On the Group of Self-Equivalences of the Product of Spheres

Norichika Sawashita
(Received September 9, 1974)

§1. Introduction

The set $\mathscr{E}(X)$ of homotopy classes of self-(homotopy-)equivalences of a based space X forms a group by the composition of maps, and this group is studied by several authors.

The purpose of this note is to study the groups $\mathscr{E}\left(S^{m} \times S^{n}\right)$ of the products $S^{m} \times S^{n}$, where S^{k} is the k-sphere. These are studied by P. J. Kahn [8] for the case $m=n$, and by A. J. Sieradski [13] for the case $m, n=1,3,7$.

In the first, we consider the case $n>m \geqq 2$. Then the wedge $S^{m} \vee S^{n}$ is simply connected, and we can apply the results of [10, §§ 1-2] to the mapping cone $S^{m} \times S^{n}=\left(S^{m} \vee S^{n}\right) \cup e^{m+n}$ of the Whitehead product. Hence, by using the results of W. D. Barcus and M. G. Barratt [3, §4], we have in Theorem 2.6 the exact sequence

$$
0 \longrightarrow H_{m, n} \longrightarrow \mathscr{E}\left(S^{m} \times S^{n}\right) \longrightarrow G_{m, n} \longrightarrow 1,
$$

where $H_{m, n}$ is the factor group of $\pi_{m+n}\left(S^{m}\right)+\pi_{m+n}\left(S^{n}\right)$ and $G_{m, n}$ is the subgroup of $\mathscr{E}\left(S^{m} \vee S^{n}\right)$. In §3, we study some cases that this sequence is split, but the extension of this sequence is not known to us in general. Also, by using the quaternion, we compute $\mathscr{E}\left(S^{m} \times S^{n}\right)$ for $m=2,3$ and $n>m$ in Theorems 4.3 and 5.3, and we see that the above sequence is split if $m=2$ and is not split if $m=3$ and $n=5$.

By the same way, we have in Theorem 6.2 the similar exact sequence for the case $n=m \geqq 2$, which is split if n is even. Furthermore, we can determine the group $\mathscr{E}\left(S^{n} \times S^{n}\right)$ for $n=3,7$ in Theorem 6.4.

The group $\mathscr{E}\left(S^{1} \times S^{n}\right)$ is computed in $\S \S 7-8$ by the different methods. By attaching i-cells $(i \geqq n+3)$ to S^{n}, we obtain a $C W$-complex X_{n+1} which kills the r-th homotopy groups of S^{n} for $r \geqq n+2$, and we see that $\mathscr{E}\left(S^{1} \times S^{n}\right)$ is isomorphic to $\mathscr{E}\left(S^{1} \times X_{n+1}\right)$ (Lemma 7.1). Consider the composition

$$
f: S^{1} \times K(Z, n) \longrightarrow K(Z, n) \xrightarrow{f^{\prime}} K\left(\pi_{n+1}\left(S^{n}\right), n+2\right)
$$

of the natural projection and the generator f^{\prime} of $H^{n+2}\left(Z, n ; \pi_{n+1}\left(S^{n}\right)\right)$. Then, it is well known that $S^{1} \times X_{n+1}$ is the mapping track E_{f} of f. Hence, we can apply the results of J. W. Rutter [11] and [10, §5] to $\mathscr{E}\left(S^{1} \times X_{n+1}\right)$, and the
group $\mathscr{E}\left(S^{1} \times S^{n}\right)$ is determined in Theorem 7.9 for $n \geqq 3$ and in Theorem 8.8 for $n=2$.

The author wishes to express his gratitude to Professor M. Sugawara and Dr. S. Oka for their encouragement and valuable discussions.

§ 2. The group $\mathscr{E}\left(S^{m} \times S^{n}\right)$ for $n>m \geqq 2$

In this note, all (topological) spaces are arcwise connected spaces with base point $*$ and have homotopy types of $C W$-complexes, and all (continuous) maps and homotopies preserve the base points. For given spaces X and Y, we denote by $[X, Y]$ the set of (based) homotopy classes of maps from X to Y, and by the same letter f a map $f: X \rightarrow Y$ and its homotopy class $f \in[X, Y]$. Also, we denote usually by

$$
g_{*}:[X, Y] \longrightarrow[X, Z], \quad g^{*}:[Z, X] \longrightarrow[Y, X]
$$

the induced maps of a given map $g: Y \rightarrow Z$.
The group of homotopy classes of self-homotopy-equivalences of a space X is denoted by

$$
\mathscr{E}(X) \quad(\subset[X, X]),
$$

whose multiplication is given by the composition of maps.
In the first we consider the group $\mathscr{E}\left(S^{m} \vee S^{n}\right)$ of the wedge $S^{m} \vee S^{n}$ for $n>$ $m \geqq 2$, where S^{k} is the k-sphere in the real $(k+1)$-space. Let

$$
\begin{equation*}
i_{1}: S^{m} \subset S^{m} \vee S^{n}, \quad i_{2}: S^{n} \subset S^{m} \vee S^{n} \tag{2.1}
\end{equation*}
$$

be the inclusion maps and

$$
\begin{equation*}
\lambda: \pi_{n}\left(S^{m}\right) \longrightarrow \mathscr{E}\left(S^{m} \vee S^{n}\right) \tag{2.2}
\end{equation*}
$$

be the homomorphism given by

$$
\begin{equation*}
\lambda(\xi) \circ i_{1}=i_{1}, \quad \lambda(\xi) \circ i_{2}=i_{1} \circ \xi+i_{2} \tag{2.3}
\end{equation*}
$$

for $\xi \in \pi_{n}\left(S^{m}\right)$, where \circ is the composition of maps and + is the sum in $\pi_{n}\left(S^{m} \vee S^{n}\right)$. Then we have the next proposition (cf. [10, §1]).

Proposition 2.4. For $n>m \geqq 2$, we have the split exact sequence

$$
0 \longrightarrow \pi_{n}\left(S^{m}\right) \xrightarrow{\lambda} \mathscr{E}\left(S^{m} \vee S^{n}\right) \longrightarrow Z_{2}+Z_{2} \longrightarrow 1,
$$

and so we have

$$
\begin{equation*}
\mathscr{E}\left(S^{m} \vee S^{n}\right)=\left\{a_{i j} \lambda(\xi) \mid i, j \in Z_{2}=\{0,1\}, \xi \in \pi_{n}\left(S^{m}\right)\right\}, \tag{2.5}
\end{equation*}
$$

where $a_{i j}=\left(-\iota_{m}\right)^{i} \vee\left(-\iota_{n}\right)^{j}\left(\iota_{k} \in \pi_{k}\left(S^{k}\right)\right.$ is the class of the identity map) with relations

$$
\lambda(\xi) a_{i j}=a_{i j} \lambda\left(\left(-\iota_{m}\right)^{i} \circ \xi \circ\left(-\iota_{n}\right)^{j}\right) .
$$

The product $S^{m} \times S^{n}$ is the mapping cone

$$
S^{m} \times S^{n}=\left(S^{m} \vee S^{n}\right) \cup_{\left[i_{1}, i_{2}\right]} e^{m+n}
$$

of the Whitehead product

$$
\left[i_{1}, i_{2}\right]: S^{m+n-1} \longrightarrow S^{m} \vee S^{n}
$$

of the inclusion maps of (2.1). By the above result and the results of $[10, \S 2]$, we have the following theorem.

