# A Note on G(a)-Domains and Hilbert Rings 

Kazunori Fujita<br>(Received September 4, 1974)

In a recent paper [1], we defined the property $J(\Lambda)$ for an integral domain $R$, which is useful to prove a generalized Hilbert Nullstellensatz. At that time, we restricted ourselves to prime ideals of height one. However, we can readily see that Lemma 1, Lemma 2 and Proposition 1 in Section 1 of [1] are valid, if we replace the set $H t_{1}(R)$ of prime ideals of height one (resp. $H_{R}(D)$ ) by the set $P(R)$ of non zero prime ideals (resp. $H_{R}^{*}(D)$ (see the definition below)). So, in this paper, we define the property $J^{*}(\mathfrak{a})$ for a cardinal number $\mathfrak{a}$ in place of the property $J(\mathfrak{a})$; here the cardinal number $\mathfrak{a}$ will always be assumed not less than $\aleph_{0}$, because if $\mathfrak{a}$ is finite, then it is clear that an integral domain $R$ has the property $J^{*}(\mathfrak{a})$ if and only if $R$ is not a $G$-domain (see the definition in [4]). Also, by taking account of the fact mentioned above, we define $G(\mathfrak{a})$-domain as a concept against the property $J^{*}(\mathfrak{a})$, and furthermore by introducing the notion of $G(\mathfrak{a})$-ideal and $H(\mathfrak{a})$-ring similar to $G$-ideal and Hilbert ring in [4], we can obtain some results generalizing those in [3] and [4].

The author wishes to express his thanks to Professor M. Nishi for his valuable advice and his comments in writing this paper.

1. $G(\mathfrak{a})$-domains

All rings considered are commutative with identity. Let $\mathfrak{a}$ be a cardinal number not less than $\aleph_{0}$. We say that a polynomial ring over $R$ is an $a$-polynomial ring over $R$ if the cardinality of the set of its variables is $\mathfrak{a}$, and we say that an $R$ algebra $A$ is $\mathfrak{a}$-generated over $R$ if $A$ is an $R$-homomorphic image of the a-polynomial ring over $R$. Call a subset $D$ of an integral domain $R$ a $J(\mathfrak{a})$-subset if $D$ does not contain zero element and if the cardinality of $D$ is not greater than $\mathfrak{a}$. A bit of notation: For an integral domain $R$, we denote by $P(R)$ the set of non zero prime ideals in $R, H t_{1}(R)$ the set of prime ideals of height one, and for a given subset $E$ of $R$ we denote by $H_{R}^{*}(E)$ the set of non zero prime ideals in $R$ which contains at least one element of $E, H_{R}(E)$ the set of prime ideals of height one in $R$ which contains at least one element of $E$.

Definition. Let $R$ be an integral domain. When $H_{R}(D)$ is properly contained in $H t_{1}(R)$ for any $J(\mathfrak{a})$-subset $D$ of $R$, then we say that the ring $R$ has the property $J(\mathfrak{a})$. When $H_{R}^{*}(D)$ is properly contained in $P(R)$ for any $J(\mathfrak{a})$-subset $D$ of $R$, then we say that the ring $R$ has the property $J^{*}(\mathfrak{a})$.

Definition. For an integral domain $R$, we say that $R$ is a $G(\mathfrak{a})$-domain if and only if $R$ has not the property $J^{*}(\mathfrak{a})$, namely there exists a $J(\mathfrak{a})$-subset $D$ such that $\mathfrak{p} \cap D \neq \phi$ for any non zero prime ideal $\mathfrak{p}$ in $R$.

The following propositions follow immediately from definitions.
Proposition 1. Let $R$ be an integral domain. If any non zero prime ideal in $R$ contains at least a prime ideal of height one, then $R$ has the property $J^{*}(\mathfrak{a})$ if and only if $R$ has the property $J(\mathfrak{a})$.

