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0. Introduction

Let E be an algebraic vector bundle on a smooth projective algebraic scheme
X defined over an algebraically closed field (arbitrary characteristic). Then it
is known that after a suitable succession of blowing ups of X, f: X'—= X, f*(E)
has a splitting of line bundles on X', i.e., there is a filtration of subbundles of f*(E)
Fyo---oF,=0 (r=rank E) such that every quotient F;/F;,; (0Zi<r—1) is a
line bundle on X’ (cf. [4]). In this paper, we shall prove another simple theorem
on splitting of line bundles of algebraic vector bundles (cf. Theorem 2.1): Let
E be an algebraic vector bundle on a smooth quasi-projective algebraic scheme
defined over an algebraically closed field (arbitrary characteristic). Then there
exists a finite and faithfully flat morphism f: X’'— X such that f*(E) has a splitting
of line bundles on X’'. Hence we can prove the following (cf. Theorem 3.2)
as a corollary: Let Z be an algebraic cycle of codim=p on a smooth projective
algebraic scheme X. Then there is a finite faithfully flat morphism f: X'—»X
such that (p—1)}f*(Z)=3 +D,---D, (rat. equiv.), where D, are divisors on X'.
Hence in particular, (p—1)!f*(Z) is smoothable. Theorem 3.2 seems to be a
useful fact to study algebraic cycles because it says that if a problem on algebraic
cycles is not changed after multiplication of integers and pull back of finite faith-
fully flat morphisms, then we have only to consider the cycles Z of the forms
> +D,---D,, where D, are divisors on X. After introducing the notion of very
ample vector bundles and studying their properties, we shall prove the above
theorems.

The author would like to express his sincere thanks to Professor Yoshikazu
Nakai for his steadfast encouragements.

1. Very ample vector bundles

In [2], R. Hartshorne has introduced the notion of ampleness of algebraic
vector bundles. Since then, we have obtained several useful algebro-geometric
results using ample vector bundles. In this section, we shall define very ample
vector bundles on algebraic schemes and study their properties.
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Let k be an algebraically closed field with arbitrary characteristic, X an
algebraic k-scheme and let E be an algebraic vector bundle on X, i.e., a locally
free Oyx-coherent sheaf with constant rank. We shall denote the associated pro-
jective bundle by n: P(E)>X and its tautological line bundle, i.e., an invertible
sheaf on P(E) by L.

DerFINITION 1.1.  With the above notation, if Ly is a very ample line bundle
on P(E), then we define E to be very ample. Hence, a very ample vector buldle
is ample in the sense of Hartshorne.

At first, we shall prove some formal properties of very ample vector bundles.

PROPOSITION 1.2. Let E and E' be very ample vector bundles on a k-
algebraic scheme X. Then we have the followings.

(1) Every quotient vector bundle of E is very ample.

(2) E®E' and EQE' are very ample.

(3) E®", SYE) (n=1,2,...) and AE"(1<m<rank E) are very ample.
Furthermore, let T(E) be a positive tensor bundle of E (cf.[2]). If char k=0,
then T(E) is very ample.

(4) Let L be an ample line bundle and let F be a vector bundle on X.
Then, there is a positive integer n, such that LS"®F is very ample for all n=n,.

(5) Let Y be a closed subscheme of X. Then, the restricted vector bundle
E|Y of E to Y is very ample.

ProoF. (1). Let F be a quotient vector bundle of E. Then the projective
bundle P(F) is a closed subscheme of P(E) and the tautological line bundle Ly
of F is the restriction of L to P(F). Thus, F is very ample. (2). Let ¢: P(E)—
Pa1 (resp. ¢': P(E')—P®!) be an embedding of P(E) by L (resp.an embedding
of P(E’') by Lg). Suppose that {s¢|s‘ e HY(P(E), Ly)=H°X, E), i=1,..., a} and
{s/|s/ e HY(P(E'), L;,)=H%X. E'), j=1,..., b} give those embeddings. Let {U,}
be an affine open covering of X such that E|U,=®"0y,, E'|U,=®" Oy, and let
si|U, = (si,...,s}) (skeI'(U, Oy,) and 5§/|U,=(%,...,5)) (5iel(U, Oy)).
Then, @|U,: P(E|U) = U, x P71 3 (x,(&y:++: &) 2> (Zsk(X) &t Zsg(x) &) e
Pa-1 where ¢|U, is the restricted morphism of ¢ to an open subscheme
P(E|U,). Similarly we have ¢'|U*: P(E'|U,)=U, x P"" 13 (x, (y:+-:1,.))—
(5 (), X 88(x)n)ePb~t. Now we shall prove that the morphism
¢": P(E@QE’)—>Pe+*b~! is an embedding, where ¢” is given by ¢"|U,: P(E®
E'NU) U, x P =o (x, (Eyiei&pimyioeing)) = (X sp(x) i Xsf(x) &y
S 5N X 5(x)n,) e Pate-1 locally. In fact, since E and E’ are very
ample, ¢” is injective and the induced local ring homomorphism ¢"*:
0, x—0, is surjective for all xe X. Hence, we have only to prove that X is
homeomorphic to a locally closed subscheme of Pe*®~1 by ¢". Let y:
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P(E®E')—>P(E)(resp.¥': P(E® E')— P(E')) be the rational map obtained by
the Ox-homomorphism: Ese—(e, 0)e EQE’ (resp.E'3¢’—>(0, ¢')e E®E’) and
let U=P(E®@E')—P(E’) (resp. U'=P(E x E')—P(E)). Then U (resp. U’) is the
domain of definition of y (resp.y’) and ¥: U—P(E) (resp. ¥'y.: U'—-P(E"))
is an affine vector bundle over P(E), i.e., U=Spec(S' (Lt ® n*(E"))), where
n: P(E)— X is the structure morphism and S'(L} x n*(E")) is the symmetric Ox-
Algebra of L¥® n*(E’) (L¥ being the dual line bundle of Lg) (resp. U’ =
Spec (S (L} ®n'*(E)))). Moreover, let {X,,..., X,, Y;,..., Y,} be a homogeneous
coordinate of Pe*>~1, W=\U{_, P§}*~! (resp. W'=\Ub_; P§*®~1), where P§iP~1=
{{=(1: 1 Ll #0, 1Si<a} (resp. P?fjbﬂ:{C:(Cﬁ“‘: Carn)llasj#0, 1SS
b and let : We(xy:-+: xgip i1 yp)=(xp:---: x) € Pa 1 (resp. ' : W/ D (x -2
Xg: Vit Y=yt yp) € PP be the canonical projection. Then, Patb-1
is covered by Wand W' and : W— P21 (resp. ' : W —Pb~1) is an affine bundle
over Pe1 ie., W=Spec(S(Opa-1(—1)®b)) (resp. W' =Spec (S (Ops-:(—1)®9))).
Since Lp=¢@*(0pa-1(1)) (resp. Ly =@'*(0p»-1(1))), U (resp. U’) is a closed sub-
scheme of Y~1(@(P(E))) (resp.y'~1(¢'(P(E")))). Therefore, P(E@QE’) is home-
morphic to a locally closed subscheme of P2+*b-1 because P(E) (resp. P(E’)) is
homeomorphic to a locally closed subscheme of P4~! through ¢ (resp. P®~! through
¢"). Hence, E@QE’ is very ample. We shall next prove that EQE’ is very ample.
Since E’ is generated by global sections, EQE' is a quotient vector bundle of a
direct sum of E’s. Thus, EQE’ is very ample by (1) and (2). (3), (4) and (5)
are also easily proved by (1) and (2). g.e.d.

