Some Remarks on Representations of p-adic Chevalley Groups

Kazutoshi Kariyama

(Received May 16, 1977)

Introduction

Let F be a p-adic field, and let \mathfrak{D} and \mathfrak{P} be the ring of integers and the maximal ideal of \mathfrak{D} respectively. F. I. Mautner [4] first constructed square-integrable irreducible unitary representations of $P G L_{2}(F)$ which are induced by irreducible representations of a certain maximal compact subgroup. In [5], J. A. Shalika carried it out for $S L_{2}(F)$ by a different method. Independently, in [6] and [7], T. Shintani extended Mautner's results to a sort of special linear group of rank n. Recently, in [2] and [3], P. Gérardin extended their results to reductive) p-adic groups whose semi-simple parts are simply connected.

In this paper, we extend the former results of [7], which are not covered by Gérardin's results, to general p-adic Chevalley groups. The contents of this paper are as follows. Let $G(\mathbf{z})$ be a Chevalley group over the ring of all rational integers \mathbf{z}. Then we have a p-adic Chevalley group $G(F)$ and its maximal compact subgroup $G(D)$ by base changes. In $\S 1$, we give preliminaries on the structures of p-adic Chevalley groups after [3]. In §2, we prepare certain lemma about induced representations of finite groups. In $\S 3$, we show that continuous irreducible unitary representations of $G(D)$, which do not come from representations of $G(\mathfrak{D} / \mathfrak{P})$, are induced by certain irreducible representations of certain subgroups of $G(D)$ (Theorem 1). In $\S 4$, when we let v be a continuous irreducible unitary representation of $G(D)$ which does not come from a representation of $G(\mathfrak{D} / \mathfrak{P})$, we obtain a sufficient condition for $\operatorname{Ind}_{G}^{G}(\underset{O}{(F)}) v$ to be square-integrable.

In concluding the introduction, the author wishes to express his sincere gratitude to R. Hotta who read this paper and gave him many advices.

Notations: (i) Let F be a non-archimedean local field, and let $\mathfrak{D}, \mathfrak{P}$ and π be the ring of integers of F, the maximal ideal of \mathfrak{D}, and a prime element of F, respectively. Let p be the characteristic of the finite field $\mathfrak{D} / \mathfrak{P}$.
(ii) For a ring R, we denote by $M\left(n_{1}, n_{2}, R\right)$ the set of n_{1} by n_{2} matrices with coefficients in R. We put $M(n, R)=M(n, n, R)$.
(iii) For each positive integer m, we denote by ψ_{m} the reduction modulo $\mathfrak{P}^{m}: \mathfrak{D} \rightarrow \mathfrak{O} / \mathfrak{P}^{m}$. For integers $n \geqq m \geqq 1$, we denote by the same symbol ψ_{m} the reduction modulo $\mathfrak{P}^{m}: \mathfrak{D} / \mathfrak{P}^{n} \rightarrow \mathfrak{D} / \mathfrak{P}^{m}$.
(iv) If R is an arbitrary commutative ring with the identity, we denote by R^{*} the multiplicative group of all units in R.
(v) We denote by \mathbf{Z}, \mathbf{M} and \mathbf{C} the ring of all rational integers, the set of all natural numbers and the field of all complex numbers, respectively.

§1 p-adic Chevalley groups

The aim of this section is to describe the structures of p-adic Chevalley groups and their subgroups.
1.1. Let \mathfrak{G} be a finite dimensional complex semi-simple Lie algebra. Fix a Cartan subalgebra \mathfrak{H} of \mathfrak{b}. Then we have the root decomposition $(\mathfrak{5}$ $=\mathfrak{Y}+\sum_{\alpha \in \Phi} \mathfrak{H}^{\alpha}$ (direct sum), where Φ is the set of roots relative to ($\left.\mathfrak{G}, \mathfrak{M}\right)$. Choose a Chevalley basis $\left(X_{\alpha}\right)_{\alpha \in \Phi}$ in $(\mathfrak{5}$ relative to \mathfrak{M}. Let $Q(\Phi)$ (resp. $P(\Phi)$) be the root module (resp. the weight module) of Φ in the dual space \mathfrak{Y}^{\prime} of \mathfrak{A} (cf. [1], 6, §1). Let ρ be a finite dimensional faithful representation of $\mathfrak{5}$ on a vector space E over \mathbf{C}, and let \boldsymbol{X} be the lattice generated by weights of $\rho\left(\omega \in \mathfrak{A}^{\prime}\right.$ is called a weight of ρ, if there exists non-zero $v \in E$ such that $\rho(H) v=\omega(H) v$ for any $H \in \mathfrak{A})$. Then $Q(\Phi) \subset \boldsymbol{X} \subset P(\Phi)$, and we have an admissible lattice $E(\mathbf{Z})$ of E for (ρ, E) (cf. [8], $\S 2$). Let R be an arbitrary commutative ring with the identity. We define the automorphisms $x_{\alpha}(t)$ and $h(\chi)$ of $E(R)=E(\mathbf{Z}) \otimes_{\mathbf{z}} R$ as follows: For each $\alpha \in \Phi$, $x_{\alpha}(t)=\sum_{n \geqq 0} \rho\left(X_{\alpha}^{n} / n!\right) t^{n}(t \in R)$. For each $\chi \in \operatorname{Hom}\left(\boldsymbol{X}, R^{*}\right)$, and for each $v \in E(R)$ of weight $\omega, h(\chi) v=\chi(\omega) v$. We denote by $A(R)$ the subgroup of $\operatorname{Aut}(E(R))$ generated by all $h(\chi)\left(\chi \in \operatorname{Hom}\left(\boldsymbol{X}, R^{*}\right)\right)$, and by $G(R)$ that generated by all subgroups $x_{\alpha}(R)(\alpha \in \Phi)$ and $A(R)$. We call this group $G(R)$ the Chevalley group over R. For the above lattice \boldsymbol{X}, we denote by \boldsymbol{X}^{\prime} the set of all $H \in \mathfrak{A}$ such that $<H^{\prime}, H>\in \mathbf{Z}$ for any $H^{\prime} \in \boldsymbol{X}$, where $<,>$ is the natural pairing on $\mathfrak{H}^{\prime} \times \mathfrak{A}$. Put $G(R)=\boldsymbol{X} \otimes_{\mathrm{Z}} R+\sum_{\alpha \in \Phi} R \cdot X_{\alpha}$ (direct sum), and we denote by ρ_{R} the representation of the Lie algebra $G(R)$ into $\operatorname{End}\left(E(R)\right.$). Then ρ_{R} is faithful ([3], II, 2.1.6). Hence we can define the adjoint action of $G(R)$ on $\mathfrak{G}(R)$ by $\rho_{R}(\operatorname{Ad} x \cdot Y)=$ $x \rho_{R}(Y) x^{-1}(x \in G(R), Y \in(\mathfrak{G}(R))$ (cf. [3], II, 2.1.6).
1.2. By changing base rings R in 1.1 , we obtain the following groups; $G=G(F), K=G(\mathfrak{D}), G\left(\mathfrak{D} / \mathfrak{P}^{n}\right)(n \in \mathbf{N}), A=A(F), A(\mathfrak{D})$ and $A\left(\mathfrak{D} / \mathfrak{P}^{n}\right)(n \in \mathbf{N})$. From now on, we shall identify $A, A(\mathfrak{D})$ and $A\left(\mathfrak{D} / \mathfrak{P}^{n}\right)$ with $\boldsymbol{X}^{\prime} \otimes_{\mathbf{z}} F^{*}, \mathbf{X}^{\prime} \otimes_{\mathbf{Z}} \mathfrak{D}^{*}$ and $\boldsymbol{X}^{\prime} \otimes_{\mathbf{Z}}\left(\mathfrak{D} / \mathfrak{P}^{n}\right)^{*}$ respectively by the canonical isomorphisms.

