Some Remarks on Representations of p-adic Chevalley Groups

Kazutoshi KARIYAMA (Received May 16, 1977)

Introduction

Let F be a p-adic field, and let \mathfrak{D} and \mathfrak{P} be the ring of integers and the maximal ideal of \mathfrak{D} respectively. F. I. Mautner [4] first constructed square-integrable irreducible unitary representations of $PGL_2(F)$ which are induced by irreducible representations of a certain maximal compact subgroup. In [5], J. A. Shalika carried it out for $SL_2(F)$ by a different method. Independently, in [6] and [7], T. Shintani extended Mautner's results to a sort of special linear group of rank *n*. Recently, in [2] and [3], P. Gérardin extended their results to reductive)*p*-adic groups whose semi-simple parts are simply connected.

In this paper, we extend the former results of [7], which are not covered by Gérardin's results, to general *p*-adic Chevalley groups. The contents of this paper are as follows. Let G(z) be a Chevalley group over the ring of all rational integers z. Then we have a *p*-adic Chevalley group G(F) and its maximal compact subgroup $G(\mathfrak{O})$ by base changes. In §1, we give preliminaries on the structures of *p*-adic Chevalley groups after [3]. In §2, we prepare certain lemma about induced representations of finite groups. In §3, we show that continuous irreducible unitary representations of $G(\mathfrak{O})$, which do not come from representations of $G(\mathfrak{O}/\mathfrak{P})$, are induced by certain irreducible representations of certain subgroups of $G(\mathfrak{O})$ (Theorem 1). In §4, when we let v be a continuous irreducible unitary representation of $G(\mathfrak{O})$ which does not come from a representation of $G(\mathfrak{O}/\mathfrak{P})$, we obtain a sufficient condition for $Ind_{G(F)}^{G(F)}v$ to be square-integrable.

In concluding the introduction, the author wishes to express his sincere gratitude to R. Hotta who read this paper and gave him many advices.

NOTATIONS: (i) Let F be a non-archimedean local field, and let $\mathfrak{D}, \mathfrak{P}$ and π be the ring of integers of F, the maximal ideal of \mathfrak{D} , and a prime element of F, respectively. Let p be the characteristic of the finite field $\mathfrak{D}/\mathfrak{P}$.

(ii) For a ring R, we denote by $M(n_1, n_2, R)$ the set of n_1 by n_2 matrices with coefficients in R. We put M(n, R) = M(n, n, R).

(iii) For each positive integer m, we denote by ψ_m the reduction modulo $\mathfrak{P}^m: \mathfrak{O} \to \mathfrak{O}/\mathfrak{P}^m$. For integers $n \ge m \ge 1$, we denote by the same symbol ψ_m the reduction modulo $\mathfrak{P}^m: \mathfrak{O}/\mathfrak{P}^n \to \mathfrak{O}/\mathfrak{P}^m$.

Kazutoshi KARIYAMA

(iv) If R is an arbitrary commutative ring with the identity, we denote by R^* the multiplicative group of all units in R.

(v) We denote by Z, M and C the ring of all rational integers, the set of all natural numbers and the field of all complex numbers, respectively.

§1 *p*-adic Chevalley groups

The aim of this section is to describe the structures of *p*-adic Chevalley groups and their subgroups.

1.1. Let 6 be a finite dimensional complex semi-simple Lie algebra. Fix a Cartan subalgebra \mathfrak{A} of \mathfrak{G} . Then we have the root decomposition \mathfrak{G} = $\mathfrak{A} + \sum_{\alpha \in \Phi} \mathfrak{A}^{\alpha}$ (direct sum), where Φ is the set of roots relative to (\mathfrak{G} , \mathfrak{A}). Choose a Chevalley basis $(X_{\alpha})_{\alpha\in\Phi}$ in \mathfrak{G} relative to \mathfrak{A} . Let $Q(\Phi)$ (resp. $P(\Phi)$) be the root module (resp. the weight module) of Φ in the dual space \mathfrak{A}' of \mathfrak{A} (cf. [1], 6, §1). Let ρ be a finite dimensional faithful representation of \mathfrak{G} on a vector space E over C, and let X be the lattice generated by weights of ρ ($\omega \in \mathfrak{A}'$ is called a weight of ρ , if there exists non-zero $v \in E$ such that $\rho(H)v = \omega(H)v$ for any $H \in \mathfrak{A}$). Then $Q(\Phi) \subset \mathbf{X} \subset P(\Phi)$, and we have an admissible lattice $E(\mathbf{Z})$ of E for (ρ, E) (cf. [8], §2). Let R be an arbitrary commutative ring with the identity. We define the automorphisms $x_{\alpha}(t)$ and $h(\chi)$ of $E(R) = E(\mathbb{Z}) \otimes_{\mathbb{Z}} R$ as follows: For each $\alpha \in \Phi$, $x_{\alpha}(t) = \sum_{n \ge 0} \rho(X_{\alpha}^{n}/n!)t^{n}$ ($t \in R$). For each $\chi \in \text{Hom}(X, R^{*})$, and for each $v \in E(R)$ of weight ω , $h(\chi)v = \chi(\omega)v$. We denote by A(R) the subgroup of Aut(E(R))generated by all $h(\chi)$ ($\chi \in \text{Hom}(X, R^*)$), and by G(R) that generated by all subgroups $x_{\alpha}(R)$ ($\alpha \in \Phi$) and A(R). We call this group G(R) the Chevalley group over R. For the above lattice X, we denote by X' the set of all $H \in \mathfrak{A}$ such that $\langle H', H \rangle \in \mathbb{Z}$ for any $H' \in \mathbb{X}$, where \langle , \rangle is the natural pairing on $\mathfrak{A}' \times \mathfrak{A}$. Put $G(R) = \mathbf{X} \otimes_{\mathbf{Z}} R + \sum_{\alpha \in \Phi} R \cdot X_{\alpha}$ (direct sum), and we denote by ρ_R the representation of the second tation of the Lie algebra G(R) into End (E(R)). Then ρ_R is faithful ([3], II, 2.1.6). Hence we can define the adjoint action of G(R) on $\mathfrak{G}(R)$ by $\rho_R(\operatorname{Ad} x \cdot Y) =$ $x\rho_R(Y)x^{-1}$ ($x \in G(R)$, $Y \in \mathfrak{G}(R)$) (cf. [3], II, 2.1.6).

