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Introduction

Let G be a connected, noncompact, semisimple Lie group with finite center.

Let G = NAK be an Iwasawa decomposition of G. That is, K is a maximal

compact subgroup, A is a maximal vector subgroup consisting of semisimple

elements and N is a maximal simply connected nilpotent subgroup of G.

Our major concern in this article is a so-called (class one) Whittaker function

on G, which is closely connected with the Whittaker models of a class one principal

series representation of G. Such a function has been studied by many authors

(see the reference) in the case when it is associated with a non-degenerate character

of N.

In this paper, we do not assume the non-degeneracy of a character of JV.

We consider the Whittaker function on G from the viewpoint that it appears as

a joint eigenfunction of the algebra of all left invariant differential operators on

GjK. Our approach is similar to the one employed by Harish-Chandra for his

celebrated work concerning the spherical functions on G.

In more detail, let φ be an arbitrary character of JV. We consider the space

C$(filK) of smooth functions / on G satisfying f{nxk) = ψ{ή)f(x) for neN,

xeG and keK. The space C^(G/K) is stable under the action of the algebra of

all left invariant differential operators on GjK, or equivalently, under the action

of the algebra ί/(g)f (cf. § 2). So we are allowed to introduce the space C^(G/K9

χv) of all joint eigenfunctions of l/(g)f in Cψ(G/K). Here χv is an algebra homo-

morphism of l/(g)f into C which corresponds to an element v of the complex

dual space α* of the Lie algebra of A (see (2.2)).

We first study the structure of C°ψ(G/K9 χv) and obtain the following results.

( I ) Each element of C^(G/K, χv) is a real analytic function on G

(Proposition 3.2).

(II) The dimension of Cψ(G/K, χv) is finite and does not exceed the order

of the Weyl group W of G relative to A (Theorem 3.3).

(III) For those veα* in general position, we construct the functions V(x:

sv, ψ) (se W) on G explicitly (cf. (4.1), (4.5) and (4.10)) and we prove that they

form a basis o/C^(G/X, χv) (Corollary 4.11 and Theorem 5.4).
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Next we define the class one Whittaker function W(x: v, φ) on G associated

with v e α* and a character φ of N by a certain integral formula (see (6.4)). The

integral converges for those v in a certain connected open subset D and is holo-

morphic there (cf. Proposition 6.1). We have already shown in [4] that for a

non-degenerate character φ9 the integral defining W(x: v, φ) can be extended to

an entire function of v e α*. Here we prove the following.

(IV) For an arbitrary character φ of N, the integral defining W(x: v, φ)

can be in general meromorphically continued as a function of v and moreover

it belongs to C$(G/K, χv) as a function on G (Theorem 6.6).

(V) When we write the Whittaker function W(x: v, φ) as a linear com-

bination of the above constructed basis V(x: sv, φ) (se W), the coefficients are

explicitly determined in terms of the Harish-Chandra's c-functions and the

gamma factors appeared in the functional equations of the Whittaker functions

(Theorem 7.8 and Theorem 7.12).

We describe the main steps of the proofs of the above mentioned results.

In view of the fact that each fe Cψ(G/K) can be completely determined by its

restriction fA to A, we construct in § 2 certain differential operator δ(z) on A

for each zeί/(g) f by requiring that {zf)A = (ePoδ(z)oe-<>)fΛ for feC$(G/K).

Then if we define C$(A9 χv) as the space of all ΦeC°°(v4) satisfying δ(z)Φ =

χv(z)Φ for z e £/(g)f, we can deduce that C$(G/K, χv) is isomorphic to Cψ(A, χv)

under the correspondence f^e~pfA (see Proposition 3.1). Thus our problem

of proving (I), (II) and (III) is reduced to showing the corresponding facts for the

space Cψ(A9 χv). In this stage, the operator δ(ω) where ωis the Casimir operator

on G plays a key role. From the explicit form of δ(ω) given in Lemma 2.8, we

conclude that it is an elliptic operator on A and hence (I) holds. The statement (II)

is based on the fact that any differential operator on A with constant coefficients

can be written as the compositions of certain w such operators and the elements of

<5(l/(g)f) where w is the order of W (cf. Proposition 2.7). To establish (III),

we introduce a series Φ(h: vy φ) = hv ΣλeLaλ(v)hλ on A where the coefficients

aλ(v) are given by the recursion formula (4.1). Applying the estimate for aλ(v)

given in Lemma 4.5, we can deduce that Φ(h: v, φ) is convergent uniformly on

every compact subset in A. Moreover we can check directly that Φ(h: v, φ)

is an eigenfunction of δ(ω) with eigenvalue χv(ω). This fact plays an essential

role in proving that Φ(h: v, φ) belongs to Cψ(A, χv) (see Theorem 4.10). Using

this function, we can construct an element V(x: v, φ) of Cψ(G/K, χv) (cf. (4.10)).

The main technique of proving (IV) and (V) is as follows. For each character

φ of N, there corresponds a set of linear forms ηΛ on the root spaces gg where α

runs through the set Π of simple roots of G relative to A. We denote by F the set

of simple roots α such that ηa^0. We note that φ is a non-degenerate character
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if and only if F = Π. Put F * = — SQ1F where s0 is the longest element of W.

We denote by PF^ = NFntAFltcMFjtt the Langlands decomposition of the parabolic

subgroup PF_ of G corresponding to the subset F* of 77. Then the Whittaker

function W(x: v, φ) on G can be written as the product of a certain meromorphic

function cF*(v) and the Whittaker function W(m*: vFφ, i/^) on MFi)t (see Corollary

6.9). The important fact is that φFm is the non-degenerate character of the maximal

nilpotent subgroup N(F*) of MFm. In this way, our problem is reduced to that of

proving our assertions in the case of non-degenerate characters. As was already

mentioned, in this case (IV) follows from Theorem 4.8 in [4]. To establish (V),

we need the asymptotic behavior of W(x: v, φ) (cf. Lemma 7.1). Applying it,

we can determine the coefficient of V(x: sov, φ). The another coefficients are

determined by using the functional equations of the Whittaker functions and

the above result (cf. Lemma 7.7).

§ 1. Preliminaries

Let G be a connected, noncompact, semisimple Lie group with finite center.

Let g0 be the Lie algebra of G. We denote the complexification of g0 by g.

Let B(X9 Y) (X, Ye g) be the Killing form on g. Let K be a maximal compact

subgroup of G with Lie algebra f0. We denote by p 0 the orthogonal complement

of ! 0 in g0 with respect to the Killing form. Let Θ be the corresponding Cartan

involution of g0.

Let α0 be a maximal abelian subspace in p 0 . For each non-zero element α

of the dual space αξ of α0, we set gg = {Xeg 0 ; ad (H)X = oc(H)X for all Hea0}.

We say that α e α j - (0) is a root of g0 relative to α0 if gg Φ (0). Let Σ be the set of

all roots of g0 relative to α0. We put m(α) = dim gg for every oceΣ. Let Σ+ be a

positive system of roots in Σ and let /7 = {α1?..., α j be the corresponding set of

simple roots. Let W be the Weyl group of the root system Γ, that is, the group

generated by the reflections sα(αe/7). Then W is isomorphic to M*/M9 where

M* (resp. M) denotes the normalizer (resp. centralizer) of α0 in K. In what fol-

lows, we often write a representative in M* of an element s of Wby the same letter.

Since the Killing form is positive definite on α0, it induces an inner product < , >

on αg, which is extended to a non-degenerate symmetric bilinear form on the com-

plex dual α* of α0. For each veα*, we define an element Hy of the

complexification α of α0 by B(H9 Hv) = v(H) for all H eα 0 . Then it holds that

</ι, v>=B(Hμ9 Hv)foτμ, veα*.

Let v4 = expα0 be the analytic subgroup of G with Lie algebra α0. For

veα*, we set /zv=expv(/f) where h = cxpHeA. Let p be the element of α*.

such that

P = ^ Σ α e i * m(α)α.
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We denote by n 0 (resp. n 0 ) the subalgebra of g0 given by

"o = Σαei+ 9o (resp. n 0 = Σ α e i + 9oα)

Let JV = expn 0 (resp. JV = exp n 0 ) be the analytic subgroup of G corresponding to

n 0 (resp. τt0). Then we know that g0 is a direct sum of n 0, ct0 and ϊ 0 . Moreover

the map (n, h, k)*-+nhk is an analytic isomorphism of NxAxK onto G and hence

G — NΛK, which is called an Iwasawa decomposition of G.

Let N* be the set of all characters, namely, all one dimensional unitary

respresentations of N. For each φ e N*9 there exists a unique Lie algebra homo-

morphism η of n 0 into R such that 1̂ (71) = exp (iη(X)) where n = exp X e N. Since

η is trivial on [n 0, n 0 ] , it induces a linear form on no/[no, n 0 ] . But since

"0 = Σcceπ So θ [n0, n 0 ] ,

it can be identified with a linear form on Σαe/7 9o Let ηa be the restriction of

η to gg (α e Π). We say that η is the Lie algebra homomorphism of n 0 cor-

responding to φ and we often v/τite φ = φη. If φ is an element of N* such that all

ηa (α e Π) are nonzero linear forms on gg, it is called a non-degenerate character

of N.

For later use, we shall extend the notion of the non-degenerate character of

JV to that of certain subgroups of N. Let F be an arbitrary subset of Π. We

denote by Σ+(F) the set of roots in Σ+ which are integral linear combinations of

the elements of F. Then Σ+(F) is a positive system of the root system Σ+(F) U

— Σ+(F) and F is the set of simple roots of Σ+(F). We define a subalgebra of
n o by no(F)=Σαe2+(F)9o a n d P u t N(^) = exρno(F). Then it is an analytic

subgroup of N. We denote by φF the restriction of φ to N(F). We say that ^ F

is a non-degenerate character of N(F) if ^/α^0 for all α e F .

Now we shall give a normalization of Haar measures of N and iV. Recall

that — B(X, ΘY) (X, Yeg0) defines an inner product on g0. It also induces an

inner product on gg for all α e l , with respect to which they are mutually or-

thogonal. Hence n 0 is an euclidean space with the inner product induced by

— B(X9 ΘY). Let dX be the corresponding euclidean measure on n 0 . Since

the exponential map of n 0 onto N is an analytic isomorphism, there exists a

unique Haar measure an on JV that corresponds to dX. Since N = ΘN, we can

normalize a Haar measure dn on N by dn = θ(dn).