Theorem 2.6. Assume $n>m \geqq 2$. Then there is an exact sequence

$$
\begin{equation*}
0 \longrightarrow H_{m, n} \xrightarrow{\lambda^{\prime}} \mathscr{E}\left(S^{m} \times S^{n}\right) \xrightarrow{\varphi} G_{m, n} \longrightarrow 1 . \tag{2.7}
\end{equation*}
$$

The groups $H_{m, n}$ and $G_{m, n}$ are given by

$$
\begin{align*}
H_{m, n} & =\pi_{m+n}\left(S^{n}\right) /\left[\iota_{m}, \pi_{n+1}\left(S^{m}\right)\right]+\pi_{m+n}\left(S^{n}\right) /\left[\iota_{n}, \pi_{m+1}\left(S^{n}\right)\right], \tag{2.8}\\
G_{m, n} & =\left\{a_{i j} \lambda(\xi) \mid\left[\iota_{m}, \xi\right]=0, \xi \in \pi_{n}\left(S^{m}\right), i, j \in Z_{2}\right\} \quad\left(\subset \mathscr{E}\left(S^{m} \vee S^{n}\right)\right), \tag{2.9}
\end{align*}
$$

and φ is given by the restriction on $S^{m} \vee S^{n}$.
Proof. By the results of $[10, \S 2]$, we have the exact sequence

$$
0 \longrightarrow H_{m, n} \xrightarrow{\lambda^{\prime}} \mathscr{E}\left(S^{m} \times S^{n}\right) \xrightarrow{\varphi \times \psi} G_{m, n}^{\prime} \longrightarrow 1,
$$

where $H_{m, n}=\pi_{m+n}\left(S^{m} \times S^{n}\right) / \operatorname{Im} \gamma$ for the homomorphism

$$
\gamma=\Gamma(i, f):\left[S^{m+1} \vee S^{n+1}, S^{m} \times S^{n}\right] \longrightarrow \pi_{m+n}\left(S^{m} \times S^{n}\right)
$$

($i: S^{m} \vee S^{n} \rightarrow S^{m} \times S^{n}$ is the inclusion, $f=\left[i_{1}, i_{2}\right]$), and

$$
\begin{gathered}
G_{m, n}^{\prime}=\left\{(h, \varepsilon) \mid h \in \mathscr{E}\left(S^{m} \vee S^{n}\right), \varepsilon= \pm \iota \in \mathscr{E}\left(S^{m+n-1}\right), h \circ f=f \circ \varepsilon\right. \\
\text { in } \left.\pi_{m+n-1}\left(S^{m} \vee S^{n}\right)\right\} .
\end{gathered}
$$

We see easily that $\Gamma(i, f)$, defined in $[10,(2.5)]$, coincides by definition with the homomorphism

$$
\kappa: \pi_{m+1}(X)+\pi_{n+1}(X) \longrightarrow \pi_{m+n}(X)
$$

of [3, §8, p. 70] for $X=S^{m} \times S^{n}$ and $w=i \circ i_{1}, v=i \circ i_{2}$. Therefore, by [3, (8.1) (i)] we have

$$
\gamma(\eta, \xi)=-\left[i \circ i_{1}, \xi\right]+(-1)^{n+1}\left[\eta, i \circ i_{2}\right]
$$

for $\eta \in \pi_{m+1}\left(S^{m} \times S^{n}\right), \xi \in \pi_{n+1}\left(S^{m} \times S^{n}\right)$, and we see that $H_{m, n}$ is given by (2.8).
On the other hand, by (2.3) and the definition of the Whitehead product, we have

$$
\begin{aligned}
a_{i j} \lambda(\xi) \circ f & =\left[(-1)^{i} i_{1}, i_{1} \circ\left(-\iota_{m}\right)^{i} \xi+(-1)^{j} i_{2}\right] \\
& =(-1)^{i}\left[i_{1}, i_{1} \circ\left(-\iota_{m}\right)^{i \xi}\right]+(-1)^{i+j}\left[i_{1}, i_{2}\right]
\end{aligned}
$$

By using the direct sum decomposition

$$
\pi_{m+n-1}\left(S^{m} \vee S^{n}\right) \simeq \pi_{m+n-1}\left(S^{m}\right)+\pi_{m+n-1}\left(S^{n}\right)+\pi_{n+m}\left(S^{m} \times S^{n}, S^{m} \vee S^{n}\right)
$$

we see easily that

$$
a_{i j} \lambda(\xi) \circ f=f \circ \varepsilon \quad \text { if and only if } \quad\left[\iota_{m}, \xi\right]=0 \quad \text { and } \quad \varepsilon=(-\iota)^{i+j} .
$$

Therefore, $G_{m, n}$ of (2.9) is isomorphic to $G_{m, n}^{\prime}$ by corresponding $a_{i j} \lambda(\xi) \leftrightarrow\left(a_{i j} \lambda(\xi)\right.$, $\left.(-\iota)^{i+j}\right)$, and the homomorphism $\varphi \times \psi$ corresponds to the restriction φ. q.e.d.

§3. Group extensions in (2.7)

In this section, assume that $n>m \geqq 2$. Let $\xi \in \pi_{n}\left(S^{m}\right)$ satisfy $\left[{ }^{\prime} m, \xi\right]=0$. Then there is a map $F_{\xi}: S^{m} \times S^{n} \rightarrow S^{m}$ of type (ϵ_{m}, ξ) by the definition of the Whitehead product, and we obtain a map

$$
\begin{equation*}
\bar{\lambda}(\xi)=\left(F_{\xi}, p_{2}\right): S^{m} \times S^{n} \longrightarrow S^{m} \times S^{n} \tag{3.1}
\end{equation*}
$$

where p_{2} is the projection onto the 2 nd factor. Consider the elements

$$
\begin{equation*}
b_{i j}=\left(-\iota_{m}\right)^{i} \times\left(-\iota_{n}\right)^{j} \in \mathscr{E}\left(S^{m} \times S^{n}\right), \quad i, j \in Z_{2} \tag{3.2}
\end{equation*}
$$

Then we have easily the following lemma by the definition.
Lemma 3.3.

$$
\varphi\left(b_{i j} \bar{\lambda}(\xi)\right)=a_{i j} \lambda(\xi),
$$

where φ is the homomorphism in (2.7).
Theorem 3.4. Assume that $\bar{\lambda}$ of (3.1) can be chosen so that

$$
\bar{\lambda}\left(\xi_{1}\right) \bar{\lambda}\left(\xi_{2}\right)=\bar{\lambda}\left(\xi_{1}+\xi_{2}\right), \quad \bar{\lambda}\left(\xi_{1}\right) b_{i j}=b_{i j} \bar{\lambda}\left(\left(-\iota_{m}\right)^{i} \circ \xi_{1} \circ\left(-\iota_{n}\right)^{j}\right),
$$

for any $\xi_{i} \in \pi_{n}\left(S^{m}\right)$ with $\left[\iota_{m}, \xi_{i}\right]=0$. Then the exact sequence (2.7) is split. Also the action of $G_{m, n}$ on $H_{m, n}$ is given by

$$
a_{i j} \lambda(\xi) \cdot(\alpha, \beta)=\left((-1)^{i+j}\left(-\iota_{m}\right)^{i} \circ F_{\xi} \circ(\alpha, \beta),(-1)^{i} \beta\right)
$$

for $\alpha \in \pi_{m+n}\left(S^{m}\right) /\left[\iota_{m}, \pi_{n+1}\left(S^{m}\right)\right], \beta \in \pi_{m+n}\left(S^{n}\right) /\left[\iota_{n}, \pi_{m+1}\left(S^{n}\right)\right]$.
Proof. The former is obtained immediately by Theorem 2.6 and Lemma 3.3. By the definition of $\bar{\lambda}(\xi)$ of (3.1), we have the homotopy commutative diagram

The composition of the maps in the upper sequence is $\lambda^{\prime}(\alpha, \beta)$ by the definition of λ^{\prime} in $[10, \S 2]$, and also the composition of the lower one is $\lambda^{\prime}\left(F_{\xi^{\circ}}(\alpha, \beta), \beta\right)$ by (3.1). These show that

$$
\bar{\lambda}(\xi)^{-1} \lambda^{\prime}(\alpha, \beta) \bar{\lambda}(\xi)=\lambda^{\prime}\left(F_{\xi^{\circ}}(\alpha, \beta), \beta\right) .
$$

By the same way, we have

$$
\begin{aligned}
b_{i j}^{-1} \lambda^{\prime}(\alpha, \beta) b_{i j} & =\lambda^{\prime}\left(\left(-\iota_{m}\right)^{i} \circ \alpha \circ(-\iota)^{i+j},\left(-\iota_{n}\right)^{j} \circ \beta \circ(-\iota)^{i+j}\right) \\
& =\lambda^{\prime}\left((-1)^{i+j}\left(-\iota_{m}\right)^{i_{0}} \alpha,(-1)^{i} \beta\right),
\end{aligned}
$$

because $\left(-\iota_{n}\right) \circ \beta \equiv-\beta \bmod \left[\iota_{n}, \pi_{m+1}\left(S^{n}\right)\right]$ by $[4$, Th. 6.7, 6.9].
q.e.d.