1.2. By changing base rings R in 1.1, we obtain the following groups; $G = G(F), K = G(\mathfrak{O}), G(\mathfrak{O}/\mathfrak{P}^n) \ (n \in \mathbb{N}), A = A(F), A(\mathfrak{O}) \text{ and } A(\mathfrak{O}/\mathfrak{P}^n) \ (n \in \mathbb{N}).$ From now on, we shall identify A, $A(\mathfrak{O})$ and $A(\mathfrak{O}/\mathfrak{P}^n)$ with $X' \otimes_Z F^*, X' \otimes_Z \mathfrak{O}^*$ and $X' \otimes_Z (\mathfrak{O}/\mathfrak{P}^n)^*$ respectively by the canonical isomorphisms.

DEFINITION 1.2. For each integer $n \ge 1$, we denote by $G(\mathfrak{P}^n)$ (resp. $A(\mathfrak{P}^n)$) the subgroup of K (resp. $A(\mathfrak{O})$) which is the kernel of the reduction modulo $\mathfrak{P}^n: G(\mathfrak{O}) \to G(\mathfrak{O}/\mathfrak{P}^n)$ (resp. $A(\mathfrak{O}) \to A(\mathfrak{O}/\mathfrak{P}^n)$). For integers $n \ge m \ge 1$, we denote by $G(\mathfrak{P}^m/\mathfrak{P}^n)$ (resp. $A(\mathfrak{P}^m/\mathfrak{P}^n)$) the subgroup of $G(\mathfrak{O}/\mathfrak{P}^n)$ (resp. $A(\mathfrak{O}/\mathfrak{P}^n)$) which is the kernel of the reduction modulo $\mathfrak{P}^m: G(\mathfrak{O}/\mathfrak{P}^n) \to G(\mathfrak{O}/\mathfrak{P}^m)$ (resp. $A(\mathfrak{O}/\mathfrak{P}^n)$ $\rightarrow A(\mathfrak{O}/\mathfrak{P}^m)).$

From [3], 2.2.5 and 2.2.7, $G(\mathfrak{P}^n)$ is the subgroup of K generated by all subgroups $x_{\alpha}(\mathfrak{P}^n)$ ($\alpha \in \Phi$) and $A(\mathfrak{P}^n) = \mathbf{X}' \otimes_{\mathbf{Z}} (1 + \mathfrak{P}^n)$, and $G(\mathfrak{P}^m/\mathfrak{P}^n)$ is the subgroup generated by all subgroups $x_{\alpha}(\mathfrak{P}^m/\mathfrak{P}^n)$ ($\alpha \in \Phi$) and $A(\mathfrak{P}^m/\mathfrak{P}^n) = \mathbf{X}' \otimes_{\mathbf{Z}} (1 + \mathfrak{P}^m/\mathfrak{P}^n)$.

EXAMPLE 1.2. When $G = SL_{l+1}(F)$ $(l \ge 1)$, we have $G(\mathfrak{P}^n) = \{x \in SL_{l+1}(\mathfrak{O}) | x - 1 \in \pi^n M(l+1, \mathfrak{O})\}$ $(n \in \mathbb{N})$ and $G(\mathfrak{P}^m/\mathfrak{P}^n) = \{x \in SL_{l+1}(\mathfrak{O}/\mathfrak{P}^n) | x - 1 \in \pi^m M(l+1, \mathfrak{O}/\mathfrak{P}^n)\}$ $(n \ge m \ge 1)$.

G = G(F) inherits a topology from F for which G is a locally compact topological group. More precisely, G has a fundamental system of neighborhoods $\{G(\mathfrak{P}^n)\}_{n\geq 0}$ which consist of open and compact subgroups of G. In particular, $K = G(\mathfrak{O})$ is a profinite group. For $n\geq m\geq 1$, we obtain the adjoint action of $G(\mathfrak{O}/\mathfrak{P}^n)$ on $G(\mathfrak{P}^m/\mathfrak{P}^n)$ from that of $G(\mathfrak{O})$ on $G(\mathfrak{P}^m)$ by the reduction modulo \mathfrak{P}^n .

LEMMA 1 ([3], 2.2.6, Lemma 5). If $2m \ge n \ge m \ge 1$, the mapping e: $\mathfrak{G}(\mathfrak{P}^m/\mathfrak{P}^n) \to G(\mathfrak{P}^m/\mathfrak{P}^n)$, defined by $e(X) = 1 + \rho(X)$, is an isomorphism as abelian groups commuting with the adjoint actions of $G(\mathfrak{O}/\mathfrak{P}^n)$.

1.3. Let \mathfrak{G}' be the dual vector space over \mathbb{C} of \mathfrak{G} . We denote by $\mathfrak{G}'(\mathbb{Z})$ the set of all $X' \in \mathfrak{G}'$ such that $\langle X', X \rangle \in \mathbb{Z}$ for all $X \in \mathfrak{G}(\mathbb{Z})$. Then we have $\mathfrak{G}'(\mathbb{Z}) = \mathbb{X} + \sum_{\alpha \in \mathfrak{G}} \mathbb{Z} \cdot X'_{\alpha}$ (direct sum), where \mathbb{X} is naturally embedded into \mathfrak{G}' , and where X'_{α} is a linear form defined by $\langle X'_{\alpha}, X_{\alpha} \rangle = 1$, $\langle X'_{\alpha}, X_{\beta} \rangle = 0$ ($\alpha \neq \beta$), and $\langle X'_{\alpha}, \mathfrak{A} \rangle = 0$. We define the co-adjoint action of G(R) on $\mathfrak{G}'(R) = \mathfrak{G}'(\mathbb{Z}) \otimes_{\mathbb{Z}} R$;

 $\langle \operatorname{Ad}^{\times} x \cdot X', \operatorname{Ad} x \cdot X \rangle = \langle X', X \rangle$ $(X \in \mathfrak{G}(R), X' \in \mathfrak{G}'(R), x \in G(R)),$

where R is an arbitrary commutative ring with the identity.

