On Claw-decomposition of Complete Graphs and Complete Bigraphs

Sumiyasu Yamamoto, Hideto Ikeda
Shinsei Shige-eda, Kazuhiko Ushio and Noboru Hamada

(Received August 28, 1974)

Introduction

It has been found in our course of study on the design of balanced file organization schemes of order two [2] that, in the terminology of graphs, the decomposition of a complete graph into a union of line disjoint claws or stars provides us an optimal file organization scheme in the sense such that it has the least redundancy among the schemes of order two for every probability distribution of records having property of invariance in the permutation of attributes. As far as the present authors know, no information about such a claw-decomposition problem of complete graphs has yet been obtained. In this paper, a complete answer to the problem which may be called the claw-decomposition theorem of complete graphs will be given. A similar theorem of complete bigraphs will also be given.

In processing those decomposition theorems, it has been found useful to provide an existence theorem and a construction algorithm of bigraphs having preassigned degrees of points. The existence of bigraphs having preassigned degrees is equivalent to that of $0-1$ matrices having preassigned row and column sum vectors. In the terminology of the latter, a necessary and sufficient condition for the existence of a $0-1$ matrix has been given by Ryser [1]. In this paper, a straightforward construction algorithm to decide the existence of a $0-1$ matrix will be given. An alternative proof of Ryser's theorem will also be given.

§1. Existence of bigraphs

A bigraph (or bipartite graph) $G_{m, n}$ is an (unordered) graph whose point set can be partitioned into two subsets V_{1} and V_{2} with m and n points each, such that every line of $G_{m, n}$ joins V_{1} with V_{2}. If it contains every line joining V_{1} and V_{2}, then it is called a complete bigraph and denoted by $K_{m, n}$. Specifically, a complete bigraph $K_{1, c}$ is called a claw or a star with c lines.

Upon labelling those points in V_{1} and V_{2} of $G_{m, n}$ by $u_{1}, u_{2}, \cdots, u_{m}$ and v_{1}, v_{2}, \cdots, v_{n}, the adjacency of points in $G_{m, n}$ can be represented uniquely by an $m \times n$ $0-1$ matrix $A=\left\|a_{i j}\right\|$ in which $a_{i j}=1$ if u_{i} is adjacent with v_{j} and $a_{i j}=0$ otherwise.

The set of row and column sum vectors

$$
\begin{equation*}
\left\{\left(d_{1}, d_{2}, \cdots, d_{m}\right),\left(e_{1}, e_{2}, \cdots, e_{n}\right)\right\} \tag{1.1}
\end{equation*}
$$

of A corresponds to an arrangement of the degrees of points of the corresponding bigraph $G_{m, n}$, where $d_{i}=\sum_{j=1}^{n} a_{i j}$ and $e_{j}=\sum_{i=1}^{m} a_{i j}$. We may note that permutation of the labels in V_{1} and in V_{2} and the interchange of V_{1} and V_{2} are, of course, irrelevant to $G_{m, n}$; they correspond to permutation of the rows, of the columns, and transposition of the matrix A, respectively.

Since the number of lines in $G_{m, n}$ is given by $N=\sum_{i=1}^{m} d_{i}=\sum_{j=1}^{n} e_{j}$, (1.1) can also be considered as a pair of m and n partitions of a nonnegative integer N.

A pair of m and n partitions

$$
\begin{equation*}
\Pi_{m, n}=\left\{\left(r_{1}, r_{2}, \cdots, r_{m}\right),\left(s_{1}, s_{2}, \cdots, s_{n}\right)\right\} \tag{1.2}
\end{equation*}
$$

of a nonnegative integer N will be called bigraphical if there exists a bigraph $G_{m, n}$ whose arrangement of degrees is $\Pi_{m, n}$ or, equivalently, if there exists a $0-1$ matrix A of size $m \times n$ whose set of row and column sum vectors is $\Pi_{m, n}$, where r_{i} and s_{j} are nonnegative integers and satisfy $N=\sum_{i=1}^{m} r_{i}=\sum_{j=1}^{n} s_{j}$.

The following theorem provides us an algorithm to decide whether $\Pi_{m, n}$ is bigraphical or not.

