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Introduction

In the previous paper [3], we proved that the “‘regular’’ representation of
the infinite dimensional rotation group G on the “infinite dimensional sphere”’
is decomposed into the ‘““class one’’ representations with respect to the subgroup
K of elements which fix a unit vector.

In this paper we shall prove an analogue of the Peter-Weyl theorem for the
group O(E) (for the definition, see §1) which contains G.

As is well-known the group O(E) as well as G admits no Haar measure.
To formulate an analogue of the Peter-Weyl theorem we imbed O(E) into a
measure space Q on which O(E) acts on the left and right as measure-preserving
transformations. Thus we obtain the left and right “‘regular’’ representations of
O(E) on the Hilbert space of all square integrable functions on , the decom-
position of which gives us an analogue of the Peter-Weyl theorem.

Now let M be a compact riemannian manifold and Diff M the group of all
difftcomorphisms. In [5] A. M. Vershik, I. M. Gel’fand and M. 1. Graev
constructed a certain class of irreducible unitary representations of Diff M. For
each irreducible representation p of the symmetric group S, (n=1,2,...) they
assigned an irreducible unitary representation U, ,. Putting E=C*(M) one can
prove that U, , is extended to a representation m, , of O(E). The regular re-
presentation of O(E) on the infinite dimensional sphere decomposes into the
space of symmetric functions on M X --- x M (n-times) which gives us the Fock
space for Bose particles on M. Here appear only those representations , , which
correspond to the trivial representation 1 on S,. One of the motivation of our
study of the present article was to look for a scheme such that, by substituting a
more general measure space for the infinite dimensional sphere, we may have
representations m, , as components of the irreducible decomposition. In §4
and §5 we shall prove that the Fock space for Fermi particles as well as Bose
particles can be obtained as a subrepresentation of the left and regular represen-
tation of O(E) on the Hilbert space of all square integrable functions on Q.

Finally we would like to comment on the difference of the definition of the
class one representation betwzen the previous paper and the present paper. The
pupose of the previous paper was to characterize those representations which
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appear in the irreducible decomposition of the regular representation of G on the
infinite dimensional sphere. Our method was to generalize differential equations
which are satisfied by the spherical functions and we considered the Casimir
operator, so that we assumed the sufficient differentiability of K-fixed vectors.
In this paper we shall give another characterization of these representations
(McKean’s conjecture) as an application of Theorems 1 and 2, specifying the
kind of representations permitted, (see [4], p. 203).

The authors would like to express their hearty thanks to Professor T. Hida
and Professor M. Hitsuda for valuable discussions.

§1. Preliminaries

Let M be a compact riemannian manifold. We denote by Diff M the group
of all diffefomorphisms. The group Diff M is assumed to be furnished with the
natural C®-topology. Let S, be the group of all permutations of {1, 2,..., n},
and p be an irreducible representation of S, on a finite dimensional vector space
V,. Then one can choose an inner product on V, such that for any ¢ in &,
p(o) is a unitary operator on V,. We denote by é,, the set of all equivalence
classes of irreducible unitary representations of &,. The group &, acts on
Mx...xM (n-times) on the right by (py,..., p,): 0= (Py(1)s+++» Pomy)> Where
(P1sees P)EMX - xM,0€S,. We denote by LA(M x --- x M) the Hilbert space
of all square integrable functions on M x --- x M. For any irreducible represen-
tation (p, V,) of &, we consider the Hilbert space L(M x---xM, V,) of V-
valued functions fon M x --- x M such that

12 =, 1S @ues 2N dpydp, < + o0,
MXe-xM
We denote by s, , the subspace of functions f in L2(M x --- x M, V) such that

f(pa(l)s“" pa(n)) = p(a)_lf(plv--a pn)

for any o in &,. For any g in Diff M and f in 5, , we define

Uaop @) Piserss 2 = (TH=1 [ 2422 ) flg sy 970

Then U, , is a unitary representation of Diff M on s, ,. In case n=0 we put
#,,=Rand U, ,(g)=I for any g in Diff M, where I denotes the identity operator.
Let C*(M) be the space of all C*-functions on M. Then we have a Gel’fand

triple
C*(M) = LA(M) = C*(M)*,
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where C®(M)* is the dual space of C*(M). We write E, H and E* instead of
C*(M), LX(M) and C*(M)*, respectively. By the Bochner-Minlos theorem,
there exists a probability measure y on E* such that for any £ in E we have

el = SE* <5 Odu(x).