Finally, for any subspace f)0 °f 9o w e write its complexification by I).

§2. Differential operators on Cψ(G/K)

Let l/(g) be the universal enveloping algebra of g, which can be regarded as

the algebra of left invariant differential operators on G. We denote the action of
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u e U(q) on fe C*(G) at x e G by (uf)(x\ or equivalently by f(x; u).

Let {Ud(q)}d^0 be the canonical filtration of l/(g). An element M e ί/(g) is

said to be of degree d if u e L/d(g) — l/d-i(g). If u e Ud(q) we say that u is of

degree <d. The adjoint action of G on g is naturally extended to £/(g), which we

denote by ux with x e G and u e U(Q).

Let t/(I), l/(α) and l/(n) be the universal enveloping algebras of ϊ, α and n

respectively, regarded as canonically embedded in l/(g).

LEMMA 2.1 (Harish-Chandra [3]). The following decomposition of l/(g)

holds;

l/(g) = t/(α)@(nl/(g)+L/(g)ϊ).

Namely, for each u e L/(g) ί/tere ^xisίs a unique element π(u) e U(a) such that

u-π(u)enC/(g)+l/(g)ϊ.

Let p^pf be the unique automorphism of U(a) which takes // e α to H + ρ(H).

We define the map y: t/(g)-*(7(a) by

(2.1) y(w) = π(Wy for tιel7(β).

Since a is abelian, l/(α) can be identified with the symmetric algebra S(a) and

hence with the algebra of polynomial functions on α*. Let J be the algebra of

W-invariants in 5(α), or equivalently in U(ά). Let ί/(g)f be the centralizer of I

in l/(g). Then the restriction of γ to I7(g)f is known to have the following re-

markable properties.

THEOREM 2.2 (Harish-Chandra [3]). The map y induces an algebra homo-

morphism of l/(g)f into U(a) with kernel l/(g)f Π L/(g)t and image J. The

quotient ί/(g)f/^(g)f Π L/(g)I and hence J can be viewed as the algebra of all

left invariant differential operators on GIK.

Let ψeN* and let C^{GjK) be the space of smooth functions/ on G such that

f(ngk) = ψ(n)f(g) for neN, geG and keK. We shall consider the action of

u e l/(g) on C$(G/K). We notice that in general uf does not belong to C

even if fe C^{GjK\ whereas if u e l/(g)f and fe CξiGjK) then ufe C^

Because the action of u commutes with the right translation by elements of K.

We further remark that since all elements of Cψ(G/K) are right K-invariant, each

element of L/(g)l acts trivially on C^{GjK).

In the sequel, we often identify p e U(a) with a polynomial function on α*

and denote the value of p at v e α* by p(v). For v e α*, we define

(2.2) χv(W) = y(u)(v) for uel/(g) f .

Then Theorem 2.2 implies that χv is an algebra homomorphism of t/(gjf into
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C which is trivial on l/(g)f Π U(q)ϊ. Moreover it holds that χμ = χv for μ, veα*

if and only if there exists seW such that μ = sv.

Let χ be an algebra homomorphism of l/(g)f into C. Let C^(G/K, χ) be

be the space of all joint eigenfunctions in

9 χ) = {fe C^G/K); zf = χ(z)f for z e £/(g)1}.

Using the above results on the action of t/(g)f on Cψ(G/K)9 we may assume that

χ is of the form χv for some veα*. Let / be an arbitrary element of C^{GjK).

Then f(nhk) = φ(n)f(h) for n e N, h e A, and k e K. Hence / is completely deter-

mined by its restriction fA to A. In fact the map/i-*/^ is a linear isomorphism of

C$(G/K) onto C°°G4).

For studying the structure of C$(G/K, χv), we shall replace the differential

equations on C$(G/K) by those on C°°(/4). Let &+ be the ring of analytic

functions of A generated (without 1) by the functions /zα(α e Π) where Π is the set

of simple roots in Σ+.

LEMMA 2.3. Let ueUd($). Then we can select a finite set of elements

jE U(ή) and pje U(a) (l<j<r) such that

(i) deg(pj)<d-\ and deg(wy) + deg (pj)<d,

(ii) for all he A,

(2.3) u ΞE π(u) + Σi*j&0{h»~ιPj mod t/(β)f.

PROOF. We shall proceed the proof by induction on d = deg(u). The case

d —0 is trivial. Let d— 1 and u = X e g. If X e α or !, the lemma is clear. Sup-

pose Xen. Since n=Σα>o9α> w e n a v e o n ty t o show the lemma when l e g " .

But then X = haXh~\heA). Since / i α (αel + ) belong to ^ + , the lemma holds.

Now let weLf/g). Then by Lemma 2.1, there exists u^^enUiq) such that u =

π(u) + u1 mod £/(g)ϊ. By choosing suitable elements X α eg α and WαGl/^.^g)

( α e l + ) , we can write

Consequently it follows that

u = π(M) + Σ « i + h'XΪ-'u. mod C/(g)f.

Applying the induction hypothesis on wα, we can obtain the lemma.

Using Lemma 2.3, we shall introduce a differential operator δo(u) on A for

u 6 C/(g) with coefficients in the ring & of analytic functions on A generated by 1

and ^ + . First we note that the differential of ψ induces an algebra homomor-

phism of U(n) into C, which we denote again by the same letter φ. Retaining

the notations in Lemma 2.3, we define for u e U(g), a differential operator on

A, by
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(2.4) δo(u) = π(u) + Σ , <j<r Ψ(Wj)gj(h)Py

PROPOSITION 2.4. For u e (7(g) and / e C°j,(GIK), we have

(2.5)

Moreover if z,, z 2 e l/(g)f

(2.6) (zίZ2f)(h) = (V^)^o(

PROOF. Since/is right /C-invariant, (2.3) implies that

But if X 6 n0, then for /e C%(G/K\

/(/i; X"-1) = (rf/dO/ίΛexpίίX*"1))!^ = (d/Λ)/(exp (ίX)Λ) I f-o =

This implies that

Thus we obtain

(w/)(Λ) =/(Λ; π(u)) 4- jj j

From (2.4) it follows that the right hand side is clearly equal to δo(u)fA(h).

If z e l/(g)f and fe C$(GIK)9 then we know that zfe C$(GIK). Thus the as-

sertion (2.6) is a simple consequence of (2.5).

DEFINITION 2.5. The differential operator δo(u) is called the radial part of

« 6 17(9).

We denote the composition of differential operators Dl9 D2 on A with an-

alytic coefficients by Z)1oD2. The multiplication by an analytic function may be

regarded as a differential operator on A. Let ep (resp. e~p) be the analytic func-

tion on A defined by ep{h) = hp (resp. e~p(h) = h~p). For each differential operator

D on Λ, we introduce a new differential operator D' by D' = e~poDoep. Then

for peί/(α), viewed as a differential operator on A, we see easily that

p' = e~popoep is equal to the image of p under the automorphism of U(a) defined

earlier.

We define a differential opeator δ(u) for uel/(g) by δ(u) = δo(u)'. Then

δ(u) is again a differential operator on A with coefficients in ^ .

LEMMA 2.6. Let ueUd(§). Then we can choose a finite set of elements

fj£&+ and qje U(a) of degree <d—\ such that

(2.7)
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PROOF. If we recall that y(u) = π(u)f, then the lemma follows immediately

from (2.4).

It is well known (cf. Harish-Chandra [3]) that U(a) is a free J-module of

rank w where w is the order of W. Furthermore there exist homogeneous elements

ωι = l, ω2,...,ωw in U(a) such that U(a)=Σi<j<w^jJ' Since y(l/(g)f) = Λ

there exist z, 6ί/(g)f ( 1 < / < W ) such that every peU(a) can be written as p =

PROPOSITION 2.7. Let peU(a) and select z^U^y ( l<i<w) such that

= ΣωiΎ(zi) Then there exist a finite number of elements g^e^ and z^e

(l<f<w, l<7<r) such that

(2.8) p = Σ coi^) + Σ Σ Oifoe^is)

where the index i (resp.j) runs through {1,..., w} (resp. {1,..., r}).

PROOF. It follows from Lemma 2.6 that there exist a finite number of

elements fu e &+ and qtj e U(ά) for each i such that γ(zi) = δ(zi)-\- Σ Si flu- Hence

we have

P = Σ i ^ w ωf°(<5(Zί) +

Since @+ is stable under the differentiation by elements of U(a), we may write

p = Σ

for some choice of g{je^+ and p ί7 el/(α). Note that deg ( ω ^ ) < deg (/?) — 1.

Applying the induction hypothesis on ĉ p̂ - e L/(α), we obtain the proposition.

For later use, we shall give the explicit formulas of (50(
ω) and δ(ω) for the

Casimir operator ω on G. The Casimir operator ω is an element of the center of

L/(g) and hence ωe £/(g)f, which is defined as follows. Let m0 be the centralizer

of α0 in f0. Then it is well known that go = n o ®tn o ©a o ©n o where no = θno. Let

Hu..., Ht be the orthonormal basis of α0 with respect to the Killing form and

set

(2.9) ωa=Σx<i<ιH2i

Let C/1?..., Ur be a basis of m 0 such that B(JJh Uj)= —<5l7 and set

For each α e l + , let XaΛ (l<f<m(α)) be a basis of gg satisfying B(Xxh ΘXaj) =

— δij (1 < ί, j < m(α)). Using the basis of g0 chosen above, we define

ω = ωα + ωm - Σαel+ Σ
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We remark that the definition of ω is independent of the choice of a basis of g0.

Let η be the Lie algebra homomorphism of n0 into JR, which corresponds to

ψeN*. Then we have φ(XaJ) = iη(XaJ) for all <xeΣ+ and l<y<m(α). We

remark that η(XaJ) = 0 unless α e 77. For each α e 77, we set

(2.10) k J 2 = ^ ;

Then \ηa\ can be regarded as the length of the restriction ηa of η to gg.