Theorem 1.1. (Algorithm) A pair of m and n partitions

$$
\begin{equation*}
\Pi_{m, n}=\left\{\left(r_{1}, r_{2}, \cdots, r_{m}\right),\left(s_{1}, s_{2}, \cdots, s_{n}\right)\right\} \tag{1.3}
\end{equation*}
$$

of a nonnegative integer N with $s_{1} \geq s_{2} \geq \cdots \geq s_{n}$ is bigraphical if and only if a modified pair of $m-1$ and n partitions

$$
\begin{equation*}
\Pi_{m-1, n}=\left\{\left(r_{2}, r_{3}, \cdots, r_{m}\right),\left(s_{1}-1, \cdots, s_{r_{1}}-1, s_{r_{1}+1}, \cdots, s_{n}\right)\right\} \tag{1.4}
\end{equation*}
$$

of the nonnegative integer $N-r_{1}$ exists and is bigraphical.
Proof. If $\Pi_{m-1, n}$ in (1.4) exists and is bigraphical, a $0-1$ matrix having $\Pi_{m, n}$ in (1.3) can be obtained by adding a row which has r_{1} ones followed by $n-r_{1}$ zeros to the $0-1$ matrix having (1.4). $\Pi_{m, n}$ in (1.3) is, therefore, bigraphical.

Conversely, suppose $\Pi_{m, n}$ in (1.3) to be bigraphical. If the first row of $A=\left\|a_{i j}\right\|$ corresponding to (1.3) is a vector composed of r_{1} ones followed by $n-r_{1}$ zeros, then $\Pi_{m-1, n}$ in (1.4) exists and a $0-1$ matrix having (1.4) can be obtained from A by deleting the first row. If $a_{1 j}=0$ for some j satisfying $1 \leq j \leq r_{1}$, then there exists some j^{\prime} satisfying $r_{1}<j^{\prime} \leq n$ such that $a_{1 j^{\prime}}=1$. In this case there exists some i for which $a_{i j}=1$ and $a_{i j^{\prime}}=0$, since $s_{j} \geq s_{j^{\prime}}$. Interchanging zeros and ones with those four elements in A, a $0-1$ matrix A^{*} with the same $\Pi_{m, n}$ is obtained,
in which $a_{1 j}^{*}=1$ and $a_{1 j^{\prime}}^{*}=0$. Repeated application of such an interchange will yield a $0-1$ matrix \tilde{A} with $\Pi_{m, n}$ in which the first row is composed of r_{1} ones followed by $n-r_{1}$ zeros. Removing the first row of \tilde{A}, a $0-1$ matrix \widetilde{A}_{1} of size ($m-1$) $\times n$ having $\Pi_{m-1, n}$ in (1.4) is obtained. The modified pair of partitions $\Pi_{m-1, n}$ exists and is bigraphical.

This completes the proof.
Note: The family of $0-1$ matrices having $\Pi_{m, n}$, if it exists, is essentially unique in that any two are transformable each other by repeated interchange of zeros and ones.

Theorem 1.2. (Ryser) A pair of m and n partitions

$$
\begin{equation*}
\Pi_{m, n}=\left\{\left(r_{1}, r_{2}, \cdots, r_{m}\right),\left(s_{1}, s_{2}, \cdots, s_{n}\right)\right\} \tag{1.5}
\end{equation*}
$$

of a nonnegative integer N with $r_{1} \geq r_{2} \geq \cdots \geq r_{m}$ is bigraphical if and only if the inequalities

$$
\begin{equation*}
\sum_{i=1}^{k} r_{i} \leq \sum_{j=1}^{n} \min \left(k, s_{j}\right) \tag{1.6}
\end{equation*}
$$

hold for all $k=1,2, \cdots, m$.
Proof. If $\Pi_{m, n}$ in (1.5) is bigraphical, then there exists a $0-1$ matrix A of size $m \times n$ having $\Pi_{m, n}$. Consider a submatrix A_{k} composed of the first k rows of A for each $k=1,2, \cdots, m$. The number of ones in the j-th column of A_{k} is not greater than $\min \left(k, s_{j}\right)$ for each $j=1,2, \cdots, m$. The total number of ones in A_{k}, $\sum_{i=1}^{k} r_{i}$, is, therefore, not greater than $\sum_{j=1}^{n} \min \left(k, s_{j}\right)$. This implies that the inequalities (1.6) are necessary.