Let N be the set of all positive integers. We fix, once for all, an orthonormal
basis {{;;je N} of H such that {;eE for any jeN. We shall consider an
Hermite polynomial;

k
H () = (—1)"e‘2~‘—‘1—1t*re"2, k0.

For any n in NU {0} we put
B, = {[15= (n;! 27)712H, (Kx, £;5/2Y2); ey nj=n}.

Then it is known that \U, B, is an orthonormal basis of L2(E*, ). We denote
by 57, the closed subspace spanned by B,. Then we get an orthogonal decom-
position

LUE*, p) = >3, @ #, (Wiener-It6 decomposition).

We denote by P, the projection operator of I*(E*, u) on 5#,. For any nin N
we denote simply by 1 the trivial representation of S,. In particular, if n is equal
to 1, then we write simply g¢ instead of U, ,(g9)¢ for each g in Diff M and ¢ in E.
We use the same notation for the dual action of g on E*; (gx, £)={x, g~1&).
For any g in Diff M and fin L2(E*, u) we define

(U@ (x) =f(g~'x)  for ae. xin E*.

Then U, is a unitary representation of Diff M on L2(E*, ). Since s£, is
U ,(Diff M)-invariant, we have the subrepresentation U, of Diff M on s#,. The
following propositions were proved by A. M. Vershik, I. M. Gel’fand and M. I.
Graev, (see [5]).

ProPOSITION 1. 1) If p is irreducible, then (U, ,, #,,) is irreducible.
2) Two representations (U, ,, #,,) and (U, ,, #, ,) are equivalent if
and only if n=n’ and p is equivalent to p’.

PROPOSITION 2. For each non-negative integer n, the representation (U,,
o#,) is an irreducible unitary representation of Diff M, and is equivalent to the
representation (U, y, £, 1).

‘We denote by O(E) the group of all linear homeomorphisms of E which are
isometries of H. For any g in O(E) and fin L%2(E*, u) we define



388 Kiyosato OkaMoTo and Takatoshi SAKURAI

(nx(9))(x) = f(g7'x).

Then r, is a unitary representation of O(E). It is known [4] that 5£, is 7, (O(E))-
invariant, so that we have the subrepresentation (n,, ;). According to the paper
[1] we define a transformation J by

TNE = | e fedu(x), feLX(EB*, ), ¢E.
And we define a transformation 7, by

(Z3 Q) = el*I*2 30, 2121 T (P, f) (&), fe LA(E*, ), (€.

Then 7, is injective. In case 7, f=¢, we write f=¢*. We denote by L*(M x
-«-x M)~ the Hilbert space of all square integrable symmetric functions on M x
-+» X M (n-times). By the canonical isomorphism we have

LZ(MX X M) = L%M)@...@LZ(M),

where L3(M)®---® L2(M) denotes the completion of the tensor product L2(M)®
--«®@L2(M). Using this isomorphism, for any g in O(E) we can define the unitary
operator #,(g) on L?(M x --- x M) which corresponds to the mapping: 7, ®---®mn,
—(gn,)® - ®(gn,), where n,®---®n,€ L2A(M)®---QL*(M). Clearly 7, is a
unitary representation of O(E) and L*(M x---x M)" is #,(O(E))-invariant.
Since L2(M x---xM)"=s#, ,, we have the subrepresentation (m,,, 5, ,) of
O(E). For any fin 5, there exists a unique F in 5%, ; such that

), UC) = eI  Fpye p)EPL)-EpIps -y
E* M

M XeeeX

(see [1]). We put A,f=F. Then for any g in O(E) we have
An ° nn(g) = 7[",1(9) : An'

REMARK 1. The operator A, gives the equivalence (m,, #,)=(m, 1, #,,1)
and restricting these representations =, and n, , to Diff M we get the equivalence
in Proposition 2.

REMARK 2. Proposition 2 shows that L2(E*, p) gives the Fock space for Bose
particles. In §5 we shall show that the Fock space for Fermi particles as well
as (the Fock space) for Bose particles can be obtained as a subrepresentation of
L¥(Q, v).

§2. Peter-Weyl theorem for O(E)
We shall consider a Gel’fand triple



On a certain class of irreducible unitary representations II 389

C™(M x M) LM x M) = C*(M x M)*.