LEMMA 2.8. Let ω be the Casimir operator on G. Then the radial part

δo(ώ) of ω is given by

(2.11) δo(ω) = π(ω)-2Σ*eπ\Ί*\2h2x

where π(ω) = ωa — 2Hp and hence δ(ω) is given by

(2.12) δ(ω) = γ(ω) - 2 Σ*eii \rj*\2h2*

where y(ω) = ω α -<p, p>.

PROOF. Since \βXΛ,p ^r

αj] = 7/α for OLEΣ+ and l<j<m(α), we can deduce

from the expression of ω given above,

ω = ωa - 2Hp + ωm - 2 Σα er+ Σ I ^ ^ ^ A J

Put YaJ = XΛj + ΘXaj for α e l + and l<;<m(α). Then YaJel0. Replacing

ΘXaj by YΛj — Xaj and using the fact that ωm, X^jY^e ί/(g)f, we have

ω = ωa - 2Hp + 2 Σ«ei+ Σ i ^ w ^ϊ.y mod l/(fl)ϊ.

Hence we obtain

ω = ωa-2Hp + 2 Σ α e I + Λ2' Σ , ^ m ( « ) (

From (2.3), we can deduce that

π(ω) = ωa - 2Hp

and

50(ω) = π(ω) + 2Σα ei+/i2 α Σ

Since ψ(XΛj) = iη(XΛj) for α e l + ( l < j < m ( α ) ) and moreover ι;(Xαj) = 0 unless

α e 77, we have

Since y(ω) = π(ω)' and 5(ω) = δo(ω)', it follows that
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and

§ 3. Eigenfunctions for £/(g)ι in C£ (G/ K)

In this section we shall study the system of differential equations on

(3.1) zf=χv(z)f for zel/(g) f .

Here χv(v e α*) is an algebra homomorphism of (7(g)f into C given by (2.2). As

in § 2 we denote the space of all solutions of (3.1) by C$(G/K, χv).

We shall reduce the differential equations (3.1) to a system of differential

equations on A by using the results in § 2. Let Cφ(A, χv) be the space of all

solutions of the system of differential equations on A given by

(3.2) δ(z)Φ = χv(z)Φ for zet/(g) f .

PROPOSITION 3.1. The map f*-+e~pfA gives a linear isomorphism of

9 χv) onto C?(A, χv).

PROOF. The restriction/^ offeC$(G/K) to A belongs to C°°(A). Con-

versely for F e C°°04), if we define the function/on G by f(nhk) = φ(n)F(h) (n e N,

he A, keK\ then feC^(G/K) and fA=F. This implies that the map. f*-*fA

gives a linear isomorphism of Cψ(G/K) onto C°°(/4). Moreover from Propo-

sition 2.4 we know that (zf)A=S0(z)fA ( / G Q ( G / X ) , z e l/(g)f). This means

that if/e C$(G/K, χv) then / , satisfies

(3.3) δo(z)fA ^ χv(z)fA for zel/(g) f

and conversely. Since <5(z) = ίΓ»°<50(z)°ί?'>, the function Φ = e-pfA(feC$(GIK,

χv)) clearly belongs to Cψ(A, χv). Conversely if ΦeCcψ{A, χv), then <̂ Φ satisfies

(3.3). But then there exists a unique fe C$(G/K, χv) such that fA = ePφ. Thus

we obtain the proposition.

PROPOSITION 3.2. Every element of Cψ(G/K, χv) is a real analytic function

on G.

PROOF. Since the function ep is real analytic on A and the character ψ of

N is also real analytic, we have only to show that every ΦeCψ(A, χv) is real

analytic. Whereas Φ satisfies the differential equation δ(ω)Φ — χv(ω)Φ where ω

is the Casimir operator on G. From Lemma 2.8, it follows that

(3.4) (ωa - 2 Σα./7 \η*\2h2*)Φ = <v, v>Φ.
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Here we used the fact that χv((o) = (v, v> —<p, p>. Since the Killing form is

positive definite on α0, the differential operator ωa defined in (2.9) is an elliptic

operator. By the regularity theorem of elliptic operators, we see that the solution

of (3.4) is real analytic.

THEOREM 3.3. The space Cψ(G/K, χv) is finite dimensional and its

dimension does not exceed the order w of the Weyl group W.

PROOF. In view of Proposition 3.1, it suffices to show dimC^(^4, χv)<w.

Take an arbitary he A and fix it. Define a linear map ε of Cψ(A, χv) into Cw

by ε(Φ) = (Φ(/ί; c^),..., Φ(h\ ωw)) where ω 1 = l , . . . ,ω w are homogeneous gene-

rators of U(a) over J introduced in § 2. We will show that ε is injective. From

Proposition 2.7, it follows that each p e U(a) can be written, by taking a finite

set of elements zh zue (7(g)! and gu e &+ (1 < /< w9 1 < / < r),

p = Σ U>i°$(Zi) + Σ Σ j

Consequently if Φ e C°ψ(A9 χv), then

ω,) +.Σ Σ

This implies that if Φ(h\ ωf) = 0 for l</<vv, then Φ(h; p) = 0 for all peU(a).

Since Φ is real analytic, we can conclude that Φ = 0 in a neighborhoood of an

arbitrary he A. But since A is connected, this means that Φ = 0 on A. Hence

ε is injective and dim Cψ(A, χ v )< w.

§ 4. The functions Φ(h: v, φ) and V(x: v, ψ)

Let ψ eN* and η be the Lie algebra homomorphism of n 0 into R correspond-

ing to ψ. Let L denote the set of all linear functions λ on α of the form λ —

Σαe/7 rtαα where'wα (α e 77) are all non-negative integers. For λ = Σ ^αα e L, we put

w(^)= : Σ w α Let L' = L — (0). Since α and α* are identified by means of the

Killing form, we can identify the symmetric algebra S(α*) with the algebra of

polynomial functions on α*, so that λea* is a linear function on α* by the

rule vι-><^, v> (veα*). Let Q(a*) be the field of rational functions on α*.

For each λeL, we shall define aλeQ(a*) by induction on n(λ) as follows.

Let a0 — 1 and for /. e L'

(4.1) «;-, A> + 2A)αΛ = 2 Σαβ z k α l 2 ^ - 2 α .

For the sake of convienience, we put aλ = 0 iϊ λ^L. Let σλ (λ e L) be the hyper-

plane in α* consisting of v such that 2 <A, v> + <2, A> = 0 . We denote by 'α* the

complement in α* of the union of all hyperplanes σλ {λ e U). Then 'a* is an open,
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connected, dense subset in α*. It is obvious that the rational functions aλ(λeL)

take a well defined value at any point v e 'α*. We remark that any compact subset

of α* meets σλ for only a finite number of λ e L'.

LEMMA 4.1. // λ = ΣaeΠnaoίeL' such that at least one na is odd, then

PROOF. We shall prove the lemma by induction on n(λ). From the recursion

formula (4.1), it follows that aΛ = 0 for α e 77. Thus the lemma holds when n(λ) =

1. Let A = Σ n α αeL' such that nβ is odd for βeΠ. Then all of λ-2(x((xeΠ)

have an odd integer coefficient. Thus by induction hypothesis ί/Λ_2α = 0 for all

oceΠ. Hence by (4.1), aλ = 0.

In view of the lemma, we have only to consider those λ e L with even integral

coefficients. The following lemma is an improvement of Lemma 4.1. Let F

be the subset of Π given by F = { α e / 7 ; |f/a |#0}. Then (4.1) can be written as

(4.2) «λ,λ) + 2λ)aλ = 2ΣaeF\η*\2aλ-2Λ (λeL').

LEMMA 4.2. 7/ λ = 2 Σ α e 7 J wααeL' such that nβφ0 for some βeΠ-F,

then α λ = 0 .

PROOF. For each non-negative integer n, we set

^h\n = U = 2 Σαe/7 n α α eL'\ nβ Φθ for some βeIJ — F and

Σ α e F nΛ = n}.

It suffices to show that if λeLFn (n>0) then aλ = 0. We shall prove the lemma

by induction on n. Let H = 0 . Then λeLFt0 is of the form 2ΣβeΠ_Fnββ and

hence λ — 2α£Lfor all α e F . Consequently the right hand side of (4.2) vahishes.

But the coefficients <A, X) + 2λ are not identically zero for λeLF0. Thus aλ = 0.

If we notice that when λeLFn then λ — 2αeL F > w _j for all α e f , our lemma is an

immediate consequence of the induction argument.

REMARK 4.3. If φ is the trivial character and hence η = 0, then clearly aλ=0

for all λeL'.

In what follows we assume that ψ is a fixed non-trivial character unless

otherwise stated.

COROLLARY 4.4. Let ψ = ψηeN* such that F = {α}, that is, \ηβ\ = 0 for

βeΠ — {(x}. Then aλ = 0 unless λ = 2noc and a2nΛ is given by

(4 3) a, M
( } 2 n Λ ) 2<α,α>
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where vα = <v, α>/<α, α> and Γ( •) is the classical gamma function.

PROOF. The first assertion is obvious from Lemma 4.2. If F = {α} and

A = 2nα, then it follows from (4.2) that for n> 1

{An1 <α, α> + 4n <α, v»α2nα(v) = 2

and hence

«2»« (v) = (KI2/2<α, α » (l/n(

This implies (4.3).

For each non-negative integer n, we set Ln = {A = 2 Σ α e / 7 n α α e L ; Σα6/7«α =

n}. The following estimate on aλ is important to construct a certain solution of

(3.2).

LEMMA 4.5. Let V be an arbitrary compact subset in 'a* and n an arbitrary

non-negative integer. Then there exists a positive constant c depending only

on U such that for veil and λ e Ln

(4.4) \aλ(v)\ < c»l(n\y.

PROOF. The case n = 0 is obvious. So we may assume n>\. It is known

(cf. [3]) that we can select a positive constant cγ depending only on U such that

|<λ, λ> + 2<A, v>|>C!n 2 for all λeLn and veU. If we put c2 = max{2|f/J2; α e

77}, then it follows from (4.1) that

For veU, set /4π(v) = max{|αλ(v)|; λeLn}. Then the above inequality implies

that there exists a positive constant c such that v4π(v)<cn~2y4π_1(v). We define

Bn(y) by the recursion formula J30(v) = l and Bn(v) = cn~2Bn_ι(v) for n > l . Then

it is obvious that Bn(v) = cnl(n\)2. On the other hand it holds by induction that

An(v)<Bn(v) for all n. Hence we obtain An(v)<cnj(n\)2 for n > 0 . This immedi-

ately shows (4.4).

