gather*}
\psi^{\prime}=r^{\prime} \circ e p^{q-1}\left(\beta_{(1)} i\right) \circ j: S^{l p+q-1} \rightarrow e p^{q-1}\left(S^{l}\right) \rightarrow e p^{q-1}\left(M^{m}\right) \rightarrow L_{m}^{\prime}, \\
\psi=h \psi^{\prime}: S^{l p+q-1} \longrightarrow L_{m}^{\prime} \longrightarrow L_{m} . \tag{2.16}
\end{gather*}
$$

Proposition 2.17. The element ψ represents $\pm \zeta$.
Proof. By Lemma 2.11, ψ is a multiple of ζ. We see easily that $q_{L} \psi$ is the component of $e p^{q-1}(\pi) e p^{q-1}\left(\beta_{(1)} i\right)=e p^{q-1}\left(\beta_{1}\right)$ between the top cells. Hence $q_{L} \psi$ is a suspension of $e p^{0}\left(\beta_{1}\right)=\left(\beta_{1}\right)^{(p)}$, which is equal to β_{1}^{p} up to sign (cf. [9: Prop. 3.1]). Thus, $\psi= \pm \zeta$ by Lemma 2.11.
Q.E.D.

§3. Proof of the main theorem

Henceforward, we put

$$
m=n+q, \quad l=m+p q-2
$$

These integers are large so that one can work in the stable range. Since $(\pi \alpha)\left(\beta_{(1)} i\right)$ $=0: S^{l} \rightarrow M^{m} \rightarrow S^{n}$, we have

$$
F G=0: S^{l p+q-1} \longrightarrow e p^{q-1}\left(M^{m}\right) \longrightarrow S^{n p},
$$

where

$$
F=r \circ e p^{q-1}(\pi \alpha), \quad G=e p^{q-1}\left(\beta_{(1)} i\right) \circ j,
$$

for the retraction $r: e p^{q-1}\left(S^{n}\right) \rightarrow S^{n p}$ and the inclusion $j: S^{l p+q-1} \rightarrow e p^{q-1}\left(S^{l}\right)$.
Lemma 3.1. For the elements ϕ of (2.12) and ψ of (2.16), their composition

$$
\phi \psi: S^{l p+q-1} \longrightarrow L_{m} \longrightarrow S^{n p}
$$

is trivial.
Proof. By using the decomposition in Lemma 2.7, we can write $F=\phi^{\prime}+$ $F_{1}+F_{2}$ and $G=\psi^{\prime}+G_{1}+G_{2}$, where $F_{1} \in\left[X_{m}, S^{n p}\right], F_{2} \in\left[Y_{m}, S^{n p}\right], G_{1} \in$ $\pi_{l p+q-1}\left(X_{m}\right)$ and $G_{2} \in \pi_{l p+q-1}\left(Y_{m}\right)$, and we have

$$
\phi^{\prime} \psi^{\prime}+F_{1} G_{1}+F_{2} G_{2}=F G=0
$$

From the results on $\pi_{*}\left(M^{n}\right)$, we have $\pi_{l p+q-1}\left(X_{m}\right)=0$ and so $G_{1}=0$. Since the p-component of G_{k} is trivial for $p q-p \leqq k \leqq p q-3$ and for $\left(p^{2}-1\right) q \leqq k \leqq$ $p^{2} q-2, F_{2} G_{2}$ is homotopic to a composition $S^{l p+q-1} \rightarrow Y_{m}^{m p-2} / Y_{m}^{m p-3} \rightarrow S^{n p}$, where Y_{m}^{k} denotes the k-skeleton of Y_{m} and so $Y_{m}^{m p-2} / Y_{m}^{m p-3}$ is a wedge of copies of $S^{m p-2}$. The p-components of $G_{p q-2}$ and $G_{p^{2} q-1}$ are generated by β_{1} and the element $\alpha_{p^{2}}^{\prime \prime}$, which lies in the image of the J-homomorphism. Hence $\beta_{1} \alpha_{p^{2}}^{\prime \prime}=0$ and so $F_{2} G_{2}=0$. Therefore we have $\phi \psi=\phi^{\prime} \psi^{\prime}=0$.
Q.E.D.