We can identify C*(M x M), LA (M x M) and C®(M x M)* with EQE, HOH
and (EQE)* respectively, where EQE and H®H denote the completions of
EQ®E and H®H respectively. Now, we get a probability measure v on (EQ E)*
such that for any { in EQE

e-l2/2 — S €10 dy(x),
(7]

where Q=(E®E)*. Since {¢:®¢&;; i, jeN} is an orthonormal basis contained
in EQE, the collection {IT;;(n;;!2"5)~12H, ({x, &®E&;>[2Y?); X, ; ny;< + 0,
i, je N} forms an orthonormal basis in L?(£, v).

For any g in O(E) let us consider two bilinear mappings of E x E into EQE;

EM—@oHen En—Eio(n.

Then there exist two linear mappings of EQE into itself such that
Ly(c®n) = (g @1, Ry(c®N) =1 (9¢)-

We denote by gx and xg the dual actions of O(E) on Q defined by
g%, O =<x, Ly-18>,  <xg, > =<x, R,

where xeQ, (e EQE, geO(E). It is clear that the measure v is O(E)-
biinvariant. For any g in O(E) we define

(DN (X) =f(g7'x), (@ (X) = f(x9).

Then n; and 7y are unitary representations of O(E). For any (g,, g,) in O(E)
x O(E) we put

(04(g15 92)0) (%) = f(g1'xg,).

Then w, is a unitary representation of O(E)x O(E). Fix any nin NU {0} and
let £, be the closed subspace spanned by

{I'L,; (n;;! 2""")—1/2Hn;,(<X, L®EH2YY);, X im;=n, i, jeN}.

Then it is clear that £, is w,(O(E) x O(E))-invariant. Thus we obtain a unitary
representation w, of O(E)x O(E) on §,. Let p be an irreducible unitary re-
presentation of €, on V,. By the canonical isomorphisms we have

LX(Mx - xM,V,) LA Mx--xM)® V, = X(M)®- QLA M)® V,.

Using these isomorphisms, we can define the unitary operator #,,(g) on
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L?(M x -+ x M, V,) which corresponds to the mapping: #,®---®n,®v~—(g9n,)®
- ®(gn,)®v. For any ¢ in S, and F in L2(M x --- x M, V,) we define

A(G)F(ph'"’ pn) = F((pla'“’ pn)'a) = F(pa'(l)""’ po‘(n))‘
We put

Hy, = {ae (M@ - @LAM)®V,; Mo)a = (I®--®IQp(c) N, 6€E,}.

Then s, , is isomorphic to s, ,. As is easily seen 5, , is 7, ,(O(E))-invariant,
so that we have the subrepresentation (m, ,, 5, ,). We remark that n, ,|pieen =
U

np*

THEOREM 1 (an analogue of the Peter-Weyl theorem for O(E)). The unitary
representation w, of O(E)x O(E) is decomposed as follows;;

LZ(Q’ V) = :o=0 @ Zp';fn,p@ '#:.p’

where 3, is taken over all p in é,,, and w,(g,, g,) corresponds to m, ,(g,)®
. o(92) for each (g4, g,) in O(E) x O(E).

ProOOF. We denote by L2((M x M) x --- x (M x M))" the Hilbert space of all
square integrable symmetric functions on (M x M) x --- x (M x M) (n-times). We
put H={BeL (M x ---x M\)@L¥(M x---x M); (L(0)@A(0))f=B, 0€S,}.
Then we have the canonical isomorphism B,: L2(M X M) x --- X (M x M))"—
$,. We put B,f=F, where fe LA(MxM)x---x(MxM))" and Fe$,. Then
it is easy to see that for any (g, g,) in O(E)x O(E)and f in L2(M x M) x --- X
(M x M)) we have

(an*(gl’ gZ)f) ((ph ql),'--’ (pm qn))

=(H~ dgi'pi||d93'q;
71 dp; dg;

1/2
> B, f((97'P1s 92'9),---, (97'Pws 92'40)) -
We put (M x - x M) ={(py,..., p)EM X ---xM; p;#p; (i#j)}. Let F, be a
fundamental domain, so that the mapping:
F,x&,3(,0)—u-ce(Mx--xM)

is bijective. Let L?(&,) be the space of all functions on S,. We introduce an
inner product defined by the normalized Haar measure on &,. Then by the
Peter-Weyl theorem for &,, we have

LXS,)=%,V,® Vi

We remark that the unitary operator defined by the right translation of ¢ in S,
corresponds to I®p(o)*. Since for any ¢ in S, A(0) is a unitary operator, we get
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LXMx - xM)x LA(Mx--xM)) = LXF,xS,)
= LX(F)QL¥(S,)= X, LAF)QV,QV}.
It follows that &, is identified with

{ae,, X, LAF)®V, @V QLAF,)®V,,QV%;
(IRI@pH(0)RIRI®p3(0))a=0a, 0 €S,}
= 3, (LAF,)®V,) ® (LAF)®V,:) = T, #,,8#7F ,.

