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Introduction

Let G be a connected, noncompact, semisimple Lie group with finite center.
Let G=NAK be an Iwasawa decomposition of G. That is, K is a maximal
compact subgroup, 4 is a maximal vector subgroup consisting of semisimple
elements and N is a maximal simply connected nilpotent subgroup of G.

Our major concern in this article is a so-called (class one) Whittaker function
on G, which is closely connected with the Whittaker models of a class one principal
series representation of G. Such a function has been studied by many authors
(see the reference) in the case when it is associated with a non-degenerate character
of N.

In this paper, we do not assume the non-degeneracy of a character of N.
We consider the Whittaker function on G from the viewpoint that it appears as
a joint eigenfunction of the algebra of all left invariant differential operators on
G/K. Our approach is similar to the one employed by Harish-Chandra for his
celebrated work concerning the spherical functions on G.

In more detail, let  be an arbitrary character of N. We consider the space
C%3(G/K) of smooth functions f on G satisfying f(nxk)=y(n)f(x) for neN,
xeG and ke K. The space C3(G/K) is stable under the action of the algebra of
all left invariant differential operators on G/K, or equivalently, under the action
of the algebra U(g)' (cf. § 2). So we are allowed to introduce the space C(G/K,
1) of all joint eigenfunctions of U(g)' in C3(G/K). Here g, is an algebra homo-
morphism of U(g)! into € which corresponds to an element v of the complex
dual space a* of the Lie algebra of A (see (2.2)).

We first study the structure of C3(G/K, y,) and obtain the following results.

(1) Each element of C3(G/K, y,) is a real analytic function on G
(Proposition 3.2).

(II) The dimension of C}(G/K, y,) is finite and does not exceed the order
of the Weyl group W of G relative to A (Theorem 3.3).

(ITII) For those vea* in general position, we construct the functions V(x:
sv, ) (se W) on G explicitly (cf. (4.1), (4.5) and (4.10)) and we prove that they
form a basis of C3(G/K, yx,) (Corollary 4.11 and Theorem 5.4).
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Next we define the class one Whittaker function W(x: v, ¥) on G associated
with vea* and a character {y of N by a certain integral formula (see (6.4)). The
integral converges for those v in a certain connected open subset D and is holo-
morphic there (cf. Proposition 6.1). We have already shown in [4] that for a
non-degenerate character Y, the integral defining W(x: v, ) can be extended to
an entire function of vea*. Here we prove the following.

(IV) For an arbitrary character Y of N, the integral defining W(x: v, )
can be in general meromorphically continued as a function of v and moreover
it belongs to C5(G/K, x,) as a function on G (Theorem 6.6).

(V) When we write the Whittaker function W(x: v, y) as a linear com-
bination of the above constructed basis V(x: sv, ) (s€ W), the coefficients are
explicitly determined in terms of the Harish-Chandra’s c-functions and the
gamma factors appeared in the functional equations of the Whittaker functions
(Theorem 7.8 and Theorem 7.12).

We describe the main steps of the proofs of the above mentioned results.
In view of the fact that each fe C3(G/K) can be completely determined by its
restriction f, to A, we construct in § 2 certain differential operator 6(z) on A
for each ze U(g)' by requiring that (zf),=(ef°d(z)ce ?)f, for feCy(G/K).
Then if we define C}(4, x,) as the space of all ®eC*(A) satisfying 6(z)P=
1.(2)® for z e U(g)', we can deduce that C7(G/K, y,) is isomorphic to Cy(4, x,)
under the correspondence f+—e~?f, (see Proposition 3.1). Thus our problem
of proving (I), (IT) and (III) is reduced to showing the corresponding facts for the
space Cy(4, x,). In this stage, the operator 6(w) where w is the Casimir operator
on G plays a key role. From the explicit form of d(w) given in Lemma 2.8, we
conclude that it is an elliptic operator on A and hence (I) holds. The statement (II)
is based on the fact that any differential operator on A with constant coefficients
can be written as the compositions of certain w such operators and the elements of
8(U(g)") where w is the order of W (cf. Proposition 2.7). To establish (II),
we introduce a series @(h: v, Y)=h"Y ;. a;(v)h* on A where the coefficients
a,(v) are given by the recursion formula (4.1). Applying the estimate for a,;(v)
given in Lemma 4.5, we can deduce that &(h: v, ) is convergent uniformly on
every compact subset in 4. Moreover we can check directly that &(h: v, ¥)
is an eigenfunction of §(w) with eigenvalue y,(w). This fact plays an essential
role in proving that @(h: v, ) belongs to C3(A4, x,) (see Theorem 4.10). Using
this function, we can construct an element V(x: v, ¥) of C3(G/K, yx,) (cf. (4.10)).