Fix ψ = ψηeN* and consider the series

(4.5)

where ve'α*, he A and aλ (λeL) are defined by (4.1). We remark that when

φ = φ0 (the trivial character) it follows from Remark 4.3 that

(4.6) Φ(h: v, ψ0) = hv for he A and veα*.

In what follows we again assume that ψ = ψη is a non-trivial character of N.
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LEMMA 4.6. The series Φ(h:v, φ) converges absolutely and uniformly for

he A and v e 'α*. It defines an analytic function of (A, v) e A x 'α*.

PROOF. It suffices to show that the series

converges absolutely and uniformly on A x 'α*. Let U and V be any relatively

compact open subsets in 'α* and A respectively. From Lemma 4.5, we can deduce

that for veί/,

Let -{Hί9 772,...,/7/} be the basis of α0 which is dual to 77 = {α1, α2,...,«/}. If

we write /ί = e x p ( Σ i ^ </ U^d^ then /ιA = exp(2 Σ "/'/) fo r ^ = 2 Σ i ^ </ nflLteLn.

Put

Then r< 4- oo and for any (/?, v) e Vx U

(4.7) | Σ ^ o Σ M . aλ(v)hλ\ < Σn>o \Ln\{cr2yj(n\)2

where \Ln\ denotes the number of elements of Ln. Note that \Ln\—{n-\-l — 1)!/

(/ —l)!π!, which is a polynomial in n of degree /. Hence the right hand side of

(4.7) converges. This proves the lemma immediately.

COROLLARY 4.7. Under the same assumption as in Corollary 4.4, we have

(4.8) Φ(h: v, φ) = Γ(vΛ

where IYχ() denotes the modified Besselfunction offisrt kind and order vα.

PROOF. In view of Corollary 4.4, we have Φ(h: v, ιA) = ̂ vΣn>o ίϊ2««(v

and by (4.3)

Φ(h: v, φ) = Γ(vα -f 1)/Γ Σ ^ o (l^|Aβ/(2<«, α»1/2)2»//i!Γ(vβt + n + 1).

Since 7s(z) = (z/2)s Σ/I>o(z/2)2/l/«!iΓ(sH-n-f 1), we can easily obtain the corollary.

Our next aim is to show that as a function of /?, Φ(h: v, φ) belongs to Cψ(A,

χv). We start with the following lemma.

LEMMA 4.8. Let ω be the Casimir operator on G. Then for he A and

ve'α*,

Φ(h; δ(ω): v, φ) = χv(ω)Φ(h: v, φ).

PROOF. If we apply the formula (2.12) of <5(ω) to Φ(h: v, φ), we can obtain
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Φ(h; δ(ω): v, φ) = h*ΣλeL«v + λ, v + λ> - <p, p})aλ(v)hλ

Since χv(ω) = <v, v> — <p, ρ>, it follows that

- 2 ΣαeTT kα| 2 «A-2 α (v)}/l A .

However αΛ(v) is defined by (4.1) and hence the second term vanishes. So we

have the lemma.

To show that Φ(h: v, ψ)eC$(A, χv), we shall need some preparations. Let

38 be the set of all mappings b\ λ-+bλ of Linto C such that the series ΣλeL bλh
λ

gives an analytic function on A. For v e α* and b e ^ , we define an analytic func-

tion on A by φχh) — hy ΣλeL ftA/iλ. We shall compute ψv(/i; δ(u)) where u 6

From Lemma 2.6 we know that there exist a finite number of elements fj

and qjβ U(a) such that <>(w) = y(u)-f ΣfjQj f ° r «€ C/(g). We remark that each
/ e ^ + can be written as/(/i) = Σ d ^ where μ runs through a finite subset of

L'. Moreover for each p e (7(α) it holds that

(4.9) Φv(h;p) = hvΣχeLP(v + Wλh
λ.

Combining these facts, we can deduce that φv(h δ(u)) is again of the form

φjjι\ δ[u)) = hv ΣλeLcλhλ for a suitable choice of c e ^ . To make clear the

dependence of c on v, u and b, we will write c(v, M, b) instead of c.

LEMMA 4.9. Keeping the notations above, we have

( i ) for fixed u and b, cλ(y, u, b) is a polynomial function of veα* for

allλeL,

(ii) co(v, u9 b) = y(u)(v)b0,

(iii) cA(v, ω, b) = (χv(ω) +<A, A> + 2 <A, v»bλ - 2 Σ« 6 π i ^ l 2 ^ - 2 α

for λeL where ω is the Casimir operator on G and finally

(iv) cλ(v, zxz2, b) = cλ(v, zu c(v, z2, ^))/or z l 9 z 2 e[/(g) f and AeL.

PROOF. The assertion (i) is clear from (4.9). We consider the term

Σfj(h)φv(h; qj) in φx(h; δ(u)). Since each fj e&+

9 the term corresponding to

λ = 0 does not appear. This implies (ii). The proof of the assertion (iii) is quite

analogous to that of Lemma 4.8. From Proposition 2.4 it follows that δ(zγz2) =

δ(zι)δ(z2) for zuz2eU($y and hence φ/Λ; 5(z1z2)) = φv(Λ; 5(z,)5(z2)). This

implies (iv).

THEOREM 4.10. Let Φ(h: v, φ) be the analytic function on Ax 'α* defined by

(4.5). Then it satisfies for all zeU($Y, Φ(h; δ(z): v, φ) = χv(z)Φ(h: v, φ).
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PROOF. For fixed ve'α*, we denote by α(v) the mapping λ>-+aλ(v) of Linto

C defined by the recursion formula (4.1). Since Φ(h: v, φ) = hv Σ aλ(v)hλ,

Lemma 4.6 implies that a(v)e@. Remembering that the Casimir operator

ω lies in the center of L/(g) and hence ωz = zω for all z e £/(g)f, we can deduce

from (iv) of Lemma 4.9 that

c(v, ω, c(v, z, a(v))) = c(v, z, c(v, ω, α(v))).

However, we have already seen that Φ(h δ(ω): v, φ) = χv(ω)Φ(h: v, ^) and hence

c(v, ω, a(v)) = χv(ω)a(y). Thus we get

c(v, ω, c(v, z, α(v))) = χ v ( ω ) φ , z, α(v)).

Applying (iii) in Lemma 4.9, we obtain for λ e L',

χv(ω)φ, z, α(v)) = (χv(ω) + <λ, A> + 2<A, v»cλ(v, z, α(v))

-2Σaeπ\Ί*\2cλ-2«(v, *> Φ))

and hence

(a λ>+2(λ, V})φ, Z, α(v)) = 2 ΣαβΠ kJ2CΛ-2α(v, Z, fl(v)) .

Therefore cλ(v, z, α(v)) (A e I/) satisfies the same recursion formula as that of

aλ(v). The only difference lies in the initial terms. Combining these facts with

(ii) in Lemma 4.9, we obtain cλ(v, z, a(v)) = χv(z)aλ(v). Since

Φ(h; δ(z): v, φ) = h* ΣieLΦ, z, a(y))h\

it follows that Φ(h; δ(z): v, ψ) = χv(z)Φ(h: v, ^ ) .

COROLLARY 4.11. LetψeN* and define a function V(x: v, φ) on Gx 'α* 6 j

(4.10) F(x: v, φ) = φ(n(x))h(xYΦ(h(x): v, φ)

where x = n(x)h(x)k(x) is the Iwasawa decomposition ofxeG. Then V(x: v, φ) e

, χv).

PROOF. The corollary is a direct consequence of Proposition 3.1 and the

above theorem.

Before ending this section, we will study the dependence of Φ(h: v, ^) and

hence V{x\ v, ι/0 on φeN* more closely. Let φ = φηeN* and let F=F(φ) be

the subset of Π such that F = F(φ) = {oceΠ; \ηΛ\φ0} where |ιyβ| is defined in (2.10).

We remark that φ is a non-degenerate character if and only if F = Π and φ is the

trivial character if and only if F = φ.

Let L(F) = {λeL; λ=ΣaeFnΛa) and L(F)' = L(F)-(0). We denote by ;α^
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the complement in α* of the union of all hyperplanes σλ (λ e L(F)'). Clearly

'αj? contains 'α*. From Lemma 4.2, it follows that aλ (λeL(F)) are well defined

on 'α* and moreover Φ(h: v, φ) can be written

Without any essential change of the proof of Lemma 4.5, we can deduce that

Φ(h: v, φ) converges in fact for (h, v) e A x 'af.

Let PF be the standard parabolic subgroup of G corresponding to the subset

F=F(φ) of Π. We denote the Langlands decomposition of PF by PF = NFAFMF.

The Lie algebra α0 F of AF is given by {Hea0; α(/f) = 0 for all cceF}. Let Σ+(F)

be the subset of Σ+ consisting of roots which are integral linear combinations

of elements of F. Then the Lie algebra n 0 F of NF is given by n O F = Σ α e I + -Σ+(F) 9O

Let ao(F)=YaeFRHa. Then αo(F) is a subalgebra of α0 and αo = α O ( F φα o (F).

If we denote by A{F) the analytic subgroup of A with Lie algebra αo(F), then any

he A can be written uniquely as h = h, h2 where hJeAF and h2 e A(F). Let no(F)

be the subalgebra of n 0 given by n o ( F ) = Σ α e I + ( F ) gg and N(F) the corresponding

analytic subgroup of N. Then n o = n O F © n o ( F ) and the map (n l s n2)*-+n1n2 of

N F x iV(F) into N is an analytic isomorphism of varieties. By definition, ^ ( n ^ = 1

for all ΠyeNj, and the restriction φF of ψ to N(F) induces a non-degenerate

character of N(F). We further remark that N(F) = N Π AfF, A(F) = A n M F and

if we put K(F) = K Π MF, then MF = N(F)A(F)K(F) is an Iwasawa decomposition

of M F compatible with that of G.

