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Introduction

In the preceding paper [2], we introduced a generalized extremal length of
an infinite network N which is locally finite, i.e., each node has only a finite
number of incident arcs, and investigated the generalized reciprocal relation
between the extremal distance ELP(A, B) (resp. ELp(A, oo)) and the extremal
width EWq(A, B) (resp. EWq(A, oo)) relative to mutually disjoint nonempty finite
subsets A and B of nodes (resp. a finite subset A of nodes and the ideal boundary
oo of the network N). In this paper we shall be concerned with the same problem
on an infinite network which is not necessarily locally finite. It will be shown
in §2 that the generalized reciprocal relation between ELp(A, B) and EWq(A, B)
still holds in the case where N is not necessarily locally finite. However, the gener-
alized reciprocal relation between ELp(A, oo) and EWq(A, oo) does not hold, in
general, in the present case. In § 3 we shall introduce a p-almost locally finite
network, for which the generalized reciprocal relation holds. We shall also study
the stability of [ELp(A, X-Xn)} and {EWq(A, X-Xn)} with respect to an exhaus-
tion {<Xn, Yn>} of N in the case where N is a p-almost locally finite network.

§ 1. Preliminaries

Let X be a finite or countably infinite set of nodes, let Y be a finite or countably
infinite set of arcs and let K be a function on X x Y satisfying the following con-
ditions :

(1.1) The range of K is {-1,0, 1}.

(1.2) For each ye Y, e(y) = {xeX; K(x9 y)^ty consists of exactly two nodes xl9

x2 and K(xί9 y)K(x29 y) = -1.

(1.3) For any x9 x'eX, there are xί9...9 xneX and yl9...9 yn+l e Y such that

{xj-i9 */}, 7 = !»•••,

For each x e X, the set
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is nonempty by (1.3). Let us put

X^ = [χeX; Y(x) is an infinite set} .

Let r be a strictly positive real function on Y. Then N={X, Y, K, r} is called a
network. We say that N is a finite network if Yis a finite set, that ΛΓ is an infinite

network if Y i s an infinite set and that N is locally finite if X^ — 0 (the empty
set). We remark that A. H. Zemanian [4] studied an electrical problem on an
infinite network which is not necessarily locally finite.

Let Xf and Y' be subsets of X and Y respectively and K' and r' be the restric-
tions of K and r onto X' x Y' and Y' respectively. Then N' = {X', Y', K'9 r'}
is called a subnetwork of N if (1.2) and (1.3) are fulfilled replacing X, Y, K by X'9
Y', K' respectively. In order to emphasize the sets of nodes and arcs of N'9 we
often write N'=<X', Y'>.

A sequence {Nn} (Nn= <Xn9 Yn>) of finite subnetworks of N is called an
exhaustion of N if the following conditions are fulfilled :

(1.4) For each n, Xn^Xn+i and Ync: Yn+l9 and furthermore at least one of these
inclusions is strict.

(1.5) X = U Xn and 7= ϋ Yn.
n=l n=l

(1.6) Y(*)<=Yn+ι for all

Let p and q be conjugate exponents, i.e.,

(1.7) l/p +1/4 = 1 and 1 ̂  p ^ oo.

Let L(X) and L(Y) be the sets of all real functions on X and Y respectively.
For u e L(X} and w e L( Y), we set

(1.8) Dp(ύ) = Dp(u N) = Σ r(yy-P\ Σ K(x, y)u(x)\> (1 ̂  p < oo) ,
yeY xeX

(1.8') DJii) = Dx(u; N) = supr(y)-»| Σ «(*, j)"WI ,
yeY xeX

(1.9) jff» = Hp(w; N)=Σ Ky)|ι*O)l' (1 = P < oo) ,
yeY

(1.9') ^oo(w) = ^^(w; N) = sup |w(y)| -
yeY

For w, w' e L( Y), we define ((w, w'))jv by

(1.10) ((w, w'))N = Σ/(y)wωw(y)

whenever the sum on the right can be defined without any ambiguity. Denote by
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L0(Y) the set of all weL(Y) such that {ye Y; w(j)^0} (the support of w) is a
finite set. Let us put

L+(Y) = {weL(Y); w(y) ^ 0 on Y}9

L,(Y; r) = {weL(Y); Hp(w; N)<n}9

L+(Y; r) = {weL+(Y); Hp(w; N) < 00} .

