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1. Introduction. Recently there has been renewed interest in the asymp-
totic and oscillation properties of solutions of fourth order differential equations,
see [1], [4]. The purpose of this paper is to consider these properties for the
solutions of the nonselfadjoint differential equation

(L) (/" + pyγ + py' + qy = 0.

The following assumptions concerning p and q will be made at various stages

in the paper.
H0: p and q are continuous functions from [0, oo) to [0, oo).

Hi: p' is continuous, q >0, pq φO on an interval.
/•oo

HZ : \ (Q — p')dx = oo, p/q bounded.

A solution y of (L) is said to be oscillatory if y has an unbounded set of zeros

{*fc}?=ι sucn tnat limfc-»oo xk= °° ί otherwise, a solution is said to be non-oscillatory.
Equation (L) is termed oscillatory if it has an oscillatory solution.

As a special case of (L) we have the selfadjoint equation

(1) yiv + <D> = 0,

which has been studied extensively by M. Svec [6, 7]. The oscillatory character

of (1) is relatively simple, since either all the solutions of (1) oscillate or none of
them oscillate [7]. Such is not the case for (L).

For example the equations

(2) yiv + 40/ + 39y = 0

and

(3) yίυ + 4/ + 4y = 0
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are examples of (L) with /f 0, H^ and H2 satisfied. Equation (2) has both oscil-

latory and nonoscillatory solutions, e.g., y = e2xsin3x and y = e~x, while all the
solutions of (3) are oscillatory. As a means of separating these cases we will

study the connection between (i, /)-disconjugacy and oscillation. Recall that

(L) is said to be (i, j)-disconjugate if i and j are positive integers such that i+j=4

and no solution of (L) has an (i, /^distribution of zeros i. e. no nontrivial solution

has a pair of zeros of multiplicities i and j, respectively. If no nontrivial solution

of (L) has more than three (3) zeros, the equation is termed disconjugate.

2. Preliminary Results. We begin our study of (L) by considering a
functional which plays a vital role in our investigation. Throughout this section
we assume that HQ and Hί hold.

LEMMA 2.1. Let y(x) be a solution o/(L), then

™*)3 = y(χ)(y'" + «0(χ) - /(*)/(*)

is nonincreasing

PROOF. Differentiating F[y(xJ] and making substitutions from (L) we

find that F'[y(x)~\ = —y"2(x) — q(x)y2(x\ from which the Lemma follows. An

immediate consequence of the lemma is

COROLLARY 2.2. Equation (L) is (2, 2)-disconjugate.

Using the functional F[y] we now classify the solutions of (L). A solution
y will be called type I if F|>(x)]>0 on [0, oo) and type II otherwise. While it
is easy to construct a type II solution, it is not immediately evident that (L) has
a nontrivial type I solution. We sketch a proof which shows the existence of

such a solution.

THEOREM 2.3. Equation (L) has a nontrivial type I solution.

PROOF. Let x = a be a number such that 0<α<l and suppose >Ί(X), y2(
χ)

and y3(x) are three linearly independent solutions of (L) which vanish at x = a.
For each positive integer n, let

"„(*) = clny(x) + c2ny(x) + c3ny3(x)

be a solution of (L) satisfying

wn(α) = 0, un(n) = u'n(n) = 0

and c\n + c\„ + c\n = 1. Suppose further, without loss of generality that lim^ooCfo
= C|, i = 1, 2, 3. Let u(x) = ctyλ(x) 4- c2y2(x) + c3y3(x). Since un(x)-*u(x) on
compact subsets of [0, oo) and F[uΛ(x)]>0 on [0, n) for each n9 it follows that
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on [0, oo). Moreover, u(x)^0, since c? + ci + ci = l and the proof
is complete.

Before we proceed we need the following lemma due to Leighton and Nehari

[3].

LEMMA 2.4. Let u(f) and v(f) be two functions with continuous first deriva-
tives in (α, β) and let v(t) be of constant sign in this interval. If x = a and x = b
(a<a<b<β) are two consecutive zeros of u(t)9 then there exists a constant λ
such that u(i) — λv(i) has a double zero in (a, b).

THEOREM 2.5. All type II solutions have the same oscillatory character.

PROOF. The solution y3(x, a) defined by y3(a) = ̂ (a) = /3(a) = 0, y'3'(a)=l
is a type II solution. We assert that if y3(x, a) is oscillatory and b > a, then y3(x,
b) is oscillatory. Suppose the contrary, i.e., assume y3(x9 a) oscillatory and
j>3(x, b) is positive on (xl9 oo), for some xΐ>b. We can assume, without loss of
generality, that y3(b9 α)>0.

If α<j8 are consecutive zeros of y3(x, α) in (x1? oo) on which y3(x9 α)>0
then by lemma 2.4 there is a constant k>0 such that the solution Z(x) = y(x9 a)
-ky(x9b) has a double zero in (α, β). Thus F[Z(fr)]>0 since b<α. But
F[Z(by]=F[y3(b9 ά)~\-ky3(b9 α)<0. This contradiction proves our assertion.