Corollary 3.5. Assume that $n>m \geqq 2$ and $\left[{ }^{\prime} m, \xi\right] \neq 0$ for any nonzero element $\xi \in \pi_{n}\left(S^{m}\right)$. Then we have the split exact sequence:

$$
0 \longrightarrow H_{m, n} \longrightarrow \mathscr{E}^{(}\left(S^{m} \times S^{n}\right) \longrightarrow Z_{2}+Z_{2} \longrightarrow 0,
$$

and the action of $Z_{2}+Z_{2}$ on $H_{m, n}$ are given by

$$
a_{i j} \cdot(\alpha, \beta)=\left((-1)^{i+j}\left(-\iota_{m}\right)^{i} \circ \alpha,(-1)^{i} \beta\right) .
$$

Proof. It is clear, since $G_{m, n}=\left\{a_{i j}\right\}=Z_{2}+Z_{2}$ by the assumption. q.e.d.
Example 3.6. Let $n-1=m \geqq 2$. Then, we have the exact sequence

$$
0 \longrightarrow H_{m, m+1} \longrightarrow \mathscr{E}\left(S^{m} \times S^{m+1}\right) \longrightarrow G_{m, m+1} \longrightarrow 0,
$$

where

$$
\begin{aligned}
& H_{m, m+1}=\pi_{2 m+1}\left(S^{m}\right) /\left\{\left[\iota_{m}, \eta_{m} \eta_{m+1}\right]\right\}+\pi_{2 m+1}\left(S^{m+1}\right) /\left\{\left[\iota_{m+1}, \iota_{m+1}\right]\right\}, \\
& G_{m, m+1}=\left\{\begin{array}{llll}
Z_{2}+Z_{2}+Z_{2} & \text { if } m \equiv 3 \bmod 4 & \text { or } & m=2,6 \\
Z_{2}+Z_{2} & \text { if } m \neq 3 \bmod 4 & \text { and } & m \neq 2,6,
\end{array}\right.
\end{aligned}
$$

$\left(\eta_{k}\right.$ is the generator of $\left.\pi_{k+1}\left(S^{k}\right)\right)$. Moreover if $m \not \equiv 3 \bmod 4$ and $m \neq 2,6$, then the above exact sequence is split with the action given by $a_{i j} \cdot(\alpha, \beta)=\left((-1)^{j} \alpha\right.$, $(-1)^{i} \beta$).

Proof. By [5, p. 232] and [6, Lemma 5.1], it is proved that $\left[{ }_{\epsilon}, \eta_{m}\right] \neq 0$ if and only if $m \not \equiv 3 \bmod 4$ and $m \neq 2,6$. Also $\left(-\iota_{m}\right) \circ \alpha \equiv-\alpha \bmod \left[\iota_{m}, \pi_{m+2}\left(S^{m}\right)\right]$ by [4, Th. 6.7, 6.9]. These results, Theorem 3.4 and Corollary 3.5 show the desired results.

§4. The group $\mathscr{E}\left(S^{2} \times S^{n}\right)$ for $n \geqq 3$

In this section, we assume that $n \geqq 3$.
Lemma 4.1. (i) The group $G_{2, n}$ of (2.9) is

$$
G_{2, n}=\left\{a_{i j} \lambda(\xi) \mid \xi \in \pi_{n}\left(S^{2}\right), i, j \in Z_{2}\right\}
$$

and the multiplication is given by

$$
a_{i j} \lambda(\xi) a_{i^{\prime} j^{\prime}} \lambda\left(\xi^{\prime}\right)=a_{i+i^{\prime}, j+j^{\prime}} \lambda\left((-1)^{j^{\prime}} \xi+\xi^{\prime}\right)
$$

(ii) The group $H_{2, n}$ of (2.8) is

$$
H_{2, n}=\pi_{n+2}\left(S^{2}\right)+Z_{2} .
$$

Proof. It is well known that $\left[\iota_{2}, \xi\right]=0$ for $\xi \in \pi_{n}\left(S^{2}\right)(n \geqq 3)$. Therefore, $G_{2, n}$ is given as above by Theorem 2.6. It is known that

$$
\begin{equation*}
\left(-\iota_{2}\right) \circ \xi=\xi \quad \text { for } \quad \xi \in \pi_{n}\left(S^{2}\right) \tag{4.2}
\end{equation*}
$$

(cf. [12, p. 278]), and we have

$$
a_{i j} \lambda(\xi) a_{i^{\prime} j^{\prime}} \lambda\left(\xi^{\prime}\right)=a_{i+i^{\prime}, j+j^{\prime}} \lambda\left((-1)^{j^{\prime}} \xi+\xi^{\prime}\right)
$$

by Theorem 2.6 and Proposition 2.4. Since $\pi_{n+2}\left(S^{n}\right)=Z_{2}$, (ii) follows immediately.
q.e.d.

Now we have the next theorem by Theorem 3.2.
Theorem 4.3. Let $n \geqq 3$. Then the exact sequence

$$
0 \longrightarrow H_{2, n} \longrightarrow \mathscr{E}\left(S^{2} \times S^{n}\right) \longrightarrow G_{2, n} \longrightarrow 1
$$

is split, where $H_{2, n}$ and $G_{2, n}$ are the groups in Lemma 4.1. The action of $G_{2, n}$ on $H_{2, n}$ is given by

$$
a_{i j} \lambda(\xi) \cdot(\alpha, \beta)=\left((-1)^{i+j} \alpha+\xi \beta, \beta\right)
$$

for $\xi \in \pi_{n}\left(S^{2}\right), \alpha \in \pi_{n+2}\left(S^{2}\right), \beta \in \pi_{n+2}\left(S^{n}\right)=Z_{2}$.
Proof. Consider the Hopf map $h: S^{3} \rightarrow S^{2}$ and a map $F: S^{2} \times S^{3} \rightarrow S^{2}$ of type $\left(\iota_{2}, h\right)$, given by

$$
h(q)=q i q^{-1}, \quad F(p, q)=q p q^{-1}
$$

where $q \in S^{3}$ is a quaternion of norm $1, p \in S^{2}$ is a pure quaternion of norm 1 , and i is the imaginary unit. Then, we can construct

$$
\begin{aligned}
& F_{\xi}=F \circ\left(\iota_{2} \times \xi^{\prime}\right): S^{2} \times S^{n} \longrightarrow S^{2}, \\
& \bar{\lambda}(\xi)=\left(F_{\xi}, p_{2}\right): S^{2} \times S^{n} \longrightarrow S^{2} \times S^{n},
\end{aligned}
$$

for any $\xi \in \pi_{n}\left(S^{2}\right)$, where $\xi^{\prime} \in \pi_{n}\left(S^{3}\right)$ satisfies $h \xi^{\prime}=\xi$. It is clear that F_{ξ} is of type (ϵ_{2}, ξ). By using the equality

$$
\bar{\lambda}(\xi)(p, x)=\left(\xi^{\prime}(x) p \xi^{\prime}(x)^{-1}, x\right) \quad \text { for } \quad p \in S^{2}, x \in S^{n},
$$

we can show that $\bar{\lambda}$ satisfies the assumptions of Theorem 3.4 as follows.

