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Introduction

In the preceding paper [2], we introduced a generalized extremal length of
an infinite network N which is locally finite, i.e., each node has only a finite
number of incident arcs, and investigated the generalized reciprocal relation
between the extremal distance EL, (A4, B) (resp. EL,(A4, )) and the extremal
width EW (A, B) (resp. EW, (A, o)) relative to mutually disjoint nonempty finite
subsets A and B of nodes (resp. a finite subset A of nodes and the ideal boundary
oo of the network N). In this paper we shall be concerned with the same problem
on an infinite network which is not necessarily locally finite. It will be shown
in §2 that the generalized reciprocal relation between EL, (4, B) and EW/(4, B)
still holds in the case where N is not necessarily locally finite. However, the gener-
alized reciprocal relation between EL,(4, ) and EW/(A, o) does not hold, in
general, in the present case. In §3 we shall introduce a p-almost locally finite
network, for which the generalized reciprocal relation holds. We shall also study
the stability of {EL (4, X — X,)} and {EW, (A, X — X,)} with respect to an exhaus-
tion {<X,, Y,>} of N in the case where N is a p-almost locally finite network.

§1. Preliminaries

Let X be a finite or countably infinite set of nodes, let Y be a finite or countably
infinite set of arcs and let K be a function on X x Y satisfying the following con-
ditions:

(1.1) The range of Kis {—1, 0, 1}.

(1.2) Foreach yeY, e(y)={xe X; K(x, y)#0} consists of exactly two nodes x,,
x; and K(x;, y)K(x,, y)=—1.

(1.3) For any x, x'€ X, there are xy,...,x,€X and y,..., y,+1 € Y such that
e(yp)={xj-1, x;}, j=1,..., n+1 with xo=x and x,, , =x".

For each x € X, the set

Y(x) = {yeY; K(x, y) # 0}
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is nonempty by (1.3). Let us put
X, = {xeX; Y(x) is an infinite set}.

Let r be a strictly positive real function on Y. Then N={X, Y, K, r} is called a
network. We say that N is a finite network if Yis a finite set, that N is an infinite
network if Y is an infinite set and that N is locally finite if X, =g (the empty
set). We remark that A. H. Zemanian [4] studied an electrical problem on an
infinite network which is not necessarily locally finite.

Let X' and Y’ be subsets of X and Y respectively and K’ and r’ be the restric-
tions of K and r onto X' x Y’ and Y’ respectively. Then N'={X', Y', K', v’}
is called a subnetwork of N if (1.2) and (1.3) are fulfilled replacing X, Y, K by X’,
Y’, K’ respectively. In order to emphasize the sets of nodes and arcs of N’, we
often write N'=<X', Y'>.

A sequence {N,} (N,=<X,, Y,>) of finite subnetworks of N is called an
exhaustion of N if the following conditions are fulfilled :

(1.4) Foreachn, X,=X,,; and Y,<Y,,,, and furthermore at least one of these
inclusions is strict.

(1.5) X=U0X, and Y= U 7Y,
n=1 n=1
(1.6) YX)= Y,y forall xeX,— X,.
Let p and g be conjugate exponents, i.e.,
1.7 1/p+1/g=1 and 1< p= .

Let L(X) and L(Y) be the sets of all real functions on X and Y respectively.
For ue L(X) and we L(Y), we set

(18) D) =Dy N) = % r(9)'™" %, KGo, Yu)l” (1S p < o0),
(18)  Dylw) = Dolus N) = supr(y) ™| T K(x, yu()l,

(19)  Hyw) = Hyw; N)= S r)O)? (1 Sp <),

(19)  Haw) = How; N) = sup vl

For w, w' € L(Y), we define ((w, w"))y by

(1.10) (O W) = 3, rOWOIV)

whenever the sum on the right can be defined without any ambiguity. Denote by
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Ly(Y) the set of all we L(Y) such that {yeY; w(y)#0} (the support of w) is a
finite set. Let us put

L¥(Y)={weL(Y); w(y) 20 on Y},
L(Y;r)={weL(Y); H(w; N) < o},
Li(Y; r)={weL*(Y); Hy(w; N) < c0}.