COROLLARY 1.3. Let E be an ample vector bundle on X. Then there exists
a positive integer ng such that S*(E) is very ample for all n=n,.

PROOF. Let L be a very ample line bundle on X. Since E is ample, there
is a positive integer n, such that L*®@S"(E) is generated by global sections for
all n=ny (L* being the dual line bundle of L). Hence S*(E) is very ample because
S"(E) is a quotient vector bundle of I®N for some positive integer N. q.e.d.

We shall next show some geometrical properties of very ample vector bundles.

Let E be a vector bundle (rank E=r+1) on a k-algebraic scheme X which is
generated by global sections, say a: OP"*DE a surjective homomorphism.
Then o defines a morphism ¢: P(E)-»P" and a morphism ¥: X—G(n, r)=a
parameter space of r-dimensional linear subsupaces of P* as follows.

U: Xox — Ima(x) = (a(x): k(x)@*) — EQk(x)) € G(n, r)

where k(x) is the residue field of x. For every x € X, the r-dimensional linear
subspace corresponding to Y(x) coicides with ¢(n~1(x)).

PrROPOSITION 1.4. If E is very ample, then the morphism Y: X—>G(n, r)
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is an embedding for a sutiable choice of global sections of E.

PrOOF. Let {s|s'e HY(X, E), i=0, 1,..., n} be a set of global sections of
E which gives an embedding ¢: P(E)— P" and let {U,} be an affine open covering
of X such that E|U,=2®@"'0y,, s'| U,=(sbs-..., si,) (si,€I(U,, Oy,)). Since
¢ is the following morphism on each open subscheme n~!(U,)= U, x Pr

(pl Ua: UaXP’S(X, é/) I (st?a(x)éj:"': st;!a(x)éj)epna

the r-dimensional linear subsapce ¢(n~!(x)) in P" for x € X is equal to the point
Y(x)e G(n, r). Therefore, Y is injective because ¢ is an embedding. Hence,
the problem is local and so we shall assume X = U, for some «. For every (ig,...,
i,) (0=iy<---<i,<n}, let us put

Then, some s(igp,..., i,) is an invertible element of I'(X, Oy). Suppose that
5(0,..., r) is invertible for simplicity. Taking a suitable base of Ex~@®"*'0y,
we may assume that si=4;; for 0<i, j<r. Then Y(x) has following coordinate
matrix in the open subset Uy,.... of G(n, r):

l: 56+f(x) ......... sg(x) }

Here, we shall denote by U,..; the open subscheme of G(n, r) defined for every
pair (ig,..., i,) (0Sip<---<i,=<n) as follows. Let Q be a universal domain over
k and let {e,,..., e,} be a basis of (n+1)-dimensional vector space Q&+,
Then

Uigi, = {Le Hom (Q®U+D Q@MDY [ [(e;) #0,0 < j < 7).

On the other hand, the following composite morphism of X to P" for each (0=
i<r)is an embedding:

X—nl{(X)xX x P P
v U] v
X — (X, (0:eer: 12 0)) —> (0ceeer Treeen 00 7 (x) 1001 s%(X)) .

Hence the morphism ¢ is an embedding. g.e.d.

COROLLARY 1.5. Let E be an algebraic vector bundle on a quasi-projective
k-aglebraic scheme X. Then, E is extendable to an algebraic vector bundle
E on a projective algebraic k-scheme X containing X as an open subset.
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PROOF. Let L be a very ample line bundle on X such that E'=EQ®L is very
ample. By Proposition 1.4, there is an embedding ¥ : X —G(n, r) and E’'=y*(Q),
where Q is the universal quotient vector bundle of G(n, r). Now, let X be the
scheme-theoretic closure of X in G(n, r) and let E'=Q|X. Then E’ is extendable
to E',i.e.,, E'|X=E’. On the other hand, there is a projective algebraic scheme
X’ with a line bundle L’ such that L is extendable to L’ because L is very ample.
Since X’ and X are projective, there is a blowing up f: X’— X’ such that the ca-
nonical birational map X'—X is resolved, i.e., there is a morphism g: X'>X
and the diagram

)?/

is commutative. q.e.d.

We shall show some results on chern classes of very ample vector bundles.
Let X be a projective smooth algebraic scheme over k, E a vector bundle on X
with rank =r and let s be a global section of E. Let us denote the zero locus of
s by Z(s) and the tautological divisor associated to s by D. If Z(s) is a subscheme
of pure codimension r, then Z(s) represents c¢,(E) (the r-th chern class of E).
Let U={U,} be an affine open covering of X such that

E\U,= @0y, s|U, = (5%,..., %) (sel'(U,, Oy)).
Then Z(s) is defined on U, by the equations
sf=-=52=0
and D is defined on n~4(U,)~U, x P'! by the equation
siX, + -+ 52X, =0.
Thus it is easy to see the following.

