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Introduction

E. J. Taft [6] has introduced the concept of coreflexive coalgebras. Finite-
dimensional coalgebras are coreflexive and the coalgebra of divided powers is
coreflexive. The latter is a cocommutative coconnected coalgebra and its space
of primitive elements is 1-dimensional. Taft has shown that if a cocommutative
coconnected coalgebra is coreflexive, then the space of primitive elements is
finite-dimensional. In this paper we show the converse of this result.

To this end, following D. E. Radford's idea in discussing coreflexivity in
[3], we introduce a topology in the dual algebra of a coalgebra and give a neces-
sary and sufficient condition for a coalgebra to be coreflexive.

Throughout this paper we employ the notations and terminology used in
[4] and [6]. All vector spaces are over a fixed field fc. For a vector space V
and a subspace X of V

X1

 = {v*ey*: <v*,χ> =0}

and for a subspace Y of V*

yj- = {veV: <Y,v> = 0}.

The author wishes to thank Professor S. Togo for his helpful suggestions
and comments.

1. The following lemma was indicated in [4], p. 240.

LEMMA 1. Let {Cμ,σ^} be an inductive system with a directed set M. //
every Cμ has a coalgebra structure and every σ% is a coalgebra map, then C =
\imCμ has a coalgebra structure such that every canonical map σμ: Cμ-+C is a
coalgebra map.

Furthermore, the dual algebra C* is isomorphic to lim C* as algebras by
the canonical map.

PROOF. We denote by Δμ and εμ the coalgebra structure of Cμ. Since σ?
is a coalgebra map the maps Δμ induce a map A'\ C->Hi5(Cμ®Cμ) such that
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c >m{c&c}
σ** cano.

cμ — • cβ®cβ

is a commutative diagram. Further, we have a mapθ induced by σμ®σ": Cμ<ί

Cμ-*C®C such that a diagram

m (cμ®cμ) o > c®c

cμ®cμ

commutes. Put A =ΘA'. Then the following diagram commutes:

C Δ > C®C

I I
cμ —>cμ®cμ

Similarly, we have a map ε such that a diagram

C — s — > fc

commutes. It is then easily verified that (C, J, β) is a coalgebra.

Let φ: C*-^HmC* be the canonical linear isomorphism. Then for c*9

d* e C*, we have

σμφ(c*d*) = (σ")*(c*d*) = (σ»)*(c*

where σμ denotes the projection of lim C* to CJj\ q.e.d.

Let A be an algebra and let SR be the Jacobson radical of A. If σ£ denotes

the canonical map of A/9{m to AI9ln

9 then {A/W1, σ£} and {(^/5RΛ)0*, (σj,)0*}

are projective systems and {(A/9ln)0

9 (σ£)0} is an inductive system.

LEMMA 2. Let πn: A-+AI*3in be the canonical map, and let φ be a map

induced by (nn)°:(A/9ln)0-+A0 such that a diagram

\im(AI9ln)0 — 4 — > A0
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commutes. Then ψ is a coalgebra isomorphism.

PROOF. We denote the coalgebra structures of liπj(^/9lM)0

J A
0 and (A/9ln)0

by {A,ε}, {A,έ} and {An, εn} respectively. First we show that ψ is a coalgebra

map. If a0 elm (A/M*)0, then σn(a°n)=a° for some n and a°e(AI9ln)0. We have

Aψ(a°) = ZψσKai) = Z0ϋ°(«2)

= ( ( π Λ ) 0 ® ( π Π ) 0 ) J M ( α Π

0 )

= (Ψ®Ψ)(σ»®σ»)Δn(a°n)

= εσ\a°n)

Since (πΠ)° is injective, ^ is injective. Finally, we show that ψ is surjective.

Let a°eA° and let α be a cofinite ideal contained in Kerα 0 . Then for some

n > 0 5RΠcα and so α 1 ^ ^ " ) ^ . We take an αJe^/SR1 1)0 such that (πn)°(a°)=a°.

Then α° =φσn(a^). This completes the proof.

REMARK. By the last part of the above proof, it is clear that if A is a proper

algebra then n Π ^ o ^ Π = = W This is an extended result of Theorem 2.5 (b) in

[1].

By Lemma 1, φ: ( l i π j ^ / ί l 1 1 ) 0 ) * - ^ ^ ^ / ^ " ) 0 * is an algebra isomorphism.

Let A be a map induced by AA/mn such that a diagram

lim A/W Λ ) Hm (^/« n )°*

proj. proj.

commutes. We denote by Φ the composite map

limΛ/9ί" > lim (Λ/<RΠ)0*

» " > (Km (A/m-)0)* (φ-ι)% A0* .

LEMMA 3. The diagram

A A Λ > A0*
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commutes, where π denotes the canonical map.

PROOF. For aeA and a0 eΛ° we have

<Φπ(a),a°> = <(φ'1)*φ"1Λπ(a)9a°>

Since \l/-ί(a°)=σn(a°) for some a° e(A/9ln)0,

<Φπ(a),a°> = <(σΛ)*φ

= <(AΛmn)πH(a),a°>

= <ψσn(a%),a> = <a°9a>

= <ΛA(a),a°> . q.e.d.