Note that L,(Y; r) (1<p<c0) is a reflexive Banach space with respect to the norm
[H,(w; N)J'/P.

For a nonempty subset 4 of X, we set
DA(N) ={ue L(X); Dy(u; N) < oo and u=0 on A4}.

The following results can be proved in the same manner as in [3; Lemmas 1
and 2]:

LemMA 1.1. Let F be a nonempty finite subset of X and put |ull,=[D,(u;
N)JV? if 1£p<oo and ||u||o=D(u; N). Then there exists a constant M
depending only on A, F and p such that

EFlu(X)I SM|ul,
for all ueDA(N).

LemMMA 1.2. Let T be a normal contraction of the real line R and ue
DA(N). Then TueDZ(N) and D,(Tu; N)<D,(u; N).

§2. Extremal distance and extremal width

We can define paths P on N and their index functions p, exactly as in the case
where N is locally finite (see [2]). We say that a subset Q of Y is a cut on N if
there exist mutually disjoint nonempty subsets X’ and X" of X such that X=X’
U X” and Q is equal to the set (X', X")y={yeY; e(y)={x', x"} for some x'e X’
and x”" € X"}. For mutually disjoint subsets A and B of X, a cut Q=(X', X")y
is called a cut between 4 and B in N if AcX’and BcX". Denote by P, z(N)
the set of all paths from A4 to B in N and by Q, z(N) the set of all cuts between
Aand Bin N. For a nonempty finite subset A of X, a cut Q=(X', X")y is called
a cut between A and the ideal boundary oo of N if Ac X’ and X’ is a finite set.
Denote by P, (N) the set of all paths from A4 to the ideal boundary oo of N and
by Qg,.(N) the set of all cuts between A4 and the ideal boundary co of N. For
Q=(X', X")y€Q4p(N) or Qg (N), we define a characteristic function u=u,
€ L(X) and an index function sy e L(Y) by u(x)=0 if xe X', u(x)=1 if xeX"”
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and so(y)= 3 K(x, y)u(x). For a path P and a cut Q on N, we define functions
xeX

¢p and Y4 on Y by

(2.1 ¢p(Y) = |pp(»)| and  Yo(y) = r(y)'se)l.

Note that P, ,(N)=¢ if X is a finite set and that Q, ., (N)#¢ if and only
if A#X.

The extremal distance EL,(A, B; N) (resp. EL,(A, c0; N)) of order p of N
relative to A and B (resp. A and oo) and the extremal width EW, (4, B; N) (resp.
EW (A, o; N)) of order g of N relative to 4 and B (resp. A and o0) are defined
in a way analogous to that in [2], i.e.,

(2.2 EL,(A, B; N)™* = inf {H,(W; N); We E(P, s(N))},
where
E P p(N) = {WeLy(Y;r); (W, ¢p)y21 forall PeP,pN)};
(2.3) EW (A, B; N)™! =inf{H(W; N); We E;(Q,5(N))},
where
E3(Qup(N) = {WeLi(Y;r); (Yo Wy 21  forall QeQ,xN)}.

We use the convention in this paper that the infimum of a real function on the
empty set is equal to 0. EL,(A4, o; N) and EW,(A, co; N) are defined by (2.2)
and (2.3), P, p(N) and Q, p(N) being replaced by P, ,(N) and Q, (N) re-
spectively.

REMARK 2.1. In case 1 <p< o0, we have
(2.3 EW/(A, B; N)™! = inf{H,(W; N); We E;*(Q,,5(N))},
where

EZ*(Qy4,8(N)) = {We Ly(Y; r); % Wyrtz1 forall QeQ,y(N)}.