LEMMA 1.6. D is a smooth divisor if and only if Z(s) is either empty or a
smooth subscheme of pure codim =r.

COROLLARY 1.7. Let X be a non-singular projective algebraic variety
defined over an algebracially closed field k of char k=0 and let E be a vector
bundle on X with rank =r(=2). Assume that E is generated by global sections
{S1seees S¢}» i.€., there is a surjective homomorphism a: O9*—E. Then there is a
sufficiently general global section s=3%_, c¢;s; (c;€e k) such that Z(s) is either
empty or a smooth subscheme of pure codim =r.
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PrROOF. Let @: P(E)—»P'~! be the morphism defined by global sections
{S15.+» S}. If dim @(P(E))=2, then there is a sufficiently general global section
s=>%_, ¢s; (c; € k) such that the tautological divisor D associated to s is irreducible
and smooth by Bertini’s theorem. By Lemma 1.6, Z(s) is either empty or a smooth
subscheme of pure codim =r. If dim @(P(E))=1, then @(P(E)) is a line in P*~!
and r=2. Hence, there is a sufficiently general section s=2X ¢;5; with Z(s)=¢.
In this case, it is easy to see E~04®O0y. q.e.d.

More generally, let s,,...,s; (1<i<r) be global sections of E with s;|U,=
(sty5..., s%) (s3;€I'(U,, Oy)). For every a, let us put
I,=the ideal generated by all i-minors of the matrix

[ STI ......... s?' ;]

s.;!l ......... s‘?r '

Then the family of ideals {I,} determines an ideal I of Oy such that I|U,=1, for
all a.

DerFINITION 1.8.  With the above notation, we shall denote by Z(s; A--- As;)
the closed subscheme of X defined by the ideal I.

Let D,,..., D; be the tautological divisors associated to sections s,,...,s;
respecitvely. The intersection D, N --- N D; is defined on each open subset n=1(U,)
xU,x Pr~1 by

sHX + - +51.X, =0,
S?1X1+"'+S7’X,. = 0.

Hence Z(s, A -+ A 5;) is characterized set-theoretically as follows: Z(s; A -+ A s5)=
{xeX|dimn~Y(x)ND,n--nND;=Zr—i}. Now let us put Z,=Z(s; A -8+ As;)
for every k (1=k=i) (Z, being a closed subscheme of Z(s; A:--As;)) and U=
X—Ni_yZ,. Then we have the following as a generalization of Lemma 1.6.

LeMMA 19. 1) Dyn--nD;na"Y(U) is a smooth subscheme of pure
codim =i if and only if either Z(s, A --- As;) N U is empty or a smooth subscheme
of pure codim=r—i+1 and Sing (Z(s, A -+ A 5;))= Nk, Z,, where Sing (Z(s; A -+
A'sy) denotes the singular locus of Z(s, A -+ A 5;).

2) If Z(sy A+ As;) is of pure codim =r—i+1, then there is a rational
map f: Z(s{ A -+ As)—Pi=1 (i22) such that the regular domain of f coincides
with Z(s; A+ As)—Nioy Z, and every Z,=f"1(H,), where H, is a hyperplane
of P,
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PrROOF. When Z(s; A---As)NU=¢, our claim is obvious. Hence we
assume Z(s; A---As)NUz#¢. Since the problem is local, we may assume
X=U,nU and we omit the index a. Moreover, we may assume that
det(sj) (1=j, ksi—1) is invertible on X. Then, taking a suitable basis
of E~@ 0y, we may assume that D, n---nD; is defined by

Si Xyt eeeee 85X+ +s5;,X,=0.
Here, let us put
1y 0 Sy
fi=]0 I sy |=sy— 2k susu (S,

Sigrc e Siior Sij

Then the ideal I is generated by the set {f;,..., f,}. Hence codimy Z(s; A-+-As) =
r—i+1. Now let x be a point of Z(s; A--- As), {z4,..., Z,} a regular system of
parameters of X at x (n=dim X) and let us assume rank (df;/0z,),=r—i+1—t
(i£j<r, 1£k<n). Consider the following Jacobian matrix:

Z(aslj/.azl)Xj,....., Z(as”./az,,)Xj, !. 0"'9, sl.,-,..., sl-,. ‘l
Z(asi—l.j/azl)Xj""s Z(asi—.lj/azn)Xj’ 0 0'°'is si—l.is'--’ St—'lrJ'-
Z(as,h/azl)Xk, ..... s E(as”‘/az,’)Xk, Sigecetetceccccsnnens s Sip

Since x € Z(s; A+ As;), there are constants cy,..., ¢;— (€ k(x)) such that s;=
> ¢ (1£k=r). Thus the following matrix is equivalent to the above matrix:

Z(ﬁs”/‘azl)Xj, ...... s Z(aslj./aZ”)Xj, ! 0"'('), Sl.",..., S{’
Z(asi-l.k/azl)Xj""’ Z(asi-.lj/azn)Xj’ 0 0"'i, S.'—x..‘,---, si.—lr s
7 G ns Ocvviiiiiiinnnen, , 0

where g,,= X iz} (0su/0z,) X+ X=; (05|02, — 2 €,05,;/02,,)X (1=m<n). Hence
the following linear equations have only a trivial solution if and only if t=0
because the rank of its coefficient matrix is equal to r—t from our assumption:

X1+ """ +S1i X,+ """ +SI,X,-=O,
Xy + 81Xyt +5-,X, =0,

g1==g,=0.
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Therefore D, n--- N D; is a smooth subscheme of pure codim=i if and only if
Z(s, A -+ A 5;) is a smooth subscheme of pure codim =r—i+1. Since Sing (Z(s; A
-+ A'§;)) contains Ni_, Z, in general, Sing (Z(s; A -+ A 5))=N\k=q Z;.