The sufficiency of (1.6) will be proved by induction on m.
For $m=1$, since $\sum_{j=1}^{n} s_{j}=r_{1} \leq \sum_{j=1}^{n} \min \left(1, s_{j}\right)$ and $\sum_{j=1}^{n} s_{j} \geq \sum_{j=1}^{n} \min \left(1, s_{j}\right)$ hold by assumption, it follows that $s_{j}=1$ or 0 for all $j=1,2, \cdots, n$. A $0-1$ matrix $A=\left\|a_{i j}\right\|$ of size $1 \times n$, in which $a_{1 j}=1$ if $s_{j}=1$ and $a_{1 j}=0$ otherwise, has the required set of row and column sum vectors. Hence, $\Pi_{1, n}$ is bigraphical.

Suppose (1.6) to be sufficient for any pair of partitions $\Pi_{m, n}$ with $m=t$, and assume that the inequalities

$$
\begin{equation*}
\sum_{i=1}^{k} r_{i} \leq \sum_{j=1}^{n} \min \left(k, s_{j}\right) \tag{1.7}
\end{equation*}
$$

hold for all $k=1,2, \cdots, t+1$ with respect to a pair of $t+1$ and n partitions

$$
\begin{equation*}
\Pi_{t+1, n}=\left\{\left(r_{1}, r_{2}, \cdots, r_{t+1}\right),\left(s_{1}, s_{2}, \cdots, s_{n}\right)\right\} . \tag{1.8}
\end{equation*}
$$

Without loss of generality, we may rearrange s_{j} in a way such that they satisfy
$s_{1} \geq s_{2} \geq \cdots \geq s_{n}$. Since it follows from (1.7) that $r_{1} \leq \sum_{j=1}^{n} \min \left(1, s_{j}\right), s_{r_{1}}$ must be a positive integer. Thus a modified pair of t and n partitions

$$
\begin{equation*}
\Pi_{t, n}=\left\{\left(r_{1}^{\prime}, r_{2}^{\prime}, \cdots, r_{t}^{\prime}\right),\left(s_{1}^{\prime}, s_{2}^{\prime}, \cdots, s_{n}^{\prime}\right)\right\} \tag{1.9}
\end{equation*}
$$

can be constructed from (1.8), where $r_{i}^{\prime}=r_{i+1}$ for $i=1,2, \cdots, t ; s_{j}^{\prime}=s_{j}-1$ for $j=1,2, \cdots, r_{1}$ and $s_{j}^{\prime}=s_{j}$ for $j=r_{1}+1, \cdots, n$.

For every k satisfying $1 \leq k<s_{r_{1}}$, it follows that

$$
\begin{align*}
& r_{1}^{\prime}+r_{2}^{\prime}+\cdots+r_{k}^{\prime}=r_{2}+\cdots+r_{k+1} \leq k r_{1} \tag{1.10}\\
& =\sum_{j=1}^{r_{1}} \min \left(k, s_{j}^{\prime}\right) \leq \sum_{j=1}^{n} \min \left(k, s_{j}^{\prime}\right)
\end{align*}
$$

and for every k satisfying $s_{r_{1}} \leq k \leq t$, it follows that

$$
\begin{align*}
& r_{1}^{\prime}+r_{2}^{\prime}+\cdots+r_{k}^{\prime}=r_{1}+r_{2}+\cdots+r_{k+1}-r_{1} \tag{1.11}\\
& \quad \leq \sum_{j=1}^{n} \min \left(k+1, s_{j}\right)-r_{1} \\
& =\sum_{j=1}^{r_{1}} \min \left(k+1, s_{j}\right)+\sum_{j=r_{1}+1}^{n} \min \left(k+1, s_{j}\right)-r_{1} \\
& =
\end{align*}
$$

The inequalities (1.10) and (1.11) show that $\Pi_{t, n}$ in (1.9) is bigraphical by the induction hypothesis. So is $\Pi_{t+1, n}$ in (1.8).

This completes the proof.

Corollary 1.3. A pair of m and n partitions

$$
\begin{equation*}
\Pi_{m, n}=\left\{\left(r_{1}, r_{2}, \cdots, r_{m}\right),(s, s, \cdots, s)\right\} \tag{1.12}
\end{equation*}
$$

of a nonnegative integer N with $r_{1} \geq r_{2} \geq \cdots \geq r_{m}$ is bigraphical if and only if

$$
\begin{equation*}
r_{1} \leq n . \tag{1.13}
\end{equation*}
$$

Proof. It is sufficient to show that (1.13) is equivalent to (1.6) with $s_{1}=$ $s_{2}=\cdots=s_{n}=s$. The latter can be reduced to

$$
\begin{equation*}
\sum_{i=1}^{k} r_{i} \leq n \min (k, s) \tag{1.14}
\end{equation*}
$$

for all $k=1,2, \cdots, m$.