Using these facts, we proceed the study of Φ{h: v, ψ). Since hi = 1 for all

hίeAF and α e F , we can easily obtain

(4.11) Φ{hλh2: v, φ) = h]Φ(h2: v, φ) {hxeAF, h2eA{F)).

Furthermore, we can deduce from the recursion formula (4.2) that αλ(v) (λ e L(F))

depend only on the restriction vF of v to ao(F) and the restriction φF of φ to

N(F).

In view of the above results, we conclude that the function Φ(h2: v, φ)

(h2 E A(F)) is nothing but the one constructed, by replacing the role of G by that

of MF, for the character φF of N(F) and v F eα(F)*. Henceforth we may write

Φ(h2: v, φ) = ΦF(h2: vF, φF) if we emphasize its dependence on MF .

Finally, we consider the function V(x: v, φ) introduced in (4.10). Recall

that V(nhk: v, φ) = φ(n)hpΦ(h: v, φ) where neN, he A and keK. If we write

n = nιn2 (n{ eNF, n2eN(F)) and h = h1h2 (h^ eAF, h2eA(F)), then

V(nhk :v,φ) = φ(n2)hl+Php

2Φ(h2 :v,φ).

If we define p{F) = 2~ι Σ α 6 ί + ( F ) m(α)α and pF = ρ — p(F), then we can easily check

that Λ{ = A?*1 and A£ = Ag<F>. Hence
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V(nhk: v, φ) = / l r" F Wn 2 )/i?( F )φ f (/ί 2 : v,-, φP).

At this point, we define a function VF(m: vF, φF) on M F by

(4.12) VF(n2h2k2: vF, <AF) = ΦF(n2)h^ΦF(h2: vF, ψF)9

where n2eN(F)9 h2eA(F) and k2eK(F). Using the decomposition G = PFK =

NFAFMFK, we can conclude 7(n1Λ1mfe: v, ι/0 = /ij[+PFFF(m: vF, t/fF) for nx e JVF,

/?! e v4F, m e M F and /c e X. Thus the essential properties of V(x: v, φ) are reduced

to those of VF(m: vF, φF), which is defined on the subgroup MF of lower rank

with a non-degenerate character φF.

We summarize the above results in the following:

PROPOSITION 4.12. Let φ<=N* and set F = {αe/7; \ηa\¥Ό}. If we write

XEG as x = n1/?1rn/c according to the decomposition G = NFAFMFK, then we have

where VF(m: vF, φF) is given by (4.12).

§ 5. The fundamental solutions

Using the results in the preceding sections, we shall construct w linearly

independent elements of C^(G/K, χv) for certain values veα*. Here w is the

order of W. The method is quite similar to the one developed by Harish-

Chandra in [3].

Let veα* and define the subgroup Wv of Why Wv = {se W; sv = v}. Let Jv

be the algebra of all ^-invariants in S(a). Then Jv contains J. For μ e α * ,

let S(μ) be the maximal ideal of S(ά) such that S(μ) — {peS(a); p(μ) = 0} and set

For any open subset U in α*, we denote the algebra of holomorphic functions

on U by Θ(U). Clearly S(a) is regarded as a subalgebra of Θ(V). For each

μ e α*, let d(μ) be the derivation of Θ(U) defined by/(v; d(μ)) = (d/dt) f (v + tμ)\t=0

for feΘ(U) and veα*. It is obvious that the map μι-*δ(μ) can be uniquely

extended to an algebra isomorphism of the symmetric algebra S(α*) into the algebra

of holomorphic differential operators on <9(U).

For v e α*, let Jf(v) be the subspace of S(α*) given by

jf(v) = {ι?eS(o*); p(v; d(v)) = 0 for all peS(a)Jv(v)}.

Then it is well known (cf. [3]) that S(α*) = j f (v)θS(α*Vί where J+ is an ideal of

Jv of elements of positive degree and moreover d i m ^ ( v ) = w(v). Here w(v) is

the order of Wv.

Now fix φ e N* and let F — F(φ) be the subset of Π introduced in § 4.
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LEMMA 5.1. Let ve'af. For veJί?(v), we define a function A by Φv(h) =

Φ(h:v; d{υ\ φ). Then ΦveCξ{A9 χv).

PROOF. We know from Theorem 4.10 that Φ(h; δ(z): v, φ) = y(z)(v)Φ(h: v,

φ) for z G U(qy. Since d(v) commutes with <5(z), we have

For each ze U(§y, let Dz be a differential operator on α* defined by Dz = d(v)o

y(z) - y(z)(v)φ). Then for all z e l/(g)f, it holds that

Φv(h 3(z)) - y(z) (v)Φv(h) = Φ(h: v Dz9 φ).

Hence it is sufficient to prove Z)z = 0 for all z. Suppose Z)2=£θ for some z e lf(g)*.

Then we can select /^eS^α) such that p^v; Dz)Φ0. Put jp2=
:(y(z)"~y(zXv))Pi

Then it is clear that px{v\ Dz) = p2(v'9 d(v)). On the other hand we know y(z)eJ

and hence y(z) e J v . From the definition of p2, we have p2 e S(α)/V(v). But since

veje(v), it follows that p2(v; d(v)) = 0 and consequently p^v; Dz) = 0. This con-

tradicts the choice of px.

For veα* we put r(v) = [VK: VFV] and select a set of complete representatives

51 = 1J 52,..., 5 r (v) of W/Wv. Then the elements vf = 5fv (1 </<r(v)) are all distinct.

Moreover each Wy. is isomorphic to Wv and hence w(vf) = w(v) and Kvi) = Kv)

for l<f<r(v) .

Let ΩF be the set of v e 'α£ such that

(i) Vi e 'af for 1 < i<r(v) and

(ii) vf — Vj^L{FY for any pair of indices i#7 (1 <i, j<r(v)), where L(F)~ =

Then ΩF is again a connected, open, dense subset of α*. For simplicity, put

jίr. = jf(Vi) (l<i<r(v)). Then άimtf^wiy) for all/. Let {vu\ 1</<W(V)}

be a basis of 3^v We define w functions Φtj (l<ί<r(v), l<j<w(v)) on A by

LEMMA 5.2. Let veΩF. Then the above defined w functions ΦfJ form a

basis of Cψ(A, χv).

PROOF. From Lemma 5.1, it follows that Φtj e C°$(A, χv). So we have only

to show the following fact; if we choose non-zero elements 1 ^ 6 ^ ( 1 <i<r(v)),

then the functions ΦVi(h) — Φ(Jι: vf; d(uf), φ) are linearly independent. For sim-

plicity, we put ξλ(h: v) = aλ(v)hv+λ for λeL(F). Then we may write Φ(h: v, φ) =

ΈλeL(F)ζλ(n: v) It can be easily checked that there exists a certain polynomial

function pλv of log h e α0 for λ e L(F) and v e S(a*) such that



278 Michihiko HASHIZUME

Hence we obtain

Now suppose that cf (l<f<r(v)) are complex numbers such that
Then

Σ l ^ r ( v ) ΣλeL(F)CiPλ,Vi(lθgh)h^+λ = 0.

Since y^Vj^UFfiiΦj), the exponents V + λ (l</<r(v), λeL(F)) are all
distinct. By the above fact and Lemma 4.6, we can apply the corollary to Lemma
57 in [3]. The result is CiPλVi = 0 for l</<r(v) and λeL(F). On the other
hand, it is evident that p0tVi(log /i) = ι;ί(log ft) for all i. Since v^O, it follows that

so c t=0.

We say that v is a regular element of α* if <v, α>#0 for all cceΣ. If v is a
regular element, then Wv = (l), all sv (se W) are distinct and «^(v) = (0).

Let Ω^ be the set of regular elements veo* satisfying
(i) sve'af for all se Wand
(ii) sv - tv φ L(F)~ for any pair (s, ήeWxW such that s Φ t.

COROLLARY 5.3. Let veΩ'F. Then w functions Φ(h: sv, ψ) (se W) form a
basis of C$(A, χv).

In view of Proposition 3.1 and the above corollary, we establish the following
result.

THEOREM 5.4. Let veΩ'F. Then the functions V(x: sv, φ) (seW) form
a basis of C$(G/K, χv).

§ 6. The Whittaker function W(x: v, φ)

In this section, we introduce a joint eigenfunction W(x: v, ψ) in C$(G/K,
χv), which is closely related to the Whittaker model of a class one principal series
representation of G.

Let veα*. We denote by X™ the space of all smooth functions φ on G
satisfying φ(nhmg) = hv+pφ(g) for neN, he A, me M and geG. Let πv be the
representation of G on X™ defined by πv(g)φ(x) = φ(xg) for g, xeG and φeXf.
The representation πv is called a class one principal series representation of G.
We denote by Xv the subspace of all X-finite elements in X™.

We define a function l v on G by

(6.1) lv(x) = h(xy+o (xeG)

where we write the Iwasawa decomposition of x as x = n(x)h(x)k(x) with n(x) e N,
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h(x) e A and k(x) e K. It can be easily checked that

(6.2) IXnhmxk) = Λv+'lv(x)

for neN9 heA,meM9xeG and keK. This means that the function l v is a
infixed element of Xy. We remark that l v satisfies

(6.3) lv(x;z) = χv(z)lv(x) (xeG)

for all ze ί/(g)f. This follows from Lemma 2.1 and the fact that the space of
X-fixed elements in Xv is one dimensional and stable under ί/(g)f.

Let φ = φηe N* and veα*. We introduce an integral W{x: v, φ) by

(6.4) W(x:v9φ) = [ Iv(soίnx)φ-I(n)dn (xeG).
JN

Here dn is the Haar measure on N normalized in § 1 and s0 is a representative in
K of the unique element, denoted by the same letter s0, in Wsuch that s0Σ+ = — Σ+.
Note that (6.4) does not depend on the choice of the representatives of s0 e W.
When φ is a non-degenerate character, the above integral was already studied in
[2], [4], [6] and [10].

Before considering the convergence of (6.4), we shall examine the formally
consistent properties of the integral W(x: v, φ). It follows from (6.2) that

(6.5) W(nxk: v, φ) = φ(ή)W(x: v, φ)

for neN, xeG and keK. Since A normalizes N and it holds that d{hnh~x) =
h2pdn, we can deduce

W{h :v,φ) = hs°v+<> { \x(sZιn)φh{nYιdn (h e A)
JN

where φh is a character of N given by

φ\ή) = φ(hnh-1) (heA,neN).