2). Let x be a general point of Z(s, A ---As;). Then there is a unique k(x)-
rational point ¢(x)=(c,(x): ---: c(x)) of Pi~1 such that c¢,(x)s,(x)+ -+ + c{x)s(x)=
0. Hence we have a rational map f: Z(s, A --- As;)d x—¢(x) € PI~! such that
the regular domain of f coincides with Z(s; A --- As))—N}i-, Z, and every Z,=
f~Y(H,), where H, is a hyperplane defined by X, =0. q.e.d.

Now let s, be a global section of E such that the associated tautological
divisor D, is smooth and Z(s,)# ¢, f,: X;— X the blowing up of X with center
Z(s,) and let F, be the exceptional divisor. Then we have the following exact
sequence:

) 0 — Oy (F,) — fHE) £ E, — 0,

where E, is a vector bundle on X, with rank =r—1. The exact sequence (*)
is expressed locally as follows:
X =U=Spec(A) such that E| U~ ®"0y.
s; | U=(xy5.., X,).  {Xy5..., X,} is a part of regular system of parameters
of X at the points of Z(s,).
X,=\U'=y U;, where U;=Spec (A[x,/x;..., X,/x;]) A ZiZr).

On each affine open subset U,,

Bii (€1snes &) — (&1 — (x4/X)Eises & — (x,/X)E5) -

From the exact sequence (x), we have the following relation between chern
classes of E and E;: ¢c(E)=fs(c{E,)) (1ZiZr—1). Infact, ¢ (f¥(E))=c(E,)+
Fi-¢;(Ey) (1Zi=r-—1) from the exact sequence (*). Hence c(E)=f.(c(E,))
because f.(F-c;_(E,))=0. Let us consider the following commutative deagram:

1 _—_)(xl/xi"-w xr/xi)a

P(E)) - P(f(E)) L5 P(E)

Nl ok

X, —— x.

Then an effective divisor P(E,) of P(f¥(E)) is defined on each open subset 7~1(U,)
by the equation: (x,/x)X;+---+(x,/x)X,=0. Therefore h,: P(E,)>D, is the
blowing up of D, with center n~1(Z(s,)), where h, =f-i and the tautological line
bundle Lg, of E; is isomorphic to h}(Lg).
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LeMMA 1.10.  With the above notation, let s, be a global section of E such
that Z(s,) is a non-empty subscheme of pure codim =r and let us put sh=
B(f¥(s;)). Then the following conditions are equivalent.

(1) Z(sh) is a non-empty smooth subscheme of pure codim =r—1 and
Z(sy) N F, is either empty or a smooth subscheme of pure codim=r.

(2) Z(s, As,) is a subscheme of pure codim=r—1 with Sing (Z(s; A s,))=
Z(s;)) N Z(s,) and Z(s,) N Z(s,) is either empty or a smooth subscheme of pure
codim =2r. In other words, D, intersects D, and n~YZ(s,)) transversally.

PrOOF. (1)—(2). Since the problem is local, we may assume X=U as in
the above argument. Let us put s,|U=(y,,..., y,). Then Z(s3) is defined on
each affine open subset U; by the equations:

(%%) yj"'(xj/xi)yi=0 (I=jsrj#i).

Hence Z(s3)— F, is isomorphic to Z(s,; As,)—Z(s,) and Z(s5) is the proper trans-
form of Z(s, As,) by f;. Thus Z(s, As,) is a subscheme of pure codim =r—1
because every irreducible component of Z(s3) is not contained in F,. The smooth-
ness of Z(s3) implies that Z(s, A s,)—Z(s,) is smooth. Now let x be a point of
Z(s,)—Z(s,), say y,(x)#0. Then Z(s, A s,) is defined in a neighbourhood of x
by the equations: x;—(y;/y,)x;,=0 (2=<i=r). Thus Z(s,As,) is smooth at
x because {x,..., X,} is a part of regular system of parameters of X at x. There-
fore Z(s, As;)—(Z(s{) N Z(s,)) is smooth and so Sing(Z(s, A s,))=2Z(s,) N Z(s,).
Assuming Z(s,) N Z(s,) # ¢, we shall prove that Z(s,) N Z(s,) is a smooth subscheme
of pure codim =2r. Let x be a point of Z(s,) N Z(s,) and let {x,,..., X, Zy,..., Z}
(r+s=dim X) be a regular system of parameters of X at x. From our assumption,
Z(s5) intersects transversally F, at the points lying over x. For simplicity, let
us check this condition on U,. Then (x,, x5/xy,..., X,/X{, Z},..., Z5) IS a regular
system of parameters of U, at the point lying over x and F, is defined by x,=0.
Moreover Z(s,) is defined by the equations: y;,—(x;/x;)y,;=0 (2<i=r). Hence
we have rank (0y;/0z;—(x;/x,)0y [0z))=r—1 (1Si<s, 2<j<r) by direct cal-
culation and so rank (dy;/0z;),=r (1Si<s, 1=Sj<r). This implies that Z(s,)
intersects Z(s,) transversally.

(2)—=(1). Since Z(s;As,) is a subscheme of pure codim =r—1 with
Sing (Z(s, A s5))=2Z(s4) N Z(s,), Dy N D, —n~1(Z(s,) N Z(s,)) is a smooth subscheme
of pure codim =2 by Lemma 1.9. Let us assume that Z(s,) n Z(s,) is a non-
empty smooth subscheme of pure codim =2r. Then (x,..., X,, Y{5..., y,) may
be considered as a part of regular system of parameters of X at every point of
Z(s,) N Z(s,). Hence it is easily seen that D, meets D, transversally at the points
lying over a point of Z(s,) N Z(s,). Thus D, meets D, transversally. Moreover,
D, intersects n~1(Z(s,)) transversally (including the case Z(s;) N Z(s,)=¢) by
Lemma 1.6. Now let D} be the tautological divisor associated to s5. Then,
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h=h¥(D, nD,). Since h,: P(E,)>D, is the blowing up of D; with center
n~Y(Z(s,)), D5 is smooth and meets ny!(F,) transversally. Hence Z(s3) is a
non-empty smooth subscheme of pure codim =r—1 and it intersects F, trans-
versally (including the case Z(s5) N F, =¢). q.e.d.