In [2], we used the inverse of the value on the right of (2.3’) as the definition of
extremal width of order p of N relative to A and B and denoted it by EW,(4, B).

Hereafter in this section we always assume that 4 and B are mutually dis-
joint nonempty subsets of X.
By the same argument as in the proof of Theorem 2.1 in [2] we obtain

THEOREM 2.1. EL,(A, B; N) is equal to the reciprocal of the value d (A,
B; N) of the following extremum problem:
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2.4 Find d,(A, B; N)=inf{D,(u; N); ue DA(N) and u =1 on B}.

THEOREM 2.2. Let {N,} (N,=<X,, Y,>) be an exhaustion of N such that
ANnX,#@¢and Bn X,#¢ and put A,=AnX, and B,=BnX,. Then EL/A,,
B,; N,)=EL/(A, B; N) as n—co.

Proor. We set a,=EL,/A,, B,; N,)"! and a=EL/A, B; N)"!. Since
P, 5 (NJ<Py, . 5. Nyr1)=P,y5N), a,<a,,,<a, and hence lim a,<a. To

n—o

prove the converse inequality, we may assume that lim a,<o0. For each n,

n—o

we can find W,e E (P, 5(N,) such that H,(W,; N,)<a,+n"!. Define W,
e L(Y) by W,=W, on Y, and W,=0 on Y-Y,. Since {H,(W,; N)} is bounded
and Yis a countable set, there exists a pointwise convergent subsequence of {W,}.
Denote it again by {W,} and let W be its limit. Since P, z(N) is the union of
{P,, 5 (N,); n=1,2,.}, we have W € E, (P, s(N)) and

lima, = lixzxo(a,, +n™Y) 2 limH,(W,; N) = H(W; N) = a.

n—o0 n—®o

Our theorem is now proved.

We say that we L(Y) is a flow from 4 to B of strength I(w) in N if

(2.5) Zy|K(x, lwy)| < for each xeX,,
(2.6) 2 | X K(x, pw(y)| < o,
xeAUB yeY
2.7 ZyK(x, w(y)=0 forall xeX — A — B,
ye
@8) W)= = %, K@ yw0) = 5 3K w0

Denote by G(A4, B; N) the set of all flows from 4 to B in N which are in Ly(Y).
We remark that 4 and B need not be finite sets.
We have

THEOREM 2.3. EW (A, B; N) is equal to the reciprocal of the value d}(A,
B; N) of the following extremum problem:

(29) Find d¥A, B; N) = inf{H(w; N); we G(4, B; N) and I(w) = 1}.

For the proof of this theorem, we shall consider the following two infinite
linear programming problems with respect to We L*(Y):
(2.10) (Max-flow problem) Find

M(W; G(A, B; N)) = sup{I(w); we G(4, B; N) and |w| < Won Y}.
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(2.11) (Min-cut problem) Find
M*(W; Qup(N)) = inf {(Yg, W))y; Q€ Qu5(N)} -
We have
Lemma 2.1. M(W; G(A4, B; N)) = M*(W; Q4 3(N)).

Proor. Our equality is a well-known result which states that max-flow
equals min-cut if N is a finite network, so that we may consider the case where
N is an infinite network. We can prove the inequality M(W; G(4, B; N))
SM*W; Q, p(N)) as in the case where N is locally finite (see [3; Theorem 6]).
To prove the converse inequality, we consider an exhaustion {N,} (N,=<X,,
Y,>) of N such that AnX,+#¢ and BN X,#@. Define W,e L(Y) by W,=W
on Y, and W,=0 on Y-Y,. Then we have M(W,; G(A4,, B,; N,))=M*(W,;
Q,4,.5,(N,) with 4,=An X, and B,=Bn X,. It is easily seen that M(W,; G(4,
B; N)=M(W,; G(4,, B,; N,)) and  M*(W,; Quu(N)= M*(Wy; Qu, 5,(N.).
Therefore we have

M(W; G(4, B; N)) 2 M(W,; G(4, B; N)) = M*(W,; Q,,5(N)).