Definition 1.2. For each integer $n \geqq 1$, we denote by $G\left(\mathfrak{P}^{n}\right)\left(\right.$ resp. $\left.A\left(\mathfrak{P}^{n}\right)\right)$ the subgroup of K (resp. $A(\mathfrak{D})$) which is the kernel of the reduction modulo $\mathfrak{P}^{n}: G(\mathfrak{D}) \rightarrow G\left(\mathfrak{D} / \mathfrak{P}^{n}\right)\left(\right.$ resp. $\left.A(\mathfrak{D}) \rightarrow A\left(\mathfrak{D} / \mathfrak{B}^{n}\right)\right)$. For integers $n \geqq m \geqq 1$, we denote by $G\left(\mathfrak{P}^{m} / \mathfrak{P}^{n}\right)\left(\right.$ resp. $\left.A\left(\mathfrak{P}^{m} / \mathfrak{P}^{n}\right)\right)$ the subgroup of $G\left(\mathfrak{D} / \mathfrak{P}^{n}\right)\left(\right.$ resp. $\left.A\left(\mathfrak{D} / \mathfrak{P}^{n}\right)\right)$ which is the kernel of the reduction modulo $\mathfrak{P}^{m}: G\left(\mathfrak{D} / \mathfrak{P}^{n}\right) \rightarrow G\left(\mathfrak{D} / \mathfrak{P}^{m}\right)\left(\right.$ resp. $A\left(\mathfrak{D} / \mathfrak{P}^{n}\right)$
$\left.\rightarrow A\left(\mathfrak{D} / \mathfrak{P}^{m}\right)\right)$.
From [3], 2.2.5 and 2.2.7, $G\left(\mathfrak{P}^{n}\right)$ is the subgroup of K generated by all subgroups $x_{\alpha}\left(\mathfrak{P}^{n}\right)(\alpha \in \Phi)$ and $A\left(\mathfrak{P}^{n}\right)=\boldsymbol{X}^{\prime} \otimes_{\mathbf{Z}}\left(1+\mathfrak{P}^{n}\right)$, and $G\left(\mathfrak{P}^{m} / \mathfrak{P}^{n}\right)$ is the subgroup generated by all subgroups $x_{\alpha}\left(\mathfrak{P}^{m} / \mathfrak{P}^{n}\right)(\alpha \in \Phi)$ and $A\left(\mathfrak{P}^{m} / \mathfrak{P}^{n}\right)=\boldsymbol{X}^{\prime} \otimes_{\mathbf{Z}}\left(1+\mathfrak{P}^{m} /\right.$ $1+\mathfrak{P}^{n}$).

Example 1.2. When $G=S L_{l+1}(F)(\mathbb{I} \geqq 1)$, we have $G\left(\mathfrak{P}^{n}\right)=\left\{x \in S L_{l+1}(\mathfrak{D}) \mid\right.$ $\left.x-1 \in \pi^{n} M(\mathrm{l}+1, \mathfrak{D})\right\}(n \in \mathbf{N})$ and $G\left(\mathfrak{P}^{m} / \mathfrak{P}^{n}\right)=\left\{x \in S L_{l+1}\left(\mathfrak{D} / \mathfrak{P}^{n}\right) \mid x-1 \in \pi^{m} M(\mathfrak{l}+\right.$ $\left.\left.1, \mathfrak{O} / \mathfrak{P}^{n}\right)\right\}(n \geqq m \geqq 1)$.
$G=G(F)$ inherits a topology from F for which G is a locally compact topological group. More precisely, G has a fundamental system of neighborhoods $\left\{G\left(\mathfrak{P}^{n}\right)\right\}_{n \geqq 0}$ which consist of open and compact subgroups of G. In particular, $K=G(\mathfrak{D})$ is a profinite group. For $n \geqq m \geqq 1$, we obtain the adjoint action of $G\left(\mathfrak{D} / \mathfrak{P}^{n}\right)$ on $G\left(\mathfrak{P}^{m} / \mathfrak{P}^{n}\right)$ from that of $G(\mathfrak{D})$ on $G\left(\mathfrak{P}^{m}\right)$ by the reduction modulo \mathfrak{P}^{n}.

Lemma 1 ([3], 2.2.6, Lemma 5). If $2 m \geqq n \geqq m \geqq 1$, the mapping e : $\mathfrak{G}\left(\mathfrak{P}^{m} / \mathfrak{P}^{n}\right) \rightarrow G\left(\mathfrak{P}^{m} / \mathfrak{P}^{n}\right)$, defined by $e(X)=1+\rho(X)$, is an isomorphism as abelian groups commuting with the adjoint actions of $G\left(\mathfrak{D} / \mathfrak{P}^{n}\right)$.
1.3. Let \mathfrak{G}^{\prime} be the dual vector space over \mathbf{C} of \mathfrak{G}. We denote by $\mathfrak{G}^{\prime}(\mathbf{Z})$ the set of all $X^{\prime} \in \mathfrak{F}^{\prime}$ such that $<X^{\prime}, X>\in \mathbf{Z}$ for all $X \in \mathfrak{G}(\mathbf{Z})$. Then we have $\mathfrak{G}^{\prime}(\mathbf{Z})=\boldsymbol{X}+\sum_{\alpha \in \Phi} \mathbf{Z} \cdot X_{\alpha}^{\prime}$ (direct sum), where \boldsymbol{X} is naturally embedded into $\mathbf{(5}^{\prime}$, and where X_{α}^{\prime} is a linear form defined by $\left\langle X_{\alpha}^{\prime}, X_{\alpha}\right\rangle=1,\left\langle X_{\alpha}^{\prime}, X_{\beta}\right\rangle=0(\alpha \neq \beta)$, and $\left\langle X_{\alpha}^{\prime}, \mathfrak{A}\right\rangle=0$. We define the co-adjoint action of $G(R)$ on $\mathfrak{G}^{\prime}(R)=\mathfrak{G}^{\prime}(\mathbf{Z})$ $\otimes_{\mathrm{z}} R ;$

$$
<\operatorname{Ad}^{2} x \cdot X^{\prime}, \operatorname{Ad} x \cdot X>=<X^{\prime}, X>\quad\left(X \in \mathfrak{G}(R), X^{\prime} \in\left(\mathfrak{F}^{\prime}(R), x \in G(R)\right),\right.
$$

where R is an arbitrary commutative ring with the identity.
Example 1.3. When $G=S L_{l+1}(F)(I \geqq 1)$, we assume that the residue characteristic p of F is not 2 and does not divide $\mathfrak{I}+1$. Then we have $\mathfrak{G}(\mathbf{Z})=\{x \in$ $M(\mathbf{l}+1, \mathbf{Z}) \mid \operatorname{Tr} x=0\}$. Define a non-degenerate bilinear form on $\mathbb{G}(\mathbf{Z})$ by $\langle x, y\rangle=\operatorname{Tr} x y(x, y \in \mathfrak{G}(\mathbf{Z}))$. We identify $\tilde{5}^{\prime}(\mathbf{Z})$ with $\mathfrak{G}(\mathbf{Z})$ by the isomorphism induced from the above bilinear form. Note that the above bilinear form $<,>$ is naturally extended to a non-degenerate bilinear form on $\mathscr{G}\left(\mathcal{D} / \mathfrak{P}^{n}\right)$ ($n \geqq 1$) by the above assumption. Thus we have $\operatorname{Ad}^{2} x \cdot X^{\prime}=x X^{\prime} x^{-1}, x \in S L_{l+1}$ $\left(\mathfrak{D} / \mathfrak{P}^{n}\right), X^{\prime} \in \mathfrak{G}^{\prime}\left(\mathfrak{D} / \mathfrak{P}^{n}\right)=\left\{X^{\prime} \in M\left(\mathbb{l}+1, \mathfrak{D} / \mathfrak{P}^{n}\right) \mid \operatorname{Tr} X^{\prime}=0\right\}(n \geqq 1)$.
1.4. From now on, we fix a base $B(\Phi)$ of the root system Φ.