Note that LP(Y; r) (1 <p< oo) is a reflexive Banach space with respect to the norm

For a nonempty subset ^4 of X, we set

= {u eL(JΓ); Dp(u; N) < oo and u = 0 on A} .

The following results can be proved in the same manner as in [3 Lemmas 1

and 2]:

LEMMA 1.1. Let F be a nonempty finite subset of X and put ||w||p = [Dp(u;
JV)]1/P if !<^<oo and ||u||co=D00(u; JV). Then there exists a constant M
depending only on A, F and p such that

for all u

LEMMA 1.2. Let T be a normal contraction of the real line R and w e

D£(W)- Then Tu e D^(JV) and Dp(Tu N) ̂  Dp(w N).

§ 2. Extremal distance and extremal width

We can define paths P on N and their index functions pp exactly as in the case
where N is locally finite (see [2]). We say that a subset Q of Y is a cut on N if
there exist mutually disjoint nonempty subsets X' and X" of X such that X — X'

U*" and Q is equal to the set (Xr, X")N = {ye Y; <y) = {x/, *"} for some c'eJΓ

and x"e Jf"}. For mutually disjoint subsets A and B of X, a cut β = pί', X")N

is called a cut between A and £ in N if ^cJC' and 5cZ". Denote by PAiB(N)

the set of all paths from A to B in JV and by Q ,̂β(N) the set of all cuts between

A and B in N. For a nonempty finite subset A of X, a cut 6 = (X', X'% is called
a cut between A and the ideal boundary oo of N if ^cZ' and X' is a finite set.
Denote by Pχ>0o(N) the set of all paths from A to the ideal boundary oo of N and
by QΛ,OO(AO the set of all cuts between A and the ideal boundary oo of N. For
Q = (Xr, X")NeQAtB(N) or QAf(X>(N)9 we define a characteristic function M = MQ

eL(X) and an index function sβeL(Y) by w(x) = 0 if xeZ', w(x) = l if
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and sQ(y)= Σ K(x, y)u(x). For a path P and a cut Q on N, we define functions
xeX

φp and ψQ on 7 by

(2.1) ΦP(Y) = \pP(y)\ and iAQ00 = r(y)-l\sQ(y)\ .

Note that PAt00(N) = 0 if JT is a finite set and that QAttx>(N)ϊ0 if and only

ifA^X.

The extremal distance ELp(A9 B; N) (resp. ELP(A9 oo; JV)) of order p of N
relative to A and B (resp. y4 and oo) and the extremal width EWq(A9 B; N) (resp.
EWq(A9 oo N)) of order q of N relative to A and B (resp. v4 and oo) are defined

in a way analogous to that in [2], i.e.,

(2.2) ELp(A9 B'9 AT)'1 = inf {Hp(W9 N); We Ep(PAiB(N))} ,

where

EP(PA,B(N» = (We L+(7 r); ((W, φP))N ^ 1 for all P e PA,B(N)}

(2.3) EWq(A, B', N)-1 = inf {/ί,( ;̂ N); Pfe £*(

where

E*q(QAtB(N)) = {Pf6 LJ(7 r); ((φQ9 W))N ^ 1 for all

We use the convention in this paper that the infimum of a real function on the

empty set is equal to oo. ELP(A, oo; N) and EWq(A, oo; N) are defined by (2.2)
and (2.3), PA>B(N) and QA>B(N) being replaced by PAt00(N) and Q^>00(N) re-

spectively.

REMARK 2.1. In case 1 <p< oo, we have

(2.30 £*n04, β; N)-1 = inf {HP(FF; N); Pfe £**(Q

where

^Γ(Q^BW) = {We L+p(Y; r); Σ »Γ^- * ^ 1 for all β

In [2], we used the inverse of the value on the right of (2.3') as the definition of
extremal width of order p of N relative to A and B and denoted it by EWp(A9 B).