The main technique of proving (IV) and (V) is as follows. For each character
¥ of N, there corresponds a set of linear forms #, on the root spaces g§ where o
runs through the set IT of simple roots of G relative to A. We denote by F the set
of simple roots a such that n,%0. We note that y is a non-degenerate character
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if and only if F=II. Put F,= —s;'F where s, is the longest element of W.
We denote by Pp,=Ng,Ar,M,, the Langlands decomposition of the parabolic
subgroup P;, of G corresponding to the subset F, of II. Then the Whittaker
function W(x: v, ¥) on G can be written as the product of a certain meromorphic
function ¢f*(v) and the Whittaker function W(my: vg,, ¥r,) on Mg, (see Corollary
6.9). Theimportant fact is that iy, is the non-degenerate character of the maximal
nilpotent subgroup N(F,) of Mg,. In this way, our problem is reduced to that of
proving our assertions in the case of non-degenerate characters. As was already
mentioned, in this case (IV) follows from Theorem 4.8 in [4]. To establish (V),
we need the asymptotic behavior of W(x: v, ) (cf. Lemma 7.1). Applying it,
we can determine the coefficient of V(x: sqav, ). The another coefficients are
determined by using the functional equations of the Whittaker functions and
the above result (cf. Lemma 7.7).

§1. Preliminaries

Let G be a connected, noncompact, semisimple Lie group with finite center.
Let g, be the Lie algebra of G. We denote the complexification of g, by g.
Let B(X, Y) (X, Yeg) be the Killing form on g. Let K be a maximal compact
subgroup of G with Lie algebra f,. We denote by p, the orthogonal complement
of ¥, in g, with respect to the Killing form. Let 0 be the corresponding Cartan
involution of g.

Let a, be a maximal abelian subspace in p,. For each non-zero element o
of the dual space a¥ of a,, we set g§={X €g,; ad (H)X =a(H)X for all H €a,}.
We say that a € a®y—(0) is a root of g, relative to a, if g§#(0). Let X be the set of
all roots of g, relative to a,. We put m(a)=dim g for every ae 2. LetZX2, bea
positive system of roots in X and let IT={a,,..., «;} be the corresponding set of
simple roots. Let W be the Weyl group of the root system X, that is, the group
generated by the reflections s, (xeIl). Then W is isomorphic to M*/M, where
M* (resp. M) denotes the normalizer (resp. centralizer) of a, in K. In what fol-
lows, we often write a representative in M* of an element s of W by the same letter.
Since the Killing form is positive definite on a,, it induces an inner product {, >
on a¥, which is extended to a non-degenerate symmetric bilinear form on the com-
plex dual a* of a,. For each vea*, we define an element H, of the
complexification a of a, by B(H, H,)=v(H) for all Hea,. Then it holds that
{u, v)=B(H,, H,) for u, vea*.

Let A=expa, be the analytic subgroup of G with Lie algebra a,. For
vea*, we set h”=exp v(H) where h=exp He A. Let p be the element of a}
such that

=271 ges, m(@)at.
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We denote by n, (resp. fiy) the subalgebra of g, given by

My = X4er, 85 (r€Sp. fig=2,cr, 90%) -

Let N=expn, (resp. N=exp i) be the analytic subgroup of G corresponding to
n, (resp. 1y). Then we know that g, is a direct sum of n,, a, and f,. Moreover
the map (n, h, k)—nhk is an analytic isomorphism of N x 4 x K onto G and hence
G=NAK, which is called an Iwasawa d=composition of G.

