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1. Introduction

In this paper we consider the perturbed second order nonlinear differential

equation

(E) (a(t)xfγ + q(t)f(x) = e(t,x9x
f).

In the last twenty years many authors have studied the oscillatory behavior of

equations of this type especially when e(t, x, x') = Q. Fortunately, several surveys

of known results have been done, the most recent of which are by Wong [8, 9],
While many sufficient conditions for oscillation are known, there are relatively

few theorems which guarantee that (E) has a nonoscillatory solution (see [1-9]

and the references contained therein). Far fewer results guaranteeing that all

solutions of (E) be nonoscillatory are known, and in fact, when e(t, x, x')φQ,

only the results of Graef [1] and Graef and Spikes [2-7] apply.

In this paper we obtain sufficient conditions for all solutions of (E) to be
nonoscillatory. This is accomplished by comparing (E) to an unperturbed

nonlinear equation in Theorems 3 and 4 and to an unperturbed linear equation

in Theorem 5. Use is made of a nonlinear Picone type identity introduced by

the authors in [7].

2. Nonoscillation Criteria

Consider the equations

(1) (a(t)x'Y + q(ί)f(x) = *fc *> *')

and

(2) (βl(ίX)f + βι(0/ι(x) = 0,

where a, al9 q, q±: [f0> oo)-»#,/,/x: R-+R, and e: [ί0, co)xR2-+R are con-
tinuous, α(f)>0, and αjXOX). It will be convenient to use the same classifica-
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tion of solutions used in [2-7]. That is, a solution x(t) of (1) or (2) will be called

nonoscillatory if there exists tι>tQ such that x(f)^0 for t>t1ι the solution will

be called oscillatory if for any given ti>t0 there exist t2 and t3 satisfying tί<t2

<t3, x(f2)>0 and x(ί3)<0; and it will be called a Z-type solution if it has arbitra-
rily large zeros but is ultimately nonnegative or nonpositive. We will say that an
equation is nonoscillatory if all its solutions are nonoscillatory.

The following two lemmas will be needed in order to prove our first two
nonoscillation results. In the statements of these lemmas we adopt the notation:

/z'(0+=max{/z'(0> 0}, Λ'(0-=max{-Λ'(0> 0}, and F(x)=(*f(s)ds.
Jo

LEMMA 1. Suppose that xf1(x)>0 for x^0,/i(x)>0 for all x,
(ao
\ LqΊ(s)+/qι(sϊ]ds<ao, there are positive constants m and M such that
Jfo
<M, and k>0 is given. If

\ Qι(s)fι(ks)ds < ooQ 4ιO)/ι(- ks)ds > - ooj,

then there exists a solution x(f) of (2) and T>t0 such that x(f)>wfc(f-T)/2M
(x(0 < - mk(t - T)/2M) for t > T.

The above lemma was proved in [2; Theorem 1]. A simple modification of
the proof of Lemma 2 in [6] yields the following result.

LEMMA 2. Assume that there is a positive constant D such that F(x)> —D9
(oo (oo

q(t)>Q, \ Lq'(s)+/q(s)']ds<co, \ [0'(s)_/0(s)]ds<oo, and there is a continuous
JfO JtQ

(00

function r: [ί0, oo)-^ such that \e(t, x, x')\<r(t) and \ [r(s)/α(s)]Js<oo. //
Jίo

x(t) is a solution of (1), then x'(t) is bounded and there exist A>Q and T>t0

such that \x(ί)\£Atfor t>T.

We are now ready to prove our first nonoscillation result.

THEOREM 3. Assume that qι(f)>q(t\ 0(0^0ι(0>/(0)=0> and the hypothe-
ses of Lemmas 1 and 2 hold for all fc>0.

(i) Suppose that /7(x)>0 for x>0, e(t, x9 x')>Q, and there exists K>0
such that v>K and v>u>Q implies f'\(v)>f'(u). Then no solution of (I) is

oscillatory or nonnegative Z-type. If9 in addition, /(x)<0 for x<0, then

equation (1) is nonoscillatory.