In the above we used the following. Schur’s lemma implies that

0 (o #p3),

dim (€ V,,8V,,; (p(0)@pa(e)w = w} =
1 (py=p3).

Finally we notice that wy(g,, g,) corresponds to w, ,(g,)®@n} ,(g2)

We put Up=n,lpicrms Ur=7rlpice e and Ty = 0y |pige mxpiee »-  Then
we have the following

COROLLARY. Ty =U,[X|Ug, where U;[x|Ug denotes the outer tensor product
of U, and Ukg.

§3. Polynomial representations of discrete class

In the following (§ 3~ §5) we keep the notation; M, C*(M), L%(M), C*(M)*,
E’ H’ E*9 {fj;jEN}a O(E)’ Q, LZ(E*’ ﬂ), LZ(Q’ V), Txs Wxs Ty TRy Ty, fm nn,p’
‘;fn,p’ d)“'

We shall identify every element g of O(E) with the linear form on EQE
defined by

L® f,’ — <&, géj> (i,jeN).

Thus we regard the group O(E) as a subset of Q. Let R[X;;; i, je N] be the
polynomial ring of infinite variables X;; (i, je N) over R. Let C(£2) be the set of
all continuous functions on Q. We denote by C(O(E)) the set of all functions
given by the restriction of functions in C(Q) to the group O(E). We consider
the mapping from R[X;;; i, je N] to C(Q) defined by the map: F+~ f, where
F(Xij))eR[X;;i,jeN], fe C(Q) and f(x)=F(({x, {;®¢&;>)). We shall denote
by F(Q2) the image of this mapping. We call functions in F(Q) polynomials on Q.
It is easy to see that the restriction map: f f|o, is injective. We put F(O(E))
=F(Q)|ok) We also call functions in F(O(E)) polynomials on O(E). Since the
restriction mapping is injective, for each polynomial f on O(E) there exists a
unique polynomial f on Q such that f=f locg)- In the following we use the same
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notation f instead of f. Let (n, §) be an irreducible unitary representation of
O(E). For v and win $ we define a function ¢~ ,, on O(E) by

% W(9) = (v, n(g)w).

We call (7, ) a polynomial representation of O(E) if there exists an orthonormal
basis {v;; je N} of $ such that ¢F ;(9)=(v;, n(g)v;) (i, je N) are polynomials.
We denote by 9, the space of all finite linear combinations of v; (jeN). Let
(m, ) be an irreducible unitary polynomial representation of O(E). We shall
call (w, ) of discrete class if the multilinear functional B:

$,% 5, %6, %X 6,30, W, 0/, W) — SQ x (05 . (X)dv(x) € R

is continuous.

PROPOSITION 3. 1) Let (n, ) be an irreducible unitary polynomial repre-
sentation of discrete class. Then there exists a positive constant ¢ such that

Sn T(X)BTE W ()dV(x) = c(v, 0) (W, W) (0, w, 0", W €H)).

2) Let (n, ) and (7', H') be irreducible unitary polynomial represen-
tations of discrete class. If n and n’ are non-equivalent, then

[ #r0rn v =0 (0 wes,, v, wes)).
Proor. 1) We fix wand w'. Then
B(' » W, ey wl) = S zt,#w(x)¢?,‘w‘(x)dv(x)
2

is a continuous bilinear functional on H,x H,. Itis easy to see that ¢p3{,), .(X)=

m# (97 1x) (g € O(E)). Since the measure v is O(E)-biinvariant, it follows that
B(-,w,-,w) is n(O(E))-invariant. From this fact one can find a constant
C, . SUCh that

(3.1) B(v, w, v', w') = ¢, (v, V') (v, V' E€DH)).

Similarly, let us fix v and v’. Then there exists a constant c;_,. such that

(3.2) B(v, w, v', w') = ¢}, ,(w, w) (w, weH,).

From (3.1) and (3.2) we conclude that there exists a constant ¢ such that
B(v, w, v', w') = c(v, V) (w, W) (v, w, 0", W eH,).