Let N* be the set of all characters, namely, all one dimensional unitary
respresentations of N. For each iy € N*, there exists a unique Lie algebra homo-
morphism 7 of ny into R such that y(n) =exp (in(X)) where n=exp X e N. Since
n is trivial on [ng, ny], it induces a linear form on ny/[ny, ny,]. But since

Ny = Zaeﬂ 93 (-D [nOy nO] )

it can be identified with a linear form on Y, ;g% Let 5, be the restriction of
n to g&(eell). We say that n is the Lie algebra homomorphism of n, cor-
responding to  and we often write Yy =y,. If  is an element of N* such that all
1, (e € IT) are nonzero linear forms on g§, it is called a non-degenerate character
of N.

For later use, we shall extend the notion of the non-degenerate character of
N to that of certain subgroups of N. Let F be an arbitrary subset of IT. We
denote by X', (F) the set of roots in X, which are integral linear combinations of
the elements of F. Then X, (F) is a positive system of the root system X, (F) U
—2.(F) and F is the set of simple roots of X, (F). We define a subalgebra of
o by no(F)=2,cx. ;)85 and put N(F)=expny(F). Then it is an analytic
subgroup of N. We denote by y/ the restriction of ¥ to N(F). We say that Y
is a non-degenerate character of N(F) if n,#0 for all e F.

Now we shall give a normalization of Haar measures of N and N. Recall
that —B(X, 0Y) (X, Yeg,) defines an inner product on g,. It also induces an
inner product on g for all €, with respect to which they are mutually or-
thogonal. Hence i1, is an euclidean space with the inner product induced by
—B(X, 0Y). Let dX be the corresponding euclidean measure on n,. Since
the exponential map of n, onto N is an analytic isomorphism, there exists a
unique Haar measure dii on N that corresponds to dX. Since N=60N, wecan
normalize a Haar measure dn on N by dn=_0(dn).

Finally, for any subspace b, of g, we write its complexification by b.

§2. Differential operators on C7(G/K)

Let U(g) be the universal enveloping algebra of g, which can be regarded as
the algebra of left invariant differential operators on G. We denote the action of
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u e U(g) on fe C*(G) at xe G by (uf)(x), or equivalently by f(x; u).

Let {U4g)}s>0 be the canonical filtration of U(g). An element u € U(g) is
said to be of degree d if ueUy(g)—U,_,(g). If ue Uyg) we say that u is of
degree<d. The adjoint action of G on g is naturally extended to U(g), which we
denote by u* with xe G and u € U(g).

Let U(f), U(a) and U(n) be the universal enveloping algebras of f, a and n
respectively, regarded as canonically embedded in U(g).

LemMA 2.1 (Harish-Chandra [3]). The following decomposition of U(g)
holds;

U(g) = U(a) @ (nU(9) + U(9)D).

Namely, for each ue U(g) there exists a unique element n(u) € U(a) such that
u—mn(u) e nU(g)+ U(g)t.

Let p— p’ be the unique automorphism of U(a) which takes H € a to H + p(H).
We define the map y: U(g)— U(a) by

(2.1) y(u) = n(u) for ueU(g).

Since a is abelian, U(a) can be identified with the symmetric algebra S(a) and
hence with the algebra of polynomial functions on a*. Let J be the algebra of
W-invariants in S(a), or equivalently in U(a). Let U(g)" be the centralizer of f
in U(g). Then the restriction of y to U(g)' is known to have the following re-
markable properties.

THEOREM 2.2 (Harish-Chandra [3]). The map vy induces an algebra homo-
morphism of U(g)! into U(a) with kernel U(g)'n U(g)t and image J. The
quotient U(g)!/U(g)! N U(g)t and hence J can be viewed as the algebra of all
left invariant differential operators on G/K.