The rest of the proof can be carried out by the same reasoning as in the proof of
Theorem 6 in [3].

PROOF OF THEOREM 2.3. We set EW,=EW/(A, B; N) and d}=dj(4, B;
N). The proof of the inequality EW ;! <d} is the same as in the proof of Theorem
4.1 in [2]. To prove the converse inequality, let We E}(Q, 5(N)), i.e., We
Ly(Y; r)and M¥(W; Q4 (N))=1. For each 0<t<M(W; G(4, B; N)), we can
find we G(4, B; N) such that |w|<W on Y and I(w)>t. Thus d} <H (w/I(w))
SH (W/t). By letting t-M(W; G(A, B; N)), we have d} <H (W) since M(W;
G(4, B; N))=M*(W; Q,,5(N))=1 by Lemma 2.1. Hence d} <EW!.

THEOREM 2.4. Let {N,} (N,=<X,, Y,>) be an exhaustion of N such that
AnX,#0¢ and BnX,#9¢ and put A,=AnX, B,=BnX, Then EW (A,
B,; N,)—»EW/(A, B; N) as n—co.

ProoF. On account of Theorem 2.3, it suffices to show that d}(4,, B,;
N,)—-d}(4, B; N) as n—»c0. Notice that

d¥(A,, B,; N,) = inf{H,(w; N); we G,(4, B; N) and I(w) = 1},

where G, (4, B; N)={we G(4, B; N); w=0 on Y-Y,}. Our assertion follows
from the relations

Gn(A’ B; N) < Gn+1(A’ B; N):
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G(4, B; N) = U G,(4, B; N).
n=1

THEOREM 2.5. EL,(A, B; N)=EW(A, B; N)'"? for all p, 1<p<c0.

Proor. We proved in [2; Theorem 5.2] that EL,(A4, B; N)=EW,/(A, B;
N)!=? in the case where N is a locally finite infinite network. The reasoning of
its proof is still effective in the case where N is a finite network. We consider the
case where N may not be locally finite. Let {N,} (N,= <X,, Y,>) be an exhaus-
tion of N such that AnX,;#¢ and BN X;#¢ and put 4,=4AnX, and B,=
BnX, Then ELJA,, B,; N,)=EW(A,, B,; N,)'"?. Now our assertion fol-
lows readily from Theorems 2.2 and 2.4.

RemaARrk 2.2. R.J. Duffin [1] proved that EL,(A4, B; N)"'=EW,(4, B;
N) in the case where N is a finite network. Theorem 2.5 is a generalization of
Theorem 12 in [3] and Theorem 5.2 in [2].

LEMMA 2.2. Let A be a nonempty subset of L*(Y). Then the following
two values are reciprocal to each other:

(2.12)  inf{H_(W; N); We Lx(Y; r) and (W, f))y = 1 for all fe A}.
(2.13)  inf{H,(f; N); fe 4}.

Proor. Denote by a and b the values of (2.12) and (2.13) respectively. We
show that b~1<a. We may assume that a<oo and b<oo. Let WeLi(Y;r)
satisfy that (W, f))y=1 for all fe A. Since (W, f))y<H_ (W)H,(f), we have
1<bH (W), so that 1<ab. To establish the converse inequality, we may assume
that 0<b. For each t with b~!<t< 00, we define We L(Y) by W=ton Y. Then
WeLL(Y; r) and (W, f))y=tH,(f)=bt=1 for all fe A. Therefore a<H_ (W)
=t, and hence a<b~!. This completes the proof.

COROLLARY 1. The following relations hold :
(2.14) EL (A, B; N) =inf {H,(¢p; N); Pe P, 4(N)},
(2.15) EW.(A4, B; N) =inf{H,(g; N); Q€ Q4 5(N)}.
COROLLARY 2. Let A be a nonempty finite subset of X. Then
(2.16) EL_ (A, ©; N) = inf{H(¢p; N); PeP, ,(N)},
(2.17) EW,(A, 03 N) = inf {H,(g; N); Q€ Q,(N)}.