When x = e (the identity element of G), we denote the value W(e: v, φ) simply by
W(v, φ\ that is,

(6.6) W(v, φ) = ί IXs^fOψ-^fOdn.
JN

Then we can write

(6.7) W(h: v, φ) = hs°v+<>W(v, φh) (heA).

Hence we conclude from (6.5) and (6.7) that if x — nhk (the Iwasawa decompo-
sition of x),
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(6.8) W(x: v, φ) = φ(n)hs°v+f>W(v, φh).

Thus the study of (6.4) can be reduced to that of W(v, φ). We shall rewrite it

in a more convenient form. Recall that the map nt-+sonsόι is an analytic isomor-

phism of N onto N and it holds that d(sonso~
ί) = dn where dή is the Haar measure

on N introduced in § 1. Since l v is right K-invariant, it follows from (6.6)

(6.9) W(v, ψ) =

where ψ* is a character of N defined by

Ψ*(n) = Ψ(sonsoι) (neN).

Let D be the subset of α* given by

D = {.v e α* Re(vα) > 0 for all α e l + }

where vα = <v, α>/<α, α> and Re(vα) denotes the real part of v α e C

PROPOSITION 6.1. Let ψeN*. Then the integral W(x:v,ψ) converges

absolutely and uniformly for (x, v)eGxD. It gives a smooth function of

xeG, which is holomorphic in veD.

P R O O F . First we consider the case when ψ = ψ0 (the trivial character of N).

Since ψb = ψ0 for he A, it follows from (6.8) and (6.9) that W(x :v,ψ) = hs°x+f> W(v,

Ψo) (x = nhk) and

But this integral is well known to be uniformly convergent for veD, which is

usually called Harish-Chandra's c-function and denoted by c(v) (cf. [5]).

Thus we obtain the proposition when φ = φ0

 a n d moreover

(6.10) W(x: v, ψo) = c(v)hw+t> (x = nhk).

Next we consider the general ψeN*. Since |ΪA Λ *(«) | = 1 for he A and neN,

we conclude from (6.9) that

But since the right hand side is convergent for veD, W(v, φh) converges absolutely

and uniformly for (ft, v)eAxD. From this and (6.8), we get the proposition.

COROLLARY 6.2. Let ψeN* and veD. Then W(x: v, φ)eC$(G/K, χv).
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PROOF. The corollary is a direct consequence of (6.3) and the above propo-

sition.

REMARK 6.3. We have already shown in [4] that if φ is a non-degenerate

character then W(x: v, φ) can be extended to an entire function of v e α*.

Our next aim is to prove that for general φeN*, the integral W(x: v, φ)

can be continued to a meromorphic function of veα*. For that purpose, we

first write down the explicit formula of c(v). Let Σ+ be the set of α e Γ + such

that α/2 is not a root. For each α e Σ+, we set

(6.11) cΛv) = α Γ(vβ + m(a)/2)F(2"A(va + /«(α)/2 + //ι(2α)J)

where ί/α is the constant given by

Then it is well known (cf. [10]) that under the normalization of a Haar measure

on N introduced in § 1, the c-function is given by

(6.12) Φ) = ΠΛeiiΦ).

This implies that c(v) and hence W(x: v, φ0) are in fact meromorphic functions

of v.

To proceed further, we shall need some preparations. Let F = F(φ) be the

subset of 77 such that F = {αe77; |tyα |#0}. To begin with, we shall consider the

map απ-»—sόVα of Σ into itself. Since S o 1 = % in W ands 0 Γ + — — Γ+, we have

— SQ1 Σ+ =Σ+ and hence — SQ1Π aΣ + . But — SQ1 77 is a simple root system and

consequently —SQ1Π = Π. If we set F * = — S Q 1 F = { — sό ]α; α e f } , then F* is

again a subset of 77 and it holds that —s0F* = F.

Let PF φ be the standard parabolic subgroup of G corresponding to the subset

F* of 77. We denote the Langlands decomposition of F F + by PF* — ^F*^FMF*'

Let Σ+(F#) be the subset of Σ+ of integral linear combinations of the roots of F*.

Then the Lie algebra a0^ of ΛFif is given by {77eα0; α(77) = O for all OLEF*} and

the Lie algebra n 0 F + of 7VF% is of the form Σ*SΣ+-Σ+(F*) 9O P u t αo(^*) =

Σαei+cF*)/*^* and let X(F*) be the analytic subgroup of >4 with Lie algebra

^ ( F ^ ) . Moreover set n o (F^)= Σαex+(F*) Πα a n ( i denote by N(F*) the analytic

subgroup of N with Lie algebra ΠoίF^). Then A(F*) = Ά f lM f t and N(F*) = N

Γ) MFl|l. Furthermore if we put K(F#) = X n MF+, then it holds that MF_ =

N(F*)A(F*)K(F*) and it is an Iwasawa decomposition of MF+ compatible with

that of G. Finally we define subalgebras no(FH c)and nOjF,, of n 0 respectively by

n θ ( ^ * ) — Σαel+CF*) 9θα> n0,F* = Σαel+ -1+ (F*) 9θ "
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Let N(F#) and JVFφ be the analytic subgroup of N with Lie algebras no(F#) and

nO j F, respectively. Then the map (nu n2)*-*nιή2 is an analytic isomorphism of

NFψ x N(F+) onto N.

LEMMA 6.4. For veD, the integral W(v, φ) can be reduced to

(6.13) W(v, φ) = cF*(v) [

where cF*(v) is given by

(6.14) ^ ( v ) = Παsn

PROOF. From (6.9) it follows that

W(v9 ψ) =

We remark that since -s0F*=F and consequently s0N(F^)sό1=N(F), it follows

that ι/r*(/?1)=l for all nίeNFm and the restriction of ψ# to N(F*) is a non-

degenerate character of N(F*). Hence we have

W(v9 ψ) = ί
JNF**N(F*)

Let n 2

 = nini^2 b e ^ e Iwasawa decompsition of n2. Then n 2 e N(F*), h2 e A(F+)

and A:2 e X(F*). Since the function 1 v is right X-invariant, it holds that IXn^n^^

iv(nιn2h2). Moreover since n2h2eMF^ it follows that V1=(n2h2)nί(n2h2)~ί e

NFt and dvί=dnί. Using these facts, we obtain

W(v, Ψ) =

But by (6.2), we know that lv(«2^2^i) = Λ2+ plv("i) and hence lv(w2/i2n1) =

l v (n,)l v (n 2 ). Therefore the above integral can be decomposed into

(6.15) W(v, ψ) = ί lv(nί)dn1 { lΛn2)ΦΛή2)~1dn2.
J RF* JN(F*)

The first integral is evaluated as follows. We note that c(v)=W(v, φ0) can be

written, as in the same manner,

φ) = ( KinJdnΛ lv(n2)dn2.
JRF* JN(Fm)

The second integral can be viewed as the c-function for MFφ and hence its value is

given by Πiί(F«.) cα(v) where Σl(F+) = Σl Π Σ+iF*). Consequently we can deduce

from (6.12) that
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Let WV, be the subgroup of Wgenerated by the reflections sa(cceF^). We

denote the longest element in WFtt by s{. Then S71 —sι and Sj Γ+(F*) = — Σ+ίF*).

Let s* be the element of W such that s^=5 0s7 1. Then F= — so(F*) = s*(F#).

Recall that we denote by P F the standard parabolic subgroup of G corresponding

to FezΠ and we write the Langlands decomposition of PF as PF = NFAFMF.

Furthermore we remember that MF — N(F)A(F)K(F) is an Iwasawa docomposition

of MF, which was constructed in §4. Since s*(F*) = F, it holds that s*PF4t

sϊι=PF, s*MF.sϊι=MF, s*A(F*)s*ι=A(F) and s+NiFJs^^NiF).

Let ψF> be a character of N(F*) defined by φFXn2) = φ(s*n2s'ϊί) for n2e

N(F*). Since the restriction ψF of ^ to N(F) is a non-degenerate character, the

character ψF+ of NiF*) is also non-degenerate. In what follows, we denote the

restriction of v to ao(F*) by vF!)l if necessary.

We now introduce an integral WFXm*: vF+, φFφ) with m* e MFφ by

(6.16) > φ ( φ F # ^ F J \
JN(F*)

Then the value WF#(vF%, φFi)) at e of (6.16) can be written, by using the facts that

and ψFXs1n2sJ1) =<A*(ή2) for

(6.17) WF+(vF+, φp.)

COROLLARY 6.5. For veD, the integral W(v, φ) can be written as

(6.18) W(v, φ) = cF\v)WF,(vPm9 φF.).

Moreover it can be continued to a meromorphic function ofvea*.

PROOF. The first assertion follows from Lemma 6.4 and (6.17). We can

deduce from (6.14) that cF*(v) is in fact a meromorphic function of v. On the other

hand, the integral (6.16) is exactly the same as the Whittaker integral for MF φ

with vF, e α(F*)* and the non-degenerate character φFm of N(F*). Hence it follows

from Theorem 4.8 in [4] that the integral (6.16) can be extended to an entire

function on a(F*)*. Consequently we obtain the corollary.

We summarize the above results in the following;

THEOREM 6.6. For any ψeN*, the integral W(x:v,φ) (xeG) can be

continued to a meromorphic function of v e α*, which remains to be an element of

, χv).

DEFINITION 6.7. We say that W{x: v,ψ) is the class one Whittaker function



284 Michihiko HASHIZUME

on G of type (v, φ), or simply the Whittaker function on G.

In what follows, we shall relate the Whittaker function W(x: v, φ) on G

with the Whittaker function Wp^m*: vFήι, φFJ on MFif. We recall that s*ιPFs* =

PFit and s*ιMFs* = MF^

LEMMA 6.8. Keeping the above notations, we have

(6.19) W(m: v, φ) = cF*(v) WF£mm'. vF+, φFm)

where meMF and m% = s

PROOF. TO begin with, we shall show the lemma when h e A(F). Remember

that W(h: v, φ) = hsoV+pW(v, φh) and moreover it holds from Corollary 6.5 that

W(v, φh) = cF\v)WFiχvF^ (IAΌFJ By definition, we have

where n2eN(F*) and /τ* = s^1/ί5+. Since heA(F) and hence h*€A(F*)9 we

can conclude that (IAΛ)F* = (IAF*)Λ* Consequently,

W(v, φh) = cF (v)WPAvf., (φFJ
h*) (h e A(F)).