Proposition 2. Let $K$ be the quotient field of $R$. Then the following statements are equivalent:
(a) $R$ is a $G(a)$-domain.
(b) For some $J(\mathfrak{a})$-subset $D$ of $R$, we have $K=R[\ldots, 1 / a, \ldots], a \in D$.
(c) For some multiplicatively closed subset $S$ of $R$ such that $\operatorname{card}(S) \leq \mathfrak{a}$, we have $K=S^{-1} R$.
(d) $K$ is $\mathfrak{a}$-generated over $R$.

Corollary. If $R$ is a $G(\mathfrak{a})$-domain, then every overring of $R$ is also a $G(\mathfrak{a})$-domain.

Proposition 3. If $R$ has the property $J^{*}(\mathfrak{a})$, then any polynomial ring over $R$ has the property $J^{*}(\mathfrak{a})$.

Proof. Let $A$ be a polynomial ring over $R$, and $E$ be any $J(\mathfrak{a})$-subset of $A$. We denote by $D$ the subset of $R$ consisting of non zero coefficients of the elements of $E$; then $D$ is a $J(\mathfrak{a})$-subset of $R$. By our assumption, $H_{R}^{*}(D)$ is properly contained in $P(R)$. Let $\mathfrak{p}$ be an element of $P(R)$ but not of $H_{R}^{*}(D)$. Then $\mathfrak{p} A$ is not an element of $H_{A}^{*}(E)$.

Proposition 4. Let $R \subset A$ be integral domains. Then the following statements hold.
(a) If $A$ is algebraic over $R$ and $R$ is $a G(\mathfrak{a})$-domain, then $A$ is $a G(\mathfrak{a})$ domain.
(b) If $A$ is $\mathfrak{a}$-generated over $R$ and $A$ is $a G(\mathfrak{a})$-domain, then $R$ is $a G(\mathfrak{a})$ domain.
(c) In particular, if $A$ is algebraic over $R$ and $A$ is $\mathfrak{a}$-generated over $R$, then $R$ is a $G(\mathfrak{a})$-domain if and only if $A$ is a $G(\mathfrak{a})$-domain.

Proof. Let $K$ and $L$ be the quotient fields of $R$ and $A$ respectively.
(a) By Proposition 2, $K=R\left[\ldots, a_{i}, \ldots\right], i \in I$, where $\operatorname{card}(I) \leq \mathfrak{a}$. Then $A\left[\ldots, a_{i}, \ldots\right], i \in I$, is algebraic over $K$, and hence is itself a field, therefore necessarily equal to $L$.
(b) Let $U=\{t\}$ be a subset of $A$ such that $\ldots, t, \ldots$ are algebraically independ-
ent over $R$ and $A$ is algebraic over $R[\ldots, t, \ldots], t \in U$. If $R[\ldots, t, \ldots]$ is a $G(\mathfrak{a})-$ domain, then $R$ is a $G(\mathfrak{a})$-domain by Proposition 3. Therefore we may assume that $A$ is algebraic over $R$. By our assumption, $L=A\left[\ldots, c_{i}, \ldots\right], i \in I$, and $A=$ $R\left[\ldots, d_{j}, \ldots\right], j \in J$, where $\operatorname{card}(I), \operatorname{card}(J) \leq \mathfrak{a}$. The elements $c_{i}, d_{j}$ are algebraic over $R$ and consequently satisfy equations with coefficients in $R$, say

$$
\begin{aligned}
& a_{i} c_{i}^{m}+\cdots=0 \\
& b_{j} d_{j}^{n}+\cdots=0 .
\end{aligned}
$$

Since $L=R\left[\ldots, c_{i}, \ldots, d_{j}, \ldots\right]$ is integral over $R\left[\ldots, a_{i}^{-1}, \ldots, b_{j}^{-1}, \ldots\right]$ and $L$ is a field, $R\left[\ldots, a_{i}^{-1}, \ldots, b_{j}^{-1}, \ldots\right]$ is necessarily equal to $K$.