Definition 1.4. For each $H \in \boldsymbol{X}^{\prime}$, we define the element π^{H} of $A=\boldsymbol{X}^{\prime}$
$\otimes_{Z} F^{*}$ by $\omega\left(\pi^{H}\right)=\pi^{<\omega, H>}$ for any $\omega \in \boldsymbol{X}$. We denote by \boldsymbol{X} the set of all $H \in \boldsymbol{X}^{\prime}$ such that $\langle\alpha, H\rangle \geqq 0$ for any $\alpha \in B(\Phi)$.

Lemma 2 (Cartan decomposition).

$$
G=K A K=\cup_{H \in \mathbf{X}_{+}^{\prime}} K \pi^{H} K \quad \text { (disjoint union) }
$$

Proof. The proof can be found in Theorem 21 of [8].
Example 1.4. When $G=S L_{l+1}(F)(I \geqq 1)$, put

$$
A_{+}=\left\{\begin{array}{ccc|c}
\pi^{\mu_{1}} & 0 & 0 & { }^{m_{2}} \\
& \left.m_{1}, m_{2}, \ldots, m_{l+1}\right) \in \mathbf{Z}^{l+1}, m_{1}+m_{2}+ \\
0 & \ddots^{m_{l+1}} & & \cdots+m_{l+1}=0, \text { and } m_{1} \geqq m_{2} \geqq \cdots \geqq m_{l+1}
\end{array}\right\} .
$$

Then we have

$$
S L_{l+1}(F)=\cup_{a \in A+} S L_{l+1}(\mathcal{D}) \cdot a \cdot S L_{l+1}(\mathcal{D}) \quad \text { (disjoint union). }
$$

§ 2. Preliminaries for induced representations of finite groups

Let H be a subgroup of a finite group G, and let $v: H \rightarrow G L(V)$ be a linear representation of H where V is a finite dimensional vector space over \mathbf{C}. We denote by $\operatorname{Ind}{ }_{H}^{G} v$ the representation of G induced from v. We assume that H is abelian and normal. We denote by \hat{H} the set of all characters of H. Then G operates on \hat{H} in an obvious way i.e., for $\chi \in \hat{H}, g \in G$ and $h \in H,{ }^{g} \chi(h)=$ $\chi\left(g^{-1} h g\right)$. For each $\chi \in \hat{H}$, we denote by I_{χ} the subgroup of G fixing χ. Let $\mu: G \rightarrow G L(W)$ be an irreducible representation of G, where W is a finite dimensional vector space over \mathbf{C}. For each $\chi \in \hat{H}$, put $W_{\chi}=\{w \in W \mid \mu(h) w=\chi(h) w$ for any $h \in H\}$. Then we see immediately that W_{χ} is a I_{χ}-invariant subspace of W, and that μ induces naturally a representation μ_{χ} of I_{χ} on W_{χ}. With these notations, we have the following Lemma.

Lemma 3 ([7], §1). Let χ_{0} be a character of H such that $W_{\chi_{0}} \neq\{0\}$, and let O be the G-orbit in \hat{H} containing χ_{0}. Then $W=\sum_{\chi \in O} W_{\chi}$, and μ_{χ} is an irreducible representation of I_{χ} and $\operatorname{Ind}_{I_{\chi}}^{G} \mu_{\chi}$ is equivalent to μ. Conversely, for $\chi \in \hat{H}$, let v_{χ} be an irreducible representation of I_{χ} such that $v_{\chi}(h)=\chi(h) \cdot 1$ for any $h \in H$. Then Ind $I_{x} v_{x}$ is an irreducible representation of G. Moreover, for $\chi, \tau \in \hat{H}, \operatorname{Ind}_{I_{x}}^{G} v_{\chi}$ is equivalent to $\operatorname{Ind}_{I_{x}}^{G} v_{\chi}$ if and only if there exists $k \in G$ such that $\chi={ }^{k} \tau$, and v_{χ} is equivalent to v_{τ}^{k} as representations of I_{χ}, where v_{χ}^{k} is defined by $\nu_{\tau}^{k}(g)=v_{\tau}\left(k^{-1} g k\right)\left(g \in I_{\chi}\right)$.

§3. Irreducible representations of the maximal compact subgroup K

3.1. Let χ be an additive character of F. We say that χ is of order 0 if χ
is trivial on \mathfrak{O} and non-trivial on \mathfrak{P}^{-1}. From now on, fix a character χ of F, of order 0 . Let f, f^{\prime} and $f^{\prime \prime}$ be integers such that $f \geqq 2, f=f^{\prime}+f^{\prime \prime}$, and $2 f^{\prime} \leqq f \leqq$ $2 f^{\prime}+1$.

Definition 3.1. For each $X^{\prime} \in\left(\mathfrak{G}^{\prime}\left(\mathfrak{D} / \mathfrak{P}^{f}\right)\right.$, we define a function $\chi_{X^{f}}^{f}$ on $G\left(\mathfrak{P}^{f^{\prime \prime}}\right)$ by $\chi_{X^{\prime}}^{f}(g)=\chi\left(\pi^{-f}<X^{\prime}, e^{-1}\left(\psi_{f}(g)\right)>\right)$ for any $g \in G\left(\mathfrak{P}^{f^{\prime \prime}}\right)$ where e is the isomorphism of $\mathfrak{G}\left(\mathfrak{P}^{f^{\prime \prime}} \mid \mathfrak{P}^{f}\right)$ onto $G\left(\mathfrak{P}^{f^{\prime \prime}} \mid \mathfrak{P}^{f}\right)$ defined in Lemma 1 of $\S 1$.

Lemma 4. (i) The function $\chi_{X^{\prime}}^{f}$, is an one-dimensional representation of $G\left(\mathfrak{P}^{f^{\prime \prime}}\right)$ which is trivial on $G\left(\mathfrak{P}^{f}\right)$.
(ii) For any $k \in K$, we have ${ }^{k} \chi_{X^{\prime}}^{f}=\chi_{\mathrm{Ad}^{\vee}\left(\psi_{f}(k)\right) \cdot x^{\prime}}^{f}$.
(iii) The mapping $X^{\prime} \mapsto \chi_{X}^{f}$, is an isomorphism of the additive group $\mathscr{5}^{\prime}(\mathfrak{D} /$ $\mathfrak{P}^{\mathfrak{f}}$) onto the multiplicative group of all one-dimensional representations of $G\left(\mathfrak{P}^{f^{\prime \prime}}\right)$ which are trivial on $G\left(\mathfrak{P}^{f}\right)$.