From (1.14) with $k=1$, we have $r_{1} \leq n \min (1, s) \leq n$. Hence we have (1.13). Conversely, for every k satisfying $1 \leq k \leq s$, it follows that

$$
n \min (k, s)=n k \geq r_{1} k \geq r_{1}+r_{2}+\cdots+r_{k},
$$

and for every k satisfying $s+1 \leq k \leq m$, it follows that

$$
n \min (k, s)=n s=r_{1}+r_{2}+\cdots+r_{m} \geq r_{1}+r_{2}+\cdots+r_{k}
$$

This completes the proof.

§ 2. Claw-decomposition theorems

Now we shall state the claw-decomposition theorem of complete graphs:
Theorem 2.1. A complete graph, K_{l}, with l points and $\binom{l}{2}$ lines can be decomposed into a union of line disjoint $\binom{l}{2} /$ c claws, $K_{1}^{(\alpha)}$, , with c lines each if and only if
(i) $\binom{l}{2}$ is an integral multiple of c, and
(ii) $l \geq 2 c$.

Proof. (Necessity) The condition (i) is obviously necessary. Suppose $l<2 c$ and assume that K_{l} can be decomposed into a union of line disjoint $b=$ $\binom{l}{2} / c$ claws. Since $b<l-1$, there exists a point which cannot be the root (or a point of degree c) of any claw. Its degree must be less than $l-1$. This contradicts the fact that K_{l} is regular of degree $l-1$. The condition (ii) is, therefore, necessary.
(Sufficiency) The set of $\binom{l}{2}$ lines of a complete graph K_{l} can be identified with the triangular set

$$
\begin{equation*}
T=\{(i, j) \mid 1 \leq i<j \leq l\} \tag{2.1}
\end{equation*}
$$

of $\binom{l}{2}$ lattice points (i, j). The set of c lines of a claw $K_{1, c}$ which is a subgraph of the K_{l} can be identified with a subset of T composed of c lattice points standing together on the same i-th row and/or i-th column. Such a subset may be called a claw-type subset of T. The proof of sufficiency will be completed by giving an algorithm of the decomposition of T into mutually disjoint $b=\binom{l}{2} / c$ claw-type subsets assuming that (i) and (ii) hold. This algorithm will be given by dividing it into the subsequent three cases.

Case 1. $2 c \leq l<3 c$

Put $l=2 c+r$ and $b=\binom{l}{2} / c=2 c-1+2 r+b_{1}$. Since $0 \leq r<c$ and $b_{1}=$ $r(r-1) /(2 c), b_{1}$ is zero if $r=0$ or 1 and an integer satisfying $0<b_{1}<\frac{r-1}{2}$ otherwise.

The set T of $\binom{l}{2}$ lattice points will be decomposed into the following subsets A, B, C, D and E :

$$
\begin{align*}
& A=\{(i, j) \mid 1 \leq i<j \leq c+1\} \\
& B=\{(i, j) \mid c+1 \leq i<j \leq c+r+1\} \\
& C=\{(i, j) \mid c+r+1 \leq i<j \leq l\} \tag{2.2}\\
& D=\{(i, j) \mid 1 \leq i \leq c, c+2 \leq j \leq c+r+1\} \\
& E=\{(i, j) \mid 1 \leq i \leq c+r, c+r+2 \leq j \leq l\} .
\end{align*}
$$

Among those subsets, D can be decomposed into r claw-type subsets by dividing it into r rows. In order to decompose the remaining $T-D$ into claw-type subsets, every point in E will first be classified into those either labelled (r) or labelled (c) in a way such that the number of points labelled (r) in each column ranging from the 1 st to the $(c+r)$-th column will be $c-1, c-2, \cdots, 1,0, r-1, r-2, \cdots$, 1,0 , respectively and that the number of points labelled (r) in each row ranging from the $(c+r+2)$-nd to the l-th row will be $c-1, c-2, \cdots, b_{1}+1, b_{1}+c, b_{1}-$ $1+c, \cdots, 1+c$, respectively. The remaining points will be labelled (c). This labelling will be performed by the algorithm given in Theorem 1.1. As will be seen presently, the pair of $c-1$ and $c+r$ partitions