EXAMPLE 1.3. When $G = SL_{l+1}(F)$ $(l \ge 1)$, we assume that the residue characteristic p of F is not 2 and does not divide l+1. Then we have $\mathfrak{G}(\mathbb{Z}) = \{x \in M(l+1, \mathbb{Z}) | \operatorname{Tr} x = 0\}$. Define a non-degenerate bilinear form on $\mathfrak{G}(\mathbb{Z})$ by $\langle x, y \rangle = \operatorname{Tr} xy$ $(x, y \in \mathfrak{G}(\mathbb{Z}))$. We identify $\mathfrak{G}'(\mathbb{Z})$ with $\mathfrak{G}(\mathbb{Z})$ by the isomorphism induced from the above bilinear form. Note that the above bilinear form \langle , \rangle is naturally extended to a non-degenerate bilinear form on $\mathfrak{G}(\mathfrak{O}/\mathfrak{P}^n)$ $(n \ge 1)$ by the above assumption. Thus we have $\operatorname{Ad}^* x \cdot X' = xX'x^{-1}, x \in SL_{l+1}$ $(\mathfrak{O}/\mathfrak{P}^n), X' \in \mathfrak{G}'(\mathfrak{O}/\mathfrak{P}^n) = \{X' \in M(l+1, \mathfrak{O}/\mathfrak{P}^n) | \operatorname{Tr} X' = 0\}$ $(n \ge 1)$.

1.4. From now on, we fix a base $B(\Phi)$ of the root system Φ .

DEFINITION 1.4. For each $H \in \mathbf{X}'$, we define the element π^H of $A = \mathbf{X}'$

 $\bigotimes_Z F^*$ by $\omega(\pi^H) = \pi^{<\omega, H>}$ for any $\omega \in X$. We denote by X the set of all $H \in X'$ such that $\langle \alpha, H \rangle \geq 0$ for any $\alpha \in B(\Phi)$.

LEMMA 2 (Cartan decomposition).

 $G = KAK = \bigcup_{H \in \mathbf{X}'_{+}} K\pi^{H}K$ (disjoint union).

PROOF. The proof can be found in Theorem 21 of [8].

EXAMPLE 1.4. When
$$G = SL_{l+1}(F)$$
 $(l \ge 1)$, put

$$A_{+} = \begin{cases} \begin{pmatrix} \pi^{w_{1}} & 0 \\ & \pi^{m_{2}} \\ & \ddots \\ & 0 & \pi^{m_{l+1}} \end{pmatrix} | (m_{1}, m_{2}, ..., m_{l+1}) \in \mathbb{Z}^{l+1}, m_{1} + m_{2} + \\ & \cdots + m_{l+1} = 0, \text{ and } m_{1} \ge m_{2} \ge \cdots \ge m_{l+1} \end{cases}$$
Then we have

 $SL_{l+1}(F) = \bigcup_{a \in A_+} SL_{l+1}(\mathfrak{O}) \cdot a \cdot SL_{l+1}(\mathfrak{O})$ (disjoint union).

§2. Preliminaries for induced representations of finite groups

Let H be a subgroup of a finite group G, and let $v: H \rightarrow GL(V)$ be a linear representation of H where V is a finite dimensional vector space over \mathbf{C} . We denote by $\operatorname{Ind}_{H}^{G}v$ the representation of G induced from v. We assume that H is abelian and normal. We denote by \hat{H} the set of all characters of H. Then G operates on \hat{H} in an obvious way i.e., for $\chi \in \hat{H}$, $g \in G$ and $h \in H$, ${}^{g}\chi(h) =$ $\chi(g^{-1}hg)$. For each $\chi \in \hat{H}$, we denote by I_{χ} the subgroup of G fixing χ . Let $\mu: G \rightarrow GL(W)$ be an irreducible representation of G, where W is a finite dimensional vector space over C. For each $\chi \in \hat{H}$, put $W_{\chi} = \{w \in W | \mu(h)w = \chi(h)w \text{ for } w \in W\}$ any $h \in H$. Then we see immediately that W_{χ} is a I_{χ} -invariant subspace of W, and that μ induces naturally a representation μ_{χ} of I_{χ} on W_{χ} . With these notations, we have the following Lemma.

LEMMA 3 ([7], §1). Let χ_0 be a character of H such that $W_{\chi_0} \neq \{0\}$, and let O be the G-orbit in \hat{H} containing χ_0 . Then $W = \sum_{\chi \in O} W_{\chi}$, and μ_{χ} is an irreducible representation of I_{χ} and $\operatorname{Ind}_{I_{\chi}}^{G}\mu_{\chi}$ is equivalent to μ . Conversely, for $\chi \in \hat{H}$, let v, be an irreducible representation of I_{χ} such that $v_{\chi}(h) = \chi(h) \cdot 1$ for any $h \in H$. Then $\operatorname{Ind}_{I_{x}}^{G} v_{x}$ is an irreducible representation of G. Moreover, for $\chi, \tau \in \hat{H}$, $\operatorname{Ind}_{I_{\chi}}^{G} v_{\chi}$ is equivalent to $\operatorname{Ind}_{I_{\chi}}^{G} v_{\chi}$ if and only if there exists $k \in G$ such that $\chi = {}^{k}\tau$, and v_{χ} is equivalent to v_{τ}^{k} as representations of I_{χ} , where v_{χ}^{k} is defined by $v_{\tau}^{k}(g) = v_{\tau}(k^{-1}gk) \ (g \in I_{\tau}).$

§3. Irreducible representations of the maximal compact subgroup K

3.1. Let χ be an additive character of F. We say that χ is of order 0 if χ

is trivial on \mathfrak{D} and non-trivial on \mathfrak{P}^{-1} . From now on, fix a character χ of F, of order 0. Let f, f' and f'' be integers such that $f \ge 2, f = f' + f''$, and $2f' \le f \le 2f' + 1$.

DEFINITION 3.1. For each $X' \in \mathfrak{G}'(\mathfrak{O}/\mathfrak{P}^f)$, we define a function $\chi_{X'}^f$ on $G(\mathfrak{P}^{f''})$ by $\chi_{X'}^f(g) = \chi(\pi^{-f} < X', e^{-1}(\psi_f(g)) >)$ for any $g \in G(\mathfrak{P}^{f''})$ where e is the isomorphism of $\mathfrak{G}(\mathfrak{P}^{f''}/\mathfrak{P}^f)$ onto $G(\mathfrak{P}^{f''}/\mathfrak{P}^f)$ defined in Lemma 1 of § 1.