Proof. (i) is clear by the definition of $\chi_{X^{\prime}}^{f}$.
(ii) By Lemma 1, we have ${ }^{k} \chi_{X^{\prime}}^{f}(g)=\chi_{X^{\prime}}^{f}\left(k^{-1} g k\right)=\chi\left(\pi^{-f}<X^{\prime}, e^{-1}\left(\psi_{f}\left(k^{-1} g k\right)\right)\right.$ $>)=\chi\left(\pi^{-f}<X^{\prime}, \operatorname{Ad}\left(\psi_{f}(k)\right)^{-1} \cdot\left(e^{-1}\left(\psi_{f}(g)\right)\right)>\right)=\left(\pi^{-f}<\operatorname{Ad}^{\imath} \psi_{f}(k) \cdot X^{\prime}, e^{-1}\left(\psi_{f}(g)\right)\right.$ $>)=\chi_{\mathrm{Ad} \vee \psi_{f}(k) \cdot X^{\prime}}^{f}(g)$ for any $k \in K$ and any $g \in G\left(\mathfrak{P}^{f^{\prime \prime}}\right)$.
(iii) By the well-known commutator relations in the Chevalley group $G(R)$ over a commutative ring R (see [8]), and by the fact that $2 f^{\prime \prime} \geqq f$, we see that $G\left(\mathfrak{P}^{f^{\prime \prime}} / \mathfrak{P}^{f}\right) \cong G\left(\mathfrak{P}^{f^{\prime \prime}}\right) / G\left(\mathfrak{P}^{f}\right)$ is abelian. Hence every one-dimensional representation of $G\left(\mathfrak{P}^{f^{\prime \prime}}\right)$ which is trivial on $G\left(\mathfrak{P}^{f}\right)$ can be regarded as a character of $G\left(\mathfrak{P}^{f^{\prime \prime}} /\right.$ \mathfrak{P}^{f}). Hence in order to prove (iii), it is enough to show that the mapping $X^{\prime} \mapsto$ $\chi_{X^{\prime}}^{f}$, is an isomorphism of $\mathfrak{G}^{\prime}\left(\mathfrak{D} / \mathfrak{P}^{f^{\prime}}\right)$ onto $G\left(\widehat{\mathfrak{P}^{\prime \prime} / \mathfrak{P}^{f}}\right)$, where we denote by $G\left(\widehat{\mathfrak{P}^{f^{\prime \prime}}} \mid\right.$ \mathfrak{P}^{f}) the multiplicative group of all characters of $G\left(\mathfrak{P}^{f^{\prime \prime}} / \mathfrak{P}^{f}\right)$. Since χ is of order 0 , we have a non-degenerate bilinear form ($\left.X^{\prime}, X\right) \mapsto \chi\left(\pi^{-f}<X^{\prime}, X>\right)$ on $\mathfrak{5}^{\prime}(\mathfrak{D} /$ $\left.\mathfrak{P}^{f}\right) \times\left(\mathfrak{G}\left(\mathfrak{P}^{f^{\prime \prime}} / \mathfrak{P}^{f}\right)\right.$. Hence an assigning each $X^{\prime} \in \mathfrak{G}^{\prime}\left(\mathfrak{D} / \mathfrak{P}^{f^{\prime}}\right)$ to a character $X \mapsto \chi\left(\pi^{-f}<X^{\prime}, X>\right)$ of $\left(\mathfrak{G}\left(\mathfrak{P}^{f^{\prime \prime}} / \mathfrak{P}^{f}\right)\right.$ gives the isomorphism $\mathfrak{G}^{\prime}\left(\mathfrak{D} / \mathfrak{P}^{f^{\prime}}\right) \cong G\left(\mathfrak{P}^{f^{\prime \prime}} \mid\right.$ $\left.\mathfrak{P}^{f}\right)$. Combining this isomorphism with an isomorphism $\mathfrak{G}\left(\mathfrak{P}^{f^{\prime \prime}} \mid \mathfrak{P}^{f}\right) \cong G\left(\mathfrak{P}^{f^{\prime \prime}} \mid\right.$ $\left.\mathfrak{P}^{f}\right)$ induced from the isomorphism $e: \mathfrak{G}\left(\mathfrak{P}^{f^{\prime \prime}} \mid \mathfrak{P}^{f}\right) \cong G\left(\mathfrak{P}^{f^{\prime \prime}} / \mathfrak{P}^{f}\right)$, we have the desired isomorphism $X^{\prime} \mapsto \chi_{X^{\prime}}^{f}: \mathfrak{F}^{\prime}\left(\mathfrak{D} / \mathfrak{P}^{f}\right) \cong G\left(\mathfrak{P}^{r^{\prime \prime}} / \mathfrak{P}^{f}\right)$.
q.e.d.
3.2. Let v be a non-trivial continuous irreducible unitary representation of the maximal compact subgroup K of G on a Hilbert space.

Definition 3.2. We call an integer f the conductor of v, if v is trivial on $G\left(\mathfrak{P}^{f}\right)$ and non-trivial on $G\left(\mathfrak{P}^{f-1}\right)$. We denote by $f=f(\nu)$ (Note that K has a fundamental system of neighborhoods $\left.\left\{G\left(\mathfrak{P}^{n}\right)\right\}_{n \geqq 1}\right)$.

We assume that $f=f(v) \geqq 2$, and let $f^{\prime}, f^{\prime \prime}$ be integers such that $f=f^{\prime}+f^{\prime \prime}$, $2 f^{\prime} \leqq f \leqq 2 f^{\prime}+1$. For each $X^{\prime} \in \mathfrak{G}^{\prime}\left(\mathfrak{D} / \mathfrak{P}^{f^{\prime}}\right)$, put $\quad V_{X^{\prime}}=\left\{v \in V \mid v(g) v=\chi_{X^{\prime}}^{f}(g) v\right.$
for any $\left.g \in G\left(\mathfrak{P}^{f^{\prime \prime}}\right)\right\}$. By (ii) of Lemma 4, for each $k \in K$, ${ }^{k} \chi_{X^{\prime}}^{f}=\chi_{X^{\prime}}^{f}$, if and only if $\operatorname{Ad}^{\vee}\left(\psi_{f}(k)\right) X^{\prime}=X^{\prime}$. So we denote by $Z_{K}\left(X^{\prime}\right)$ the set of all $k \in K$ fixing $\chi_{X^{\prime}}^{f}$. Then $V_{X^{\prime}}$ is a $Z_{K}\left(X^{\prime}\right)$-invariant subspace of V. Put $O_{v}=\left\{X^{\prime} \in\left(\mathfrak{b}^{\prime}\left(\mathfrak{D} / \mathfrak{P}^{f^{\prime}}\right) \mid V_{X^{\prime}}\right.\right.$ $\neq 0\}$. Then, since $G\left(\mathfrak{P}^{f^{\prime \prime}}\right) / G\left(\mathfrak{P}^{f}\right)$ is a finite normal abelian subgroup of $G(\mathfrak{D}) /$ $G\left(\mathfrak{P}^{f}\right), O_{v}$ is not empty. For each $X^{\prime} \in O_{v}$, we denote by $v_{X^{\prime}}$ the representation of $Z_{K}\left(X^{\prime}\right)$ on $V_{X^{\prime}}$ defined by $v_{X^{\prime}}(g)=\left.v(g)\right|_{V_{X^{\prime}}}$ for any $g \in Z_{K}\left(X^{\prime}\right)$.

With these notations, we have the following generalization of Theorem 1 of [7], $\S 2$.