Now let u(x) be an arbitrary type II solution of (L). Suppose, without loss
of generality, that u(x) is nonoscillatory and positive on some interval [c, oo),
where c is chosen large enough so that J7[w(c)]<0. Then, since y3(x9 c) is oscil-
latory, there is a linear combination
w(x) = y3(x9 c) — ku(x)9 fc>0, having a double zero at x = d>c. Thus
= 0. But

F[w(c)] = -faι(c)[l - ku'"(c) - fcXcXc)] - k2u\c)u"(c)

a contradiction, since F is nonincreasing on (c, d). This contradiction shows
that if y3(x9 a) oscillates, then every type II solution oscillates. It can be shown
in a similar manner that whenever (L) has an oscillatory type II solution then
j>3(x, a) oscillates. Thus our proof is complete.

A sufficient condition for (L) to be oscillatory is now given.

Γ°°THEOREM 2.6. Suppose \ p(f)dt=co and y(x) is a solution of (L) satisfying

ϊ] <0, for some c>0. Then y(x) is oscillatory.

PROOF. Suppose the contrary, i.e., suppose F[>(c)]<0 and that y(x)
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nonoscillatory. Then there exists a > c such that y(x) Φ 0, for x > a. We can sup-
pose, without loss of generality, that Xx)>0 on [α, oo).

Consider the function

By differentiating H(x) we obtain

$
00

p(x)dx = co, it follows that /'(x)<0
a

for large x and since y(x)>0 it follows that /(x)>0 for large x.

The fact that \ p(t)dt-+ao as x->oo implies y"(x)/y(x)^> — oo as x->oo.
Jα

But this implies /'(x) is bounded away from zero for large x since y(x) is increas-
ing. This is clearly impossible because /'(x) bounded away from zero and nega-
tive will imply y(x)-+ — oo as x-*oo. We therefore conclude that y(x) oscillates.
This completes the proof.

We now investigate the effect of certain disconjugacy conditions upon the
oscillation of (L). For a complete discussion of the oscillation numbers rtj(f)
which appear below, consult Peterson [5]. For our purposes rίj (0<oo will
mean (L) is not (i, /)-disconjugate on [f, oo) and 7*^=00 will mean (L) is (i, /)-
disconjugate on [0, oo).

THEOREM 2.7. // r13(ί)<oo and r31(i)<oo for all t on [0, oo), then (L)
is strongly oscillatory.

PROOF. We show that type I solutions are oscillatory. Suppose y(t)>Q
on [α, oo) for some α>0 and F[Xx)]>0 on [α, oo). Let u(x) be a nontrivial
solution of (1) having a 1-3 distribution of zeros at x = b and x = c = r13(ί>),
a<b<c, u(x)^0 on (b, c). We can assume w'"(c) = l. Since y(x)>0 on [α, oo)
and u(x)<0 on (b, c), there exists a positive constant k such that φc) = Xx) +
ku(x) has a double zero in (ft, c). Since F|>(x)] is decreasing and F[υ(xJ] vanishes
in (ft, c), we conclude that F[>(c)]<0. But F[ι;(c)]=F[Xc)]4-feXc)>0. This
contradiction proves that type I solutions must have a zero on (ft, r13(b)) for every

Fix f0 = fo>0. Define tn = rl3(tn.ί)9 for each positive integer n. Then by
the above argument each type I solution vanishes in (tn-l9 tn) for each n. This
proves that type I solutions oscillate. The proof that type II solutions oscillate
is essentially the same.
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COROLLARY 2.8. // (L) has a nonoscillatory solution, then for some f e'[0,
oo) either r13(f) = oo or r31(ί) = oo.

Using Corollary 2.8 and the fact that z = e~x is a type I solution of

(2) z"" + 40z' + 39z = 0

we conclude that no nontrivial solution of (2) has a 1-3 distribution of zeros on
[0, oo) and therefore rί3(t)=co for each f>0.

We now give a converse for Theorem 2.7.

THEOREM 2.9. If (L) is strongly oscillatory, then r3ί(t)<co and r^<oo
for all f >0.

PROOF. From the assumption (L) is strongly oscillatory, r3i(t)<co follows
easily. To see that r13(ί)< oo for each t we proceed indirectly.

Suppose there is a t such that r13(f) = oQ. Because r 22(f)=oo using the
techniques found in [2, Theorem 3.2] we can construct a nonoscillatory solution
of (L), contradicting the assumption that all solutions are oscillatory. From this
contradiction we conclude that r13(ί)< oo for each ί>0.

The following lemma gives sufficient conditions for (L) to be disconjugate
on some interval [α, oo).

LEMMA 2.10. // r13 = r31 = r22 = oo on [α, oo) for some a, then no non-
trivial solution of(L) can have more than three zeros on [α, oo).

A proof of lemma 2.10 can be constructed using results in [3].