$$
\begin{aligned}
\bar{\lambda}\left(\xi_{1}\right) \bar{\lambda}\left(\xi_{2}\right)(p, x) & =\left(\xi_{1}^{\prime}(x) \xi_{2}^{\prime}(x) p \xi_{2}^{\prime}(x)^{-1} \xi_{1}^{\prime}(x)^{-1}, x\right) \\
& =\bar{\lambda}\left(\xi_{1}+\xi_{2}\right)(p, x), \\
\bar{\lambda}(\xi) b_{i j}(p, x) & =\left(\xi^{\prime}(y) p^{-i} \xi^{\prime}(y)^{-1}, y\right) \quad\left(y=\left(-\iota_{n}\right)^{j}(x)\right) \\
& =b_{i j} \bar{\lambda}\left(\xi_{\circ}\left(-\iota_{n}\right)^{j}\right)(p, x) \\
& =b_{i j} \bar{\lambda}\left(\left(-\iota_{2}\right)^{i_{\circ}} \xi_{\circ}\left(-\iota_{n}\right)^{j}\right)(p, x) \quad \text { by }(4.2) .
\end{aligned}
$$

Also, it is easy to see that

$$
F \circ\left(h \times \iota_{3}\right)=h \circ m \circ T,
$$

where $m: S^{3} \times S^{3} \rightarrow S^{3}$ is the multiplication of S^{3} and $T: S^{3} \times S^{3} \rightarrow S^{3} \times S^{3}$ is the switching map. Therefore, for any $\alpha=h \alpha^{\prime} \in \pi_{n+2}\left(S^{2}\right)$ and $\beta \in \pi_{n+2}\left(S^{2}\right)$, we have

$$
\begin{aligned}
F_{\xi}(\alpha, \beta) & =F \circ\left(h \times \iota_{3}\right) \circ\left(\alpha^{\prime}, \xi^{\prime} \beta\right) \\
& =h\left(\xi^{\prime} \beta+\alpha^{\prime}\right)=\alpha+\xi \beta
\end{aligned}
$$

These show the desired results by Theorem 3.4.
q.e.d.

§ 5. The group $\mathscr{E}\left(S^{3} \times S^{n}\right)$ for $n \geqq 4$

In this section, we study the case $m=3$.
For any $\xi \in \pi_{n}\left(S^{3}\right)$, we have $\left[\iota_{3}, \xi\right]=0$ and we can define maps

$$
E_{\xi}: S^{3} \times S^{n} \longrightarrow S^{3}, \quad \bar{\lambda}(\xi): S^{3} \times S^{n} \longrightarrow S^{3} \times S^{n}
$$

by $E_{\xi}(x, y)=x \xi(y), \bar{\lambda}(\xi)(x, y)=(x \xi(y), y)$. By Theorem 2.6, we have the exact sequence

$$
\begin{equation*}
0 \longrightarrow \pi_{n+3}\left(S^{3}\right)+\pi_{n+3}\left(S^{n}\right) \xrightarrow{\lambda^{\prime}} \mathscr{E}\left(S^{3} \times S^{n}\right) \xrightarrow{\varphi} G_{3, n} \longrightarrow 1, \tag{5.1}
\end{equation*}
$$

where

$$
G_{3, n}=\left\{a_{i j} \lambda(\xi) \mid \xi \in \pi_{n}\left(S^{3}\right), i, j \in Z_{2}\right\} .
$$

Since $\bar{\lambda}(\xi)$ is of type ($\left.\iota_{3}, \xi\right)$, we have

$$
\begin{equation*}
\varphi\left(b_{i j} \bar{\lambda}(\xi)\right)=a_{i j} \lambda(\xi) \quad \text { for } \quad \xi \in \pi_{n}\left(S^{3}\right), \tag{5.2}
\end{equation*}
$$

where $b_{i j}$ are the elements of (3.2).
Theorem 5.3. Let $n \geqq 4$. Then we have

$$
\begin{aligned}
& \mathscr{E}\left(S^{3} \times S^{n}\right)=\left\{b_{i j} \bar{\lambda}(\xi) \lambda^{\prime}(\alpha, \beta) \mid \alpha \in \pi_{n+3}\left(S^{3}\right), \beta \in \pi_{n+3}\left(S^{n}\right), \xi \in \pi_{n}\left(S^{3}\right),\right. \\
& \left.\quad i, j \in Z_{2}\right\} .
\end{aligned}
$$

The group structure of $\mathscr{E}\left(S^{3} \times S^{n}\right)$ is given as follows.
(i) $\lambda^{\prime}\left(\alpha_{1}, \beta_{1}\right) \lambda^{\prime}\left(\alpha_{2}, \beta_{2}\right)=\lambda^{\prime}\left(\alpha_{1}+\alpha_{2}, \beta_{1}+\beta_{2}\right)$,
(ii) $\bar{\lambda}\left(\xi_{1}\right) \bar{\lambda}\left(\xi_{2}\right)=\bar{\lambda}\left(\xi_{1}+\xi_{2}\right)$,
(iii) $b_{i j} b_{i^{\prime} j^{\prime}}=b_{i+i^{\prime}, j+j}, \quad b_{00}=1$;
(iv) $\bar{\lambda}(\xi) b_{01}=b_{01} \bar{\lambda}(-\xi)$,
(v) $\bar{\lambda}(\xi) b_{10}=b_{10} \bar{\lambda}(-\xi) \lambda^{\prime}\left(\omega_{3} S^{3} \xi, 0\right)$;
(vi) $\lambda^{\prime}(\alpha, \beta) b_{01}=b_{01} \lambda^{\prime}\left(-\alpha,-\left(-\iota_{n}\right) \circ \beta\right)$,
(vii) $\lambda^{\prime}(\alpha, \beta) b_{10}=b_{10} \lambda^{\prime}(\alpha,-\beta)$,
(viii) $\lambda^{\prime}(\alpha, \beta) \bar{\lambda}(\xi)=\bar{\lambda}(\xi) \lambda^{\prime}(\alpha-\xi \beta, \beta)$.

Here, $S^{3}: \pi_{n}\left(S^{3}\right) \rightarrow \pi_{n+3}\left(S^{6}\right)$ is the suspension homomorphism. Also ω_{3} is a generator of $\pi_{6}\left(S^{3}\right)=Z_{12}$ given by

$$
\begin{equation*}
\pi^{*}\left(\omega_{3}\right)=\phi, \tag{5.4}
\end{equation*}
$$

where $\phi: S^{3} \times S^{3} \rightarrow S^{3}$ is the commutator map: $\phi(p, q)=p q p^{-1} q^{-1}$, and $\pi: S^{3} \times$ $S^{3} \rightarrow\left(S^{3} \times S^{3}\right) /\left(S^{3} \vee S^{3}\right)=S^{6}$ is the collapsing map, (cf. e.g. [2, p. 173]).

To prove the theorem, we use the next two lemmas.

Lemma 5.5. Let $p_{1}: S^{3} \times S^{n} \rightarrow S^{3}$ and $p_{2}: S^{3} \times S^{n} \rightarrow S^{n}$ be the projections. Then we have

$$
p_{1} \cdot \xi p_{2}=\pi^{*}\left(\omega_{3} S^{3} \xi\right) \cdot \xi p_{2} \cdot p_{1}=\xi p_{2} \cdot p_{1} \cdot \pi^{*}\left(\omega_{3} S^{3} \xi\right)
$$

where $\pi: S^{3} \times S^{n} \rightarrow\left(S^{3} \times S^{n}\right) /\left(S^{3} \vee S^{n}\right)=S^{n+3}$ is the collapsing map.
Proof. It is easy to see that

$$
\begin{aligned}
p_{1} \cdot \xi p_{2} \cdot p_{1}^{-1} \cdot \xi p_{2}^{-1} & =\phi \circ\left(\iota_{3} \times \xi\right) \\
& =\omega_{3} \circ \pi \circ\left(\iota_{3} \times \xi\right)=\omega_{3} \circ S^{3} \xi \circ \pi
\end{aligned}
$$

by (5.4), and we have the first equality. Therefore we have the desired results, since ϕ is homotopic to the map $S^{3} \times S^{3} \rightarrow S^{3}$ given by $(p, q) \rightarrow p^{-1} q^{-1} p q$.
q.e.d.