On the other hand, we can easily obtain, as in (6.7),

where ρ(Fήt) = 2~1 Σ«ei+(F*) m(α)α. Since

nsιv + p(F*) _ /7s*(siv + p(F*)) __ /tsOv+p(F)

where p(F) = 2 - 1 Σαei+(F) m ( α ) α and moverover hp<<F) — hp for heA(F), we have

(6.20) H (̂/i: v, ̂ ) = /I»OV+P^(V> φh) = c ^ v ) ^ ^ : vF#, I/^FJ

where /? e X(F) and /r* = si1/isH.. This proves the lemma when m = /i e /4(JF). Let

m = nhk be the Iwasawa decomposition of meMF. Then n e N(F), h e A(F)

and keK(F). Correspondingly, the Iwasawa decomposition of. mJ|c = sj1m5# e

MFi_ is given by m* = njι*k* where nHs = si1n5 ί k eN(F#), h*=s*1hs* eA(F*) and

t ^ s ^ s ^ ^ ) . From (6.8), we know that ^ ( m : v, φ) = φ(n)W(h: v, ι/0

On the other hand, we can easily obtain WFAm*\ vFj)t, φF+) = ΦF*(n*)WFSh*: vF^

ι//fV). Since π* = 5*1^5*» we have φFJjι*) = φ(n): Combining these facts with

(6.20), we obtain the lemma.

COROLLARY 6.9. Retain the above notations. If we write xeG as x =

nji^tk according to the decomposition G = NFAFMFK, we obtain

W(x: v, φ) = cF*(v)hf *+P'WFAm+: vF+, φFJ
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where mtι = s*ίms*.

§7. The connection between W{x: v, φ) and V(x: v, φ)

We have already seen in Theorem 5.4 that for veΩ'F, the functions V(x: sv,

φ) (s e W) form a basis of Cψ(G/K, χv). On the other hand, we have shown in

Theorem 6.6 that W(x: v, φ)eCψ(G/K, χv). Hence there exist complex numbers

bs(v, φ) (seW) depending on v and φ such that for veΩ'F, φ G N* and x e G ,

(7.1) W(x: v, φ) = Σsew bs(v, ψ)V(x: sv, φ).

Our aim is to decide bs(v, φ) for s e W. We start with the following lemmas.

Let αj (resp. QQ) be the set of Hea0 such that α(//)>0 (resp. α(//)<0) for all

all α e Γ + .

L E M M A 7 . 1 . Pwf h t = exp(tH) where ί > 0 Λ / I J HeciQ. Then for veD and

φ e N*9 we have

(7.2) l i n w hj«»-'W{ht: v, ιA) = Φ)

where c(v) denotes Harish-Chandra's c-function.

PROOF. It follows from (6.7) that for v e D,

If we assume that φ — φη and n = exp ( Σ XΛ) where Xa e gg (α e Σ+), then ιAΛt(n) =

exp(/f/(Σ hfXa)). Since Λfeexp(αo), it follows that limf_ + 00/if

α = 0 for all

OCEΣ+ and hence •limf_> + 00 φ
ht(n)=\ for all ΠGΛΓ. Thus we conclude from

Proposition 6.1 that for veD,

ht: v9 ψ) =

But the right hand side is clearly equal to c(v).

L E M M A 7.2. Let ht be as in Lemma 7 .1 . Then for veD Π Ω'F, φeN* and

seW, we have

\ if s = s 0 ,

0 • 1/ 5 # S0.

PROOF. We note that
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where the right hand side is convergent absolutely and uniformly for (h, v) e A x

Ω'F. Since limr_ + w hf = 0 for λ e L(F)', to prove the lemma we have only to show

that lim^ + o oh? v- s o v = 0 if sφs0. Note that (SV-SOV)(H) = (SO1SV-V)(SQ1H)

for Hea0 and if Hea^ then SQlHea^. Since veD, that is, Re«v, α » > 0

for α e l + , we can deduce from Lemma 3.3.2.1 in [14] that RQ(V(SQ1H))>

RQ(SQ1SV(SQ1H)) for Hea^ and sΦs0. This means that Re((sv —sov)(//))<0

for He<XQ and s^s0. Hence limf^ + Q0 /?jv-s°v = 0.

Applying Lemma 7.1 and Lemma 7.2 to (7.1), we obtain the following lemma.

L E M M A 7.3. For veD Γ\Ω'F and φ eN* we have

(7.3) bSo(v,φ) = c(v).

To proceed further, we first assume that φ is a non-degenerate character and

hence F = 77. In this case we simply write Ω' = Ω'Π. If we set

ψ(h:v,φ) = h-"W(h:v9ψ) for heA,

then it follows from (7.1) that

(7.4) Ψ(h: v, ψ) = Σsew K(v9 φ)Φ(h: sv, φ).

LEMMA 7.4. Lei ωί9 ω2,..., ωw fee ί/τe homogeneous generators of S(ά) over

J introduced in §2. Then wxw matrix

/5 non-singular for any hoeA and veΩ'.

PROOF. For otherwise, we can choose complex numbers as (s e W), not all

zero, such that ΣseW asΦ(h0; ωt: sv, φ) = 0 (1 </<w). Put f(h)=Σsew asΦ(h\ sv,

φ) for h e A. Then / e Cf(A, χv). Since /(Λo ωf) = 0 (1 < i < w), we conlcude

from the proof of Theorem 3.3 that f(h0; p) = 0 for all p e U(a). But since / is

analytic and A is connected, this implies/=0 on A. On the other hand, Φ(h: sv,

φ) (s e W) are linearly independent and hence as = 0 for all seW. This contradicts

our choice of as.

LEMMA 7.5. The coefficients bs(v, φ) (seW) are holomorphic functions on

Ωf.

PROOF. Fix heA. From the above lemma, there exist holomorphic

functions asi(v) on Ω' (seW, l<i<w) such that Σi<i<w f l si( v W» ωi' tv> Ά) = l

or 0 according as t = s or not. Hence from (7.4) we conclude

; ω£: v, φ).

Since φ is a non-degenerate character, W(h: v, ψ) is an entire function of v and
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hence Ψ(h; ω£: v, φ) are also entire functions of v. Thus we establish the lemma.

We have shown in [4] that for a non-degenerate character φ, the Whittaker

function W(x: v, φ) satisfies the functional equations

(7.5) W(x: v, φ) = M(s, v, φ)W(x: sv, φ)

for each seW. Here M(s, v, φ) (s e W) are meromorphic functions of v, which

are determined recursively as follows. If s = sα (α e Π), then

(7.6) M(sa, v, φ) = eα(vK(~v)-i(|r?J/2(2<α, α

where eΛ(v) is given by

If s e W and α e 77 such that /(sas) = l(s) 4-1, then

(7.7) M(sαs, v, ^) = M(s, v, ιA)M(sα, sv, i^).

Here l(s) denotes the length of s e W.

LEMMA 7.7. For seW9 we have

bs(v, φ) = M(sQs, v, φ)bso(s0sv, φ).

PROOF. Combining (7.5) with (7.1), we can easily obtain that

K(v, φ) = b^itv, φ)M{U v, φ)

for s, teW. In particular, if we take ^ = 50^ = 505, we have the lemma.

THEOREM 7.8. Let φ be a non-degenerate character of N. Then bs(v, φ)

(SE W) are hoiomorphic functions on Ω' and they are given by

(7.8) b&9 φ) = M(sos, v, φ)c(sosv)

and consequently it holds that

(7.9) W(x: v, φ) = Σsew M(sos, v, φ)c(sosv)V(x: sv, φ).

PROOF. In view of Lemma 7.7, it is enough to show that frSo(v, φ) = c(v) for

v e β ' . But from Lemma 7.3, it follows that bSo(v9 φ) = c(v) for v e D n Ω'. Since

Ωf is connected and both bSQ(v, φ) and c(v) are holomorphic on Ω\ we conclude

that bso(v, φ) = c(v) on Ω'.

Now we shall consider the case when φ is not necessarily a non-degenerate

character. We set F = { α e i 7 ; |ί/α |^0} and F s | c = - S o 1 F . Let m* (resp. ϊ*) be
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the complexification of the Lie algebra of MFt (resp. K(F*)) and let l/(m*)f* be

the centralizer of ϊ* in the universal enveloping algebra U(m%) of m*. For v* e

a(F*)* (the complex dual space of αo(F*)),- w e define, as in (2.2), an algebra

homomorphism χVήι of l/(m*)f* into C. Let φ* be a character of N(F#). We

denote by C$XMFJK(F*), χj the space of fe C»{MF1) such that

( I ) fin+m+k*) = φ*(n*)f(m*) (w* e N(F*), m* e MF,, fc, e ^(F*)) ,

(II) zf=χvχz)f for all z e l / O π J ' .

As in §4, we shall construct a basis of C$XMFJK(F*\ χVΦ). Let L(F*) be

the set of all linear forms on ao(F*) which are linear combinations of elements

of F* with nonnegative integer coefficients. We consider a series

(7.10) ΦFXh* : v*, ψj = hy Σw>

where /t̂  e A(F*) and αA (xeLίF^)) are defined by the recursion formula: o0=l

and

(7.Π) «λ, λ>+2(λ, V*»flλ(v*) = 2 ΣαeF. l^ί P«A- 2*M

for /leLίF*) —(0). Here 7̂* denotes the Lie algebra homomorphism of rtoίF*)

into R that corresponds to ψ*. Then, as in Lemma 4.6, it defines a smooth

function on A(F*)9 which is holomorphic in Vj.e'a(F*)*. Here fa(F#)* denotes

the complement in a(F%)* of all hyperplanes σλ (λeL(F*) — (0)). Moreover if

we set

(7.12) VFXm*: v,, φj = ψ*{n*)h^ΦFχiH: v*, ψj

where m^ = n*h*k* is the Iwasawa decomposition of m* e MF+, then we can deduce

from Corollary 4.11 that VFXm+: v*, ψ*) belongs to C$XMFJK(F+), χ v j . Let

Ω(F*)' be the set of regular elements v* in α(F*)* such that sv* e 'α(F^)* for all

s e ^ F ( l and sv* — tv*^L(F*)~ for any pair (5, t) e WFif x WFφ with sφt. Then

as in Theorem 5.4, we see that for v*eΩ(F*)' the functions VFχm#: sv ,̂ i/̂ )̂

(s 6 F»k) form a basis of C?,(MPJK(FΦ), χj.