LEMMA 4. (i) The function $\chi_{X'}^{f}$ is an one-dimensional representation of $G(\mathfrak{P}^{f''})$ which is trivial on $G(\mathfrak{P}^{f})$.

(ii) For any $k \in K$, we have ${}^{k}\chi_{X'}^{f} = \chi_{Ad^{\vee}(\psi_{f}(k)) \cdot X'}^{f}$.

(iii) The mapping $X' \mapsto \chi_X^f$, is an isomorphism of the additive group $\mathfrak{G}'(\mathfrak{O}/\mathfrak{P}^f)$ onto the multiplicative group of all one-dimensional representations of $G(\mathfrak{P}^{f''})$ which are trivial on $G(\mathfrak{P}^f)$.

PROOF. (i) is clear by the definition of $\chi_{X'}^{f}$.

(ii) By Lemma 1, we have ${}^{k}\chi_{X'}^{f}(g) = \chi_{X'}^{f}(k^{-1}gk) = \chi(\pi^{-f} < X', e^{-1}(\psi_{f}(k^{-1}gk)))$ >) = $\chi(\pi^{-f} < X', \operatorname{Ad}(\psi_{f}(k))^{-1} \cdot (e^{-1}(\psi_{f}(g)))$ >) = $(\pi^{-f} < \operatorname{Ad}^{\sim}\psi_{f}(k) \cdot X', e^{-1}(\psi_{f}(g)))$ >) = $\chi_{\operatorname{Ad}^{\sim}\psi_{f}(k) \cdot X'}^{f}(g)$ for any $k \in K$ and any $g \in G(\mathfrak{P}^{f''})$.

(iii) By the well-known commutator relations in the Chevalley group G(R)over a commutative ring R (see [8]), and by the fact that $2f'' \ge f$, we see that $G(\mathfrak{P}^{f''}/\mathfrak{P}^f) \cong G(\mathfrak{P}^{f''})/G(\mathfrak{P}^f)$ is abelian. Hence every one-dimensional representation of $G(\mathfrak{P}^{f''})$ which is trivial on $G(\mathfrak{P}^f)$ can be regarded as a character of $G(\mathfrak{P}^{f''}/\mathfrak{P}^f)$. Hence in order to prove (iii), it is enough to show that the mapping $X' \mapsto \chi_{X'}^{f}$ is an isomorphism of $\mathfrak{G}'(\mathfrak{O}/\mathfrak{P}^{f'})$ onto $G(\mathfrak{P}^{f''}/\mathfrak{P}^f)$, where we denote by $G(\mathfrak{P}^{f''}/\mathfrak{P}^f)$ the multiplicative group of all characters of $G(\mathfrak{P}^{f''}/\mathfrak{P}^f)$. Since χ is of order 0, we have a non-degenerate bilinear form $(X', X) \mapsto \chi(\pi^{-f} < X', X >)$ on $\mathfrak{G}'(\mathfrak{O}/\mathfrak{P}^f) \times \mathfrak{G}(\mathfrak{P}^{f''}/\mathfrak{P}^f)$. Hence an assigning each $X' \in \mathfrak{G}'(\mathfrak{O}/\mathfrak{P}^{f'})$ to a character $X \mapsto \chi(\pi^{-f} < X', X >)$ of $\mathfrak{G}(\mathfrak{P}^{f''}/\mathfrak{P}^f)$ gives the isomorphism $\mathfrak{G}'(\mathfrak{O}/\mathfrak{P}^{f'}) \cong G(\mathfrak{P}^{f''}/\mathfrak{P}^f)$ $\mathfrak{P}^f)$ induced from the isomorphism $e \colon \mathfrak{G}(\mathfrak{P}^{f''}/\mathfrak{P}^f) \cong G(\mathfrak{P}^{f''}/\mathfrak{P}^f)$, we have the desired isomorphism $X' \mapsto \chi_{X'}^f \colon \mathfrak{G}'(\mathfrak{O}/\mathfrak{P}^f) \cong G(\mathfrak{P}^{f''}/\mathfrak{P}^f)$. q.e.d.

3.2. Let v be a non-trivial continuous irreducible unitary representation of the maximal compact subgroup K of G on a Hilbert space.

DEFINITION 3.2. We call an integer f the conductor of v, if v is trivial on $G(\mathfrak{P}^f)$ and non-trivial on $G(\mathfrak{P}^{f-1})$. We denote by f=f(v) (Note that K has a fundamental system of neighborhoods $\{G(\mathfrak{P}^n)\}_{n\geq 1}$).

We assume that $f=f(v) \ge 2$, and let f', f'' be integers such that f=f'+f'', $2f' \le f \le 2f'+1$. For each $X' \in \mathfrak{G}'(\mathfrak{O}/\mathfrak{P}^{f'})$, put $V_{X'} = \{v \in V | v(g)v = \chi_{X'}^{f}(g)v = \chi_{X'$

for any $g \in G(\mathfrak{P}^{f''})$. By (ii) of Lemma 4, for each $k \in K$, ${}^{k}\chi_{X'}^{f} = \chi_{X'}^{f}$ if and only if $\operatorname{Ad}^{\vee}(\psi_{f}(k))X' = X'$. So we denote by $Z_{K}(X')$ the set of all $k \in K$ fixing $\chi_{X'}^{f}$. Then $V_{X'}$ is a $Z_{K}(X')$ -invariant subspace of V. Put $O_{\nu} = \{X' \in \mathfrak{G}'(\mathfrak{O}/\mathfrak{P}^{f'}) | V_{X'} \neq 0\}$. Then, since $G(\mathfrak{P}^{f''})/G(\mathfrak{P}^{f})$ is a finite normal abelian subgroup of $G(\mathfrak{O})/G(\mathfrak{P}^{f})$, O_{ν} is not empty. For each $X' \in O_{\nu}$, we denote by $\nu_{X'}$ the representation of $Z_{K}(X')$ on $V_{X'}$ defined by $\nu_{X'}(g) = \nu(g)|_{V_{X'}}$ for any $g \in Z_{K}(X')$.