Lemma 5.6. For the monomorphism λ^{\prime} in (5.1), we have

$$
\lambda^{\prime}(\alpha, 0) f=\left(\left(p_{1} f\right) \cdot(\alpha \pi f), p_{2} f\right)
$$

for any $\alpha \in \pi_{n+3}\left(S^{3}\right)$ and $f: S^{3} \times S^{n} \rightarrow S^{3} \times S^{n}$.
Proof. The desired equality follows from

$$
p_{1} \lambda^{\prime}(\alpha, 0)=p_{1} \cdot \alpha \pi, \quad p_{2} \lambda^{\prime}(\alpha, 0)=p_{2}
$$

which are seen by the definition: $\lambda^{\prime}(\alpha, 0)=\nabla \circ(1 \vee(\alpha, 0)) \circ l$. q.e.d.

Remark. If $n \geqq 5$, we see easily by definition that

$$
\lambda^{\prime}(\alpha, \beta)=\left(p_{1} \cdot \alpha \pi, p_{2}+\beta \pi\right)
$$

where + is the sum in the cohomotopy group $\left[S^{3} \times S^{n}, S^{n}\right]$.
Now we are ready to prove Theorem 5.3.
Proof of Theorem 5.3. By (5.1) and (5.2), it is sufficient to prove the relations (i)-(viii). (i)-(iii) are seen easily.
(iv) $\quad \bar{\lambda}(\xi) b_{01}=\left(p_{1} \cdot \xi p_{2}, p_{2}\right)\left(\iota_{3} \times\left(-\iota_{n}\right)\right)$

$$
=\left(p_{1} \cdot\left(-\xi p_{2}\right),\left(-\iota_{n}\right) \circ p_{2}\right)=b_{01} \bar{\lambda}(-\xi) .
$$

(viii) $\quad \bar{\lambda}(\xi) \lambda^{\prime}(\alpha, \beta) \bar{\lambda}(-\xi)=\lambda^{\prime}(\bar{\lambda}(\xi) \circ(\alpha, \beta))$

$$
=\lambda^{\prime}\left(\left(p_{1} \cdot \xi p_{2}, p_{2}\right) \circ(\alpha, \beta)\right)=\lambda^{\prime}(\alpha+\xi \beta, \beta) .
$$

(v) $\quad \bar{\lambda}(\xi) b_{10}=\left(p_{1} \cdot \xi p_{2}, p_{2}\right)\left(-\iota_{3} \times \iota_{n}\right)$

$$
\begin{aligned}
& =\left(\left(-p_{1}\right) \cdot \xi p_{2}, p_{2}\right)=b_{10}\left(\left(-\xi p_{2}\right) \cdot p_{1}, p_{2}\right) \\
& =b_{10}\left(p_{1} \cdot\left(-\xi p_{2}\right) \cdot \pi^{*}\left(\omega_{3} S^{3} \xi\right), p_{2}\right) \quad \text { by Lemma } 5.5 \\
& =b_{10} \lambda^{\prime}\left(\omega_{3} S^{3} \xi, 0\right) \bar{\lambda}(-\xi) \quad \text { by Lemma } 5.6 \text { and } \pi \bar{\lambda}(-\xi)=\pi \\
& =b_{10} \bar{\lambda}(-\xi) \lambda^{\prime}\left(\omega_{3} S^{3} \xi, 0\right) \quad \text { by (viii). }
\end{aligned}
$$

$$
\begin{equation*}
b_{01} \lambda^{\prime}(\alpha, \beta) b_{01}=\lambda^{\prime}\left(b_{01}(\alpha, \beta)(-\iota)\right)=\lambda^{\prime}\left(-\alpha,-\left(-\iota_{n}\right) \beta\right) \tag{vi}
\end{equation*}
$$

(vii) is similar.
q.e.d.

COROLLARY 5.8. If $\omega_{3^{*}} S^{3}: \pi_{n}\left(S^{3}\right) \rightarrow \pi_{n+3}\left(S^{3}\right)$ is $0-m a p$, then the exact sequence (5.1) is split, where the multiplication of $G_{3, n}$ is given in Theorem 3.4.

Corollary 5.9. Assume that there is an element $\xi \in \pi_{n}\left(S^{3}\right)$ such that

$$
2 \alpha+\xi \beta+\omega_{3} S^{3} \xi \neq 0 \quad \text { for any } \quad \alpha \in \pi_{n+3}\left(S^{3}\right), \beta \in \pi_{n+3}\left(S^{n}\right)
$$

Then the sequence (5.1) is not split.
Proof. It follows from Proposition 2.4 that $\left(a_{10} \lambda(\xi)\right)^{2}=1$. On the other hand, using the relations in Theorem 5.3, we have

$$
\begin{aligned}
\left(b_{10} \bar{\lambda}(\xi) \lambda^{\prime}(\alpha, \beta)\right)^{2} & =b_{10} \bar{\lambda}(\xi) b_{10} \lambda^{\prime}(\alpha,-\beta) \bar{\lambda}(\xi) \lambda^{\prime}(\alpha, \beta) & \text { by (vii) } \\
& =\bar{\lambda}(-\xi) \lambda^{\prime}\left(\omega_{3} S^{3} \xi, 0\right) \lambda^{\prime}(\alpha,-\beta) \lambda^{\prime}(\alpha+\xi \beta, \beta) \bar{\lambda}(\xi) & \text { by (v), (viii) } \\
& =\lambda^{\prime}\left(2 \alpha+\xi \beta+\omega_{3} S^{3} \xi, 0\right) & \text { by (i), (viii), (ii). }
\end{aligned}
$$

The last element is not zero by the assumption, and we have the corollary. q.e.d.
EXAMPLE 5.10. The next exact sequence is not split.

$$
0 \longrightarrow Z_{24}+Z_{2} \longrightarrow \mathscr{E}\left(S^{3} \times S^{5}\right) \longrightarrow Z_{2}+Z_{2}+Z_{2} \longrightarrow 0
$$

Proof. For the element $\eta_{3}^{2} \in \pi_{5}\left(S^{3}\right)$, we have

$$
2 \alpha+\eta_{3}^{2} \beta+\omega_{3} S^{3} \eta_{3}^{2} \neq 0 \quad \text { for any } \quad \alpha \in \pi_{8}\left(S^{3}\right), \beta \in \pi_{8}\left(S^{5}\right)
$$

by [14, Prop. 5.3, 5.6,5.9], and so the desired results by the above corollary.
q.e.d.

§6. The group $\mathscr{E}\left(S^{n} \times S^{n}\right)$

Let $G L(2, Z)$ be the group of integral 2×2 matrices having integral inverse matrices, with the usual multiplication. Then, it is easy to see that there is an isomorphism

$$
\begin{equation*}
\chi: G L(2, Z) \longrightarrow \mathscr{E}\left(S^{n}{ }_{n} \vee S^{n}\right) \tag{6.1}
\end{equation*}
$$

given by

$$
\chi\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=V\left(\left(i_{1} a+i_{2} b\right) \vee\left(i_{1} c+i_{2} d\right)\right),
$$

where $i_{j}: S^{n} \rightarrow S^{n} \vee S^{n}$ is the inclusion to the j-th factor, ∇ is the folding map, and $k \in Z$ means the map of degree k.

The following theorem is proved essentially by P. J. Kahn [8, § 2.3]. ${ }^{1)}$
Theorem 6.2. The following sequence is exact:

$$
0 \longrightarrow H_{n, n} \xrightarrow{\lambda^{\prime}}\left(S^{n} \times S^{n}\right) \longrightarrow G_{n, n} \longrightarrow 1,
$$

where

$$
H_{n, n}=\pi_{2 n}\left(S^{n}\right) /\left\{\left[\iota_{n}, \iota_{n}\right]\right\}+\pi_{2 n}\left(S^{n}\right) /\left\{\left[\iota_{n}, \iota_{n}\right]\right\} ;
$$

$$
G_{n, n}= \begin{cases}G L(2, Z) & \text { if } n=1,3,7, \\
\left.\left\{\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in G L(2, Z), a b \equiv c d \equiv 0 \bmod 2\right\} & \text { if } n \text { is odd and } \neq 1,3,7 \\
\left\{ \pm\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \pm\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \pm\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right), \pm\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)\right\} \quad \text { if } n \text { is even. }\end{cases}
$$

Proof. By the same way as Theorem 2.6, it is sufficient to show that the group $G_{n, n}^{\prime}$ in the proof of Theorem 2.6 is isomorphic to the group $G_{n, n}$ in the theorem.