Hereafter in this section we always assume that A and B are mutually dis-
joint nonempty subsets of X.

By the same argument as in the proof of Theorem 2.1 in [2] we obtain

THEOREM 2.1. ELP(A9 B\ N) is equal to the reciprocal of the value dp(A,
B9 N) of the following extremum problem:
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(2.4) Find dp(A, B;N) = inf {Dp(u N); u e ΌA(N) and u = 1 on 5} .

THEOREM 2.2. Lei {NJ (Nn= <Xn, Yn>) be an exhaustion of N such that

A{}Xl^0 and BnXί=£0 and put An = Ar\Xn and Bn = BnXn. Then ELp(An,
Bn; Nn)^ELp(A, 5; N) as n^oo.

PROOF. We set an = ELp(An, Bn\ JVJ"1 and a = ELp(A, B; ΛΓΓ1. Since

fAn,Bn(NJc*An+ι,Bn+ί(
Nn+ι)c*A,s(N)> an^an+1^a, and hence lim an£a. To

H->00

prove the converse inequality, we may assume that lim απ<oo. For each w,

we can find Wn e Ep(PAniBn(Nn^ such that Hp(^M; NJxβ + n'1- Define Wn

eL(7) by PFM=VF r t on Yn and ΪFn = 0 on 7-7M. Since {Hp(Wn\ N)} is bounded
and Y is a countable set, there exists a pointwise convergent subsequence of {Wn}.
Denote it again by {Wn} and let W be its limit. Since PAtB(N) is the union of

{PAn,Bn(Nn) , π = l, 2,...}, we have WeEp(PAίB(N» and

limαM = lirnία, + n'1) ̂  Um//p(ίFπ; N) ^ Hp(ΪF; JV) ^ a.
n->oo n->oo n->oo

Our theorem is now proved.

We say that w e L(7) is a flow from ^4 to B of strength /(w) in N if

(2.5) Σ y |K(x,jOIM)OI<oo for each

(2.6) Σ I Σ K(x,jOwOOI< ex),
xe^UB yeΓ

(2.7) Σ ̂ , ^)wCκ) = 0 for all xεX - A- B,
yeY

(2.8) /(w)=- Σ ΣK(x,y)w(y)= Σ Σ^.^My).
jce^l yeY xeB yeY

Denote by G(A, B; N) the set of all flows from A to B in N which are in L0(Y)
We remark that v4 and β need not be finite sets.

We have

THEOREM 2.3. EWq(A, B\ N) is equal to the reciprocal of the value d*(A,

BI N) of the following extremum problem:

(2.9) Find d%(A, B; N) = inf {Hq(w N); w e G(A, B\ N) and /(w) = 1} .

For the proof of this theorem, we shall consider the following two infinite

linear programming problems with respect to WeL+(Y):

(2.10) (Max-flow problem) Find

M(W G(A, B',NJ) = sup{/(w); w e G(A, B\ N) and |w| ^ W on 7} .
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(2.11) (Min-cut problem) Find

M*(W9 QA,B(N)) = inf{(OAQ, WO)*; QeQAtB(N)}.

We have

LEMMA 2.1. M(W G(A, B; N)) = M*(W; QA)B(N)).

PROOF. Our equality is a well-known result which states that max-flow

equals min-cut if N is a finite network, so that we may consider the case where

N is an infinite network. We can prove the inequality M(W; G(A9 B\ N))

^M*(W; QAiB(NJ) as in the case where N is locally finite (see [3; Theorem 6]).