REMARK 2.3. (2.14) shows that the extremal distance of order oo is the
value of the shortest path problem which is well-known in the finite network
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theory.

PROPOSITION 2.1. Let N'=<X', Y'> be a finite subnetwork of N and let
A’ and B’ be mutually disjoint nonempty subsets of X'.  Then ELA’, B'; N')
=EW/(A', B'; N')™! for p=1, .

Proor. We set d,=d,(A', B'; N') and dj=dj(4’, B’; N'). On account
of Theorems 2.1 and 2.3, we have to show d,1=d}. It is easy to see that d,’
=<d} (cf. the proof of [2; Theorem 5.1]). We prove the converse inequality first
for p=1. There exists Qe Q, p(N') such that H,(5; N)=EW,(A’, B'; N')
=(d¥)~!; let #=ug be the characteristic function of 0. Then #=0o0n A’, u=1
on B', so that, d; <D,(ii; N)=H,(Yg; N')=(d%)™!. Next we show the converse
inequality for p=oo. There exists Pe P, p(N’) such that H,(¢p; N')=EL (4,
B’; N')=dg!; let w be the index of P. Then weG(A’, B'; N'), I(W)=1 and
H,(w; N)=dz!, which yield d¥<dz!. This completes the proof.

With the aid of Theorems 2.2 and 2.4 and Proposition 2.1, we obtain

THEOREM 2.6. EL,(A, B; N) = EW,(A, B; N)™! for p =1, c0.

§3. A p-almost locally finite network

Next we shall be concerned with a generalized reciprocal relation between
EL, (A, o; N) and EWy (A, co; N), which means the equality EL,(A4, co; N)
=EW(A, ©; N)!"?P(1<p<o) and the equality EL, (A, co; N)=EW,(A, ;
N)™1(p=1, o). The following examples show that the generalized reciprocal
relation does not hold in general:

ExampLE 3.1. Let us take X={x,; n=0, 1, 2,...}, Y={y,, yn; n=1,2,...}
and define K(x, y) by

K(xm yn) = K(an y:;) =1, K(xm y;x) = K(xn+l’ yn) = -1
for n=1, 2,... and
K(x, y) =0 for other pairs (x, y).

Let r=1o0on Y. Then N={X, Y, K, r} is an infinite network and X ={x,}.
Let A={xo}. Then we have EL,(4, c©; N)=00 (1<p=o0), EL,(4, c0; N)=1,
EW/(A, c0o; N)=00 (1<g=<o0) and EW;(A4, co; N)=0.

ExaMPLE 3.2. Let X, Y, K and A be the same as above. We define re
L(Y) by r(y,)=1 and r(y,)=n"! for n=1, 2,.... Then we have

EL (A, o0o; N) = EW,(4, c©0; N) = c0.
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We say that N is p-almost locally finite if

3.1 > r(y)tP<oo forall xeX (1<p< ),
yeY(x)

(3.1'Y {yeY(x); r(y)"1=¢} is a finite set for all xe X and all e>0 (p=0).

Note that ‘“1-almost locally finite” means locally finite. In this section we
always assume that A4 is a nonempty finite subset of X and 4# X.
For each subnetwork N'=<X’, Y'> of N, we put

CN) = U Y(x) - Y,

a,(N") =yE§N,)r(y)‘“” if 1<p<oo,

a,(N) = sup r(y)™".
yeC(N/)
First we prove

LemMMA 3.1. Let 1<p=Z oo and assume that N is p-almost locally finite
but not locally finite. Then for each ¢>0, there exists a locally finite subnet-
work N'=<X', Y'> of N such that Ac X’ and a,(N')<e.