It follows immediately that

$$
\begin{aligned}
\chi\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right)\left[i_{1}, i_{2}\right] & =\left[i_{1} a+i_{2} b, i_{1} c+i_{2} d\right] \\
& =a c\left[i_{1}, i_{1}\right]+\left(a d+(-1)^{n} b c\right)\left[i_{1}, i_{2}\right]+b d\left[i_{2}, i_{2}\right] .
\end{aligned}
$$

On the other hand, it is well-known that $\left[\iota_{n}, \iota_{n}\right]=0$ if $n=1,3,7$, and the order of $\left[\iota_{n}, \iota_{n}\right]$ is 2 if n is odd and $n \neq 1,3,7$, and is infinite if n is even (cf. e.g. [7, p. 336]). Therefore, we have the desired results by studying the conditions that the last element is equal to $\left[i_{1}, i_{2}\right] \circ \varepsilon$.
q.e.d.

Corollary 6.3. (P. J. Kahn [8, Th. 4]) If n is even, then the sequence in Theorem 6.2 is split. Also the action of $G_{n, n}$ on $H_{n, n}$ is given by

1) It seems to the author that the consideration for the case $n=3,7$ is neglected and that $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ of [8, p. 34] should be $\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$.

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \cdot\left(\xi_{1}, \xi_{2}\right)=\left(\xi_{2}, \xi_{1}\right), \quad\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right) \cdot\left(\xi_{1}, \xi_{2}\right)=\left(-\xi_{2}, \xi_{1}\right) .
$$

In the rest of this section, assume that $n=3,7$.
For any $N=\left(n_{i j}\right) \in G L(2, Z)$, we define the element $\bar{\lambda}(N) \in \mathscr{E}\left(S^{n} \times S^{n}\right)$ by

$$
\bar{\lambda}(N)(p, q)=\left(p^{n_{11}} q^{n_{12}}, p^{n_{21}} q^{n_{22}}\right) \quad \text { for } \quad p, q \in S^{n}
$$

where the multiplication is the one of quaternions or Cayley numbers. Then we have the following theorem.

Theorem 6.4. Let $n=3,7$. Then

$$
\mathscr{E}\left(S^{n} \times S^{n}\right)=\left\{\lambda^{\prime}(\alpha, \beta) \bar{\lambda}(N) \mid \alpha, \beta \in \pi_{2 n}\left(S^{n}\right), N \in G L(2, Z)\right\},
$$

and the multiplication is given as follows:
(i) $\lambda^{\prime}(\alpha, \beta) \lambda^{\prime}\left(\alpha^{\prime}, \beta^{\prime}\right)=\lambda^{\prime}\left(\alpha+\alpha^{\prime}, \beta+\beta^{\prime}\right)$,
(ii) $\bar{\lambda}(N) \lambda^{\prime}(\alpha, \beta)=\lambda^{\prime}\left(|N|\left(n_{11} \alpha+n_{12} \beta\right),|N|\left(n_{21} \alpha+n_{22} \beta\right)\right) \bar{\lambda}(N)$,
(iii) $\bar{\lambda}(N) \bar{\lambda}(M)=\lambda^{\prime}\left(a_{1} \omega_{n}, a_{2} \omega_{n}\right) \bar{\lambda}(N M)$, $a_{i}=-|N M|\left(n_{i 1} n_{i 2} m_{12} m_{21}+\binom{n_{11}}{2} m_{11} m_{12}+\binom{n_{i 2}}{2} m_{21} m_{22}\right)(i=1,2)$, where $N=$ $\left(n_{i j}\right), M=\left(m_{i j}\right)$, and $|N|$ means the determinant of N, and ω_{n} is a generator of $\pi_{2 n}\left(S^{n}\right)=Z_{12}$ or Z_{120}.

Before we prove this theorem, we show the next two lemmas.
Lemma 6.5. $\alpha \pi \cdot p_{i}=p_{i} \cdot \alpha \pi \quad$ for $\alpha \in \pi_{6}\left(S^{3}\right), i=1,2$.
Proof. By the commutative diagram

we have $\alpha \pi \cdot p_{i} \cdot \alpha \pi^{-1} \cdot p_{i}^{-1}=\left(\alpha \pi, p_{i}\right)^{*} \phi=0$.
q.e.d.

Lemma 6.6. $r\left(m p_{1} \cdot n p_{2}\right)=r m p_{1} \cdot r n p_{2} \cdot\left(-\binom{r}{2} m n \omega_{3} \pi\right)$.
Proof. This lemma follows from $p_{2} \cdot p_{1}=p_{1} \cdot p_{2} \cdot\left(-\omega_{3} \pi\right)$ (Lemma 5.5) and Lemma 6.5.
q.e.d.

Proof of Theorem 6.4. We prove the theorem for $n=3$, and the theorem for $n=7$ is proved by the same way.

By Theorem 6.2, we have the exact sequence

$$
0 \longrightarrow \pi_{6}\left(S^{3}\right)+\pi_{6}\left(S^{3}\right) \xrightarrow{\lambda^{\prime}} \mathscr{E}\left(S^{3} \times S^{3}\right) \xrightarrow{\varphi} G L(2, Z) \longrightarrow 1 .
$$

We notice that $\lambda^{\prime}(\alpha, \beta)=\left(p_{1} \cdot \alpha \pi, p_{2} \cdot \beta \pi\right)$ for $\alpha, \beta \in \pi_{6}\left(S^{3}\right)$, and we have the desired results by Lemmas $6.5,6.6$.
q.e.d.

§ 7. The group $\mathscr{E}\left(S^{1} \times S^{n}\right)$ for $n \geqq 3$

In the rest of this paper, we consider the groups $\mathscr{E}\left(S^{1} \times S^{n}\right)(n \geqq 2)$. For these groups, we cannot use the methods in $\S 2$ since $S^{1} \vee S^{n}$ is not simply connected.

By attaching i-cells $(i \geqq n+2$) to a given $C W$-complex X, we obtain a $C W$ complex X_{n} which kills r-th homotopy groups of X for $r>n$:

$$
\pi_{r}\left(X_{n}\right)=0 \quad(r>n), \quad i_{n^{*}}: \pi_{r}(X) \simeq \pi_{r}\left(X_{n}\right) \quad(r \leqq n)
$$

($i_{n}: X \rightarrow X_{n}$ is the inclusion).
Lemma 7.1. If X is an n-dimensional CW-complex. Then we have iso morphisms

$$
\mathscr{E}(X) \simeq \mathscr{E}\left(X_{n}\right), \quad \mathscr{E}\left(S^{1} \times X\right) \simeq \mathscr{E}\left(S^{1} \times X_{n+1}\right)
$$

Proof. It is easy to see that the induced maps

$$
i_{n}^{*}:\left[X_{n}, X_{n}\right] \longrightarrow\left[X, X_{n}\right], \quad i_{n^{*}}:[X, X] \longrightarrow\left[X, X_{n}\right]
$$

are bijective by the elementary homotopy theory. Therefore

$$
i_{n^{*}}^{-1} i_{n}^{*}:\left[X_{n}, X_{n}\right] \longrightarrow[X, X]
$$

is bijective, and we have the first isomorphism.
It is obvious that $S^{1} \times X_{n+1}$ is obtained from $S^{1} \times X$ by attaching i-cells $(i \geqq n+3)$ and kills the r-th homotopy groups of $S^{1} \times X$ for $r>n+1$. Therefore, we have the second isomorphism from the above result.
q.e.d.