Proposition 5. Let $R \subset A$ be integral domains. If $A$ is integral over $R$, then the following statements are equivalent:
(a) $R$ has the property $J^{*}(\mathfrak{a})$.
(b) $A$ has the property $J^{*}(\mathfrak{a})$.

Proof. (b) $\Rightarrow(\mathrm{a})$ follows from (a) of Proposition 4.
(a) $\Rightarrow$ (b). Let $E=\left\{a_{i} ; i \in I\right\}$ be a $J(\mathfrak{a})$-subset of $A$, and $a_{i}^{n_{i}}+\cdots+d_{i}=0$ be the smallest degree equation of $a_{i}$ over $R$. Clearly $D=\left\{d_{i} ; i \in I\right\}$ is a $J(\mathfrak{a})$-subset of $R$, and so by our assumption, we can choose a non zero prime ideal $\mathfrak{p}$ of $R$ which is not in $H_{R}^{*}(D)$. Let $\mathfrak{P}$ be a prime ideal of $A$ lying over $\mathfrak{p}$. Then clearly $\mathfrak{P}$ is not an element of $H_{A}^{*}(E)$.

Proposition 6. $R$ is a $G(\mathfrak{a})$-domain if and only if there exists a maximal ideal $\mathfrak{m}$ in the $\mathfrak{a}$-polynomial ring over $R$ with contracts in $R$ to zero ideal.

Proof. Let $K$ be the quotient field of $R$. Suppose $R$ is a $G(\mathfrak{a})$-domain. By Proposition 2, $K$ is of the form $R\left[\ldots, a_{i}, \ldots\right], i \in I$, where $\operatorname{card}(I)=a$. Let $\varphi$ be an $R$-homomorphism of $R\left[\ldots, X_{i}, \ldots\right], i \in I$, onto $K$ such that $\varphi\left(X_{i}\right)=a_{i}$, and $\mathfrak{m}$ be the $\operatorname{Ker}(\varphi)$. Then $\mathfrak{m}$ is a maximal ideal in $R\left[\ldots, X_{i}, \ldots\right], i \in I$, and $\mathfrak{m} \cap R=0$. Conversely, suppose that there exists a maximal ideal $\mathfrak{m}$ in the $\mathfrak{a}$-polynomial ring $A$ over $R$ such that $\mathfrak{m} \cap R=0$. Since $A / \mathfrak{m}$ is $\mathfrak{a}$-generated over $R$ and a field is a $G(\mathfrak{a})$-domain, $R$ is a $G(\mathfrak{a})$-domain by (b) of Proposition 4.

## 2. $H(\mathfrak{a})$-rings

Kaplansky defines $G$-ideals and Hilbert rings in [4] as follows: A prime ideal $\mathfrak{p}$ in a ring $R$ is a $G$-ideal if $R / \mathfrak{p}$ is a $G$-domain. A ring $R$ is a Hilbert ring if every $G$-ideal in $R$ is maximal.

So we shall define $G(\mathfrak{a})$-ideals and $H(\mathfrak{a})$-rings after Kaplansky's definitions.
Definition. Let $\mathfrak{p}$ be a prime ideal in a ring $R$. We say that $\mathfrak{p}$ is a $G(\mathfrak{a})$ ideal if $R / \mathfrak{p}$ is a $G(\mathfrak{a})$-domain.

A ring $R$ is an $H(\mathfrak{a})$-ring if every $G(\mathfrak{a})$-ideal in $R$ is a maximal ideal.
Remark. (a) A homomorphic image of an $H(a)$-ring is an $H(\mathfrak{a})$-ring.
(b) An $H(\mathfrak{a})$-ring is a Hilbert ring, because $G$-domain is a $G(\mathfrak{a})$-domain.
(c) Let $k$ be a field with cardinality $\leq \aleph_{0}$. Then $k[X]$ is a Hilbert ring but not an $H\left(\aleph_{0}\right)$-ring.
(d) Let $R$ be a unique factorization domain. If $\operatorname{card}\left(H t_{1}(R)\right)>\mathfrak{a}$, then $R$ has the property $J^{*}(\mathfrak{a})$.