LemMaA 1.11. With the above notation, let s,,...,s; be global sections of
E satisfying the following conditions: (i) Z(sy A --- As}) is a subscheme of pure
codim =r—i+1 with no irreducible components contained in F,, where s;=
B(f¥(se) (R=Zk=i). (i) Sing(Z(shA - As))=Ni=y Z;, where Zj=Z(s5A
---?,‘-c-/\s;) and codim (Sing (Z(sy A --- As}))))22(r—i+2). (iii)) codim (Z(s,) N
Z(syA-AS))22r—i+2. Then we have the followings.

(1) Z(s A+ As;) is a subscheme of pure codim =r—i+1.

() Sing(Z(s, A As))=Nkei Zy where Zy=Z(s,A sy As) (1Sk<i)
and codim Ni-, Z, 2 2(r—i+2).

PrRooF. (1) is obvious. (2). In order to prove the first part, we have
only to show that Z(s, A ---As;)—Ni-, Z, is smooth at every point x of Z(s,)—
Z(s; A -+ As;) from our assumption (ii). Since the problem is local, we may
assume X=U>3x. Let us put s;|U=(y;,..., ¥;) (2=5j=<r). For simplicity,
we assume det (y;(x))#0 (2<j<i, 1=I<i—1). Then Z(s;A---As;) is defined
in a neighbourhood of x by the equations:

XpXiog X

1 0 : ; . . .
.. ’V:ZJ =(—1)‘+‘(x,~—):i=} xlyl+1j) @G=j=sr).

iO 1 .V:iji

Hence Z(s, A - As))— ML=, Z, is smooth at x because {x,,..., x,} is a part of
regular system of parameters of X at x. Since Ni-, Z;—F, is isomorphic to
Moy Zy—Z(s,), every irreducible component of N}, Z, not contained in Z(s,)
has codim =2(r—i+2) from (ii). Moreover since 2r+i+2=2(r—i+2)+
(i—2)=2(r—i+2), every irreducible component of Mj}-, Z, contained in Z(s,)
has codim = 2(r—i+2) from (iii). Therefore codim Ni-, Z,=2(r—i+2).

q.e.d.

Let X be a non-singular projective algebraic variety (dim X =n=2) defined
over an algebraically closed field k of char k=0 and let E be an ample vector
bundle on X generated by global sections with rank =r 2<r<dim X). If t=
dim HO(X, E), then there is a morphism ¢: P(E)—P*~! defined by the complete
linear system |Lg| which is finite because Ly is ample and hence dim @(P(E))=
n+r—1.

1) By Corollary 1.7, there is a global section s, of E such that Z(s,) is either
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empty or a smooth subscheme of pure codim =r. Since E is ample, every
chern class ¢(E) (1=<i<r) is not zero and hence Z(s,)=c,(E) is not empty. Let
D, be the irreducible smooth divisor associated to s, and let tr(Lg|D;) be the
trace of |Lg| to D,. Then the linear system tr(Lg|D,) is free from base points
and dim ¢'(D,)=n+r—-222, where ¢’: D,—>P'~% is the morphism defined by
tr (Lg/D,). Hence there is a sufficiently general global section s, of E such that
D, is an irreducible smooth divisor and it intersects D, and n~!(Z(s,)) transversally
(including the case Z(s;)N Z(s,)=¢) by Bertini’s theorem and Corollary 1.7.
Then Z(s,;As,) is a subscheme of pure codim =r—1 with Sing(Z(s; As,))=
Z(s,) N Z(s,) and Z(s,) N Z(s,) is either empty or a smooth subscheme of pure
codim=2r. Let f;: X—>X,=X be the blowing up of X, with center Z(s,),
F, the exceptional divisor and let h, =f'ci: P(E,)—>D,, where

¥y 51
(*), 0 — Oy,(Fy) “ fX(E) 25 E; — 0

and

P(E;) 5 P(f3E)) L5 P(E)

Ty ln’ l:t

x,—h L x,.

Then Z(s5") is a smooth subscheme of pure codim =r—1 and it intersects
F, transversally, where s%=p,(f¥(s;)) by Lemma 1.10. In other words, if
D4Y) denotes the associated divisor to sy, then DV =h*(D, n D,) is an irreducible
smooth divisor and intersects n7!(F,) transversally. Since Z(s3") that is the
proper transform of Z(s, As,) by f, represents c,_,(E,), Z(s; As,) represents
cr—l(E)'

2) Lg,~h¥(Lg) and every chern class ¢,(E,) (1Si<r—1)is not zero. From
(%),, we see that E, is generated by global sections which come from those of E.
If we define L, to be the linear system of L, generated by those sections, then
L,=h¥tr(Lg|D,)) and ¢, =¢'ch,: P(E,)— P'~2 is the corresponding morphism.
We shall assume r=3,ie., rank E,=r—1=2. Since dim ¢, (D{")=n+r—-3=
n=2, there is a sufficiently general global section s; of E such that D§" is an ir-
reducible smooth divisor and it intersects DS, n71(Z(s$!’)) and n7!(F,) trans-
versally by Bertini’s theorem and Corollary 1.7, where D§! is the associated
divisor to s§!=pB(f¥(s3)). Moreover, we can take D§" and D, such that D§"
(resp. D;) intersects n7!(F;) n DSV (resp. n~1(Z(s,)) N D,) transversally. In fact,
dim ¢,(n7!(F,) N D{V) =dim ¢(n~Y(Z(s,)) N D) =(n—r)+r—2. If n>r, then
they are obvious by Bertini’s theorem. 1If n=r, then ¢,(n7}(F,)n D{")=
o(rn~1(Zs,)) n D,) consists of finitely many linear subspaces P"~2 in P*~2 and hence
we can take D§" and D satisfying the above condition. This implies that
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Z(s5 A s§1) has no irreducible components contained in F, and codim (Z(s,) N
Z(s,;As83))=2r—1. Now let f,: X,— X, be the blowing up of X, with center
Z(s5") and let F, be the exceptional divisor. Then we have the following exact
sequence similarly:

(), 0 — Ox,(F,) - f3(E,) =5 E, — 0,

where E, is a vector bundle on X, withrank =r—2. If we put s$ = B,(f%(s§")),
then Z(s$?’) is a smooth subscheme of pure codim =r—2 and meets F, trans-
versally. On the other hand, Z(s, A s, A s3) is a subscheme of pure codim =r—2
with Sing (Z(s; A s, As3))=Z(55 A 53) N Z(5; A s3) N Z(s; A s,) and codim (Sing (Z(s
ASy;AS3))22(r—1) by Lemma 1.11. Moreover, we see that Z(s; As,As3)
represents c¢,_,(E).