With these notations, we have the following generalization of Theorem 1 of [7], §2.

THEOREM 1. Let v be a continuous irreducible unitary representation of K such that $f=f(v)\geq 2$, and let f', f'' be integers such that $f=f'+f'', 2f'\leq f\leq 2f'+1$. Then

(i) $G(\mathfrak{O}/\mathfrak{P}^f)$ operates transitively on O_v by the adjoint action, and for $X' \in O_v$, we have $X' \not\equiv 0 \pmod{\mathfrak{P}}$.

(ii) $v_{X'}$ is the representation of $Z_K(X')$ which coincides with $\chi_{X'}^{f} \cdot 1$ on $G(\mathfrak{P}^{f''})$, and $\operatorname{Ind}_{Z_K^{K}(X')}v_{X'}$ is equivalent to v. Conversely, for $X' \in \mathfrak{G}'(\mathfrak{O}/\mathfrak{P}^f)$ such that $X' \not\equiv 0 \pmod{\mathfrak{P}}$, let μ be an irreducible unitary representation of $Z_K(X')$ which coincides with $\chi_{X'}^{f} \cdot 1$ on $G(\mathfrak{P}^{f''})$. Then $v = \operatorname{Ind}_{Z_K^{K}(X')}\mu$ is a continuous irreducible unitary representation of K such that f(v) = f and $X' \in O_v$.

PROOF. Fix an element X'_0 of O_v . For each $k \in K$, we have $v(k)V_{X_0'} = V^f_{Ad^{(\psi_f(k))},X'_0}$. Indeed, for any $g \in G(\mathfrak{P}^{f''})$ and for any $v(g)v(k)v = v(k)v(k^{-1}gk)v = v(k)\chi^f_{X_0}(k^{-1}gk)v = v(k)\chi^f_{Ad^{(\psi_f(k))},X'_0}(g)v = \chi^f_{Ad^{(\psi_f(k))},X'_0}(g)v(k)v$. Then we have $\operatorname{Ad}^{(\psi_f(k))} \cdot X'_0 \in O_v$ for any $k \in K$. Since the representation v of K can be regarded as an irreducible unitary representation of the finite group $G(\mathfrak{O})/G(\mathfrak{P})$, we have $V = \sum_{k \in K} V_{Ad^{(\psi)}f(k)} \cdot X'_0$. Therefore we have $V = \sum_{k \in K} V_{Ad^{(\psi)}f(k)} \cdot X'_0$. This shows that $G(\mathfrak{O}/\mathfrak{P}^f) \cong G(\mathfrak{O})/G(\mathfrak{P}^f)$ operates transitively on O_v by the co-adjoint action. For $X' \in O_v$, we assume that $X' \equiv 0 \pmod{\mathfrak{P}}$. This $g(\mathfrak{P}^{f''})$. This contradicts f(v) = f.

(ii) In the proof of Lemma 4, we have seen that $G(\mathfrak{P}^{f''})/G(\mathfrak{P})$ is a normal abelian subgroup of the finite group $G(\mathfrak{O})/G(\mathfrak{P})$. Hence (ii) is an immediate consequence of Lemma 3 in § 2. q.e.d.

In the above Theorem 1, the condition, $f(v) \ge 2$, means that the representation v of K does not come from an representation of $G(\mathfrak{O}/\mathfrak{P})$. Hence Theorem 1 says that continuous irreducible unitary representations of the maximal compact subgroup K of G which do not come from representations of $G(\mathfrak{O}/\mathfrak{P})$ are induced from certain irreducible representations of certain subgroups of K.

§4. Unitary representations of G induced from irreducible representations of tie maximal compact subgroup K of G

4.1. Let dg be the Haar measure on G such that $\int_{K} dg = 1$. Let U be a continuous unitary representation of G on a Hilbert space \mathfrak{H} .

DEFINITION 4.1. U is said to be square-integrable if there exists $v \in \mathfrak{H} - \{0\}$ such that

$$\int_{G} (U(g)v, v)(U(g)v, v)dg < +\infty,$$

where (,) is an inner product of \mathfrak{H} and $(\overline{U(g)v, v})$ is the complex conjugate of (U(g)v, v).

If U is square-integrable, then there exists a number d>0, called the *formal* degree of U depending only the equivalence class of U and on the normalization of the Haar measure dg on G such that

$$\int_{G} (U(g)u_1, v_1) (\overline{U(g)u_2, v_2}) dg = d^{-1}(u_1, u_2) (\overline{v_1, v_2})$$

for all $u_i, v_i \in \mathfrak{H}$ (i=1, 2) (Schur's orthogonality relation). Let v be a continuous irreducible unitary representation of K on a finite dimensional Hilbert space V. We denote by \mathfrak{H}_v the set of all V-valued functions f satisfying the following conditions:

(i) f(kg) = v(k)f(g) for any $k \in K$ and for any $g \in G$,

(ii)
$$\int_{a} (f(g), f(g)) dg < +\infty$$
,

where (,) is an inner product of V. We define an inner product < , > on \mathfrak{H}_{v} by

$$\langle f, h \rangle = \int_{G} (f(g), h(g)) dg \qquad (f, h \in \mathfrak{H}_{v}).$$

Then \mathfrak{H}_{v} becomes a Hilbert space. We define a representation U_{v} of G on \mathfrak{H}_{v} as follows:

$$(U_{\mathbf{y}}(g)f)(g') = f(g'g) \qquad (g, g' \in G, f \in \mathfrak{H}_{\mathbf{y}}).$$

We denote by $\operatorname{Ind}_{K}^{G} v$ the above unitary representation U_{v} and by $U_{v}|K$ the representation of K on \mathfrak{H}_{v} obtained by restricting U_{v} to K. Put $I(U_{v}|K, v) = \dim \operatorname{Hom}_{K}(V, \mathfrak{H}_{v})$. This is called the *multiplicity* of v in $U_{v}|K$.

LEMMA 5 ([7], §3). (i) If $I(U_v|K, v) < +\infty$, then U_v decomposes into a

Kazutoshi KARIYAMA

direct sum of at most $I(U_v|K, v)$ many irreducible representations. In particular, if $I(U_v|K, v)=1$, then U_v is irreducible.