Theorem 1. Let v be a continuous irreducible unitary representation of K such that $f=f(v) \geqq 2$, and let $f^{\prime}, f^{\prime \prime}$ be integers such that $f=f^{\prime}+f^{\prime \prime}, 2 f^{\prime} \leqq f \leqq$ $2 f^{\prime}+1$. Then
(i) $G\left(\mathfrak{D} / \mathfrak{P}^{\mathfrak{f}}\right)$ operates transitively on O_{v} by the adjoint action, and for $X^{\prime} \in O_{v}$, we have $X^{\prime} \not \equiv 0(\bmod \mathfrak{P})$.
(ii) $v_{X^{\prime}}$ is the representation of $Z_{K}\left(X^{\prime}\right)$ which coincides with $\chi_{X^{\prime}}^{f} \cdot 1$ on $G\left(\mathfrak{P}^{f^{\prime \prime}}\right)$, and $\operatorname{Ind}_{\left.Z_{\mathrm{K}^{\prime}\left(X^{\prime}\right.}^{K}\right)} v_{X^{\prime}}$, is equivalent to v. Conversely, for $X^{\prime} \in \mathfrak{5}^{\prime}\left(\mathfrak{D} / \mathfrak{P}^{f}\right)$ such that $X^{\prime} \not \equiv 0(\bmod \mathfrak{P})$, let μ be an irreducible unitary representation of $Z_{K}\left(X^{\prime}\right)$ which coincides with $\chi_{X^{\prime}}^{f} \cdot 1$ on $G\left(\mathfrak{P}^{f^{\prime \prime}}\right)$. Then $v=\operatorname{Ind}_{Z_{K}^{K}\left(X^{\prime}\right)} \mu$ is a continuous irreducible unitary representation of K such that $f(v)=f$ and $X^{\prime} \in O_{v}$.

Proof. Fix an element X_{0}^{\prime} of O_{v}. For each $k \in K$, we have $v(k) V_{X_{0^{\prime}}}=$ $V_{A_{d} \vee\left(\psi_{f}(k)\right) \cdot x_{0}^{\prime}}^{f}$. Indeed, for any $g \in G\left(\mathfrak{P}^{f^{\prime \prime}}\right)$ and for any $v(g) v(k) v=$ $v(k) v\left(k^{-1} g k\right) v=v(k) \chi_{X_{0}^{\prime}}^{f}\left(k^{-1} g k\right) v=v(k) \chi_{\mathrm{Ad}^{\vee}\left(\psi_{f}(k)\right) \cdot x_{0}^{\prime}(g) v=\chi_{\mathrm{Ad}^{\vee}\left(\psi_{f}(k)\right)}^{f} \cdot x_{0}^{\prime} \cdot(g) v(k) v . ~ . ~ . ~}^{\text {. }}$ Then we have $\operatorname{Ad}^{\vee}\left(\psi_{f}(k)\right) \cdot X_{0}^{\prime} \in O_{v}$ for any $k \in K$. Since the representation v of K can be regarded as an irreducible unitary representation of the finite group $G(\mathfrak{D}) / G(\mathfrak{P})$, we have $V=\sum_{k \in K} V_{\left.\mathrm{Ad}^{\vee}(\psi)_{f}(k)\right)} \cdot x_{0}$. Therefore we have $V=\sum_{k \in K}$
 This shows that $G\left(\mathfrak{D} / \mathfrak{P}^{f}\right) \cong G(\mathfrak{D}) / G\left(\mathfrak{P}^{f}\right)$ operates transitively on O_{v} by the co-adjoint action. For $X^{\prime} \in O_{y}$, we assume that $X^{\prime} \equiv 0(\bmod \mathfrak{P})$. Then $\chi_{X^{\prime}}^{f}$, is trivial on $G\left(\mathfrak{P}^{f^{\prime \prime}}\right)$. Hence the representation v is trivial on $G\left(\mathfrak{P}^{f^{\prime \prime}}\right)$. This contradicts $f(v)=f$.
(ii) In the proof of Lemma 4, we have seen that $G\left(\mathfrak{P}^{f^{\prime \prime}}\right) / G(\mathfrak{P})$ is a normal abelian subgroup of the finite group $G(\mathfrak{D}) / G(\mathfrak{P})$. Hence (ii) is an immediate consequence of Lemma 3 in $\S 2$.
q.e.d.

In the above Theorem 1 , the condition, $f(v) \geqq 2$, means that the representation v of K does not come from an representation of $G(\mathfrak{D} / \mathfrak{P})$. Hence Theorem 1 says that continuous irreducible unitary representations of the maximal compact subgroup K of G which do not come from representations of $G(\mathfrak{D} / \mathfrak{P})$ are induced from certain irreducible representations of certain subgroups of K.

§4. Unitary representations of \boldsymbol{G} induced from irreducible representations of tie maximal compact subgroup K of G

4.1. Let $d g$ be the Haar measure on G such that $\int_{K} d g=1$. Let U be a continuous unitary representation of G on a Hilbert space \mathfrak{G}.

Definition 4.1. U is said to be square-integrable if there exists $v \in$ $\mathfrak{G}-\{0\}$ such that

$$
\int_{G}(U(g) v, v)(U(g) v, v) d g<+\infty
$$

where $($,$) is an inner product of \mathfrak{H}$ and $(\overline{U(g) v, v)}$ is the complex conjugate of $(U(g) v, v)$.

If U is square-integrable, then there exists a number $d>0$, called the formal degree of U depending only the equivalence class of U and on the normalization of the Haar measure $d g$ on G such that

$$
\int_{G}\left(U(g) u_{1}, v_{1}\right)\left(\overline{U(g) u_{2}, v_{2}}\right) d g=d^{-1}\left(u_{1}, u_{2}\right)\left(\overline{\left.v_{1}, v_{2}\right)}\right.
$$

for all $u_{i}, v_{i} \in \mathfrak{H}(i=1,2)$ (Schur's orthogonality relation). Let v be a continuous irreducible unitary representation of K on a finite dimensional Hilbert space V. We denote by \mathfrak{S}_{v} the set of all V-valued functions f satisfying the following conditions:
(i) $f(k g)=v(k) f(g)$ for any $k \in K$ and for any $g \in G$,
(ii) $\int_{G}(f(g), f(g)) d g<+\infty$, where $($,$) is an inner product of V$. We define an inner product $<,>$ on \mathfrak{H}_{v} by

$$
<f, h>=\int_{G}(f(g), h(g)) d g \quad\left(f, h \in \mathfrak{H}_{v}\right)
$$

Then \mathfrak{S}_{v} becomes a Hilbert space. We define a representation U_{v} of G on \mathfrak{H}_{v} as follows:

$$
\left(U_{v}(g) f\right)\left(g^{\prime}\right)=f\left(g^{\prime} g\right) \quad\left(g, g^{\prime} \in G, f \in \mathfrak{G}_{v}\right)
$$

We denote by $\operatorname{Ind}_{K}^{G} v$ the above unitary representation U_{v} and by $U_{v} \mid K$ the representation of K on \mathfrak{S}_{v} obtained by restricting U_{v} to K. Put $I\left(U_{v} \mid K, v\right)=\operatorname{dim} \operatorname{Hom}_{K}(V$, \mathfrak{S}_{v}). This is called the multiplicity of v in $U_{v} \mid K$.