Corollary to Proposition 6. A prime ideal $\mathfrak{p}$ in a ring $R$ is a $G(\mathfrak{a})$-ideal if and only if it is a contraction of some maximal ideal in the a-polynomial ring over $R$.

Proposition 7. Let $k$ be a field, and I be a non empty set. If $\operatorname{card}(k)>\mathfrak{a}$ and $\operatorname{card}(I) \leq \mathfrak{a}$, then $A=k\left[\ldots, X_{i}, \ldots\right], i \in I$, is an $H(\mathfrak{a})$-ring.

Proof. Let $\mathfrak{p}$ be a non maximal prime ideal in $A$, and let $U=\left\{t_{j} ; j \in J\right\}$ be a subset of $A / \mathfrak{p}$ such that $\ldots, t_{j}, \ldots$ are algebraically independent over $k$ and $A / \mathfrak{p}$ is algebraic over $k\left[\ldots, t_{j}, \ldots\right], j \in J$. Note that $U$ is not empty because $\mathfrak{p}$ is not maximal. The ring $k\left[\ldots, t_{j}, \ldots\right]$ has the property $J^{*}(\mathfrak{a})$ by (d) of Remark; therefore $A / \mathfrak{p}$ has the property $J^{*}(\mathfrak{a})$ by Proposition 4.

Theorem 1. Let $k$ be a field. Then the following statements are equivalent.
(a) $\operatorname{card}(k)>a$.
(b) $k[X]$ has the property $J^{*}(\mathfrak{a})$.
(c) $k[X]$ is an $H(a)$-ring.
(d) If $I$ is a non empty set such that $\operatorname{card}(I) \leq \mathfrak{a}$, then $k\left[\ldots, X_{i}, \ldots\right], i \in I$, has the property $J^{*}(\mathfrak{a})$.
(e) If $I$ is a non empty set such that $\operatorname{card}(I) \leq \mathfrak{a}$, then $k\left[\ldots, X_{i}, \ldots\right], i \in I$, is an $H(\mathfrak{a})$-ring.
(f) If $I$ is a set such that $\operatorname{card}(I)=\mathfrak{a}$, then $k\left[\ldots, X_{i}, \ldots\right], i \in I$, is a Hilbert ring.

Proof. (a) $\Rightarrow$ (b) and (b) $\Rightarrow(\mathrm{d})$ follow from Proposition 3 and (d) of the preceding remark.
(d) $\Rightarrow$ (a). If we assume that $\operatorname{card}(k) \leq \mathfrak{a}$, then $\operatorname{card}\left(k\left[\ldots, X_{i}, \ldots\right]\right) \leq \mathfrak{a}$; therefore $k\left[\ldots, X_{i}, \ldots\right]$ clearly has not the property $J^{*}(\mathfrak{a})$.
(a) $\Rightarrow$ (c) and (a) $\Rightarrow$ (e) follow from Proposition 7.
(c) $\Rightarrow$ (b) and (e) $\Rightarrow$ (d) are trivial.

The equivalence of (a) and (f) is proved in Proposition 2 of [1].
Proposition 8. Let $R \subset A$ be rings such that $A$ is integral over $R$. Then $R$ is an $H(\mathfrak{a})$-ring if and only if $A$ is an $H(\mathfrak{a})$-ring.

This follows immediately from Proposition 5.
In [3], O . Goldman proved that a ring $R$ is a Hilbert ring if and only if every maximal ideal in $R[X]$ contracts in $R$ to a maximal ideal. The following proposition shows that an $H(\mathfrak{a})$-ring is characterized similarly.