It is clear that c is positive.
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2) Wefix win $, and w’ in H, and put

Buwv, ) = | $5,(0855, () (€, v €9,

From 1) it is easy to see that B, (-, -) is an O(E)-invariant continuous bilinear
functional on $,x $ and so we have a continuous linear operator A: $,—9H
such that

B, (v, V') = (Av, V') (veH,, V' €H)).
Obviously for any g in O(E)
A-n(g) = n'(9)- A.

Since n and n’ are non-equivalent, we have A=0. If follows that
[, 9200872 () = 0.
Q

THEOREM 2. For any n in N U {0} and irreducible unitary representation
(p, V,) of €, (n, ,, #,,,) is an irreducible unitary polynomial representation of
discrete class. Conversely for any irreducible unitary polynomial represen-
tation of discrete class (n, 9), there exist an n in NU {0} and an irreducible
unitary representation (p, V,) of €, such that (n, 9) is equivalent to (n, ,, 5, ,).

ProOOF. From Proposition 1 the representation (=, ,, 5, ,) is an irreducible
unitary representation of O(E). Let {v,,..., v,} be an orthonormal basis of V.
Then we have an orthonormal basis {; ®---®¢&; ®v;; ie N} of LM)®®
LX(M)®V,, where &, ,..., &; are orthonormal basis of L?(M). We put

Uiy onnimsiy = €1, @+ ®&; @y,
Viiimiiy = 61 @ ®E;, Qv 9&j, = ih=1 914l (k=1,...,n).
We write simply (i) instead of (i,..., i,; i), and we put
b in(9) = (W) T p(9)05)) -
Then we have
D) = (V) (9E;)® - ®(gE;,)®v)) = 6; ;9i,j," " Ginjus
where 6, ; is Kronecker’s 8. Thus ¢; (;, is a polynomial on O(E).

Now we shall show that the functional B is continuous. For any v, w, v’ and
w' in $, we put '

v=2mapPa, V= T Gl

—_ ’r__ ’
w=3 by W= Zwbuvy-
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Then we have
Do (X)) = 2 () 20y 0i,j8wybH <X, &, @&, <x, §,®¢;,)
We PUtf(i).(j)(x)=<X, & ®E; > <x, &, ®&;>. Then

gnffi),(j)(x)ffk),(t)(x)dV(X) =0

unless the followings hold; for any m and m’, m occurs the same times in the
series i,,..., i, and ky,..., k,, so does m’ in the series j,,..., j, and I,,..., ,. Using
the Schwarz inequality we have

| #5085 ()
=< Z(i) Z(j) hIFD I 5i,j5k.1|a(1)b(j)| Ia;(i)b;(j)l lgnffi).(j)(x)fﬁ(i).r(j)(x)dv(x)l
< (Dol Iwll 1o Iw]l .

This shows that B is continuous.

Conversely let (n, ) be an irreducible unitary polynomial representation of
discrete class. Then, by definition, there exists an orthonormal basis {v;; je N}
of $ which satisfies the following conditions; ¢7 ;(g)=(v;, n(g)v;) (i, jeN) are
polynomials on O(E) and B:

55]‘ X 5[ X S_Sf X g’fa(v’ w, 0,9 W’) F— S ’lrxfw(x) z?,w'(x)dv(x) GR
Q2

is continuous, where $, is the space of all finite linear combinations of
v; (jeN). From Proposition 3 there exists a positive constant ¢ such that

[ #rm7 wadv) =c(o, v) (0, w).
Q2
Now we fix v in $,. For any v in H, we define a linear operator 4 by

(Av) (x) = ¢570(x).

Since B is continuous, 4 defines a bounded linear operator of § into L2(Q, v).
We know that for any g in O(E)

(An(g)v) (X) = Dilg)0,00(X) = DTiug(97'X) = (m(9)Av) (x).

This implies that A is an intertwining operator of $ into L%(Q, v). Thus (n, )
is equivalent to a subrepresentation of (n;, L%(©, v)). On the other hand, from
Theorem 1 we can prove that any subrepresentation of (n,, L>(R2, v)) is equivalent
to (=, ,, ,,) for some n in NU {0} and p in @,,. This completes the proof of
the theorem.
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§4. Class one representations

Let G be the subgroup (of O(E)) of all g in O(E) such that g&;=¢; except fini-
tely many jin N. Weput K={geG; g&,=¢&,}. We denote by HBos¢ the closed
subspace spanned by {[T; H,({x, &®¢&,)/2'/2); X in;< +oo}. Clearly HBes¢ is
n,(O(E))-invariant, so that we have the subrepresentation (aBose, HBos¢). It is
obvious that (m,, L2(E*, u)) is equivalent to (nBose, HBose),

Let (n, ) be an irreducible unitary polynomial representation of discrete
calss. We call (n, ) class one (with respect to K) if the space of all n(K)-fixed
vectors is of one dimension.