To prove the converse inequality, we consider an exhaustion {Nn} (Nn=<Xn9

Yn>) of N such that A n X1 φ<t> and B n X^ ¥=0. Define Wn eL(Y) by Wn= W
on Yn and Wn = Q on Y-Yn. Then we have M(Wn\ G(An9 Bn\ Nn)) = M*(Wn;

QAn,Bn(Nn)) with An = A n Xn and Bn = B n Xn. It is easily seen that M(Wn\ G(A9

B; N)) = M(Wn9 G(An9 Bn; ΛΓJ) and M*(Wn;

Therefore we have

M(W; G(A, B; N)) ^ M(Wn; G(A, B; JV)) =

The rest of the proof can be carried out by the same reasoning as in the proof of

Theorem 6 in [3],

PROOF OF THEOREM 2.3. We set EWq=EWq(A, B\ N) and d* = d*(A,B;

N). The proof of the inequality E W~ ί^d* is the same as in the proof of Theorem

4.1 in [2]. To prove the converse inequality, let WeE*(QA>B(N))9 i.e., We

L+(Y\ r) and M*(W', QAtB(N))^L For each Q<t<M(W G(A, B\ JV)), we can

find weGG4, B\ N) such'that \w\^W on 7 and J(w)>ί. Thus d*^Hq(w/I(wJ)

^Hq(W/t). By letting t-+M(W; G(A, B; JV)), we have d*^Hq(W) since M(W;

G(A9 BI N)) = M*(W; QAtB(NJ)^l by Lemma 2.1. Hence d^EW'1.

THEOREM 2.4. Let {Nn} (Nn= <Xn, Yn>) be an exhaustion of N such that

AnX^0 and B(\X^0 and put An = A n Xn9 Bn = B n Xn. Then EWq(An9

Bn; Nn)-+EWq(A, BI N) as n-»oo.

PROOF. On account of Theorem 2.3, it suffices to show that d*(An, Bn;

Nn)-*d%(A, B; N) as n->oo. Notice that

d*(An9 Bn; Nn) = inf {#,(w; JV); wε Gn(A, B; N) and /(w) = 1},

where Gn(A9 B; N) = {weG(A, B; N); w = 0 on Y-Yn}. Our assertion follows
from the relations
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G(A,B;N)= ΰ Ga(A,B;N).
n=l

THEOREM 2.5. ELp(A9 E\ N) = EWq(A, J3; NY~P for all p, l<p<ao.

PROOF. We proved in [2; Theorem 5.2] that ELp(A9 B; N) = EWq(A9 B;

N)l~p in the case where N is a locally finite infinite network. The reasoning of
its proof is still effective in the case where N is a finite network. We consider the
case where N may not be locally finite. Let {Nn} (Nn= <Xn, Yn>) be an exhaus-
tion of N such that A[\X^0 and BnXl^0 and put An=A{}Xn and Bn =
B{]Xn. Then ELp(An, Bn; Nn) = EWq(An, Bn; NnY~p. Now our assertion fol-
lows readily from Theorems 2.2 and 2.4.

REMARK 2.2. R. J. Duffin [1] proved that EL2(A, B; N)~1=EW2(A9 B;
N) in the case where N is a finite network. Theorem 2.5 is a generalization of
Theorem 12 in [3] and Theorem 5.2 in [2].

LEMMA 2.2. Let A be a nonempty subset of L+(Y). Then the following
two values are reciprocal to each other:

(2.12) inf{HΛ(W; N); WeL+(Y; r) and ((WJ))N ^ I for all fε A}.

(2.13) inf {^(/ ΛO /eΛ}.

PROOF. Denote by a and b the values of (2.12) and (2.13) respectively. We
show that b~l^a. We may assume that 0<oo and b<oo. Let WeL+>(Y; r)

satisfy that ((JF,/))N^1 for a l l/eΛ. Since ((W9f))N^ίHao(W)H1(f)9 we have
1 ̂  bH αXWO, so that 1 g ab. To establish the converse inequality, we may assume

that 0<fe. For each t with fo~1<ί<oo, we define WeL(Y) by W=t on 7. Then

W e L£(7 r) and ((W, f))N = tHι(f)^bfel for all /e A. Therefore a^
= t, and hence a^b'1. This completes the proof.

COROLLARY 1. The following relations hold:

(2.14) EL«(A, B; N) = ini{H^P; JV); P e PA>B(N)} ,

(2.15) EWΛ(A, B; N) = inf {HMQ; N); QeQA,B(N)} .

COROLLARY 2. Let A be a nonempty finite subset of X. Then

(2.16) EL^A, ao'9N) = inf{H^Pi TV); P e PA>ao(N)} ,

(2.17) EWΛ(A9 oo N) = inf{H^Q; N); Q e QAtOQ(N)} .