Proposition 9. A ring $R$ is an $H(\mathfrak{a})$-ring if and only if every maximal ideal in the $\mathfrak{a}$-polynomial ring over $R$ contracts in $R$ to a maximal ideal.

Proof. Suppose first that $R$ is an $H(a)$-ring. Let $m$ be any maximal ideal in the $\mathfrak{a}$-polynomial ring $A$ over $R$. Since $A / \mathfrak{m}$ is $\mathfrak{a}$-generated over $R / R \cap \mathfrak{m}$, $R / R \cap \mathfrak{m}$ is a $G(\mathfrak{a})$-domain by (b) of Proposition 4; hence $R \cap \mathfrak{m}$ is a maximal ideal in $R$ by assumption. Suppose now that every maximal ideal in $A$ contracts in $R$ to a maximal ideal. Let $\mathfrak{p}$ be a $G(\mathfrak{a})$-ideal in $R$. There exists a maximal ideal $\mathfrak{m t}$ in $A$ such that $\mathfrak{p}=R \cap \mathfrak{m}$ by Corollary to Proposition 6; hence $\mathfrak{p}$ is a maximal ideal in $R$ by assumption.

Theorem 2. For a ring $R$ the following statements are equivalent:
(a) $R$ is an $H(\mathfrak{a})$-ring and for every maximal ideal $m$ in $R$ we have card $(R /$ $\mathfrak{m})>\mathfrak{a}$.
(b) $R[X]$ is an $H(\mathfrak{a})$-ring.
(c) the a-polynomial ring over $R$ is an $H(\mathfrak{a})$-ring.

Proof. (a) $\Rightarrow$ (c). Let $A=R\left[\ldots, X_{i}, \ldots\right], i \in I$, be the $a$-polynomial ring over $R$. It suffices to prove that $A / \mathfrak{P}$ has the property $J^{*}(\mathfrak{a})$ for every non maximal prime ideal $\mathfrak{P}$ in $A$. When $\mathfrak{p}=\mathfrak{P} \cap R$ is a maximal ideal in $R$, we have $\operatorname{card}(R /$ $\mathfrak{p})>\mathfrak{a}$ by assumption. $A / \mathfrak{P}=(R / \mathfrak{p})\left[\ldots, X_{i}, \ldots\right] / \overline{\mathfrak{P}}$, where $\overline{\mathfrak{P}}=(R / \mathfrak{p}) \otimes_{R}^{\otimes} P$. Since $\overline{\mathfrak{P}}$ is not maximal, $(R / p)\left[\ldots, X_{i}, \ldots\right] / \overline{\mathcal{P}}$ has the property $J^{*}(\mathfrak{a})$ by Theorem 1. When $\mathfrak{p}=R \cap \mathfrak{P}$ is not maximal in $R, R / \mathfrak{p}$ has the property $J^{*}(\mathfrak{a})$ by assumption. $A / \mathfrak{P}$ is $\mathfrak{a}$-generated over $R / \mathfrak{p}$, so $A / \mathfrak{P}$ has the property $J^{*}(\mathfrak{a})$ by (b) of Proposition 4.
$(c) \Rightarrow(b)$ follows from (a) of the preceding remark.
(b) $\Rightarrow(\mathrm{a})$. Let $\mathfrak{m}$ be any maximal ideal in $R . \quad R / \mathfrak{m}[X]$ is an $H(\mathfrak{a})$-ring; hence $\operatorname{card}(R / \mathfrak{m})>\mathfrak{a}$ by Theorem 1 .

Proposition 10. Let $R$ be an integral domain which satisfies the following conditions:
(a) $\operatorname{dim}(R) \geq 1$.
(b) Every non zero prime ideal in $R$ contains at least a prime ideal of height one.
(c) For any non unit a $\neq 0$ in $R$, the cardinality of the set of prime ideal of height one containing $a$ is not greater than $\mathfrak{a}$. Then $R$ has the property $J^{*}(\mathfrak{a})$ if the a-polynomial ring over $R$ is a Hilbert ring.