(ii) If U_{ν} is irreducible, then U_{ν} is square-integrable and its formal degree equals dim V.

4.2. Let $G = \bigcup_{H \in X'_{+}} K\pi^{H}K$ be the Cartan decomposition of G in Lemma 2. Let v be a continuous irreducible unitary representation of K on a Hilbert space V. For each $H \in X'_{+}$, put $K^{H} = K \cap \pi^{-H}K\pi^{H}$ and we denote by v^{H} the representation of K^{H} on V defined by $v^{H}(k) = v^{H}(\pi^{H}k\pi^{-H})$ for any $k \in K^{H}$. Let \mathfrak{H}_{v} be the representation space of $\operatorname{Ind}_{K}^{G} v$ defined in 4.1. For each $H \in X'_{+}$, we denote by \mathfrak{H}_{v}^{H} the set of all $f \in \mathfrak{H}_{v}$ whose supports are contained in $K\pi^{H}K$. Then \mathfrak{H}_{v}^{H} is a closed subset of \mathfrak{H}_{v} and invariant under the representation $U_{v}|K$, and moreover we have $\mathfrak{H}_{v} = \sum_{H \in \mathbf{X}'_{+}} \mathfrak{H}_{v}^{H}$ (direct sum as a Hilbert space). We denote by $U_{v}^{H}|K$ the representation $k \mapsto U(k)$ of K on \mathfrak{H}_{v}^{H} and by $v|K^{H}$ the representation of K^{H} on V obtained by restricting v to K^{H} . Put $I(v|K^{H}, v) = \dim \operatorname{Hom}_{K^{H}}(V, V)$.

LEMMA 6 ([7], § 3). (i) For each $H \in \mathbf{X}'_+$, $U^H_{\nu}|K$ is equivalent to $\operatorname{Ind}_{KH}^K v^H$. (ii) For each $H \in \mathbf{X}'_+$, $I(U^H_{\nu}|K, \nu) = I(\nu|K^H, \nu^H)$.

(iii) $I(U_{\nu}|K, \nu) = \sum_{H \in \mathbf{X}'_{+}} I(\nu|K^{H}, \nu^{H})$ (Remark, The equality in (iii) admits the infinity, i.e., $+\infty = +\infty$).

4.3 Let v be a continuous irreducible unitary representation of K with the conductor $f(v)=f \ge 2$, and let f', f'' be integers such that $f=f'+f'', 2f' \le f \le 2f'+1$. Let O_v be the set of all $X' \in \mathfrak{G}'(\mathfrak{O}/\mathfrak{P}^{f'})$ such that $V_{X'} \ne \{0\}$. Thus every element of O_v is uniquely written as the form $H' + \sum_{\alpha \in \Phi} u_\alpha X'_\alpha$ where $H' \in X \otimes_Z \mathfrak{O}/\mathfrak{P}^{f'}$ and $u_\alpha \in \mathfrak{O}/\mathfrak{P}^{f'}$ ($\alpha \in \Phi$). For each $X'=H' + \sum_{\alpha \in \Phi} u_\alpha X'_\alpha \in O_v$ and each integer m such that $1 \le m \le f'$, we denote by $\operatorname{Supp}_m(X')$ the set of all roots α such that $\psi_m(u_\alpha) \ne 0$ (We recall that ψ_m is the reduction modulo $\mathfrak{P}^m \colon \mathfrak{O}/\mathfrak{P}^{f'} \to \mathfrak{O}/\mathfrak{P}^m$). For each $H \in X'_+$, we denote by $P_m(H)$ the set of all positive roots α such that $\langle \alpha, H \rangle \ge m$. Put $B(\Phi) = \{\alpha_1, \dots, \alpha_l\}$ (the fixed base of the root system Φ). Then every root is uniquely written as the form $\sum_{i=1}^{l} n_i \alpha_i$ where all n_i are non-negative integers and have the same sign. For each $\alpha_j \in B(\Phi)$, we denote by (α_i) the set of all roots $\alpha = \sum_{i=1}^{l} n_i \alpha_i$ such that $n_i \ge 1$.

PROPOSITION 1. Let v be a continuous irreducible unitary representation of K with the conductor $f(v)=f \ge 2$, and let f', f" be integers such f=f'+f'', $2f' \le f \le 2f'+1$. Let H be an element of X'_+ . Assume that there exists an integer m $(1 \le m \le f')$ such that for any $X' \in O_v$ and for any $\alpha_i \in B(\Phi)$, $(\alpha_i) \cap \text{Supp}_m(X') \ne \phi$ and $B(\Phi) \cap P_m(H) \ne \phi$. Then $I(v|K^H, v^H)=0$.

PROOF. We shall prove by absurdity. Assume that $I(v|K^H, v^H) > 0$. Let V be a representation space of v. Then there exists a non-trivial linear transformation T of V satisfying the following condition; for any $k \in K^H$,

738

Some Remarks on Representations of p-adic Chevalley Groups

(1)
$$v(k)T = Tv(\pi^{H}k\pi^{-H}).$$

Now by the assumption $B(\Phi) \cap P_m(H) \neq \phi$, there exists $\alpha_{i_0} \in B(\Phi) \cap P_m(H)$ $(1 \leq i_0 \leq 1)$. Then