3) We can proceed with the above argument as follows. Let us suppose
that we have {s;} (1=<j<i, ISi<r—1), a set of global sections of E satisfying the
followings: Z(s,) is a smooth subscheme of pure codim =r and D, intersects
D,, and n~'(Z(s,)) transversally. We assume that we can define the blowing
up of X;_y, f;: X;-X;_, (1=j<i) with smooth center Z(s{/=") of pure codimen-
sion r—j+1 and s’ =B,(f¥(st’~")) (j +1 <k <i) inductively, where (a) X,=X
and s§°’=sj, (b) (%);: 050y (F)—>f¥(E,_;)—»E;—0 is an exact sequence of
vector bundles on X ; (F; being the exceptional divisor of f; and E; being a vector
bundle with rank =r—j). Here let n;: P(E;)— X be the structure morphism and
let D{" be the divisor associated to the section s{’ (0ZI<i—1, I+1ZkZ0).
With the above notation, we assume moreover that the following conditions
hold: For every j (1<j<i—1), (i) DY~V (j+1£Yk<i) intersects DY~V and
n71(Z(s~V)) transversally, (i) D), (0<YI<j—2) intersects D{¥, n D{Y, n -~ n
DY and n='(Z(s{¥y) n D{¥, 0 --- n D) transversally. Then we can take a suffi-
ciently general global section s;,, of E such that the conditions(i), (ii) hold also
for the set {s;} (1=j<i+1). In fact, the proof is quite similar to the one given
in 2). Therefore, E has sufficiently general global sections {s,,..., s,} such that
they satisfy the conditions (i), (ii). Hence for every i (1Zir), Z(s, A+ As))
is a subscheme of pure codim =r—i+1 with Sing(Z(s; A--As))=Nkoy Z,,
where Z, =Z(s; A ++-8;-- As) (1 =k =<i)and codim (Sing (Z(sy A -+ As))=2(r—i+
2). Z(s,n---As;) represents c¢,_;,,(E). Moreover, if we denote by g,_, the
restricted morphism of fio--ofi_ 1 X;_, =X, > X, to Z(s{~V), then g;_;:
Z(sti-1)—>Z(s; A --- As;) is a desingularization.

Hence we get the following.

THEOREM 1.12. We shall follow the above notations. Let X be a non-
singular projective algebraic variety (dim X =2) defined over an algebraically
closed field of characteristic zero and let E be an ample vector bundle on X
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generated by global sections with rank =r (2<r=<dim X). Then E has suffi-
ciently general global sections {s,,...,s,} satisfying the following properties:
For every i (1Zi<r),

(1) Z(sy A+ As;) is a subscheme of pure codim =r—i+1 with Sing (Z(s; A
o AS))=Nkey Z, and codim (Ni_, Z,)=2(r—i+2).

(2) Z(sy A+ As;) represents ¢,_; 4 (E).

(3) If we denote by g;_, the restricted morphism of fio-+-of,_{: X;_{—>--—
Xo=X to Z(s{=V), then g;_,: Z(s\i"")>Z(s, A ---As;) is a desingularization
of Z(sy A+ ns;) by successive blowing ups.

(4) There is a rational map &;: Z(s; A -+- A s;)— Pi~1 whose regular domain
coincides with Z(s, A+ As;))—Ni-, Z, and every Z,=¢ Y (H,), where H, is a
hyperplane of Pi—1.

In the proof of Theorem 1.12, Bertini's theorem has played a very important
role. Though it fails in positive characteristic, Theorem 1.12 holds partially
true in arbitrary characteristic if E is a very ample vector bundle. In fact, let
E be a very ample vector bundle on X. Then there is a global s, of E such that
the associated divisor D, to s, is smooth and Z(s,)# ¢ because Ly is very ample.
Moreover, there exists a sufficiently general global section s, of E such that D,
intersects D, and n~!(Z(s,)) transversally, where D, is the associated divisor to
s,. If r=3, then we can take furthermore a sufficiently general global section
sy of E satisfying the following conditions because L is very ample: (1) Dj,
intersects D, n='(Z(s,)), Dy N D,, n='(Z(s,)) N D, and n~'(Z(s,) N Z(s,)) transver-
sally, (2) D, intersects n~'(Z(s, A s,)—Z(s,)) N D, transversally (by Lemma 1.9,
=W Z(s, A sy)—Z(s,)) N D, is smooth). Now let f,: X, > X be the blowing up of
X with center Z(s,), F, the exceptional divisor and let s;=p8,(f¥(s;)), D;=the
associated divisor to s be as before (j=2,3). Then we the following.

LEMMA 1.13. Under the above assumption,

(1) Dj intersects D5 and ny'(Z(s3)) transversally.

(2) D4yn D5 intersects ny'(F,) transversally. Hence {D5, D3} satisfies
the equivalent condition in Lemma 1.10.

PrOOF. From our assumption, it is easily seen that we have only to prove that
D} intersects ny7'(Z(s5)) transversally. As for the transversality, it is enough to
show that D} meets n7'(Z(s3)) transversally at the points lying over F, =f71(Z(s,))
because f: n7(Z(s5)—F,)nNDy=n~'(Z(s, As,)—Z(s,))ND, N D5 is an isomor-
phism. Since the problem is local, we may assume that X = U is an affine scheme
with E|U~@®"0y. Letus puts, | U=(xy,..., X,), s | U=(1,..., y,) and s3 | U=
(z4,..., 2,). Without loss of generality, it is enough to check the transversality
over the affine open subset U,. On the open subset n7'(U,)~U, x Pr~2, D}
is defined by the equation:
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(2= (x2/x )z )Xy + = + (z,—(x,/x)z )X, =0
and n7'(Z(s})) is defined by the equations:
(*) Yi— (xi/x)y; =0 2=isgn),

where {X,,..., X,} is a homogeneous coordinate of P~2. Let us fix a regular
frame {x,, X3/X{,ec0r Xp/X |5 Uqserns Uy, Xo,enr X,} of w7}(U,) at the point (x/,
(¢5,--., &) of Dy nnytZ(s5) where {x,,..., X,, Uy,..., u,} (r+s=dim X) is a regular
system of parameters of X at x=f,(x’).