Proof. Since A is a finite set, there exists a finite subnetwork < Xjg, Y>>
of N such that A= Xj. Choose YcY—Yg so that Y(x)— Y is a finite set for
each xe X, and E;(y)1 r<e if 1<p<oo and supr(y)‘ <e¢ if p=o0. We

3¢

call a path adm1ss1ble if it starts from a node in X§ and its arcs are all in Y-,
and denote by I' the set of all admissible paths. Denote by Cy(P) the terminal
nodes of Pe I, and by Cy(P) the set of arcs of PeI'. We define X'= U CX(P)

and Y'= U CY(P) It is easy to see that N'=< X', Y'> is a locally ﬁmte sub-

network of N Evidently X;cX’ and Y cY—Y. From the definition of N’,
it follows that C(N')= Y. Hence a,(N')<e.

For a subnetwork N'=<X’, Y'> of N such that AcX’, we always have
3.2) EL, A, ©; N) £ EL,(A, 0; N'),
3.3) EW (A, c0; N') £ EW/(A4, ©; N).

RemMARK 3.1. If P, ,(N)=g, then W=0€ E (P4 ,(N)), so that EL, (A, oo}
N)=oc0.

We shall prove

LEmMMA 3.2. Let¢>0and N'=<X', Y'> be a subnetwork of N such that
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AcX' and a(N')<e. Then
(3.4) EL(A, c0; N)™* £ EL, (A4, 0; N)™! + .

ProOF. In order to prove (3.4), we may assume that EL,(4, co; N')™*< oo,
i.e., E Py o(N)#g. For W eE, (P, (N)), we define We L(Y) by W=W’
on Y’, W=r"1on C(N') and W=0 on Y-Y'—C(N’); then We E (P, ,(N)) and

EL, (A, o; N S H,(W; N) S H(W'; N') + a,(N’)
<H,(W'; N') +e,
which leads to (3.4).

LemMmA 3.3. For each ¢>0, there is >0 such that if N=<X',Y'>
is a subnetwork of N satisfying Ac X' and a,(N')<n, then

3.5 EW (A, o; N)™! — e £ EW, (A, oo; N)™1.

Proor. We may assume that a=EWy (A, co; N)"1<oo. Let 1<g<oo
and let #>0 with »/Pal/%<1. To prove our assertion it suffices to show that
a,(N')<n implies

3.5) EW/(A, ; N)™t < a[l — n/Pal/7]-1.

For each 0<t<1 such that n!/?(a+1t)!/9<1, there exists We E§(Q ,(N))
such that H(W; N)<a+t. For each Q'€ Q,, ,(N'), let Q'(4) and Q’(c0) be the
subsets of X’ which determine Q' and define Q(4) and Q(o0) by Q(4)=Q’'(A4) and
0(0)=Q'(0) U(X—X"). Then Q=(Q(4), A(©)n€Q,,o(N) and Q=Q'U
C(N"). Hence we have

1= (U Wy = (g Wv + 3 W()
S o Wiw + 1 3 r)'=7 TV LH(W; N)]V!

= (Yo W)y + n'%(a + 1)1/1

by Holder’s inequality. Writing b=1—y'?(a+1£)'9>0, we see that W/b
€E§(Q4,(N"). It follows that

EW/(4, co; N')™' < H(W[b; N') < H(W/b; N)
<(a+ [l —nV%a+ 1)1

By letting t—0, we obtain (3.5). In case g=1, oo, we can similarly prove E W, (4,
00; N)1<a[l—na]t.
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By Lemmas 3.1, 3.2 and 3.3, we have

THEOREM 3.1. Assume that N is p-almost locally finite. Then, for each
€>0, there exists a locally finite subnetwork N'=<X', Y'> of N such that Ac
X' and (3.4) and (3.5) hold.

Similarly, we obtain

LeMMA 3.4. Assume that N is p-almost locally finite. Let Q be a collec-
tion of subsets of X — A such that inf{EW(A, B; N); Be Q}>0. Then, for each
£>0, there is a locally finite subnetwork N'=<X', Y'> of N such that AcX’,
a,(N)<e and

3.6) ‘ EW, A, Bn X'; N)™' —e S EW/(A, B; N)™!
for all Be Q.