REMARK 2.3. (2.14) shows that the extremal distance of order oo is the
value of the shortest path problem which is well-known in the finite network
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theory.

PROPOSITION 2.1. Let N'= <X'9 Ύ'> be a finite subnetwork of N and let
A' and B' be mutually disjoint nonempty subsets of X'. Then ELp(A'9 B'; N')

= EWq(A'9B'9N'Ylforp=\9 oo.

PROOF. We set dp=dp(Af, B'-, N') and d* = d*(A'9 B'; N'). On account
of Theorems 2.1 and 2.3, we have to show d~1 = d*. It is easy to see that d~l

^d* (cf. the proof of [2; Theorem 5.1]). We prove the converse inequality first
for /> = !. There exists geQ^AP) such that H^; N') = EW(X)(A'9 B'; Nf)
= (<ί*)~15 let U = UQ be the characteristic function of Q. Then ΰ = 0 on A', ΰ = l
on B', so that, d1 ̂ D^ΰ; N') = Hl(\l/Q\ N') = (d*)-ί. Next we show the converse

inequality for p= oo. There exists P e PA>)B'(N') such that H^φp; N') = ELao(A/,
B'\ N') = dnl\ let w be the index of P. Then weG(A'9 B '; JV')> /(w) = l and
//1(vv; N') = dΰl

9 which yield df^ίfe1. This completes the proof.

With the aid of Theorems 2.2 and 2.4 and Proposition 2.1, we obtain

THEOREM 2.6. ELP(A, B;N) = EWq(A, B; N)~l for p = 1, oo.

§3. A p-almost locally finite network

Next we shall be concerned with a generalized reciprocal relation between
ELp(A,ao;N) and EWq(A, oo; N), which means the equality ELp(A, oo N)
= EWq(A9ao;N)ί-p(l<p<ao) and the equality ELp(A9 oo; N) = EWq(A9 oo;
jV)~1(p = l, oo). The following examples show that the generalized reciprocal
relation does not hold in general :

EXAMPLE 3.1. Let us take X = {xn; n=0, 1, 2,...}, Y={yn, y'n\ n = !9 2,...}
and define K(x9 y) by

K(xn9 yn) = K(x09 y'n) = 1, K(xn9 y'n) = K(xn+l9 yn) = - 1

for n = l, 2,... and

^( ĵ J7) = 0 f°r other pairs (x, y) .

Let r=l on Y. Then N={X9 Y9 K9 r} is an infinite network and Xao = {x0}.

Let ^ = {x0} Then we have ELp(A9 oo; JV) = oo (l<p^oo), EL^^, oo; JV) = 1,

EXAMPLE 3.2. Let ^Γ, 7, A^ and A be the same as above. We define re
L(Γ) by r(yn) = 1 and r(y'^ = n"1 for π = 1, 2,. ... Then we have

EL^(A9 oo JV) = £ (̂,4, oo; JV) = oo.
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We say that N is p-almost locally finite if

(3.1) Σ r(yγ-p<ao for all xeX (1 ̂  p < oo),

(3. Γ) {y G Y(x) Ky)"1 ̂ ε} is a finite set for all x e X and all ε>0 (p = oo).

Note that "1-almost locally finite" means locally finite. In this section we
always assume that A is a nonempty finite subset of X and A Φ X.

For each subnetwork N'= <X'9 Y'> of N, we put

•') = U Y(x) - 7',
xeX'

= Σ r(y)l~p if i ^ P < °°>
yeC(N')

= sup
yeC(JV')

First we prove

LEMMA 3.1. Lei l<p^oo and assume that N is p-almost locally finite
but not locally finite. Then for each ε>0, there exists a locally finite subnet-
work N'= <X', Y'> ofN such that AczX' and αp(ΛΓ)<ε.