(2)
$$(\alpha_{i_0}) \subset P_m(H).$$

In fact, let $\beta = \sum_{i=1}^{l} n_i \alpha_i$ be any root of (α_{i_0}) . Then, since $n_i \ge 0$ and $<\alpha_i$, $H > \ge 0$ for all $i \ (1 \le i \le l)$, we have $<\beta$, $H > = \sum_{i=1}^{l} n_i < \alpha_i$, $H > \ge <\alpha_{i_0}$, $H > \ge m$. Hence β belongs to $P_m(H)$. We denote by U the subgroup of K generated by the set $\{x_{\alpha}(t)|\alpha \in (\alpha_{i_0}), t \in \mathfrak{P}^{f-m}\}$. Then, under some order in (α_{i_0}) , every element of U is uniquely written as the product $\prod_{\alpha \in (\alpha_{i_0})} x_{\alpha}(t_{\alpha}) (t_{\alpha} \in \mathfrak{P}^{f-m})$ ([8], §3, Lemma 17). For any $u \in U$, say $u = \prod_{\alpha \in (\alpha_{i_0})} x_{\alpha}(t_{\alpha})$ $(t_{\alpha} \in \mathfrak{P}^{f-m})$, we have $\pi^H u \pi^{-H} = \prod_{\alpha \in (\alpha_{i_0})} \cdots$ $\pi^{H} x_{\alpha}(t_{\alpha}) \pi^{-H} = \prod_{\alpha \in (\alpha_{i_{\alpha}})} x_{\alpha}(\pi^{<\alpha, H} \cdot t_{\alpha}). \quad \text{By (2), } \pi^{<\alpha, H} t_{\alpha} \in \mathfrak{P}^{f} \text{ for all } \alpha \in (\alpha_{i_{\alpha}}). \quad \text{Thus}$ we have $\pi^H u \pi^{-H} \in G(\mathfrak{P}^f)$. Hence by (1), we have v(u)T = T for any $u \in U$. Since T is not trivial, there exists $v \in V - \{0\}$ such that v(u)v = v for any $u \in U$. Therefore, since $V = \sum_{X' \in O_{Y}} V_{X'}$, there exists a non-zero $V_{X'}$ -component $v_{X'}$ of v such that $v(u)v_{X'} = v_{X'}$ for any $u \in U$. Hence we have $\chi^{f}_{X'}(u) = 1$ for any $u \in U$. On the other hand, by the assumption $(\alpha_{i_0}) \cap \operatorname{Supp}_m(X') \neq \phi$, there exists a root γ belonging to $(\alpha_{i_0}) \cap \operatorname{Supp}_m(X')$. Therefore, let X' be the form $H' + \sum_{\alpha \in \Phi} u_{\alpha} X'_{\alpha}$ where $H' \in \mathbf{X} \otimes_{\mathbf{Z}} \mathfrak{O}/\mathfrak{P}^{f}$, $u_{\alpha} \in \mathfrak{O}/\mathfrak{P}^{f}$ ($\alpha \in \Phi$), then we have $\psi_{m}(u_{\gamma}) \neq 0$ in $\mathfrak{O}/\mathfrak{P}^{m}$. Here we take $t_{\alpha} \in \mathfrak{P}^{f-m}$ ($\alpha \in (\alpha_{i_0})$) such that for $\alpha = \gamma$, $t_{\gamma} \notin \mathfrak{P}^{f-m+1}$ and $\chi(\pi^{-f}u_{\gamma}t_{\gamma})$ $\neq 1$, and for $\alpha \neq \gamma$, $t_{\alpha} \in \mathfrak{P}^{f-m+1}$. This is possible, because χ is of order 0. Put $u_0 = \prod_{\alpha \in (\alpha_{1,\alpha})} x_{\alpha}(t_{\alpha})$, then we have $u_0 \in U$. By the definition of $\chi_{X'}^f$, we have $\chi_{X'}^{f}(u_{0}) = \chi(\pi^{-f} < X', e^{-1}(\psi_{f}(u_{0})) >) = \chi(\pi^{-f} < X', \sum_{\alpha \in (\alpha_{i,\alpha})} \psi_{f}(u_{\alpha}) \cdot X_{\alpha} >) = \chi(\pi^{-f}t_{y}u_{y})$ \neq 1. This is contradiction. q. e. d.

COROLLARY 1. Let v, f, f' and f'' be as in Proposition 1. Assume that there exists an integer $m (1 \le m \le f')$ such that for any $X' \in O_v$ and for any integer $i (1 \le i \le 1), (\alpha_i) \cap \operatorname{Supp}_m(X') \ne \phi$. Then there exist only finitely many elements H of X'_+ such that $I(v|K^H, v^H) > 0$. If m=1, then $I(v|K^H, v^H)=0$ for any $H \ne 0$ in X'_+ .

PROOF. If $I(\nu|K^H, \nu^H) > 0$, then we have $B(\Phi) \cap P_m(H) = \phi$ by the above Proposition. Therefore, for all $\alpha_i \in B(\Phi)$ $(1 \le i \le 1)$, we have $0 \le <\alpha_i$, $H > < m \cdots$ (*). Since the root module $Q(\Phi)$ is of finite index in the lattice X, and the bilinear form <, > is non-degenerated on $X \times X'$, there must exist only finitely many $H \in X'_+$ satisfying (*). In the case that m=1, there does not exist such $H \ne 0$. q. e. d.

By Corollary 1 and Lemma 6, we have the following Corollary.

COROLLARY 2. Let v, f, f' and f'' be as in Proposition 1. Assume that

739

Kazutoshi KARIYAMA

there exists an integer $m (1 \le m \le f')$ such that for any $X' \in O_v$ and for any $\alpha_i \in B(\Phi)$ $(1 \le i \le I)$, $(\alpha_i) \cap \operatorname{Supp}_m(X') \ne \phi$. Then $I(U_v|K, v) < +\infty$. If m=1, then $I(U_v|K, v) = 1$.

By Lemma 6 and the above Propositions, we have the following Theorem.

THEOREM 2. Let v be a continuous irreducible unitary representation with conductor $f(v)=f \ge 2$, and let f, f' and f" be integers such that f=f'+f'', $2f' \le f \le 2f'+1$. Assume that there exists an integer $m(1 \le m \le f')$ such that for any $X' \in O_v$ and for any $\alpha_i \in B(\Phi)$ $(1 \le i \le 1), (\alpha_i) \cap \operatorname{Supp}_m(X') \ne \phi$. Then U_v = Ind ${}^{G}_{K}v$ decomposes into a direct sum of at most $I(U_v|K, v)$ many irreducible representations of G. In particular, if m=1, then $U_v = \operatorname{Ind}_{K}^{G}v$ is a squareintegrable irreducible unitary representation of G whose formal degree is the degree of the representation v.

REMARK. By Lemma 6 and Corollary 1 to Proposition 1, we have $I(U_v|K, v) = \sum I(v|K^H, v^H)$ where the summation is taken over all $H \in X'_+$ such that $\langle \alpha_i, H \rangle \langle m$ for all $\alpha_i \in B(\Phi)$.