Remark. The first isomorphism in the above lemma is shown in [1, Lemma 5.1] under the additional assumption that X is 1 -connected.

Now, consider the case $X=S^{n}$ for $n \geqq 3$. Then, it is well known that X_{n} and X_{n+1} are embeddable in the sequence of the induced fiberings

of the generator f^{\prime} of $H^{n+2}\left(Z, n ; Z_{2}\right)=Z_{2}$ (cf. e.g. [9, p. 140]). Therefore, we have the sequence of the induced fiberings

$$
\begin{equation*}
\Omega A \xrightarrow{i} S^{1} \times X_{n+1}\left(=E_{f}\right) \xrightarrow{p} S^{1} \times X_{n} \xrightarrow{f} A \tag{7.3}
\end{equation*}
$$

of $f=f^{\prime} \circ p_{2}$ such that $p=\iota_{1} \times p^{\prime}, i=\left(*, i^{\prime}\right)$.
Lemma 7.4. The two induced maps

$$
i_{*}:[\Omega A, \Omega A] \longrightarrow\left[\Omega A_{2} E_{f}\right], \quad p^{*}:\left[S^{1} \times X_{n}, S^{1} \times X_{n}\right] \longrightarrow\left[E_{f}, S^{1} \times X_{n}\right]
$$

are both bijective.
Proof. Since $i^{\prime}=p_{2} \circ i$, we have

$$
i_{*}^{\prime}=p_{2^{*}} i_{*}:[\Omega A, \Omega A] \xrightarrow{i_{*}}\left[\Omega A, E_{f}\right] \xrightarrow{p_{2 *}}\left[\Omega A, X_{n+1}\right] .
$$

Using the homotopy exact sequence of the fibering ($X_{n+1}, p^{\prime}, X_{n}$) in (7.2), we see easily that i_{*}^{\prime} is bijective. Also $p_{2^{*}}$ is bijective since $E_{f}=S^{1} \times X_{n+1}$. Therefore i_{*} is bijective.

It is easy to see that p^{*} is equal to

$$
H^{1}\left(S^{1}\right)+H^{n}(K(Z, n)) \xrightarrow{\iota_{1}^{* *}+p^{* *}} H^{1}\left(S^{1}\right)+H^{n}\left(X_{n+1}\right),
$$

which is isomorphic.
q.e.d.

By applying [10, Prop. 5.6] for f in (7.3),
Lemma 7.5. We have the exact sequence

$$
i^{*-1}(0) \xrightarrow{\kappa} \mathscr{E}\left(S^{1} \times X_{n+1}\right) \xrightarrow{\varphi \times \psi} \mathscr{E}\left(S^{1} \times X_{n}\right) \times \mathscr{E}(\Omega A)
$$

of homomorphisms, where $i^{*}:\left[S^{1} \times X_{n+1}, \Omega A\right] \rightarrow[\Omega A, \Omega A]$ and $i^{*-1}(0)$ is a group with an unusual multiplication \oplus.

On this sequence, we have the following three lemmas.
Lemma 7.6.

$$
\operatorname{Im}(\varphi \times \psi)=\mathscr{E}\left(S^{1} \times X_{n}\right)=Z_{2}+Z_{2}
$$

Proof. It is clear that $\mathscr{E}(A)=\mathscr{E}(\Omega A)=1$, since $A=K\left(Z_{2}, n+2\right)$. Therefore $f \circ \xi \simeq f$ for any $\xi \in \mathscr{E}\left(S^{1} \times X_{n}\right)$, and there is $h \in \mathscr{E}\left(S^{1} \times X_{n+1}\right)$ such that $p \circ h \simeq$ $\xi \circ p$, i.e., $(\varphi \times \psi)(h)=(\xi, 1)$. This shows the first equality. Since $X_{n}=K(Z, n)$ we see that $\mathscr{E}\left(X_{n}\right)=Z_{2}$ and $\left[S^{1} \wedge X_{n}, X_{n}\right]=0$, and so the second equality by [10, Example 5.10].
q.e.d.

Lemma 7.7.

$$
i^{*-1}(0)=Z_{2}
$$

Proof. By using the Serre cohomology sequence, we have

$$
H^{n}\left(X_{n+1} ; Z_{2}\right)=Z_{2}, \quad H^{n+1}\left(X_{n+1} ; Z_{2}\right)=0
$$

Therefore, we see that $\left[S^{1} \times X_{n+1}, \Omega A\right]=H^{n}\left(X_{n+1} ; Z_{2}\right)+H^{n+1}\left(X_{n+1} ; Z_{2}\right)=Z_{2}$, and $i^{*}=\left(*, i^{\prime}\right)^{*}$ is equal to 0 .
q.e.d.

Lemma 7.8. κ is monomorphic.
Proof. By the results of J. W. Rutter [11, Cor. 1.3.2], Ker κ is equal to the image of the homomorphism $\Delta:\left[S^{1} \times X_{n+1}, \Omega\left(S^{1} \times X_{n}\right)\right] \rightarrow\left[S^{1} \times X_{n+1}, \Omega A\right]$. The left hand side is equal to $H^{1}\left(S^{1} \wedge\left(S^{1} \times X_{n+1}\right)\right)+H^{n}\left(S^{1} \wedge\left(S^{1} \times X_{n+1}\right)\right)=0$, and so we have the lemma.
q.e.d.

By the above results, we obtain the following
THEOREM 7.9. $\mathscr{E}\left(S^{1} \times S^{n}\right)=Z_{2}+Z_{2}+Z_{2} \quad$ for $n \geqq 3$.
Proof. By Lemmas 7.1, 7.5-7.8, we have the exact sequence

$$
0 \longrightarrow Z_{2} \longrightarrow \mathscr{E}\left(S^{1} \times S^{n}\right) \longrightarrow Z_{2}+Z_{2} \longrightarrow 0
$$

Consider the elements $b_{i j}=\left(-\iota_{1}\right)^{i} \times\left(-\iota_{n}\right)^{j} \in \mathscr{E}\left(S^{1} \times S^{n}\right)$. Then, by the definition of the isomorphism $\mathscr{E}\left(S^{1} \times S^{n}\right) \simeq \mathscr{E}\left(S^{1} \times X_{n+1}\right)$ in Lemma 7.1 and the epimorphism $\varphi: \mathscr{E}\left(S^{1} \times X_{n+1}\right) \rightarrow \mathscr{E}\left(S^{1} \times X_{n}\right)=Z_{2}+Z_{2}$, it is easy to see that the subgroup $\left\{b_{i j} \mid i, j \in Z_{2}\right\} \subset \mathscr{E}\left(S^{1} \times S^{n}\right)$ is mapped isomorphically onto $Z_{2}+Z_{2}$. q.e.d.
§8. The groups $\mathscr{E}\left(S^{1} \times S^{2}\right)$ and $\mathscr{E}\left(S^{1} \times C P^{n}\right)$
By the similar way in $\S 7$, we consider the groups $\mathscr{E}\left(S^{1} \times S^{2}\right)$ and $\mathscr{E}\left(S^{1} \times\right.$ $\left.C P^{n}\right)(n \geqq 1)$ more generally, where $C P^{n}$ is the complex n-dimensional projective space.

Let $Y_{2 n+1}$ be the $C W$-complex obtained from $C P^{n}$ by attaching i-cells ($i \geqq$ $2 n+3$) so that $Y_{2 n+1}$ kills the r-th homotopy group of $C P^{n}$ for $r>2 n+1$. Then we have the following lemma by Lemma 7.1.

Lemma 8.1

$$
\mathscr{E}\left(S^{1} \times C P^{n}\right) \simeq \mathscr{E}\left(S^{1} \times Y_{2 n+1}\right)
$$

It is well known that $Y_{2 n+1}$ is embeddable in the sequence of the induced fiberings

of the generator f^{\prime} of $H^{2 n+2}(K)$. Therefore, we have the sequence of the induced
fiberings

$$
\begin{equation*}
\Omega B \xrightarrow{i} S^{1} \times Y \xrightarrow{p} S^{1} \times K \xrightarrow{f} B \tag{8.3}
\end{equation*}
$$

of $f=f^{\prime} \circ p_{2}$ such that $p=\iota_{1} \times p^{\prime}, i=\left(*, i^{\prime}\right)$. Then, Lemma 7.4 holds similarly for (8.3) and we have the following lemma by the similar way as Lemma 7.5.