Let y € N* and let C3(G/K) be the space of smooth functions f on G such that
f(ngk)=y(n)f(g) for ne N, ge G and ke K. We shall consider the action of
ue U(g) on C3(G/K). We notice that in general uf does not belong to C3(G/K)
even if fe CJ(G/K), whereas if ue U(g)! and fe C3(G/K) then ufe C3(G/K).
Because the action of u commutes with the right translation by elements of K.
We further remark that since all elements of C(G/K) are right K-invariant, each
element of U(g)t acts trivially on Cy(G/K).

In the sequel, we often identify pe U(a) with a polynomial function on a*
and denote the value of p at ve a* by p(v). For vea*, we define

(2.2) nW) =yw)(v)  for ueU(g).

Then Theorem 2.2 implies that y, is an algebra homomorphism of U(g)! into
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C which is trivial on U(g)! n U(g)t. Moreover it holds that y,=y, for u, vea*
if and only if there exists s € W such that p=sv.

Let x be an algebra homomorphism of U(g)" into C. Let C3(G/K, x) be
be the space of all joint eigenfunctions in C$(G/K):

V(GIK, ) = {fe C3(G/K); zf = x(2)f for ze U(9)"} .

Using the above results on the action of U(g)! on C(G/K), we may assume that

x is of the form y, for some vea*. Let f be an arbitrary element of C3(G/K).

Then f(nhk)=y(n)f(h) for ne N, he A, and ke K. Hence f is completely deter-

mined by its restriction f, to A. In fact the map fi—f, is a linear isomorphism of
%(G/K) onto C*(A).

For studying the structure of C3(G/K, yx,), we shall replace the differential
equations on CZ(G/K) by those on C*(A4). Let #* be the ring of analytic
functicns of A generated (without 1) by the functions h*(« € IT) where IT is the set
of simple roots in XZ*.

LEMMA 2.3. Let ueUyg). Then we can select a finite set of elements
giez*,w;eU) and p;e U(a) (1< j<r) such that

(i) deg(p;)<d—1 and deg(w;)+deg(p;)<d,

(i) for all he A,

(2.3) u=nu)+ X << g;(HW'p; mod U(g)t.

ProOF. We shall proceed the proof by induction on d=deg(u). The case
d=0is trivial. Letd=1and u=Xeg. If Xea orf, the lemma is clear. Sup-
pose X en. Since n=3,.,g% we have only to show the lemma when X € g*.
But then X=h*X""'(he A). Since h*(x€X,) belong to #*, the lemma holds.
Now let ue U/g). Then by Lemma 2.1, there exists u, e nU(g) such that u=
n(u)+u,; mod U(g)f. By choosing suitable elements X,eg* and u,e U,_,(g)
(xeX,), we can write

Uy = Daer, Xollg
Consequently it follows that
u=nu) + X, h* X4 'u, mod U(g)f.
Applying the induction hypothesis on u,, we can obtain the lemma.

Using Lemma 2.3, we shall introduce a differential operator d,(u) on A for
u € U(g) with coefficients in the ring £ of analytic functions on A generated by 1
and #*. First we note that the differential of  induces an algebra homomor-
phism of U(n) into C, which we denote again by the same letter . Retaining
the notations in Lemma 2.3, we define for ue U(g), a differential operator on
A, by



Whittaker functions on semisimple Lie groups 265

(2.4) Oo(u) = m(u) + X 1<z Y(w))g(h)p;.
PROPOSITION 2.4.  For ue U(g) and fe C3(G/K), we have

(2.5) (uf)(h) = Go(u)f)(h)  (heA).
Moreover if z,, z, € U(g)! and fe C3(G/K), then

(2.6) (z1220)(h) = (60(21)00(22) f4) (h) (he A).

PROOF. Since f is right K-invariant, (2.3) implies that

uf)(h) = f(h; m(u)) + Zg (0 f(h; wh™'p).
But if X eny,, then for fe C3(G/K),

SO X271y = (d[d) f(hexp (1X"™ ")) | =0 = (d[dD)f(exp (tX)h) | =0 = Y(X)f(h).
This implies that
S wh™'py) = Y(wp)f(h; p)).