Case i) x&Z(s,), i.e, y,#0. If we put xj=x;—(v;/y)x; 2=Zi=r), then
Z(s,) is defined in a neighourhood of x by x,=x,=---=x}=0. Moreover
Vilyi—xi/xy = —x;/xy and z;—(x;/x{)z; = z;—=(yi/y )z, —(x}/x)z; 2=isr).
Hence we may assume that n7!(Z(s3)) is defined by the equations: x;/x,=0
(2<i=r) and so we have the following Jacobian matrix at (x’, (£,,..., £,));

r % dkeeosk dkeeosk 22_(yl/yl)zl"'zr—(yr/_Vl)Zl
01 0 #---% Qcevervverneennnnns 0
00 1 %% Oveenreeeneeanans 0

This implies that if x& Z(s, A 53), then we can prove the transversality. Thus we
assume x € Z(s, A s3)—Z(s,). Since D, N Dy meets n~!1(Z(s,)) transversally from
our assumption, Z(s, A s3) meets Z(s,) transversally at x by Lemma 1.9. Hence
we can take u,=z,—(V2/¥1)Z(r-e> Up_1=2,—(¥,/¥4)z;- Then the Jacobian
matrix becomes the following one:

[' * %ok Xpooo X, %ok 0040
01l 0 00 *---% 0---0
[()0 100 kw00

and hence we are done.
Case ii) xe€Z(s,), i.e,, y;,=0. Since Z(s,) n Z(s,) is a smooth subscheme

of pure codim =2r, we can take u,=y,,---, u,=y,. Thus we have the following
Jacobian matrix in this case:

(* — Xz Xy ok ke ek = (XX )2z, — (X, %)) 24
0 Oueeeren 0 —xp/x; 1 0% -ow R TRIRE 0
[ 0 Oeererrrrens S U St B, WS 0

If either z,#0, i.e., x& Z(s;3), or x'& Z(s3), then we are done. Assume that x €
Z(s;) and x' € Z(s3). Since Z(s,) N Z(s,) N Z(s3) is a smooth subscheme of pure
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codim =3r, we can take u,,,=z,,..., 5, =z, Hence we can prove the trans-
versality. q.e.d.

Therefore we get the following.

THEOREM 1.14. Let X be a non-singular projective algebraic variety
(dim X >2) defined over an algebracically closed field of arbitrary characteristic
and let E be a very ample vector bundle with rank =r (2<r<dim X). Then
there are sufficiently general global sections s, s,, s;(1<i<Min {3, r}) which
satisfy the properties (1), (2), (3) and (4) in Theorem 1.12.

2. A theorem on splitting of vector bundles

The aim of this section is to prove the following theorem.

THEOREM 2.1. Let X be a smooth quasi-projective k-algebraic scheme
(k being an algebraically closed field of arbitary characteristic) and let E be
an algebraic vector bundle on X. Then there is a quasi-projective smooth
k-algebraic scheme X' over X satisfying the following conditions:

(1) f: X'—>X is finite and faithfully flat.

(2) f*(E) has a splitting of line bundles, i.e., there is a sequence of subvector
bundles of f¥(Ey=Fy>F,>---oF,={0} such that every quotient bundle F,/
F,y; (0<igr—1)is a line bundle on X' (r=rank E).

We shall fix some notation and prepare elementary lemmas. Let X be a
quasi-projective k-algebraic scheme, E (resp. L) a very ample vector bundle on
X (resp. the tautological line bundle of E) and let n: P(E)— X be the structure
morphism. Then for every positive integer n, L$" gives an embedding of P(E)
into a projective space PN because E is very ample. We shall denote an embed-
ding by ¢,: P(E)—>PN (or, ¢ simply). Moreover, we shall denote by [Y] the
linear subspace of PN spanned by Y for a closed integral subscheme Y of PN,
(PM* means the dual projective space of PN.

LEMMA 2.2.  With the above notation, let x be a k-rational point of X, Y a
closed irreducible subscheme in the fiber n~Y(x)= P! (r=rank E) and let I
be the defining ideal of Y,,, in Pr='. Then

dim [(p(yred)] = an - hO(Pr—l, 1(}1)) - 1;

where H, means multi-combination, I(n)=I®O0,--{(n) and h°(P~!, I(n))=
dim HO(Pr-1, I(n)).

ProOF. Let J be the defining ideal of ¢(Y,,.)=Y,., in PY. Then we have
an exact sequence:
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0 — J(1) — Opn(l) —> Oy, (1) — 0.
Since we have the following exact sequence:
0 — H°(J(1)) — HO%Opn~(1)) — H%Oy,, (1)) — HY(J(1)) — 0,

dim {hyperplanes of PV containing Y,,;} =h°J(1)) —1. On the other hand, there
is an exact sequence:

00— I(1)—> J(1) — J/I(1) — 0.

where I.=the defining ideal of ¢@(n~'(x)) in PY. Hence we have the exact
sequence:

0—> HO(I (1)) — HO(J(1)) — HO(J/I(D))—> H'(I(1))—> -

Here the canonical map HO(Op~(1))—H%Op.-1(n)) is surjective and H'(I,)=0.
Thus hO(J(1))=ho(I (1)) + ho(J/I(1))=ho(I (1))+ h°(I(n)) = N +1—H,+ h°(I(n)).
Therefore, dim [(Y,.,)]=,H,— h°(I(n))— 1. q.e.d.