PROOF. Since A is a finite set, there exists a finite subnetwork <X'θ9 Y'0>
of N such that AaX'0. Choose Fez 7-7^ so that Y(x)-Ύ is a finite set for

each xeX^ and Σr(yY~p<ε if l<p<oo and supr(^)~1<ε if p=oo. We

call a path admissible if it starts from a node in ^ό and its arcs are all in 7— 7,
and denote by Γ the set of all admissible paths. Denote by CX(P) the terminal
nodes of P e Γ, and by Cy(P) the set of arcs of P 6 Γ. We define X' = U CX(P)

PeΓ
and Y'= u Cy(P). It is easy to see that N'= <X'9 Y'> is a locally finite sub-

PeΓ _
network of N. Evidently Xf

0<^X' and 7'c7- 7. From the definition of JV',
it follows that C(JV') c 7. Hence α^JV') < ε.

For a subnetwork N'= <X'9 Yf> of N such that AcX'9 we always have

(3.2) ELp(A9 oo N) ^ ELp(A9 oo N'),

(3.3) EWq(A, oo N') ^ EWq(A, oo N).

REMARK 3.1. If P^>00(N) = 0, then ^=Oe£p(P^>00(N)), so that ELP(A9 oo;

Λ0=oo.

We shall prove

LEMMA 3.2. Let ε>0 and N'= <Xr, Y'> be a subnetwork of N such that
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A c X' and α//V') < ε. Then

(3.4) ELp(A, oo NΓ1 ^ ELp(A, ao NT1 + ε.

PROOF. In order to prove (3.4), we may assume that ELp(A, oo; Nf)~ί<co,
i.e., Ep(PAtao(N'))*0. For W eEp(PAf00(N'J), we define WeL(Y) by W=W
on F', W=r~* on C(ΛΓ') and Pf=0 on Y-Y'-C(N')\ then ΪFeE/P^OV)) and

ELP(A9 oo N)-1 ^ #p(PF; JV) ^ #P(PF'; N') + ap(N')

<Hp(W',N') + ε9

which leads to (3.4).

LEMMA 3.3. For each ε>0, there is η>0 such that if N'=<Xr, Y'>
is a subnetwork of N satisfying A^X' and ap(N')<η, then

(3.5) EWq(A, oo JV')'1 - ε ̂  EWq(A, oo N)'1.

PROOF. We may assume that a = EWq(A9 oo; N)~1<co. Let !<#<oo
and let ι;>0 with ί/1/pα1/g<l. To prove our assertion it suffices to show that
up(N')<η implies

(3.5') EWJA, oo N')"1 ^ α[l - ^α1/*]-*.

For each 0<ί<l such that η1/p(a + t)Vq<l, there exists PfeEJίQ^^ίN))
such that Hq(W; N)<a + t. For each β' e Qx.ooί^'λ let Q'(A) and β'(oo) be the
subsets of X' which determine Qf and define β(^4) and β(oo) by β(̂ ) = β'(>4) and

β(cx)) = β/(cx))u(X-^/). Then Q=(Q(A\ Q(^))NeQAt00(N) and βcβ'U
C(N'). Hence we have

yeC(N')

l Σ
yeC(N')

by Holder's inequality. Writing b = l-tf/p(a + f ) 1 / q > 0, we see that W/b

e £J(Q f̂ eo(^O)- It follows that

EWq(A, oo NT1 ^ H^/fr; N') ^ Hq(Wjb\ N)

By letting f->0, we obtain (3.5'). In case q = l, oo, we can similarly prove EWq(A,

oo; NO
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By Lemmas 3.1, 3.2 and 3.3, we have

THEOREM 3.1. Assume that N is p-almost locally finite. Then, for each
ε>0, there exists a locally finite subnetwork N'= <X', Ύ'> of N such that A<=

X' and (3.4) and (3.5) hold.

Similarly, we obtain

LEMMA 3.4. Assume that N is p-almost locally finite. Let Ω be a collec-
tion of subsets ofX-A such that inf{EWq(A, B\ JV); BeΩ}>0. Then, for each
ε>0, there is a locally finite subnetwork N' = <X', Ύ'> of N such that AaX',

αp(N')<ε and

(3.6) EWq(A, B n X'l N'Γ1 - e ̂  EW£A, B; N)'1

for all Be Ω.