Now we shall prove our main theorem.
Proof of Main Theorem. By the definition of the secondary composition, we have

$$
\begin{array}{ll}
\xi \zeta=\left\{\pi \beta_{(1)}, \alpha i, \beta_{1}^{p}\right\} & \bmod \text { zero, } \\
\eta \zeta=\left\{\pi \alpha^{p-1} \delta \alpha, \alpha i, \beta_{1}^{p}\right\} & \bmod \text { zero },
\end{array}
$$

for the elements ξ, η and ζ in Lemmas 2.10-2.11. The second composition is equal to $\left\{\alpha_{p}^{\prime}, \alpha_{1}, \beta_{1}^{p}\right\}=\left\{\beta_{1}^{p}, \alpha_{1}, \alpha_{p}^{\prime}\right\}$ up to sign by the relation $\pi \alpha^{p-1} \delta \alpha= \pm \alpha_{p}^{\prime} \pi$ and the formula $[9 ;(3.9), \mathrm{i})]$. By [5; Prop. 8.1], we have $\eta \zeta= \pm \alpha_{1} \varepsilon_{p-1} \neq 0$, where ε_{p-1} is a non zero multiple of β_{p} and generates the p-component of $G_{\left(p^{2}+p-1\right) q-2}$.

By Propositions 2.15, 2.17 and Lemma 3.1, there is a relation $(\pm \xi-2 \eta) \zeta=0$. Hence,

$$
\left\{\pi \beta_{(1)}, \alpha i, \beta_{1}^{p}\right\}=\xi \zeta= \pm 2 \eta \zeta= \pm 2 \alpha_{1} \varepsilon_{p-1} \neq 0
$$

Thus, $\gamma_{1} \neq 0$ follows from Proposition 1.2.
Q.E.D.

References

[1] W. Browder, Homotopy commutative H-spaces, Ann. of Math. 75 (1962), 283-311.
[2] E. Dyer and R. K. Lashof, Homology of iterated loop spaces, Amer. J. Math. 84 (1962), 35-88.
[3] G. Nishida, Cohomology operations in iterated loop spaces, Proc. Japan Acad. 44 (1968), 104-109.
[4] S. Oka, The stable homotopy groups of spheres I, II, Hiroshima Math. J. 1 (1971), 305-

337; 2 (1972), 99-161.
[5] S. Oka, On the stable homotopy ring of Moore spaces, Hiroshima Math. J. 4 (1974), 629-678.
[6] L. Smith, On realizing complex bordism modules. Applications to the homotopy of spheres, Amer. J. Math. 92 (1970), 793-856.
[7] E. Thomas and R. Zahler, Nontriviality of the stable homotopy element γ_{1}, J. Pure App. Alg. 4 (1974), 189-204.
[8] H. Toda, p-Primary components of homotopy groups IV. Compositions and toric constructions, Mem. Coll. Sci. Univ. Kyoto, Ser. A. 32 (1959), 288-332.
[9] H. Toda, Composition methods in homotopy groups of spheres, Ann. of Math. Studied, No. 49, Princeton Univ. Press, Princeton, 1962.
[10] H. Toda, Extended p-th powers of complexes and applications to homotopy theory, Proc. Japan Acad. 44 (1968), 198-203.
[11] H. Toda, On spectra realizing exterior parts of Steenrod algebra, Topology 10 (1971), 53-65.
[12] H. Toda, Algebra of stable homotopy of Z_{p}-spaces and applications, J. Math. Kyoto Univ. 11 (1971), 197-251.
[13] R. Zahler, Existence of the stable homotopy family $\left\{\gamma_{t}\right\}, \quad$ Bull. Amer. Math. Soc. 79 (1973), 787-789.

> Department of Mathematics, Faculty of Science, Hiroshima University and
> Department of Mathematics, Faculty of Science, Kyoto University

[^0]: *) The foot-note on p. 147 of [4; II] is incomplete. The tertiary composition $\left\{\beta_{1}, p \ell, \alpha_{1}, \beta_{1}^{p}\right\}$ has full indeterminancy, so this should be replaced by $\left\{\pi \beta_{(1)}, \alpha i, \beta_{1}^{p}\right\}$ above.