The following is a key lemma to prove our Theorem 2.1. Though Hironaka
([3]) has shown it in a more general form, we shall give here another simple
proof.

LemMMA 2.3. Let X (dim X=1) be a quasi-projective smooth k-algebraic
scheme, E a very ample vector bundle on X with rank=r(=2) and let Y be a
closed integral subscheme of P(E) which is of pure relative dimension d(=1)
over X. Then there is a positive integer ny such that if we embed P(E) into a
projective space PN by LY" for n=n,, then there is a non-empty open subscheme
U of (PN)* satisfying the following: For a general member H of U, HNY
is a closed integral subscheme which is of pure relative (d—1)-dimension over
X. Moreover, if Y is smooth and flat over X, then H 0 Y is smooth and flat over
X.

ProOF. For every positive integer n, we fix an embedding ¢: P(E)— PN by
L". Let I'={(x, Hye X x(PN)*|H contains an irreducible component of
n=1(x) n Y, set-theoretically}. Then I' is a closed subscheme of X x(PN)*. In
fact let A={(z, Hy e P(E)x(PN)*|ze H} and let 0: An(Yx(PY)*)3(z, H)—
(n(z)x H)e X x (PM)*. Then I'={(x, H)e X x(P")*|dim 6~'(x, H)=d}. Since
0 is projective and is of relative dimension<d, I' is closed. Let p: I'—> X (resp.q:
I'—(P¥)*) be the first projection (resp.the second projection). By Lemma 2.2,
for every k-rational point x of X, dim p~!(x)=Max {N — H,+ h°(I(n))}, where
the I’s are the reduced defining ideals of irreducible components of n~!(x) n Y in
Pr=1.  On the other hand, the families of Op.-:-coherent sheaves {I} and {Op.-:1/
I} on the fibers of n: P(E)— X are limited families. In fact, let {Z;} be the set of
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irreducible components of (Y N n~!(x)),., for k-rational points x of X. Then, the
degrees of Z,’s with respect to a hyperplane of P'~! are bounded above. Thus
the family {Op--:/I} is a limited family by Chow’s theorem (cf. [5]). Therefore
there is a positive integer m, such that all the ideals I are m-regular with respect
to Opr-1(1). Hence we have that forevery n=m,, Hi(I(n))=0 for all i>0 and I.
Thus dim I' £dim X + N— H,+ Max {y(I(n))} =dim X+ N — H,+ x(Op--1(n)) —
Min {)((Opr-1/I)(n))} for all n=my and I. Since y((Opr-:/I)(n))=(a/d)n?+---
(a>0,d=1), we can take a positive integer ny = mg such that Min {y((Op.-1/I)(n))}
>dim X for all n=ny. Thus dim g¢(I')Sdim I' < N if we take n=n,. Therefore
there is a non-empty open subset U of (P¥)* such that every member H of U
does not contain any irreducible components of Y nn~!(x) for every k-rational
point x of X, i.e., Hn Y is of pure relative (d — 1)-dimension over X. If we take
a sufficiently general member H of U, then Hn Y is integral. Moreover, if Y
is smooth and flat over X, then H n Y is smooth and flat over X. q.e.d.

We shall now prove Theorem 2.1. Since X is quasi-projective, there is an
ample line bundle Lon X such that EQL is very ample. Hence we may assume
that E is very ample to prove our claim. Let n: P(E)— X be the structure mor-
phism. Using Lemma 2.3 interatively, we see that there is a smooth closed
subscheme X' of P(E) such that n|X': X’— X is finite and faithfully flat. On
the other hand, it is well-known there is an exact sequence of vector bundles on
P(E).

0— F—> n*%(E) — L — 0,
where F is a vector bundle on P(E) with rank =r—1. Hence if we put f=mno

i (i: X'—>P(E) being the closed immersion), then we have an exact sequence of
vector bundles on X'.

0—> F| X — f¥E)— Lg| X' — 0

Proceeding with the above argument to F | X’ if necessary, we can obtain a quasi-
projective smooth k-algebraic scheme X’ over X desired in Theorem 2.1. q.e.d.

REMARK 2.4. When X is projective, we can take an algebraic k-scheme
X' satisfying H{(X, Ox)~H{(X', Oy) for 1£i<dim X—1 in addition to the
conditions in Theorem 2.1.

3. Application

We shall show some applications of Theorem 2.1 in this section. When X
is an affine variety, every vector bundle on X is associated to a finitely generated
projective module and hence the following is easily seen from Theorem 2.1.

THEOREM 3.1. Let A be a regular affine k-algebra and let P be a finitely
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generated projective A-module. Then there is a regular affine k-algebra B
which is a finite and faithfully flat A-module such that P® ,B is a direct sum of
projective B-modules of rank 1.

When X is projective, the following implies that every algebraic cycle of X
can be written as a sum of subvarieties which are complete intersections of divisors
after a suitable multiplication of an integer and a pull-back of some finite
faithfully flat morphism.

THEOREM 3.2. Let X be a smooth integral projective algebraic k-scheme
and let Z=Y n,Z; be an algebraic cycle of codim =p(=1) on X. Then there is
a finite and faithfully flat morphism f: X'— X, where X' is smooth and integral,
such that

(p = DIfX2Z)= X+ D,---D, (rat. equiv.),

where D, are divisors on X'. Hence in particular, (p—1)!\f*(Z) is smoothable.

PrROOF. We may assume that Z is a prime cycle to prove our claim. Let
O, be the structure sheaf of Z. Then itis known that ¢, (0;)=(—-1)>"'(p—-1)!Z
(rat. equiv.) (cf. [1]). Let the following be the resolution of O, by vector bundles
on X.

0—E,—E,_— -+ ——>E —> 0y —>0;,—0 (n=dimX).

Then there is a finite faithfully flat morphism f: X’'—>X such that every f*(E;)
(1 £i<n) has a splitting of line bundles on X’ by Theorem 2.1. Then every chern
class c¢,(f*(E))=> £D,---D; (1=i, j<n), where D, are divisors on X’. Hence
(=D Y (p=D!If*(Z)=c,(f*(0z))=>+D,---D, for suitable divisors D, on X'.

q.e.d.
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