Lemma 5 ([7], §3). (i) If $I\left(U_{v} \mid K, v\right)<+\infty$, then U_{v} decomposes into a
direct sum of at most $I\left(U_{v} \mid K, v\right)$ many irreducible representations. In particular, if $I\left(U_{v} \mid K, v\right)=1$, then U_{v} is irreducible.
(ii) If U_{v} is irreducible, then U_{v} is square-integrable and its formal degree equals $\operatorname{dim} V$.
4.2. Let $G=\cup_{H \in X_{+}^{\prime}} K \pi^{H} K$ be the Cartan decomposition of G in Lemma 2. Let v be a continuous irreducible unitary representation of K on a Hilbert space V. For each $H \in \boldsymbol{X}_{+}^{\prime}$, put $K^{H}=K \cap \pi^{-H} K \pi^{H}$ and we denote by ν^{H} the representation of K^{H} on V defined by $\nu^{H}(k)=v^{H}\left(\pi^{H} k \pi^{-H}\right)$ for any $k \in K^{H}$. Let \mathfrak{S}_{v} be the representation space of $\operatorname{Ind}_{K}^{G} v$ defined in 4.1. For each $H \in \boldsymbol{X}_{+}^{\prime}$, we denote by \mathfrak{S}_{v}^{H} the set of all $f \in \mathfrak{G}_{v}$ whose supports are contained in $K \pi^{H} K$. Then \mathfrak{S}_{v}^{H} is a closed subset of \mathfrak{Y}_{v} and invariant under the representation $U_{v} \mid K$, and moreover we have $\mathfrak{G}_{v}=\sum_{\boldsymbol{H} \in \mathbf{X}_{+}^{\prime}+\mathfrak{Y}_{v}^{H}}$ (direct sum as a Hilbert space). We denote by $U_{v}^{H} \mid K$ the representation $k \mapsto U(k)$ of K on \mathfrak{G}_{v}^{H} and by $v \mid K^{H}$ the representation of K^{H} on V obtained by restricting v to K^{H}. Put $I\left(v \mid K^{H}, v\right)=\operatorname{dim} \operatorname{Hom}_{K^{H}}(V, V)$.

Lemma 6 ([7], §3). (i) For each $H \in \boldsymbol{X}_{+}^{\prime}, U_{v}^{H} \mid K$ is equivalent to $\operatorname{Ind}_{K^{\prime}}^{K} \nu^{H}$.
(ii) For each $H \in \boldsymbol{X}_{+}^{\prime}, I\left(U_{v}^{H} \mid K, v\right)=I\left(v \mid K^{H}, v^{H}\right)$.
(iii) $I\left(U_{v} \mid K, v\right)=\sum_{H \in \mathbf{X}_{+}^{\prime}} I\left(v \mid K^{H}, v^{H}\right)$ (Remark, The equality in (iii) admits the infinity, i.e., $+\infty=+\infty$).
4.3 Let v be a continuous irreducible unitary representation of K with the conductor $f(v)=f \geqq 2$, and let $f^{\prime}, f^{\prime \prime}$ be integers such that $f=f^{\prime}+f^{\prime \prime}, 2 f^{\prime} \leqq f \leqq$ $2 f^{\prime}+1$. Let O_{v} be the set of all $X^{\prime} \in\left(\mathfrak{G}^{\prime}\left(\mathcal{D} / \mathfrak{P}^{f^{\prime}}\right)\right.$ such that $V_{X^{\prime}} \neq\{0\}$. Thus every element of O_{v} is uniquely written as the form $H^{\prime}+\sum_{\alpha \in \Phi} u_{\alpha} X_{\alpha}^{\prime}$ where $H^{\prime} \in$ $\boldsymbol{X} \otimes_{\mathbf{z}} \mathfrak{D} / \mathfrak{P}^{f^{\prime}}$ and $u_{\alpha} \in \mathfrak{D} / \mathfrak{P}^{f^{\prime}}(\alpha \in \Phi)$. For each $X^{\prime}=H^{\prime}+\sum_{\alpha \in \Phi} u_{\alpha} X_{\alpha}^{\prime} \in O_{v}$ and each integer m such that $1 \leqq m \leqq f^{\prime}$, we denote by $\operatorname{Supp}_{m}\left(X^{\prime}\right)$ the set of all roots α such that $\psi_{m}\left(u_{\alpha}\right) \neq 0$ (We recall that ψ_{m} is the reduction modulo $\mathfrak{P}^{m}: \mathfrak{D} / \mathfrak{P}^{f^{\prime}} \rightarrow$ $\left.\mathfrak{O} / \mathfrak{P}^{m}\right)$. For each $H \in \boldsymbol{X}_{+}^{\prime}$, we denote by $P_{m}(H)$ the set of all positive roots α such that $\langle\alpha, H\rangle \geqq m$. Put $B(\Phi)=\left\{\alpha_{1}, \ldots, \alpha_{l}\right\}$ (the fixed base of the root system Φ). Then every root is uniquely written as the form $\sum_{i=1}^{l} n_{i} \alpha_{i}$ where all n_{i} are non-negative integers and have the same sign. For each $\alpha_{j} \in B(\Phi)$, we denote by $\left(\alpha_{j}\right)$ the set of all roots $\alpha=\sum_{i=1}^{l} n_{i} \alpha_{i}$ such that $n_{j} \geqq 1$.

Proposition 1. Let v be a continuous irreducible unitary representation of K with the conductor $f(v)=f \geqq 2$, and let $f^{\prime}, f^{\prime \prime}$ be integers such $f=f^{\prime}+f^{\prime \prime}$, $2 f^{\prime} \leqq f \leqq 2 f^{\prime}+1$. Let H be an element of $\boldsymbol{X}_{+}^{\prime}$. Assume that there exists an integer $m\left(1 \leqq m \leqq f^{\prime}\right)$ such that for any $X^{\prime} \in O_{v}$ and for any $\alpha_{i} \in B(\Phi),\left(\alpha_{i}\right) \cap \operatorname{Supp}_{m}\left(X^{\prime}\right)$ $\neq \phi$ and $B(\Phi) \cap P_{m}(H) \neq \phi$. Then $I\left(v \mid K^{H}, v^{H}\right)=0$.

Proof. We shall prove by absurdity. Assume that $I\left(v \mid K^{H}, v^{H}\right)>0$. Let V be a representation space of v. Then there exists a non-trivial linear transformation T of V satisfying the following condition; for any $k \in K^{H}$,

$$
\begin{equation*}
v(k) T=T v\left(\pi^{H} k \pi^{-H}\right) . \tag{1}
\end{equation*}
$$

Now by the assumption $B(\Phi) \cap P_{m}(H) \neq \phi$, there exists $\alpha_{i_{0}} \in B(\Phi) \cap P_{m}(H)\left(1 \leqq i_{0} \leqq\right.$ l). Then

$$
\begin{equation*}
\left(\alpha_{i_{0}}\right) \subset P_{m}(H) . \tag{2}
\end{equation*}
$$