$$
\begin{align*}
& \left\{\left(c-1, c-2, \cdots, b_{1}+1, b_{1}+c, \cdots, 1+c\right)\right. \tag{2.3}\\
& \quad(c-1, c-2, \cdots, 1,0, r-1, r-2, \cdots, 1,0)\}
\end{align*}
$$

of $c(c-1) / 2+r(r-1) / 2$ satisfies the condition of Theorem 1.2.
Since $c+b_{1}>c+b_{1}-1>\cdots>c+1>c-1>c-2>\cdots>b_{1}+1$, the sum of the largest k integers, R_{k}, of the left hand member of (1.6) will be

$$
R_{k}= \begin{cases}k\left(c+b_{1}\right)-\frac{k(k-1)}{2} & \text { for } \quad 1 \leq k \leq b_{1} \\ c k+b_{1}(k+1)-\frac{k(k+1)}{2} & \text { for } \quad b_{1}+1 \leq k \leq c-1\end{cases}
$$

The right hand member of (1.6), S_{k}, will be

$$
S_{k}= \begin{cases}k(r+c-k-1) & \text { for } 1 \leq k \leq r-1 \\ \frac{r(r-1)}{2}+c k-\frac{k(k+1)}{2} & \text { for } r \leq k \leq c-1\end{cases}
$$

When $r=0$ or 1 , since $b_{1}=0$, we have $S_{k}-R_{k}=0$ for all $1 \leq k \leq c-1$. When $2 \leq r<c$, since $0<b_{1}<\frac{r-1}{2}<r-1<c-1$, we have

$$
S_{k}-R_{k}=\left\{\begin{array}{l}
\frac{k}{2}\left(2 r-k-2 b_{1}-3\right)>\frac{k}{2}(r-1-k-1) \geq 0 \\
\text { for } 1 \leq k \leq b_{1} \\
\frac{1}{2} k\left\{\left(r-1-2 b_{1}\right)+(r-k)\right\}-b_{1} \geq k-b_{1}>0 \\
\text { for } b_{1}+1 \leq k \leq r-1 \\
\frac{r(r-1)}{2}-b_{1}(k+1) \geq \frac{r(r-1)}{2}-b_{1} c=0 \\
\text { for } r \leq k \leq c-1 .
\end{array}\right.
$$

Thus we have $S_{k}-R_{k} \geq 0$ for all $k=1,2, \cdots, c-1$, and, consequently, (2.3) is bigraphical.

After labelling the points in E, the subsets A and B are divided vertically into c subsets containing $c, c-1, \cdots, 1$ points, respectively and r subsets containing $r, r-1, \cdots, 1$ points, respectively. Combining those points labelled (c) in E which are standing on the corresponding columns to the above subsets, we have $c+r$ claw-type subsets, since there are $0,1, \cdots, c-1, c-r, c-r+1, \cdots, c-1$ points labelled (c) in the corresponding columns of E, respectively.

The subset C is divided horizontally into $c-1$ subsets. These subsets contain $1,2, \cdots, c-1$ points, respectively. Combining those $c-1, c-2, \cdots, 2$, 1 points labelled (r) in E to the corresponding subsets, we have $c-1$ claw-type subsets. The remaining $b_{1} \times c$ points labelled (r) can easily be divided into b_{1} claw-type subsets. This completes the decomposition of T into $b=2 c+2 r-1+b_{1}$ claw-type subsets.

Case 2. $3 c \leq l<4 c$
Put $l=3 c+r$ and $b=\binom{l}{2} / c=4 c+3 r-1+b_{2}$. Since $0 \leq r<c$ and $b_{2}=$ $\{c(c-1)+r(r-1)\} /(2 c), b_{2}$ is a positive integer satisfying $\frac{c-1}{2} \leq b_{2}<c-1$. In this case, T will be divided into the following subsets:

$$
\begin{aligned}
& A_{1}=\{(i, j) \mid 1 \leq i<j \leq c+1\} \\
& A_{2}=\{(i, j) \mid c+1 \leq i<j \leq 2 c+1\} \\
& B=\{(i, j) \mid 2 c+1 \leq i<j \leq 2 c+r+1\} \\
& C=\{(i, j) \mid 2 c+r+1 \leq i<j \leq l\} \\
& D_{1}=\{(i, j) \mid 1 \leq i \leq c, c+2 \leq j \leq 2 c+1\}
\end{aligned}
$$