Proof. Suppose $R$ is a $G(\mathfrak{a})$-domain. By the condition (b) and Proposition $1, R$ has not the property $J(\mathfrak{a})$; therefore for some $J(\mathfrak{a})$-subset $D$ of $R$ we have $H t_{1}(R)=H_{R}(D)$; hence the condition (c) implies $\operatorname{card}\left(H t_{1}(R)\right) \leq \mathfrak{a}$. We put $H t_{1}(R)=\left\{p_{j} ; j \in J\right\}$, and we fix an element $j_{0}$ of $J$. Let $a_{j_{0}}$ be a non zero element in $\mathfrak{p}_{j_{0}}$, and for any $j \neq j_{0}$ we pick a non zero element $a_{j}$ in $\mathfrak{p}_{j}$ but not in $\mathfrak{p}_{j_{0}}$. Then we have $K=Q(R)=R\left[\ldots, 1 / a_{j}, \ldots\right], j \in J$, and $K \geqslant R\left[\ldots, 1 / a_{j}, \ldots\right], j \in J-\left\{j_{0}\right\}$. $\left(Q(*)\right.$ stands for the quotient field of $*$.) Let $A=R\left[\ldots, X_{j}, \ldots\right], j \in J-\left\{j_{0}\right\}$ and let $\mathfrak{M}$ be the ideal in $A\left[X_{j_{0}}\right]$ generated by $a_{j} X_{j}-1, j \in J$. Since $A\left[X_{j_{0}}\right] / \mathfrak{M}=K, \mathfrak{M}$ is a maximal ideal in $A\left[X_{j_{0}}\right]$. However $A / A \cap \mathfrak{M}=R\left[\ldots, 1 / a_{j}, \ldots\right], j \in J-\left\{j_{0}\right\}$, $\subsetneq K$ implies that $A \cap \mathfrak{M}$ is not a maximal ideal in $A$; hence by Theorem 5 in [3] $A$ is not a Hilbert ring. This leads to a contradiction by our assumption.

Proposition 11. Let $R$ be a noetherian ring. If the $\mathfrak{a}$-polynomial ring $A=R\left[\ldots, X_{i}, \ldots\right], i \in I$, over $R$ is a Hilbert ring, then $A$ is an $H(\mathfrak{a})$-ring.

Proof. We show that $R$ satisfies the condition (a) of Theorem 2. Let $\mathfrak{m}$ be any maximal ideal in $R$. Since $(R / \mathfrak{m})\left[\ldots, X_{i}, \ldots\right], i \in I$, is a Hilbert ring and $\operatorname{card}(I)=\mathfrak{a}$, the cardinality of $R / \mathfrak{m}$ is greater than $\mathfrak{a}$ by Proposition 2 in [1]. Let $\mathfrak{p}$ be a non maximal prime ideal in $R$. Proposition 10 implies that $R / \mathfrak{p}$ has the property $J^{*}(\mathfrak{a})$; hence $R$ is an $H(\mathfrak{a})$-ring.

Remark. Let $R$ be a $G\left(\aleph_{0}\right)$-domain and $K$ be the quotient field of $R$. The set $W=\left\{\left\{u_{1}, u_{2}, \ldots\right\} \subset K ; K=R\left[u_{1}, u_{2}, \ldots\right]\right\}$ is not empty, because $R$ is a $G\left(\aleph_{0}\right)$ domain. We say that $R$ is a $G^{\prime}\left(\aleph_{0}\right)$-domain if $\left\{u_{n}, u_{n+1}, \ldots\right\}$ is an element of $W$ for any $\left\{u_{1}, u_{2}, \ldots\right\} \in W$ and for any positive integer $n$. The following proposition is an immediate consequence of Corollary 2 to Proposition 1 in [1] and Theorem 5 in [3].