In fact, let $\beta=\sum_{i=1}^{l} n_{i} \alpha_{i}$ be any root of $\left(\alpha_{i_{0}}\right)$. Then, since $n_{i} \geqq 0$ and $\left\langle\alpha_{i}, H\right\rangle \geqq 0$ for all $i(1 \leqq i \leqq \mathrm{l})$, we have $\langle\beta, H\rangle=\sum_{i=1}^{l} n_{i}\left\langle\alpha_{i}, H\right\rangle \geqq\left\langle\alpha_{i 0}, H\right\rangle \geqq m$. Hence β belongs to $P_{m}(H)$. We denote by U the subgroup of K generated by the set $\left\{x_{\alpha}(t) \mid \alpha \in\left(\alpha_{i_{0}}\right), t \in \mathfrak{P}^{f-m}\right\}$. Then, under some order in $\left(\alpha_{i_{0}}\right)$, every element of U is uniquely written as the product $\prod_{\alpha \in\left(\alpha_{i_{0}}\right)} x_{\alpha}\left(t_{\alpha}\right)\left(t_{\alpha} \in \mathfrak{P}^{f-m}\right)([8], \S 3$, Lemma 17). For any $u \in U$, say $u=\prod_{\alpha \in\left(\alpha_{i_{0}}\right)} x_{\alpha}\left(t_{\alpha}\right)\left(t_{\alpha} \in \mathfrak{P}^{f-m}\right)$, we have $\pi^{H} u \pi^{-H}=\prod_{\alpha \in\left(\alpha_{i_{0}}\right)}$. $\pi^{H} x_{\alpha}\left(t_{\alpha}\right) \pi^{-H}=\prod_{\alpha \in\left(\alpha_{i_{0}}\right)} x_{\alpha}\left(\pi^{<\alpha, H>} t_{\alpha}\right) . \quad$ By (2), $\pi^{<\alpha, H>} t_{\alpha} \in \mathfrak{P}^{f}$ for all $\alpha \in\left(\alpha_{i_{0}}\right)$. Thus we have $\pi^{H} u \pi^{-H} \in G\left(\mathfrak{P}^{f}\right)$. Hence by (1), we have $v(u) T=T$ for any $u \in U$. Since T is not trivial, there exists $v \in V-\{0\}$ such that $v(u) v=v$ for any $u \in U$. Therefore, since $V=\sum_{X^{\prime} \in O_{\nu}} V_{X^{\prime}}$, there exists a non-zero $V_{X^{\prime}}$-component $v_{X^{\prime}}$ of v such that $v(u) v_{X^{\prime}}=v_{X^{\prime}}$ for any $u \in U$. Hence we have $\chi_{X^{\prime}}^{f}(u)=1$ for any $u \in U$. On the other hand, by the assumption $\left(\alpha_{i_{0}}\right) \cap \operatorname{Supp}_{m}\left(X^{\prime}\right) \neq \phi$, there exists a root γ belonging to $\left(\alpha_{i_{0}}\right) \cap \operatorname{Supp}_{m}\left(X^{\prime}\right)$. Therefore, let X^{\prime} be the form $H^{\prime}+\sum_{\alpha \in \Phi} u_{\alpha} X_{\alpha}^{\prime}$ where $H^{\prime} \in \mathbf{X} \otimes_{\mathbf{z}} \mathfrak{D} / \mathfrak{P}^{f}, u_{\alpha} \in \mathfrak{D} / \mathfrak{P}^{f}(\alpha \in \Phi)$, then we have $\psi_{m}\left(u_{\gamma}\right) \neq 0$ in $\mathfrak{D} / \mathfrak{P}^{m}$. Here we take $t_{\alpha} \in \mathfrak{P}^{f-m}\left(\alpha \in\left(\alpha_{i_{0}}\right)\right)$ such that for $\alpha=\gamma, t_{\gamma} \notin \mathfrak{P}^{f-m+1}$ and $\chi\left(\pi^{-f} u_{\gamma} t_{\gamma}\right)$ $\neq 1$, and for $\alpha \neq \gamma, t_{\alpha} \in \mathfrak{P}^{f-m+1}$. This is possible, because χ is of order 0 . Put $u_{0}=\prod_{\alpha \in\left(\alpha_{i_{0}}\right)} x_{\alpha}\left(t_{\alpha}\right)$, then we have $u_{0} \in U$. By the definition of $\chi_{X^{\prime}}^{f}$, we have $\chi_{X^{\prime}}^{f}\left(u_{0}\right)=\chi\left(\pi^{-f}<X^{\prime}, e^{-1}\left(\psi_{f}\left(u_{0}\right)\right)>\right)=\chi\left(\pi^{-f}<X^{\prime}, \sum_{\alpha \in\left(\alpha_{i_{0}}\right)} \psi_{f}\left(u_{\alpha}\right) \cdot X_{\alpha}>\right)=\chi\left(\pi^{-f} t_{\gamma} u_{\gamma}\right)$ $\neq 1$. This is contradiction. q.e.d.

Corollary 1. Let v, f, f^{\prime} and $f^{\prime \prime}$ be as in Proposition 1. Assume that there exists an integer $m\left(1 \leqq m \leqq f^{\prime}\right)$ such that for any $X^{\prime} \in O_{v}$ and for any integer $i(1 \leqq i \leqq 1),\left(\alpha_{i}\right) \cap \operatorname{Supp}_{m}\left(X^{\prime}\right) \neq \phi$. Then there exist only finitely many elements H of $\boldsymbol{X}_{+}^{\prime}$ such that $I\left(v \mid K^{H}, v^{H}\right)>0$. If $m=1$, then $I\left(v \mid K^{H}, v^{H}\right)=0$ for any $H \neq 0$ in X_{+}^{\prime}.

Proof. If $I\left(v \mid K^{H}, v^{H}\right)>0$, then we have $B(\Phi) \cap P_{m}(H)=\phi$ by the above Proposition. Therefore, for all $\alpha_{i} \in B(\Phi)(1 \leqq i \leqq 1)$, we have $0 \leqq<\alpha_{i}, H><m \cdots$ (*). Since the root module $Q(\Phi)$ is of finite index in the lattice \boldsymbol{X}, and the bilinear form $<,>$ is non-degenerated on $\boldsymbol{X} \times \boldsymbol{X}^{\prime}$, there must exist only finitely many $H \in X_{+}^{\prime}$ satisfying (*). In the case that $m=1$, there does not exist such $H \neq 0$. q.e.d.

By Corollary 1 and Lemma 6, we have the following Corollary.
Corollary 2. Let v, f, f^{\prime} and $f^{\prime \prime}$ be as in Proposition 1. Assume that
there exists an integer $m\left(1 \leqq m \leqq f^{\prime}\right)$ such that for any $X^{\prime} \in O_{v}$ and for any $\alpha_{i} \in B(\Phi)(1 \leqq i \leqq l),\left(\alpha_{i}\right) \cap \operatorname{Supp}_{m}\left(X^{\prime}\right) \neq \phi . \quad$ Then $I\left(U_{v} \mid K, v\right)<+\infty$. If $m=1$, then $I\left(U_{v} \mid K, v\right)=1$.

By Lemma 6 and the above Propositions, we have the following Theorem.
Theorem 2. Let v be a continuous irreducible unitary representation with conductor $f(v)=f \geqq 2$, and let f, f^{\prime} and $f^{\prime \prime}$ be integers such that $f=f^{\prime}+f^{\prime \prime}, 2 f^{\prime}$ $\leqq f \leqq 2 f^{\prime}+1$. Assume that there exists an integer $m\left(1 \leqq m \leqq f^{\prime}\right)$ such that for any $X^{\prime} \in O_{v}$ and for any $\alpha_{i} \in B(\Phi)(1 \leqq i \leqq \mathfrak{l}),\left(\alpha_{i}\right) \cap \operatorname{Supp}_{m}\left(X^{\prime}\right) \neq \phi$. Then U_{v} $=\operatorname{Ind}_{K}^{G} v$ decomposes into a direct sum of at most $I\left(U_{v} \mid K, v\right)$ many irreducible representations of G. In particular, if $m=1$, then $U_{v}=\operatorname{Ind}_{K}^{G} v$ is a squareintegrable irreducible unitary representation of G whose formal degree is the degree of the representation v.