Next we shall study the stability of {ELP(A9 X-Xn\ N)} and {EWq(A, X-Xn\
N)} with respect to an exhaustion { < Xn, Ύn > } of N such that A <= X{, which mean

limELp(A9 X-Xn\ N) = ELp(A9 oo; N) and \imEWq(A, X-Xn\ N)=EWq(A9 oo;
«->oo n-*oo

N). These stability were affirmatively solved in the case that N is locally finite

and l<p<oo (cf. Theorems 2.2 and 4.2 in [2]). Since the proofs of Theorems
2.2 and 4.2 in [2] are still effective for p=l, oo in case N is locally finite, we ob-
tain

PROPOSITION 3.1. Let l^pgoo and let N be locally finite. Then ELp(A,
X-Xn\ N)-+ELP(A, oo N) as n->oo and EWq(A, X-Xn; N)^EWq(A, oo; N)
as n-»oo.

REMARK 3.2. Incase X — Xn = 0 for some n, we see that P^,χ-χn(N) = 0,

and hence ELp(A9 X - Xn N) = oo.

We have

LEMMA 3.5. Let {εk} be a sequence of positive numbers such that εfc->0

as fc-KX). Assume that for each εk there exists a finite subnetwork Nεk= <X£k,

Yεk> of N such that AaXEk and ap(Nεk)<εk. Then for every exhaustion

{<Xn, Yn>} o f N , ELP(A, X-Xn\ Λ0-*oo as n^oo.

PROOF. For a fixed fc, there exists n0 such that X8kcXn and YEk^Yn

for all n^n0. Notice that

ELP(A9 X-Xn\ NΓ1 ^ ELP(A9 X - Xεk', N)^ = dp(A, X - Xεfc; N)

for all n^nQ by Theorem 2.1. Let us define ueL(X} by w=0 on XEk and u = 1
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on X — Xεk. Then

dp(A, X-Xεk;N)^ Dp(u N) ^ ap(NJ < εk9

so that ELp(A, X-Xn; N)>e'j'1 for all n^n0. Thus ELp(A, X-Xn\ N)->oo as
n-»oo.

THEOREM 3.2. // N is p-almost locally finite, then ELP(A, X-Xn\ N)-»
ELp(A, oo N) as n-*ao.

PROOF. By Proposition 3.1 we may suppose p>\. It is easily seen that

ELp(A, X-Xn 9N)^ ELp(A, X-Xn+l;N)£ ELp(A, oo N) ,

so that limEL (A, X — Xn\ N)^EL (A, oo; N). To establish the converse in-
/ι-*oo

equality, we may assume that Xn^X for all n\ otherwise there exists n0 with Xno

= X, so that ELP(A, X — Xn',N)=co for all n^n0, and hence the converse in-
equality follows. For each ε>0, there exists a locally finite subnetwork Nε =
<Xε, Yε> of N such that A<=Xε and αp(Λfε)<ε, by Lemma 3.1. By Lemma
3.5 we may assume that there exists ε0>0 such that Nε is an infinite subnetwork

for each ε with 0<ε<ε0. Let 0<ε<ε0 and let {<X'n, Y'n>} be an exhaustion
of Nε such that AcX'^ Then we have

4, XE - X'n; Nε) = ELp(A, oo; Nε)
n-»oo

by Proposition 3.1. We show that

(3.7) ELP(A, X-X'nl TV)'1 ^ ELP(A, Xε-X'nl NεΓ
l + ε.

For WΈEp(PAtXtt,x n(Ne)), we define WεL(Y) by W=W on Ye, W=r~l on
C(Nε) and W= 0 on Y- Yε - C(Nε). Then We Ep(PAtX_x>n(N)) and

EL^A, X - X'n\ NΓ1 ^ HP(W; N) < Hp(W'ι Nε) + ε,

which leads to (3.7). For each n, there exists m(n) such that X'n<=Xm and Y'na
Ym for all m^m(n). Notice that ELp(A, X-Xm\ N)^ELp(A, X-X'n\ N) for
all m Ξ> m(n). It follows that

]imELp(A, X - Xm\ N)-1 ^ ]imELp(A, X - X'n\ ΛΓΓ1

p
«-» oo

, oo
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Thus we have limEL (A, X-Xn\ N)^EL (A, oo; N). This completes the
H-*00

proof.