Next we shall study the stability of {EL,(4, X —X,; N)} and {EW (4, X —X,;
N)} with respect to an exhaustion { < X,, Y,>} of N such that 4 = X, which mean
lilgELp(A, X—X,; N)=EL,A, w; N) and lim EW (A4, X—X,; N)=EW/(4, ©;
'}V). These stability were affirmatively solvezi ;:1 the case that N is locally finite
and 1<p<oo (cf. Theorems 2.2 and 4.2 in [2]). Since the proofs of Theorems
2.2 and 4.2 in [2] are still effective for p=1, oo in case N is locally finite, we ob-
tain

PROPOSITION 3.1. Let 1Sp=<o0 and let N be locally finite. Then EL, A,
X—X,; N)>EL,{A, c0; N) as n—oo and EW (A4, X—X,; N)»EW/(A4, ©; N)
as n—oo.

REMARK 3.2. Incase X—X,=¢ for some n, we see that P, x_x (N)=9,
and hence EL, (A4, X —X,; N)=o0.

We have

LemMmA 3.5. Let {¢,} be a sequence of positive numbers such that g—0
as k—oo. Assume that for each ¢, there exists a finite subnetwork N, =<X,,,
Y,.> of N such that AcX, and a,N,)<g&. Then for every exhaustion
{<X,, Y,>} of N, EL,(4, X—X,; N)—o0 as n—c0.

Proor. For a fixed k, there exists n, such that X, <X, and Y, Y,
for all n=n,. Notice that

EL,(A, X = X,; N)™' S ELJ(4, X — X,.; N)™' = d(4, X — X,,.; N)

for all n=n, by Theorem 2.1. Let us define u e L(X) by u=0o0n X, and u=1
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on X—X, . Then
d(A, X — X, ; N) £ D,(u; N) £ a,(N,,) < &,

EKk?

so that EL,(4, X—X,; N)>¢*! for all n=n,. Thus EL,(4, X—X,; N)-o0 as
n—c0.

THEOREM 3.2. If N is p-almost locally finite, then EL,(A, X—X,; N)—
EL,(A, o0; N) as n—co.

Proor. By Proposition 3.1 we may suppose p>1. It is easily seen that
EL A, X — X,; N)SEL,(A, X — X,+1; N) S EL,(A, o0; N),

so that lim EL (A4, X —X,; N)SEL, (A, co; N). To establish the converse in-

n—o

equality, we may assume that X,# X for all n; otherwise there exists n, with X,
=X, so that EL,(4, X—X,; N)=oo for all n=n,, and hence the converse in-
equality follows. For each ¢>0, there exists a locally finite subnetwork N,=
<X,, Y,> of N such that AcX, and «,(N,)<e, by Lemma 3.1. By Lemma
3.5 we may assume that there exists &,>0 such that N, is an infinite subnetwork
for each & with 0<e<g, Let 0<e<g, and let {<X/, Y,>} be an exhaustion
of N, such that Ac X|. Then we have
limEL,(A, X, — X,; N,) = EL,(A, o©; N,)

n—o

by Proposition 3.1. We show that
3.7 EL (A, X — X,; N7V S EL(A, X, — X,; N)™' +e.

For W e E (P, x,-x.(N.), we define WeL(Y) by W=W' on Y, W=r"! on
C(N,) and W=0on Y-Y,—C(N,). Then WeE, (P, x_x.(N)) and

EL,(A, X — X,; N 'S H,(W; N)<H,(W'; N) +e¢,

which leads to (3.7). For each n, there exists m(n) such that X,=X,, and Y,c
Y, for all m=m(n). Notice that EL,(4, X—X,; N)ZEL,(A, X—X,; N) for
all m=>m(n). It follows that

lim EL(A, X — X,,; N)™ < limEL,(A4, X — X,; N)™!

m—o

SHmEL,A4, X, — X,; N) ' +¢

=EL,(A, ©o; N)™ ' +¢

S EL,(A4, 0; N)™ + &.
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Thus we have limEL/ (A4, X—X,; N)2ZEL,(A, oco; N). This completes the
proof.