2. Let A be an algebra. Then £[yl] = {α: α is a cofinite ideal of A}Φ0

and is a filter base, and so we can define a uniform topology on A. With this

topology A is a topological algebra. If A is proper then it is a Hausdorff space.

We denote the closure of a subset X of A by Z. We can prove the following lem-

ma by a way similar to Lemma 2.

LEMMA 4. Lef Abe a proper algebra. Then linj (y4/SRn)° is isomorphic to

A0 as coalgebras.

Let C be a coalgebra and let # be its coradical. Then C* is a proper algebra

and R1 is the Jacobson radical of C* ([1], Theorem 2.5). We introduce into

C* the linear weak topology determined by a dual pair <C,C*>. If X is a sub-

space of C*, then the linear weak closure of X is X11 and clearly ϊ c j ^ , in

particular, if C is a coreflexive coalgebra then X=X11. With this topology C*

is again a topological algebra. We define Cn= An+ίR, ni>0, as usual.

Let fπ: CΛ-+C be the inclusion map. Then we have the maps Ψ and λ

induced respectively by (cn)*°: (CW)*°-^C*0 and ACn: Cn^>C*° such that a dia-

gram

jcano.

C*°

commutes. Then the following lemma is easily verified.

LEMMA 5. A diagram
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c Λc > c*°

"to c*°
commutes.

THEOREM 6. Let C be a coalgebra. Then C is coreflexive if and only if

(i) all Cn are coreflexive and (ii) C π

1 = 9l/I+1, where 9ΐ denotes the Jacobson

radical of C*.

PROOF. Suppose that C is coreflexive. Then (i) is clear by Proposition 6.4

of [6]. We show (ii) by induction. If n = ί, then by Proposition 9.0.0b) of [4]

C i 1 = (R A R)1 = (R^R1)11 = ( 9 Ϊ 2 ) 1 1 = W2.

Assuming (ii) for n — 1 we get

C/ =(RA Cn^Y = {RKCn-,)LYL

Conversely, we assume the conditions (i) and (ii). We prove the coreflexivity

of C. First we show that Ψ is an isomorphism. The composite

C* c a n o ) C * / ^ F F I = C*ICn

λ c a n o > C*

coincides with £*, and so by the universality of inductive systems and by a com-

mutative diagram

C*° i s o > (C^/W^)0 > C*°

the composite ljπj C* 0-»!iπi(C*/9ίw + 1) 0-^C* 0 and y coincide with each other.

By assumption ΛCn is an isomorphism, and so λ is also an isomorphism. Thus

we see that Λc is an isomorphism, i.e., C is coreflexive. q.e.d.

LEMMA 7. Let C be a cocommutative coalgebra satisfying the minimum

condition on subcoalgebras. Then every ideal of C* is linearly closed and C*

is a Noetherian algebra.

PROOF. For c* e C* we denote by c% the right translation by c*. Then

c%: C*-+C* is a continuous linear map with respect to the linear topology. Since

C* is linearly compact ([2], § 10, 10), this implies that the ideal generated by c*

is linearly closed. Hence it is sufficient for us to show the last part.

Let α be an ideal of C*. Then {b: b is a finitely generated ideal contained
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in α} is a non-empty family consisting of linearly closed ideals, and so it has a

maximal element α ' ^ α by assumption. Then α' = α. In fact, if a'Φa, then for

any c*ea — a', α' + (c*) is a finitely generated ideal contained in α and contains

α' properly. Thus we see that C* is Noetherian. This completes the proof.

THEOREM 8. Let C be a cocommutative coalgebra satisfying the minimum

condition on subcoalgebras. Then C is coreflexίve and C* is 91-adically com-

plete, where 9t is the Jacobson radical of C*.

PROOF. By Lemma 7, (9ln+1)11 = 9{n+1, and so C n

J - = ( « w + 1 ) 1 1 = 9lM+1 =

9l w + 1 . By assumption R is finite-dimensional, and so 9Ϊ is cofinite and all 9ΐw

are cofinite ideals. This implies that each Cn is finite-dimensional and therefore

it is coreflexive. By Theorem 6, this implies that C is coreflexive.

Further since all 91" are cofinite, C*/9ln are finite-dimensional and so they

are reflexive algebras. Hence Φ in Lemma 3 is an isomorphism. Therefore π:

C*->lim C*/9ln is also an isomorphism since so is Λc* ([6], Proposition 6.1). This

completes the proof.

COROLLARY 9. (i) Let Cbea cocommutative coconnected coalgebra. Then

C is coreflexive if and only if the space of primitive elements P(C) of C is finite-

dimensional.

(ii) Let Ch f = l, 2,..., n, be cocommutative coconnected coalgebras. Then

n is coreflexive if and only if every Ct is coreflexive.

PROOF, (i) By Heyneman's Theorem [5], if P(C) is finite-dimensional C

satisfies the minimum condition on subcoalgebras. Hence C is coreflexive. The

converse has been shown by Taft ([6], p. 1127).

(ii) By Corollary 11.0.7 of [4], P(C 1 ® . ® C n ) = P ( C 1 ) θ ΘP(Cn), and so

this follows from (i). q.e.d.
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