THEOREM 3.3. // N is p-almost locally finite, then EWq(A, X-Xn\ N)
, oo; JV)αsn-»oo.

PROOF. By Proposition 3.1 we may assume that N is not locally finite, so
that l^g<oo. We may assume that Xn^X for all n; otherwise, there exists
n0 with Xno = X, so that EWq(A9 X-Xn\ N) = EWq(A, oo; N) for all n^n0 We
easily obtain

EWq(A, X - Xnι N) ̂  EWq(A, X - Xn+1; N) ̂  EWq(A, oo; N),

so that δ = ]imEWq(A9 X-Xnl N)^EWq(A, oo; N). To establish the converse
W-*oo

inequality, we assume that <5>0. Let Ω = {B', BaX-A and EWq(A, B\ N)^δ}.
Then for each ε>0, there exists a locally finite subnetwork Nε= <Xε, Yε> of
N such that AaXε, αp(Nε)<ε and

EWq(A, B n X E ; N,)-1 - ε ̂  EWq(A, β; N)~l

for all B e Ω by Lemma 3.4. We show that there exists ε0>0 such that Nε is an
infinite network for all ε, 0<ε<ε0. Suppose the contrary. By Theorems 2.5
and 2.6 and Lemma 3.5, we have EWq(A, X — Xn\ ΛΓ)-»0 as n->oo, which con-
tradicts 0<(5. Let 0<ε<ε0 and let {<X'n, Y f

n > } be an exhaustion of Nε such
that AaX'ίt Then we have

limEWq(A, Xε - X'n\ Nε) = EWq(A, oo; JVβ)
n-*oo

by Proposition 3.1. For each n, there exists m(n) such that X'n<=.Xm and Y'na Ym

for all m^m(n). Noting that £PF€(yl, *-Xm; N)^£^(^l, Jf-JSΓ;; N) and
X-X'πeΩ, n = l, 2,..., we obtain

lim EWq(A, X - Xm\ JV)-1 ^ limEW^X, X - X'H; N)"1

m-»oo w-*oo

^ lim£FF,(/l, Xε - Jf',; N,)'1 - ε
-

^EWq(A, oo N)-1 -ε.

Thus we have limEWq(A, X-Xn\ N)^EWq(A, oo; N). This completes the

proof.
ιι->oo

REMARK 3.3. If N is not p-almost locally finite, the above stability for the
extremal distance and extremal width do not hold in general. These are verified
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by the network N and the set A in Example 3.1.

Now we prove our main result.

THEOREM 3.4. Let l^p^oo and assume that N is p-almost locally finite

and X is an infinite set. Then ELp(A9 oo; N) = EWq(A, oo; N)l~p for p9 l<p

<oo and ELp(A9 oo; N)=EWq(A, oo; N)-1 for p = l9 oo.

PROOF. Let 1 <p< oo and let {<X n 9 Yn>} be an exhaustion of N such that
AcXί. Since X is an infinite set, X — Xn^0 for all n, so that

ELp(A, X - Xn; N) = EWq(A, X - Xn; N)*-'

for all n by Theorem 2.5. By letting n->oo, we obtain the desired equality by
Theorems 3.2 and 3.3. In case p=l, oo, our assertion follows from Theorems
2.6, 3.2 and 3.3.

REMARK 3.4. The condition that X is an infinite set is essential in the
above theorem (except the case p= 1) because of the following example:

Let us take X = {xθ9 xj, 7={<y1, y2, . } and define K(x9 y) by

K(XO> yn) = 1 and K(xί9 yn) = - 1

for all n. Let r(yj) = 2j for yj e 7. Then N= {X, 7, K, r} is an infinite network
that is p-almost locally finite (l</?^oo). Let A = {x0}. Then we have ELp(A,

oo N)=oo and EWq(A, oo; ΛΓ)^l/2.
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