In the following, we assume that v* = vF+ and ψ* = φFitί. We remark that since

v* is the restriction of veα* to ao(F#) it holds that (vsiί)α = vα where (v*)α = <v*,

α)/<α, α> for α G F ψ . Moreover we remark that ψ* is a non-degenerate character

of N(F%) and it follows from the definition of φFif that yit = rls*0L f° r α e ^ *

LEMMA 7.9. L ί̂ v̂  = vF)|t and IA*==1AF* T/7̂ /7 /ί /10/ί/s that

where h e A(F), h* = s*ίhs# e

PROOF. We recall that Φ(h: ŝ v, φ) is defined by
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where aμ (μ e L(F)) are given by a0 = 1 and

(7.13) « μ , μ> + 2 </ι, s*v»αμ(s*v) = 2 ΣβeF l ^ l 2 a μ - 2 / ^ v )

for μeL(F)f. Since s*F* = F and the map λ^s^λ is a bijection of L(F*) onto

L(F), we can rewrite (7.13) as

+A(sSIίv) = 2 Σ « 6 F * \*1sJ
2as*a-2*)(s*v)

where A E L ( F * ) ' . Since s* preserves < , >, we have

'(7.14) «λ, />+2<;., V»αΛA(5φv) - 2 Σα eFJ^«| 2^(A-2«)(s*v).

On the other hand, the recursion formula of aλ{v*) in (7.11) can be written as

(7.15) (<λ, A> + 2<A, v»αA(v) = 2 Σ α 6 F. l>U 2 ^-2«(v),

since vJic = vFφ and ψ* = ψF* Comparing (7.14) with (7.15), we can conclude that
a

s*λ(s*v) = aλ(v) f°Γ a ^ ^ e ^(^*) Hence

which implies the lemma.

COROLLARY 7.10. Under the same assumption as in Lemma 7.9, we have

^F*(^* v*, ψ*) = V(m: s*v, ψ)

where m e MF and m* = s*1 ms# e MF+.

PROOF. Let m = nhk be the Iwasawa decomposition of m. Then the

Iwasawa decomposition of m* is given by m+ = nJ|t/ιsN/cs|e where n # = sϊ1ns J | ί, /?* =

s+lhs* and k* = s*lks*. By definition, we have

Since ψ*(n*) = ψ(n), fcJW^ft'W and ΦΛ(Λ*: v*, ιA*) is equal to Φ(Λ: s*v, ιA),

we get

^ . ( m * : v,, ιA*) = ψ(n)ho^Φ(h: s*v9 φ).

But the right hand side is clearly equal to V(m: s*v, ιA)

Keeping the assumption v* = vF# and ιA* = IAF*» w e shall consider the Whittaker

function WFJίm*\ v#, ιA*) o n ^ F * introduced in (6.16). Following the same line

of the proof of Theorem 6.6, we can conclude that WFXm+: v*, \l/+)eCφ£MFJ

)> Zv*) Hence it can be written as

(7.16) WFAm*: v,,
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for suitable constants fcs(v*, ψ*) (s e WFi). Since ψ* is a non-degenerate character

of N(F*), WF£m+: v*, ψ*) is an entire function of v ^ e o f F J * and satisfies the

functional equations

WF*(™* v*, ψj = M(s, Vφ, *A*)WF<.O* : 5v, ^

for all 5 6 Wff Here M(s, v*, i//*) (se WFφ) are defined recursively, by replacing

v and η by v* and η* respectively in (7.6) and (7.7). We remark that since (v*)α =

vα and η* = ηs*(ι for α e F * we may write eα(v*) = eα(v) and

(7.17) M(5α, v*, ιA*) = Φ W - v ) - K f l J 2 ( 2 < α , a))*/2)2*-

for α e F * . Furthermore we can deduce, as in Theorem 7.8, that the coefficients

bs(v*9 Ά*) a r e holomorphic in Ω(F*)' and they are given by

(7.18) fcs(v*, IA*) = M(5i5, V,,, ^•)cF,(s1sv)

where 5X is the longest element of WF+ and cF0 is the c-function of MF+, which is

given by

(7.19) CF£V) = TI*ΣUF )Φ)-

LEMMA 7.11. Let v^ = vFtt and ^• = ̂ F φ . Then we have

(7.20) W(m: v, ψ) = ^ * ( v ) Σ s e ^ , cF,(5 l 5v)M(5 l5, v», ^ ) K ( w : 5*5V, ιA)

/or m e M F and v* e ^(i 7*)' .

PROOF. We have already seen in Lemma 6.8 that W(m: v, φ) = cF*(v)WFφ-

(w* : v#, ιA+) where m^ = s;1msJ | ί. On the other hand, from Corollary 7.10 it

follows that VF£m*; v*, ψ*)—V(m: s*v, ψ). Hence by (7.16), we have

W(m: v, ψ) = cF (v)Σ*wr.bJy*> Ψ*)V(m: s*sv, ψ).

Since bs(v*, ψ*) (se WFφ) are given by (7.18), the lemma follows.

THEOREM 7.12. Let ψ be a character of N and define F and F* by F =

{aeΠ; \ηa\φ0} and F*= —s^F. Let v* be the restriction o / v e α * to αo(F*)

and let ψ* be the character of N(F*) defined by ψ*(n#) = ψ(sittn*s*1) for n* e

Then the Whittaker function W(x: v, ψ) on G can be expressed for

*y as follows;

W(x: v, ψ) = cF*(v)Σseϊτi,^F*(51sv)M(515, v,,, ψ*)V(x: s*sv, ψ).

Here the functions cF*(v) and cF£v) are meromorphic functions on a* given by

(6.14) and (7.19) respectively. Moreover M(s, v*. ψ%) (se WFJ are meromorphic

functions of v*, which are determined recursively as follows; if s = s α (αeF*),
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then M(sa, v*, φ+) is given by (7.17) and if se WFφ and cceF* such that l(sas) =

/(s) + l, then M(sas, v*, φ#) = M(s, v*, φ*)M(say sv*, φ*). Finally the function

V(x: v, φ) on G is already introduced in (4.10).

PROOF. If we write x = n1/ι1m/c following the decomposition G =

NFAFMFK, we can easily obtain

W(x: v, φ) = hf>v+"FW(m: v, φ)

and

V(x: s*sv, φ) = h\*sv+PFV(m: s*sv, φ).

But since ftfsv==('*i)*v and (hJ^s^h^eAp., it holds that h\ sv+"F = hγir+''F

for all seWF+. Similarly since 50 = 5*5^ we have h\0V+f>F = h\*v+PF. Conse-

quently, by Lemma 7.11 we can obtain the theorem immediately.

§ 8. An example

In this section we consider the case when φeN* such that the corresponding

subset F(φ) of Π consists of only one element α. We will show that in this case

the Whittaker function W(x: v, φ) can be written in terms of the modified Bessel

function of second kind. In what follows, we set F = F(ψ) = {α}, /?= — s^α and

hence FJ | t = {j8}.

THEOREM 8.1. Let φeN* satisfying the above condition. If we write

he A as h = hίh2 where h^eAjp and h2eA(F), we have

(8.1) W(h: v, φ) = c(v)Γ(-(s0v)Λ)-*hr+p*K(h2: v, φ)

and

(8.2) K(h2 :v9ψ) = 2dι,J/(2<α, α

where p(α) = (m(α)/2 + m(2α))α, pa = p — p(α) αnrf ^(sov)» *s ^ ^ modified Bessel

function of second kind and order (sov)β.

In particular when G is of real rank one and F(ι^) = /7 = {α}, then for he A
we get

(8.3) W(h: v, φ) =

PROOF. Put s^ — SoSβ1. Then we have already seen in Corollary 6.9 that for

γ e AF and h2 e

(8.4)

where (ft2)* : : = s*1^2 s*- Here we used the facts that pF=pa and cF*(v) =
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c(v)Cβ(v)~ι. In the following we compute WFχh*: v^, ψFJ for h e A(F) explicitly.

In the proof of Lemma 6.8 we have shown that

WFXK: vΛ, ψFm) = h^+r^WFχvF^ (ψ»)F.),

which can be given by the integral

/7sov+p(a) f IXnWisoHso^dn
JN(F*)

(cf. (6.17)). Since F* = {β}, we have no(F*) = Qόβ®Qo2β and hence each n e N(F+)

can be written uniquely as «=exp(Y+Z) where Ye%^ and Ze^2β- B u t since

— soβ = (x and hence Ad (so)goβ = 9o> w e conclude that if n=exp(Y+Z),

φ^sofiso1) = exp {/Λα

α̂(Ad (s o)y)}.

For simplicity, we introduce a linear form ζβ on g ^ b y C/ Y) = ̂ /α(Ad (so)y).

Then it is clear that IC^NI^I- On the other hand, G. Schiffmann showed in

[10] that if ή = exp (Y+Z),

where | Y | 2 = -B(7, ΘY), \Z\2= -B(Z, ΘZ) and μ = (vβ + m(β)/2 + m(2β))l2. Con-

sequently ffF,(/i*: vF,, φFφ) is given by

The above integral can be explicitly calculated (cf. [4]) and the result is

Since β=-sόιoί, it follows that </?, ^> = <α, α>, v/3= ~(50v)α and hence

/jSov+v/»α = 1 for /ie^(F). In view of the fact that |C Î = k J , we can deduce that

WFXhφ: vF,, ψF.) is equal to

Combining this with (8.4), we obtain (8.1). If G is of real rank one, then so = sa

and — sov = v. Moreover since F — Π, it holds that A(F) = A. If we note that

c(v) = ca(v) and the modified Bessel function satisfies X_Vα = XVα, we conclude that

(8.3) is a direct consequence of (8.1).
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