$$
\begin{aligned}
& D_{2}=\{(i, j) \mid 1 \leq i \leq c, 2 c+2 \leq j \leq 2 c+r+1\} \\
& D_{3}=\{(i, j) \mid c+1 \leq i \leq 2 c, 2 c+2 \leq j \leq 2 c+r+1\} \\
& E=\{(i, j) \mid 1 \leq i \leq 2 c+r, 2 c+r+2 \leq j \leq l\}
\end{aligned}
$$

The subsets D_{1}, D_{2} and D_{3} can be divided horizontally into $c+2 r$ claw-type subsets. As in Case 1, the labelling of points in E will be performed first by determining a $0-1$ matrix of size $(c-1) \times(2 c+r)$ with row totals $c-1, c-2, \cdots$, $b_{2}+1, c+b_{2}, c+b_{2}-1, \cdots, c+1$ and column totals $c-1, c-2, \cdots, 1,0, c-1$, $c-2, \cdots, 1,0, r-1, r-2, \cdots, 1,0$, respectively. It can be shown that the labelling is possible by the similar manner shown in Case 1, since those totals satisfy the condition (1.6) of Theorem 1.2. Those subsets A_{1}, A_{2} and B will be divided vertically into $2 c+r$ subsets and combining those points labelled (c) of corresponding columns, we have $2 c+r$ claw-type subsets. The subset C will be divided horizontally into $c-1$ subsets and combining those points labelled (r) of corresponding rows we have $c-1$ claw-type subsets. The remaining $b_{2} \times c$ points labelled (r) will easily be divided into b_{2} claw-type subsets. This completes the decomposition of T into $b=4 c+3 r-1+b_{2}$ claw-type subsets.

Case 3. $l \geq 4 c$
There exist positive integers n and l_{0} satisfying $l=2 n c+l_{0}$ and $2 c \leq l_{0}<4 c$. In this case, T can be divided into $2 n+1$ subsets:

$$
\begin{align*}
& T_{0}=\left\{(i, j) \mid 1 \leq i<j \leq l_{0}\right\} \\
& U_{p}=\left\{(i, j) \mid 1 \leq i \leq l_{0}+2(p-1) c-1, l_{0}+2(p-1) c+1 \leq j \leq l_{0}+2 p c\right\} \tag{2.5}\\
& V_{p}=\left\{(i, j) \mid l_{0}+2(p-1) c \leq i<j \leq l_{0}+2 p c\right\} ; \quad p=1,2, \cdots, n .
\end{align*}
$$

Since $2 c \leq l_{0}<4 c$, the decomposition of T_{0} will be reduced to Case 1 or Case 2 described above. The decomposition of V_{p} can be performed by the method described in Case 1 since it is the same with that of $l=2 c+1$. The decomposition of U_{p} can be performed by dividing them vertically since there stand $2 c$ points vertically in each of the columns.

This completes the proof of Theorem 2.1.
The claw-decomposition theorem of complete bigraphs will be given in the following:

Theorem 2.2. A complete bigraph, $K_{m, n}$, with m and n points and mn lines can be decomposed into union of mn/c line disjoint claws, $K_{1, c}^{(\alpha)}$, with c lines each if and only if m and n satisfy one of the following three conditions:
(i) $n \equiv 0(\bmod c)$ when $m<c$
(ii) $m \equiv 0(\bmod c)$ when $n<c$
(iii) $m n \equiv 0(\bmod c)$ when $m \geq c$ and $n \geq c$.

Before entering the proof of Theorem 2.2, we may note that the set of $m n$ lines of a complete bigraph $K_{m, n}$ with m and n points can be identified with the rectangular set

$$
\begin{equation*}
R=\{(i, j) \mid 1 \leq i \leq m, 1 \leq j \leq n\} \tag{2.6}
\end{equation*}
$$

of $m n$ lattice points $(i ; j)$. The set of c lines of a claw $K_{1, c}$ which is a subgraph of the $K_{m, n}$ can, in this case, be identified with a subset of R composed of c lattice points standing together on the same row or the same column. Such a subset of R may be called a claw-type subset. The claw-decomposition problem of a complete bigraph $K_{m, n}$ is, therefore, equivalent to the decomposition problem of the rectangular set R of $m n$ lattice points into the union of $m n / c$ mutually disjoint claw-type subsets with c points each. The proof of Theorem 2.2 will, therefore, be performed by using the latter expressions.