THeoreM 3.3. If N is p-almost locally finite, then EWy (A, X—X,; N)
—EW(A, c©; N) as n—oo.

Proor. By Proposition 3.1 we may assume that N is not locally finite, so
that 1<g<o0. We may assume that X,# X for all n; otherwise, there exists
no with X, =X, so that EW (4, X—X,; N)=EW(A, oo; N) for all n=zn,. We
easily obtain

EWq(A9 X—Xn; N)gEWq(/L X - Xn+1; N) ;EVVq(A, 0 N)a

so that d=1im EW,(4, X —X,; N)ZEW/(A4, c; N). To establish the converse

n—»

inequality, we assume that 6>0. Let Q={B; BcX—A4 and EW (A4, B; N)=4}.
Then for each ¢>0, there exists a locally finite subnetwork N,= <X,, Y,> of
N such that A= X, «,(N,)<e and

EW 4, B n X,; N)™! — & < EW,(4, B; N)~!

for all Be 2 by Lemma 3.4. We show that there exists ¢, >0 such that N, is an
infinite network for all ¢, 0<e<eg,. Suppose the contrary. By Theorems 2.5
and 2.6 and Lemma 3.5, we have EW (4, X—X,; N)-0 as n—oo, which con-
tradicts 0<d. Let 0<e<g, and let {< X, Y,>} be an exhaustion of N, such
that AcX|. Then we have

limEW/(A, X, — X,; N,) = EW,(A, ©; N,)
by Proposition 3.1. For each n, there exists m(n) such that X,cX,, and Y, <Y,
for all m=m(n). Noting that EW (4, X —X,,; N)SEW (A, X—X,; N) and
X—-X,eQ, n=1, 2,..., we obtain
lim EW,(4, X — X,,; N)™! = limEW,(4, X — X,,; N)™

m—o0

2 imEW (A, X, — X,; N) ™1 —¢

= EW(A, ©o; N)™ —¢
2 EW (A, ©o; N)™' —e.

Thus we have limEW (A4, X—X,; N)SEW, (A4, co; N). This completes the

n—o

proof.

ReEMARK 3.3. If N is not p-almost locally finite, the above stability for the
extremal distance and extremal width do not hold in general. These are verified
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by the network N and the set A in Example 3.1.
Now we prove our main result.

THEOREM 3.4. Let 1<p=< oo and assume that N is p-almost locally finite
and X is an infinite set. Then EL, (A, ©o; N)=EW/(A, co; N)'"? for p, 1<p
<o and EL,(A, oo; N)y=EW,(A, ©; N)™! for p=1, .

ProoF. Let 1<p<oo and let {<X,, Y,>} be an exhaustion of N such that
AcX,. Since X is an infinite set, X — X ,#¢ for all n, so that

EL,(4, X — X,; N) = EW(4, X — X,; N)-?

for all n by Theorem 2.5. By letting n— oo, we obtain the desired equality by
Theorems 3.2 and 3.3. In case p=1, oo, our assertion follows from Theorems
2.6, 3.2 and 3.3.

ReMARK 3.4. The condition that X is an infinite set is essential in the
above theorem (except the case p=1) because of the following example:
Let us take X={x,, x,}, Y={y;, y;,...} and define K(x, y) by

K(xo, ya) =1 and  K(xy, y,) = — 1

for all n. Let r(yj)=2" for y;e Y. Then N={X, Y, K, r} is an infinite network
that is p-almost locally finite (1<p=<o0). Let A={x,}. Then we have EL, (A4,
o0; N)=o00 and EW (A4, co; N)=1/2.
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