4.4. We shall compare our results with those of [7] obtained by T. Shintani. From now on, we put $G = SL_{l+1}(F)$ and $K = SL_{l+1}(\mathfrak{O})$ $(l \ge 1)$. Let v be a continuous irreducible unitary representation of K on a Hilbert space V with conductor $f(v) = f \ge 2$, and f', f'' be $f = f' + f'', 2f' \le f \le 2f' + 1$. By Example 1.3 and 3.2, for this representation v, O_v is the set of all $x \in \mathfrak{G}'(\mathfrak{O}/\mathfrak{P}^f)$ such that $V_x \neq \{0\}$, where $\mathfrak{G}'(\mathfrak{O}/\mathfrak{P}^f) = \{x \in M(\mathfrak{l}+1, \mathfrak{O}/\mathfrak{P}^f) | \operatorname{Tr} x = 0\}.$ For some $x \in O_v$, we define a monic polynomial of the degree l+1 over the finite local ring $\mathfrak{O}/\mathfrak{P}^f$ by $C_{\mathfrak{v}}(t) = \det(t \cdot t)$ (1-x) where t is an indeterminate. Then $C_{y}(t)$ does not depend upon the choice of an element x of O_y . Hence the polynomial $C_y(t)$ corresponds the above representation v of K. T. Shintani proved the following facts in [7]; If $C_{v}(t)$ is an irreducible polynomial, then the unitary representation $\operatorname{Ind}_{K}^{G} v$ of G has finitely many irreducible components. In particular, put $C_{v}(t) = t^{l+1} - a_{1}t^{l} + \dots + a_{l+1}$ $(a_i \in \mathfrak{O}/\mathfrak{P}^{f'})$. If $\psi_1(C_{\mathfrak{v}}(t)) = t^{l+1} + \psi_1(a_1)t_l + \dots + \psi_1(a_{l+1})$ is an irreducible polynomial over the finite field $\mathfrak{D}/\mathfrak{P}$, then $\operatorname{Ind}_{K}^{G} v$ is a square-integrable irreducible representation and its formal degree equals dim V. Moreover, he constructed all continuous irreducible unitary representation v whose corresponding polynomials $\psi_1(C_y(t))$ are irreducible.

PROPOSITION 3. Let v be a continuous irreducible unitary representation of $K = SL_{l+1}(\mathfrak{O})$ with conductor $f(v) = f \ge 2$, and let f', f'' be integers f = f' + f'', $2f' \le f \le 2f' + 1$. For each integer m $(1 \le m \le f')$, if $\psi_m(C_v(t))$ is an irreducible polynomial over $\mathfrak{O}/\mathfrak{P}^m$, then we have $(\alpha_i) \cap \operatorname{Supp}_m(x) \ne \phi$ for any $x \in O_v$ and for any $\alpha_i \in B(\Phi)$ $(1 \le i \le l)$. Some Remarks on Representations of p-adic Chevalley Groups

PROOF. Put
$$A = \begin{cases} \begin{pmatrix} a_1 & 0 \\ a_2 \\ 0 & a_{l+1} \end{pmatrix} \in SL_{l+1}(F) \end{cases}$$
. For each *i*, let e_i be a characondermodely of A defined by $e_i \begin{pmatrix} a_1 & 0 \\ a_i \\ 0 & a_{l+1} \end{pmatrix} = a_i$. Then as a root system of \mathfrak{G} and its

ter

base, we can take $\Phi = \{e_i - e_j | i \neq j, 1 \leq i \leq l+1, 1 \leq j \leq l+1\}$ and $B(\Phi) = \{e_1 - e_2, e_2 - e_3, \dots, e_l - e_{l+1}\}$. Now if there exist $x \in O_v$ and $\alpha_{i_0} = e_{i_0} - e_{i_0+1} \in B(\Phi)$ $(1 \leq i_0 \leq l)$ such that $(\alpha_{i_0}) \cap \operatorname{Supp}_m(x) = \phi$, then by the definition of $\operatorname{Supp}_m(x)$ and by Example 1.3, $\psi_m(x) \in M(l+1, \mathfrak{O}/\mathfrak{P}^m)$ is the form $\begin{pmatrix} x_1 & x_2 \\ 0 & x_3 \end{pmatrix}$ where $x_1 \in M(i_0, \mathfrak{O}/\mathfrak{P}^m)$, $x_2 \in M(i_0, l+1-i_0, \mathfrak{O}/\mathfrak{P}^m)$ and $x_3 \in M(l+1-i_0, \mathfrak{O}/\mathfrak{P}^m)$. Hence $\psi_m(C_v(t)) = \det(t \cdot 1 - \psi_m(x))$ is clearly reducible. q.e.d.

Thus in the case of $G = SL_{l+1}(F)$, there exist continuous irreducible unitary representations of $K = SL_{l+1}(\mathfrak{O})$ which satisfy the condition that m = 1 in Theorem 2.

References

- [1] N. Bourbaki, Groupes et algèbres de lie, Chap. IV, V et VI, Hermann, Paris, 1968.
- [2] P. Gérardin, On the discrete series for Chevalley groups, Proc. Amer. Math. Soc., Summer institute on harmonic analysis and homogeneous spaces, 1972.
- [3] —, Construction de séries discrètes p-adiques, Lecture Notes in Math. 462 (1975), Springer-Verlag, Berlin. Heidelberg. New York.
- [4] F. I. Mautner, Spherical functions over p-adic fields II, Amer. J. Math. 86 (1964), 171-200.
- [5] J. A. Shalika, Representations of the two by two unimodular groups over local fields, Part II, Seminar on representations of Lie groups, Princeton, 1966.
- [6] T. Shintani, On certain series of square-integrable irreducible unitary representations of special linear groups over *p*-adic fields, Sûgaku, **19** (1968), 231–239.
- [7] —, On certain square-integrable irreducible unitary representations of some p-adic linear groups, J. Math. Soc. Japan, 20 (1968), 522–565.
- [8] R. Steinberg, Lectures on Chevalley groups, Yale Univ. Lecture Notes, 1967.

Onomichi Junior College, Hisayamada-chô, 1600 Onomichi, Japan