THEOREM 3 (McKean’s conjecture). For any n in NU {0} (m,, 5%,) is an
irreducible unitary polynomial representation of discrete class which is class
one (with respect to K). Conversely, for any irreducible unitary polynomial
representation of discrete class (mn, ) which is class one (with respect to K),
there exists an n in N U {0} such that (n, 9) is equivalent to (n,, 5%,).

PrROOF. We can show in the same way as in [3] that $Bos¢ coincides with the
space of all ngz(K)-fixed vectors in L2(, v). It follows from Theorem 1 that

580“ = Z:O=0 Zp';fn,p g(‘}fr,p)K’

where (o) ,)X denotes the space of all n¥ (K)-fixed vectors. Since (nBose, HBeose)
is equivalent to (my, LXE*, p)), it follows from Remark 1 that (5% )X vanishes
unless p is trivial and that dim (o} ,)¥ is equal to 1. Since

*
xn,lg n,l'; n,lg‘}fns

the dimension of the space of all n,(K)-fixed vectors in 5, is equal to 1. It fol-
lows from Theorem 2 that (=m,, 5#,) is an irreducible unitary polynomial repre-
sentation of discrete class.

Conversely, let (z, $) be an irreducible unitary polynomial representation of
discrete class which is class one. Then from Theorem 2 there exist an n in
Nu {0} and p in é,, such that (#, 9) is equivalent to (m, ,, 5%, ,). If p is not
trivial, we have

(‘;fn,ﬁ)x = ('f:,p‘)'( = {0} .

This completes the proof of the theorem.

§5. Fock space for Fermi particles
Let HFermi be the closed subspace spanned by {27"/2 3" sgn(o) [T¢-, H,({x,
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& ®E,w»/2Y%); 1Sk, <---<k,}, where sgn(o) denotes the signature of o in
9, and the summation Y, is taken over all ¢ in €,. Clearly HFermi is n,(O(E))-
invariant, so that we have the subrepresentation (nfermi GFermi)  We put
HFermi= 5= , @HFermi.  We write simply v, instead of 27%/2 3 sgn (o) [T,
H,({x,¢,®&,i>/2"/?).  We shall calculate the 7 -transformation of vy, =~ We
put c(C):e—HCHZ['L
(Toa) @ = {022 T 5gn (0) TTiey Hi(<X, E®Cuin/21/2)dn(x)

= C(C) Za' Sgl’l (O') ]._I'i‘=l <C9 £k4®éa(i)>
= <(0) T, 81 (0) | (TT=1 & (PO o (@)L (i 41)
) (MXM)x:-x(M*xM)

X dPld‘h "‘dPnd‘In .
Since Hf;l fa(i)(‘h) =11 ft(qa-l(i)), we have
(I'Tf=1 Si(py)) det ((E{gm)))

x (I'Ti=1 {(ps» 91))dp,dg,---dp,dq,.

Clearly the value of the integral is invariant by the action of S,. It follows that

S(MXM)X---X(MXM)

(T ) () = ()

(o) = 0| (1) o ([Tt &4Poce)) det (Edom)

MXxM)x--x(MxM)

x (TTi=1 {(Patiy 9ow))dP1dd;--dp,dg,

= c(og (1)1 X, sgn (6)(TTlet i (Paciy)) det ((E1(gm)

(MXM)x--x(MxM)

x (ITt=1 ¢(pi> q1))dp,dq,---dp,dq,

= e, () det (G, (p) det ((Eulam)))

MXM)x-x (MXM
X (I'Tt=1 {(pis 90))dp dq,---dp,dq,.
Now we put
Doy = (n!)~1/2 det ((,(pm))) -
{vw} and {(n!)~'/2det((&,,(p,)))} are orthonormal bases of HFe™i and #,,,
respectively, where J#, .., is the space of all skew-symmetric functions on M x

- x M (n-times). It follows that D, can be extended to an isometry of HFermi
onto i, .. It is easy to see that for any g in O(E)

Dn : n'l:‘ermi(g) = nn,sgn(g) . Dn'
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Thus we have the following

(1]
[2]

[3]

[4]

[51]

THEOREM 4. 1) (mfermi, HFermi) js equivalent to (@, sgnr Hy sgn)-
2) HFermi=%®  PHFermi (irreducible decomposition).
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