3. Asymptotic Properties. We now begin a study of the asymptotic be-
havior of the solutions of (L). We will assume H0, Hί and H2 hold through-
out this section.

THEOREM 3.1. If y is a type I solution of(L), then

(a) (™y"2(x)dx < oo, and

(b)

PROOF. Let y be a type I solution, then F[j(x)]>0 and lim
exists. Differentiating F[y(X)] and then integrating from 0 to x we obtain
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From which we see that

(VW < F[XO)] and (* q(t)y2(t)dt < F[χθ)] .
Jo Jo

Since x is arbitrary, our theorem follows.

THEOREM 3.2. Lei y(x) be a nontriυial type I solution of (L). Then

PROOF. Suppose not, then limJC_>00jp[Xx)] = A:>0 and because F[Xx)]
is decreasing, F[Xx)] > fc for all x. Writing F[Xx)] > k as

(X*)/'(x) - /'(*))' + p(x)y\x) > k > 0

and integrating from 0 to x, we conclude that

M - /2(x) + X p(t)y\i)df\ = oo.

Since p(x)<tMq(x) for some M>0, it follows from (b) of the preceding theorem
that

But this implies that

(4)
x-»oo

If ^ were oscillatory we would have an immediate contradiction and conclude
that fc=0. From (4), we see that neither y nor y" can be oscillatory and that
sgnχx) = sgny"(x) on some ray [fc, oo) where b is chosen large enough so that
y(x)y'(x)y"(x)^Q on [fc, oo). If X*)>0 and y'(x)>0 on [fc, oo), then X*)

for all x>&. Integrating (L) from b to x we obtain

(5) /"(x) + 2p(x)Xx) + q (ί) - p'(OMO<ft = y w(fr) + 2p(b)y(b) .
Jb

Since Xx)>X&) for x>b the following inequality is a consequence of (5)

(6) /"(x) + 2p(x)Xx)

Inequality (6) and # 2, however, implies /"(x) is negative and bounded away from
zero. But this is impossible since /'(x)>0 for large x.

Now suppose Xx) > 0, /(x) < 0 on [fe, oo). Then y(x) and /(x) are bounded.
From (4), it follows that y"(x) is positive and unbounded, contradicting the
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boundedness of y'(x). Since all possibilities have been exhausted for /(x), we
conclude that lim^^ F[j;(x)] = 0.

A characterization of type I solutions can now be given. We begin with a
result on boundedness.

THEOREM 3.3. Let y(x) be a type I solution of(L). Then y'(x) is bounded.

PROOF. From the preceding theorem, we know that limJC_00F[Xx)]=0.
If j/(χ) = 0, we are done, so suppose y(x) is nontrivial. Suppose y(x) is oscilla-
tory, then writing F[Xx)]>0 as

and integrating from b to x yields

X p(t)y\t)dt < y(b)y"(b) - y'\b).
b

As seen previously, H2 implies

Γ P(x)y2(x)dx < oo.
Jb

Let {xn}"_ι be a sequence of zeros y"(x) such that limM_0 0xB=oo. Then for xn

>b

\Xn P(f)y\ί)dt + y'2(b) - y(b)y"(b) > /2(xB)
j b

and the boundedness of /(x) follows.
Now consider the case where y(x) does not oscillate. Assume j;(x)>0 on

[α, oo) for some α>0. As shown above, F[j;(x)]>0 implies

Xx)/'(x) - y'\x) + * p(i)y2(t)dt + y'\ά) - y(ά)y"(ά) > 0.

If y"(x) oscillates, the bounded of y'2(x) follows immediately. So we assume
y"(x) is one sign on [fc, oo), b>a. If y"(x)<Q on [&, oo), then y'(x) must be
positive for large x and is therefore bounded. Finally suppose /'(x)>0 and
y'(x) unbounded on [b, oo). Then y(x) is increasing and proceeding as in theorem
3.2. We conclude that y'"(x) is negative and bounded away from zero, con-
tradicting j;"(x)>0 on [fc, oo). Hence y(x)>0, y'(x)>Q, j;"(x)>0 cannot occur
on any ray. This completes the proof of the theorem.

We now turn our attention to the type II solutions. The proof of the theo-
rem is similar to the preceding ones and therefore omitted.
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THEOREM 3.4. Let y(x) be a type II solution of (L). Then y'(x) is un-

bounded.

From theorems 3.3 and 3.4 it follows that type I solutions are precisely those
solutions of (L) with a bounded first derivative. Using this characterization it
is clear that the set of type I solutions is a subspace of the solution space. In fact,

using the techniques of theorem 2.3 one can construct two independent type I
solutions. However, if there were three independent type I solutions, then some
nontrivial linear combination of them would have a double zero and would
therefore be a type II solution. Since this is impossible, the type I solutions form
a two-dimensional subspace of the solution space. We record this in our final
result.

THEOREM 3.5. The set of type I solutions of (L) form a two-dimensional
vector space. Moreover the zeros of any two independent type I solutions
separate each other on [0, oo).
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