Proof of Theorem 2.2.

When $m<c$ and $n<c$, there is no claw-type subset in R, since the number of points on the same row or the same column is less than c. Hence the clawdecomposition of R is impossible in this case.

When $m<c$ and $n \geq c$, since the lattice points of any claw-type subset of R must be on the same row, the condition $n \equiv 0(\bmod c)$ is necessary. Evidently, this is also sufficient for the claw-decomposition.

When $n<c$ and $m \geq c$, the condition $m \equiv 0(\bmod c)$ is also necessary and sufficient.

When $m \geq c$ and $n \geq c$, the condition $m n \equiv 0(\bmod c)$ is necessary, since the number of lattice points of R must be an integral multiple of c. The condition is also sufficient, as will be seen presently.

Let $m=m_{0}+p c$ and $n=n_{0}+q c$ where p and q are nonnegative integers and m_{0} and n_{0} are positive integers satisfying the inequalities $c \leq m_{0}<2 c$ and $c \leq n_{0}<$ $2 c$. Then R can be decomposed into the union of three mutually disjoint subsets R_{0}, R_{1} and R_{2} :

$$
\begin{align*}
& R_{0}=\left\{(i, j) \mid 1 \leq i \leq m_{0}, 1 \leq j \leq n_{0}\right\} \\
& R_{1}=\left\{(i, j) \mid 1 \leq i \leq m_{0}, n_{0}+1 \leq j \leq n_{0}+q c\right\} \tag{2.7}\\
& R_{2}=\left\{(i, j) \mid m_{0}+1 \leq i \leq m_{0}+p c, 1 \leq j \leq n_{0}+q c\right\} .
\end{align*}
$$

Since the number of lattice points in each row of R_{2} as well as in each column of R_{1} is an integral multiple of c, both R_{1} and R_{2} can be decomposed into unions of mutually disjoint claw-type subsets. Thus it is sufficient to show that R_{0} with $m_{0} \times n_{0}$ lattice points is claw-decomposable when $m_{0} n_{0} \equiv 0(\bmod c)$.

If either m_{0} or n_{0} is equal to c, R_{0} is clearly claw-decomposable by dividing it horizontally or vertically. If $m_{0}>c$ and $n_{0}>c$, then $t=\frac{m_{0}\left(n_{0}-c\right)}{c}$ is a positive
integer. In this case R_{0} will be divided into two subsets R_{01} and R_{02} :

$$
\begin{align*}
& R_{01}=\left\{(i, j) \mid 1 \leq i \leq m_{0}, 1 \leq j \leq t\right\} \\
& R_{02}=\left\{(i, j) \mid 1 \leq i \leq m_{0}, t+1 \leq j \leq n_{0}\right\} . \tag{2.8}
\end{align*}
$$

Each of the $m_{0} \times t$ points in R_{01} can be labelled (r) or (c) in a way such that the column sum vector of the number of points labelled (r) is ($n_{0}-c, n_{0}-c, \cdots, n_{0}-c$) and the row sum vector of them is (c, c, \cdots, c), since the set of these vectors satisfies the condition of Corollary 1.3. After labelling those points in R_{01}, R_{02} will be divided vertically into m_{0} subsets with $n_{0}-t$ points each. Adding $t-n_{0}+c$ points labelled (c) on the corresponding column of R_{01} to each of the m_{0} subsets, we have m_{0} claw-type subsets in R_{0}. The remaining points labelled (r) in R_{01} can be divided horizontally into t claw-type subsets. This completes the clawtype decomposition of R_{0}. The condition is, therefore, sufficient.

References

[1] Ryser, H. J. (1957). Combinatorial properties of matrices of zeros and ones. Canad. J. Math. 9, 371-377.
[2] Yamamoto, S., Ikeda, H., Shige-eda. S., Ushio, K. and Hamada, N. (1975). Design of a new balanced file organization scheme with the least redundancy. To appear in Information and Control.

Department of Mathematics, Faculty of Science Hiroshima University, Computing Center, Hiroshima University, Hiroshima College of Economics, Niihama Technical College and
Mathematical Institute, Faculty of Education Hiroshima University