Remark. By Lemma 6 and Corollary 1 to Proposition 1, we have $I\left(U_{v} \mid K\right.$, $v)=\sum I\left(v \mid K^{H}, v^{H}\right)$ where the summation is taken over all $H \in \boldsymbol{X}_{+}^{\prime}$ such that $\left\langle\alpha_{i}\right.$, $H><m$ for all $\alpha_{i} \in B(\Phi)$.
4.4. We shall compare our results with those of [7] obtained by T. Shintani. From now on, we put $G=S L_{l+1}(F)$ and $K=S L_{l+1}(\mathfrak{D})(I \geqq 1)$. Let v be a continuous irreducible unitary representation of K on a Hilbert space V with conductor $f(v)=f \geqq 2$, and $f^{\prime}, f^{\prime \prime}$ be $f=f^{\prime}+f^{\prime \prime}, 2 f^{\prime} \leqq f \leqq 2 f^{\prime}+1$. By Example 1.3 and 3.2, for this representation v, O_{v} is the set of all $x \in \mathfrak{G}^{\prime}\left(\mathfrak{D} / \mathfrak{P}^{f}\right)$ such that $V_{x} \neq\{0\}$, where $\mathfrak{F}^{\prime}\left(\mathfrak{D} / \mathfrak{P}^{f}\right)=\left\{x \in M\left(\mathrm{l}+1, \mathfrak{D} / \mathfrak{P}^{f}\right) \mid \operatorname{Tr} x=0\right\}$. For some $x \in O_{v}$, we define a monic polynomial of the degree $\mathfrak{I}+1$ over the finite local ring $\mathfrak{D} / \mathfrak{P}^{f}$ by $C_{v}(t)=\operatorname{det}(t$. $1-x)$ where t is an indeterminate. Then $C_{v}(t)$ does not depend upon the choice of an element x of O_{v}. Hence the polynomial $C_{v}(t)$ corresponds the above representation v of K. T. Shintani proved the following facts in [7]; If $C_{v}(t)$ is an irreducible polynomial, then the unitary representation $\operatorname{Ind}_{K}^{G} v$ of G has finitely many irreducible components. In particular, put $C_{v}(t)=t^{l+1}-a_{1} t^{l}+\cdots+a_{l+1}$ $\left(a_{i} \in \mathfrak{D} / \mathfrak{P}^{f^{\prime}}\right)$. If $\quad \psi_{1}\left(C_{v}(t)\right)=t^{i+1}+\psi_{1}\left(a_{1}\right) t_{l}+\cdots+\psi_{1}\left(a_{l+1}\right) \quad$ is \quad an \quad irreducible polynomial over the finite field $\mathfrak{D} / \mathfrak{P}$, then $\operatorname{Ind}_{\mathrm{K}}^{G} v$ is a square-integrable irreducible representation and its formal degree equals $\operatorname{dim} V$. Moreover, he constructed all continuous irreducible unitary representation v whose corresponding polynomials $\psi_{1}\left(C_{v}(t)\right)$ are irreducible.

Proposition 3. Let v be a continuous irreducible unitary representation of $K=S L_{l+1}(\mathfrak{D})$ with conductor $f(v)=f \geqq 2$, and let $f^{\prime}, f^{\prime \prime}$ be integers $f=f^{\prime}+f^{\prime \prime}$, $2 f^{\prime} \leqq f \leqq 2 f^{\prime}+1$. For each integer $m\left(1 \leqq m \leqq f^{\prime}\right)$, if $\psi_{m}\left(C_{v}(t)\right)$ is an irreducible polynomial over $\mathfrak{D} / \mathfrak{P}^{m}$, then we have $\left(\alpha_{i}\right) \cap \operatorname{Supp}_{m}(x) \neq \phi$ for any $x \in O_{v}$ and for any $\alpha_{i} \in B(\Phi)(1 \leqq i \leqq \mathfrak{l})$.

Proof. Put $A=\left\{\left(\begin{array}{cccc}a_{1} & & & 0 \\ & a_{2} & & \\ & & \ddots & \\ 0 & & a_{l+1}\end{array}\right) \in S L_{l+1}(F)\right\}$. For each i, let e_{i} be a character of A defined by $e_{i}\left(\left(\begin{array}{ccc}a_{1} & & \\ & & 0 \\ & a_{i} & \\ & \ddots & \\ 0 & & a_{l+1}\end{array}\right)\right)=a_{i}$. Then as a root system of \mathfrak{G} and its base, we can take $\Phi=\left\{e_{i}-e_{j} \mid i \neq j, 1 \leqq i \leqq \mathfrak{l}+1,1 \leqq j \leqq 1+1\right\}$ and $B(\Phi)=\left\{e_{1}-e_{2}\right.$, $\left.e_{2}-e_{3}, \ldots, e_{l}-e_{l+1}\right\}$. Now if there exist $x \in O_{v}$ and $\alpha_{i_{0}}=e_{i_{0}}-e_{i_{0}+1} \in B(\Phi)$ $\left(1 \leqq i_{0} \leqq \mathfrak{l}\right)$ such that $\left(\alpha_{i_{0}}\right) \cap \operatorname{Supp}_{m}(x)=\phi$, then by the definition of $\operatorname{Supp}_{m}(x)$ and by Example 1.3, $\psi_{m}(x) \in M\left(\mathrm{I}+1, \mathfrak{D} / \mathfrak{P}^{m}\right)$ is the form $\left(\begin{array}{cc}x_{1} & x_{2} \\ 0 & x_{3}\end{array}\right)$ where x_{1} $\in M\left(i_{0}, \mathfrak{D} / \mathfrak{P}^{m}\right), x_{2} \in M\left(i_{0}, \mathfrak{I}+1-i_{0}, \mathfrak{D} / \mathfrak{P}^{m}\right)$ and $x_{3} \in M\left(\mathfrak{I}+1-i_{0}, \mathfrak{D} / \mathfrak{P}^{m}\right)$. Hence $\psi_{m}\left(C_{v}(t)\right)=\operatorname{det}\left(t \cdot 1-\psi_{m}(x)\right)$ is clearly reducible. q.e.d.

Thus in the case of $G=S L_{l+1}(F)$, there exist continuous irreducible unitary representations of $K=S L_{l+1}(\mathfrak{D})$ which satisfy the condition that $m=1$ in Theorem 2.

References

[1] N. Bourbaki, Groupes et algèbres de lie, Chap. IV, V et VI, Hermann, Paris, 1968.
[2] P. Gérardin, On the discrete series for Chevalley groups, Proc. Amer. Math. Soc., Summer institute on harmonic analysis and homogeneous spaces, 1972.
[3] -, Construction de séries discrètes p-adiques, Lecture Notes in Math. 462 (1975), Springer-Verlag, Berlin. Heidelberg. New York.
[4] F. I. Mautner, Spherical functions over p-adic fields II, Amer. J. Math. 86 (1964), 171-200.
[5] J. A. Shalika, Representations of the two by two unimodular groups over local fields, Part II, Seminar on representations of Lie groups, Princeton, 1966.
[6] T. Shintani, On certain series of square-integrable irreducible unitary representations of special linear groups over p-adic fields, Sûgaku, 19 (1968), 231-239.
[7] , On certain square-integrable irreducible unitary representations of some p-adic linear groups, J. Math. Soc. Japan, 20 (1968), 522-565.
[8] R. Steinberg, Lectures on Chevalley groups, Yale Univ. Lecture Notes, 1967.