(ii) Suppose that /'(x)>0 for x<0, e(t, x, x')<0, and there exists K>Q

such that v<—K and v<u<Q implies f((v)>f'(u). Then no solution of (I)
is oscillatory or nonpositive Z-type. If, in addition, /(x)>0 for x^O, then

equation (1) is nonoscillatory.
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PROOF. To prove (i), assume that x(f) is an oscillatory or nonnegative
Z-type solution of (1). By Lemma 2, there exist A>0 and T>t0 such that
|x(ί)l ̂ ί̂ for ί> Γ. From Lemma 1 it follows that there is a solution y(t) of (2)
and 7\ > T such that y(ί) ̂  2At ̂  K for ί > IΊ . Now let ί t and f 2 be consecutive
zeros of x(ί) with t2>tί>T1 and x(ί)>0 for t1<t<t2. Define S: [Γ,, oo)-»β
by

S(0 = /(χ(0)[/ι(XOXOχ'(0 -/(χ(OK(0/(0]//ι(Xί)).

Then

/(x(ί))(α(ί)x'(ί))' + α(0/'(x(0)[x'(0]2

-/2(x(0)(ai(0/(0)7/i(XO)

, x'(0) + [«ι(0 - «(0]/2(x(0)

+ βι(0/ίϋ<0) (/2(̂ (0) L>'(0]2//f(XO)

- 2/(x(ί))/'(χ(ί))y'(Oχ'(0//ι(y(0)/Ί(Xί))

+ [/'(χ(0)]2[χ'(f)]2/[/Ί(XO)]2}

- «ι(0 [/'(χ(0)]2Cχ'(0]2//Ί(XO)

+ α(θ/'(χ(0)[χ'(0]2.

Hence,

S'(ί) =/(x(0)e(ί, x(0, x'(0) + [βι(0 - ί(0]/2(x(0)

+ flι(0/lϋ<0) ί/WO)/(0//ιϋ<0)

- /'(χ(0)χ'(0//l(XO)}2 + /'(χ(0) [χ'(0]2{«(0

By our choice of Tγ, we have/'(x(i))//l(XO)<U> so we now integrate from
ίt to ί2. While the integral of the left hand side of the above equation is zero,
the integral of the right hand side is positive, and we have a contradiction.

To complete the proof of (i) suppose that/(x)<0 for x^O and let x(ί) be a
nonpositive Z-type solution of (1), say x(ί)<0 for ί>ί3>f0. From (1) we have

(α(ί)x'(0)' = e(t, x(ί), x'(0) - <Z(0/(x(0) > 0
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for t> ί3. Choosing ί4> ί3 to be a zero of x'(f) and integrating we have

a(t)x'(t) > *(tjx'(tj = 0

for ί>f4. Thus jc'(ί)^0 f°Γ *^*4 which is impossible for a Z-type solution.
The proof of part (ii) proceeds in a similar fashion by taking a negative

loop of a solution. The details will be omitted.

It is interesting to note that the hypotheses on / and /x in the above theorem
(and Theorem 4 below) are satisfied if f(χ) = χn and fί(χ) = χN where n and N

are odd positive integers with N>n. For example, we can conclude from part

(i) of Theorem 3 that the equation

(3) (fV)' + x3/ί8 = ta2(sechx')/02 + 1), t > 1

is nonoscillatory by comparing it to the equation

x" + jc5/ί7 = 0, t > 1.

The nonoscillation of equation (3) cannot be deduced from other known nonoscil-

lation criteria for perturbed nonlinear equations (see [1-7]).

REMARK 1. The nonlinear Picone type identity obtained by differentiating

S(t) in the proof of the above theorem was first introduced by the authors in

[7].

REMARK 2. If f(x)=fι(x)9 a(t) = (*$), and e(t, x, x') = r(ί), then Theorem
3 includes Theorem 4 of Graef and Spikes [2] as a special case (see also the
Theorem in [3]).

In our next theorem we place a different type of condition on the perturbation
term e(t, x, x').

THEOREM 4. Suppose that qι(i)>q(t), α(ί)>flι(0> */(x)>0, xe(t, x, x')>Q9

and /'(x)>0 for all x. Furthermore, assume that the hypotheses of Lemmas 1

and 2 hold for all fc>0, and there exists K>Q such that for \v\>K and either

v>u>Q or v<u<Q we have f((v)>fr(u). Then equation (1) is nonoscillatory.