Proposition. Let $R$ be a one dimensional $G\left(\aleph_{0}\right)$-domain. If $K$ is an algebraically closed field, and if $\operatorname{card}(R / \mathfrak{m})>\aleph_{0}$ for any maximal ideal in $R$, then $R\left[X_{1}, X_{2}, \ldots\right]$ is a Hilbert ring if and only if $R$ is a $G^{\prime}\left(\aleph_{0}\right)$-domain.
3. Valuation rings with the property $J^{*}\left(\aleph_{0}\right)$

Proposition 12. Let $R$ be a valuation ring. Then the following statements are equivalent:
(a) $R$ has the property $J^{*}\left(\aleph_{0}\right)$.
(b) If $D=\left\{a_{i} ; i=1,2, \ldots\right\}$ is a $J\left(\aleph_{0}\right)$-subset of $R$, then ${ }_{i=1}^{\infty} R a_{i} \nsupseteq(0)$.
(c) $K((X))=Q(R[[X]])$, where $K=Q(R)$. $\quad(Q(*)$ stands for the quotient field of *.)

Proof. (a) $\Rightarrow$ (b). We can take a non zero prime ideal $\mathfrak{p}$ in $R$ such that $\mathfrak{p}$ is not an element of $H_{R}^{*}(D)$. Therefore, for any $i$, we have $\mathfrak{p} \ngtr R a_{i}$; hence $R a_{i} \supset \mathfrak{p}$;
thus $\overbrace{i=1}^{\infty} R a_{i} \supset \mathfrak{p}$.
(b) $\Rightarrow$ (a). Let $D=\left\{a_{i} ; i=1,2, \ldots\right\}$ be a $J\left(\aleph_{0}\right)$-subset of $R$ such that $P(R)=$ $H_{R}^{*}(D)$. Then we have $\mathfrak{p} \supset \bigcap_{i=1}^{\infty} R a_{i}$ for any non zero prime ideal $\mathfrak{p}$ in $R$; thus $\mathfrak{p}_{1}=$ $\underset{p \in P(R)}{\cap} \mathfrak{p} \mathcal{P}(0)$. Clearly $h t\left(\mathfrak{p}_{1}\right)=1$; hence $R_{\mathfrak{p}_{1}}$ is a valuation ring of rank one. Take a non zero element $a$ in $\mathfrak{p}_{1}$, then $\bigcap_{i=1}^{\infty} a^{i} R_{p_{1}}=(0)$; hence $\bigcap_{i=1}^{\infty} a^{i} R=(0)$, because $\bigcap_{i=1}^{\infty} a^{i} R_{p_{1}} \supset \bigcap_{i=1}^{\infty} a^{i} R$. This contradicts to the assertion (b).

As for the equivalence of (b) and (c), see Theorem 1 in [2].
Corollary. Let $R$ be a valuation ring. If $R$ has the property $J^{*}\left(\aleph_{0}\right)$, then $R_{\mathfrak{p}}$ has the property $J^{*}\left(\aleph_{0}\right)$ for any non zero prime ideal $\mathfrak{p}$ in $R$.

This follows immediately from the equivalence of (a) and (c) in Proposition 12.

## References

[1] K. Fujita, A note on Hilbert's Nullstellensatz, Hiroshima Math. J., 4 (1974), 421424.
[2] R. Gilmer, A note on the quotient field on the domain $D[[X]]$, Proc. Amer. Math. Soc. 18 (1967), 1138-1140.
[3] O. Goldman, Hilbert ring and the Hilbert Nullstellensatz, Math. Zeit. 54 (1951), 136-140.
[4] I. Kaplansky, Commutative Rings, Allyn and Bacon, Boston, 1971.

Department of Mathematics,
Faculty of Science, Hiroshima University