Lemma 8.4. We have the exact sequence

$$
i^{*-1}(0) \xrightarrow{\kappa} \mathscr{E}\left(S^{1} \times Y\right) \xrightarrow{\varphi \times \psi} \mathscr{E}\left(S^{1} \times K\right) \times \mathscr{E}(\Omega B)
$$

of homomorphisms, where $i^{*}:\left[S^{1} \times Y, \Omega B\right] \rightarrow[\Omega B, \Omega B]$ and $i^{*-1}(0)$ is a group with a multiplication \oplus.

In this lemma, we have the following three lemmas.
Lemma 8.5. By the natural projection $\mathscr{E}\left(S^{1} \times K\right) \times \mathscr{E}(\Omega B) \rightarrow \mathscr{E}\left(S^{1} \times K\right)$, $\operatorname{Im}(\varphi \times \psi)$ is isomorphic to

$$
\operatorname{Im} \varphi=\mathscr{E}\left(S^{1} \times K\right)=Z_{2}+Z_{2}
$$

Proof. By the definition of $\varphi \times \psi$ in [10, p.26], $\operatorname{Im}(\varphi \times \psi)$ is the set of $(h, \varepsilon) \in \mathscr{E}\left(S^{1} \times K\right) \times \mathscr{E}(\Omega B)$ such that the following diagram is homotopy commutative for some $h_{1} \in \mathscr{E}\left(S^{1} \times Y\right)$:
(*)

Then, we have the right commutative square in the following diagram:
(**)

where τ and τ_{1} are the transgressions. Since the left square in (**) is clearly commutative and $f^{*}=\tau \circ \tau_{1}^{-1}$, we see that $h^{*} f^{*}=f^{*} \varepsilon^{*}$. These show that

$$
\operatorname{Im}(\varphi \times \psi)=\left\{(h, \varepsilon) \in \mathscr{E}\left(S^{1} \times K\right) \times \mathscr{E}(B) \mid f \circ h=\varepsilon \circ f\right\} .
$$

Furthermore, for any $h \in \mathscr{E}\left(S^{1} \times K\right)$, there is a unique element $\varepsilon \in \mathscr{E}(B)$ such that $h^{*} f^{*}=f^{*} \varepsilon^{*}$. Therefore we have $\operatorname{Im}(\varphi \times \psi)$ is isomorphic to $\operatorname{Im} \varphi=\mathscr{E}\left(S^{1} \times K\right)$, which is $Z_{2}+Z_{2}$ by the second equality of Lemma 7.6.
q.e.d.

Lemma 8.6. $\quad i^{*-1}(0)=\left[S^{1} \times Y, \Omega B\right]=Z$.
Proof. In the cohomology exact sequence

$$
\left[S^{1} \times K, \Omega B\right] \xrightarrow{p^{*}}\left[S^{1} \times Y, \Omega B\right] \xrightarrow{i^{*}}[\Omega B, \Omega B]
$$

of the fibering (8.3), we see that $i^{*}=0$ by the same way as Lemma 7.7. Also, the multiplication \oplus of $i^{*-1}(0)=\operatorname{Im} p^{*}$ in Lemma 8.4 coincides with the usual multiplication + , by [10, Lemma 5.4 (ii)].
q.e.d.

Lemma 8.7. κ in Lemma 8.4 is monomorphic.
Proof. By the results of J. W. Rutter [11, Cor. 1.3.2, Th. 1.4.3], Ker κ is equal to the image of

$$
(\Omega f)_{*}:\left[S^{1} \times Y, \Omega\left(S^{1} \times K\right)\right] \longrightarrow\left[S^{1} \times Y, \Omega B\right]
$$

Since $B=K(Z, 2 n+2), \Omega f$ is homotopic to the constant map, and we have the lemma.
q.e.d.

ThEOREM 8.8. Let $n \geqq 1$. Then we have the split exact sequence

$$
0 \longrightarrow Z \xrightarrow{\kappa} \mathscr{E}\left(S^{1} \times C P^{n}\right) \longrightarrow Z_{2}+Z_{2} \longrightarrow 0
$$

where the action of $Z_{2}+Z_{2}$ on Z is given by

$$
\left((-1)^{i},(-1)^{j}\right) \cdot m=(-1)^{i+j} m, \quad \text { for } \quad m \in Z, i, j \in Z_{2}
$$

Proof. By Lemmas 8.1-8.7, we have the above exact sequence. Consider the elements $b_{i j}=\left(-\iota_{1}\right)^{i} \times(-\iota)^{j} \in \mathscr{E}\left(S^{1} \times C P^{n}\right)=\mathscr{E}\left(S^{1} \times Y\right)$, where $-\iota$ is the generator of $\mathscr{E}\left(C P^{n}\right)=Z_{2}$. It is easy to see that the subgroup $Z_{2}+Z_{2}=\left\{b_{i j} \mid\right.$ $\left.i, j \in Z_{2}\right\} \subset \mathscr{E}\left(S^{1} \times C P^{n}\right)$ is mapped isomorphically onto $Z_{2}+Z_{2}$ of the right hand side. Therefore the above sequence is split.

To study the action, we consider the diagram

where Δ is the diagonal map, k is the multiplication, and the compositions of the maps in the horizontal sequences are equal to $\kappa(m)$ and $\kappa\left(m^{\prime}\right)$ respectively by the definition of κ (cf. $[10,(5.2)]$). It is easy to see that the above diagram is commutative for $\varepsilon=(-1)^{j(n-1)}$ and $m^{\prime}=(-1)^{i+j} m$ and we have the desired results.
q.e.d.

References

[1] M. Arkowitz and C. R. Curjel, Groups of homotopy classes, Lecture Notes in Math. 4 (1966), Springer-Verlag.
[2] - Some properties of the exotic multiplications on the three-sphere, Quart. J. Math. Oxford (2), 20 (1969), 171-176.
[3] W. D. Barcus and M. G. Barratt, On the homotopy classification of a fixed map, Trans. Amer. Math. Soc. 88 (1958), 57-74.
[4] P. J. Hilton, On the homotopy groups of the union of spheres, J. London Math. Soc. 30 (1955), 154-172.
[5] A note on the P-homomorphism in homotopy groups of spheres, Proc. Cambridge Philos. Soc. 51 (1955), 230-233.
[6] W. C. Hsiang, J. Levine and R. H. Szczarba, On the normal bundle of a homotopy sphere embedded in Euclidean space, Topology 3 (1965), 173-181.
[7] S. T. Hu, Homotopy theory, Pure and Applied Mathematics VIII, Academic Press, New York, 1959.
[8] P. J. Kahn, Self-equivalences of ($n-1$)-connected $2 n$-manifolds, Math. Ann. 180 (1969), 26-47.
[9] R. E. Mosher and M. C. Tangora, Cohomologyoperations and applications in homotopy theory, Harper's Series in Modern Math., Harper \& Row, New York, 1968.
[10] S. Oka, N. Sawashita and M. Sugawara, On the group of self-equivalences of a mapping cone, Hiroshima Math. J. 4 (1974), 9-28.
[11] J. W. Rutter, A homotopy classification of maps into an induced fibre space, Topology 6 (1967), 379-403.
[12] J.-P. Serre, Groupes d'homotopies et classes de groupes abélians, Ann. of Math. 58 (1953), 258-294.
[13] A. J. Sieradski, Twisted self-homotopy equivalences, Pacific J. Math. 34 (1970), 789-802.
[14] H. Toda, Composition methods in homotopy groups of spheres, Ann. of Math. Studies, 49 (1962), Princeton Univ. Press.

Department of Mathematics,
Faculty of Engineering, Tokushima University