PROOF. The proof of this theorem is quite similar to the proof of Theorem

3. The hypotheses here guarantee that S'(t)>0 on a subinterval of (ti9 t2) regard-
less of whether x(f)>0 or x(ί)<0 on (ti9 t2).

REMARK 3. The strict inequality qι(t)>q(i) in Theorems 3 and 4 can be
relaxed to q\(t)>q(i) provided that other conditions are imposed to insure that

S'(i)>0 on some subinterval of (tl9 t2). Also, Lemmas 1 and 2 can be replaced
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by any other set of hypotheses which would yield the same growth estimates on
the solutions of (2) and (1) respectively.

By using

x" -I- x3/*5 = 0, t > 1

as a comparison equation, Theorem 4 shows that the equation

x" + x3/t5 = x/*2(x2 -hi), t > 1

is nonoscillatory, and, moreover, this result cannot be obtained from other known
nonoscillation criteria. Note also that e(t, x, x') is allowed to change signs with
x. This is somewhat unusual since it is known (c. f. [2, 3, 6]) that if e(t, x, x')
= r(t) and r(f) changes signs, then equation (1) may have oscillatory solutions even
when the unperturbed equation is nonoscillatory.

In our final theorem we place a condition on e(t, x, x') which is significantly
different from those usually found in the literature. We will compare (1) to the
linear equation

(4) (a2(t)x'γ + q2(f)x = 0,

where α2, q2 [*o» <*>)-» K are continuous and a2(t)>Q.

THEOREM 5. Let a(ί)>a2(t\ q2(t)>q(t),f(Q)=Q,

/(x)>0 for x>0,

and assume that there exists a continuous function W: R-+R such that W(x)>0,

0</ r(x)< W(x) for x>0,

and

e(t, x, x') JF(x) > q2(t) [JF(x) - l]/(x) for x > 0.

// equation (4) ί's nonoscillatory, then no solution of (1) is oscillatory or non-

negative Z-type. //, in addition, /(x)<0 and e(t, x, x')>0 for x<0, and q(t)

>0, then equation (1) is nonoscillatory.

PROOF. Suppose that x(t) is an oscillatory or nonnegative Z-type solution

of (1). Let y(f) be a solution of (4); we can assume with no loss in generality that

y(t)>0 for *>*!>*()• Then there exist t2 and ί3 such that t2>t2>tί9 x(t2)
= x(f3) = 0, and x(ί)>0 for ί2<ί<ί3. Defining P: [tl9 ao)-+R by
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and differentiating, we have

P'(ί) =

- 2α2(ί)/WO)/'«OX(0/(0/XO

/«*)){ WOK', *(0, *'«) -

[«2(0 -

«2(0{/(χ(0)/(f)/XO -/'

'(0]2 - «2(0[/'«0)]2IX«]2

[«2(0 -

f)}2 + [α(0 - β2(0]/'WOWχ(0) [χ'(0]2

Integrating from ί2 to ί3 again yields a contradiction. That, under the additional
conditions, equation (1) has no nonpositive Z-type solutions follows as before.

REMARK 4. As mentioned in Remark 3, the strict inequalities in Theorem
5 can be relaxed as long as we have P'(f)>0 on some subinterval of (f2, ί3).

As examples of Theorem 5 we see that the equation

x" + (sin t)x3lt3 = x6lt2 + coshx' + 3ί, ί > 1

has no oscillatory or nonnegative Z-type solutions, and the equation

(5) x" + x3/t3 = x6/t2 + coshx' + 3ί, ί £ 1

is nonoscillatory. In both cases we compare to the nonoscillatory linear equation

x" + xft
3 = 0, f > 1.

That equation (5) is nonoscillatory is somewhat surprising since the present
authors [3] have shown that if e(t, x, x') = r(i)>Q, then equation (1) may have

Γ°°
oscillatory solutions unless \ r(s)ίfs<oo. Once again, the nonoscillation of (5)

Jto
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cannot be deduced from other known nonoscillation criteria.
In conclusion, we note that in Theorem 5, e(t, x, x') may change signs for
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