Thus we obtain

uf)(h) = f(h; n(w) + 2 w(wpg (h)f(h; py).

From (2.4) it follows that the right hand side is clearly equal to dq(u)f ((h).
If ze U(g)! and fe Cy(G/K), then we know that zfe C(G/K). Thus the as-
sertion (2.6) is a simple consequence of (2.5).

DEeriNiTION 2.5.  The differential operator do(u) is called the radial part of
u € U(g).

We denote the composition of differential operators D, D, on A with an-
alytic coefficients by D,oD,. The multiplication by an analytic function may be
regarded as a differential operator on A. Let e? (resp. e ?) be the analytic func-
tion on A defined by e?(h)=h* (resp. e ?(h)=h"*). For each differential operator
D on A, we introduce a new differential operator D’ by D’=e PoDoer. Then
for peU(a), viewed as a differential operator on A, we see easily that
p'=e"Popoe? is equal to the image of p under the automorphism of U(a) defined
earlier.

We define a differential opeator 6(u) for ue U(g) by o(u)=0d4(u)’. Then
d(u) is again a differential operator on A with coefficients in 2.

LEMMA 2.6. Let ue U,(g). Then we can choose a finite set of elements
fie#* and q;€ U(a) of degree<d —1 such that

2.7 o(u) = y(u) + X f4;-
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ProOOF. If we recall that y(u)=mn(u)’, then the lemma follows immediately
from (2.4).

It is well known (cf. Harish-Chandra [3]) that U(a) is a free J-module of
rank w where w is the order of W. Furthermore there exist homogeneous elements
w;=1, w,,...,w, in U(a) such that U(a)=3,.;c, @;J. Since y(U(g))=J,
there exist z;e U(g)! (1 <i<w) such that every pe U(a) can be written as p=
2 1<i<w ©Y(2)-

PROPOSITION 2.7. Let pe U(a) and select z;e U(g)! (1<i<w) such that
p=2 w(z;). Then there exist a finite number of elements g;;e Z* and z;;€
U(g)t (1<i<w, 1< j<r) such that

(2.8) p =2 0pd(z) + XX g;jw;00(z;5)
where the index i (resp.j) runs through {1,..., w} (resp. {1,..., r}).

ProoF. It follows from Lemma 2.6 that there exist a finite number of
elements f;; € Z* and g;; € U(a) for each i such that y(z,)=4d(z,)+ X f;;q;; Hence
we have

P = 2 icicw 02(8(z) + X fi;4:5) -
Since #* is stable under the differentiation by elements of U(a), we may write
p =2 0p0(z;) + 23 gijwep;j
for some choice of g;;€ #* and p;;e U(a). Note that deg(w;p;;)<deg(p)—1.
Applying the induction hypothesis on w;p;;€ U(a), we obtain the proposition.

For later use, we shall give the explicit formulas of d,(w) and d(w) for the
Casimir operator w on G. The Casimir operator w is an element of the center of
U(g) and hence w € U(g)", which is defined as follows. Let m, be the centralizer
of a, in f5. Then it is well known that go=1,®m B a,®n, where iy=0n,. Let
H,,..., H, be the orthonormal basis of a, with respect to the Killing form and
set

(2.9) 0, = X << H}
Let U,,..., U, be a basis of m, such that B(U;, U;)= —§,; and set
Dy = — ZlSiSr U%

For each aeX,, let X,; (1<i<m(x)) be a basis of g satisfying B(X,;, X, ;)=
—0;; (1<i, j<m(a)). Using the basis of g, chosen above, we define

W=, + Oy — DXaes, 2 1<icm@) (Xa,i0Xqa; +0X,:X,,).
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We remark that the definition of w is independent of the choice of a basis of g,.

Let n be the Lie algebra homomorphism of n, into R, which corresponds to
YeN*. Then we have Y(X, )=in(X,;) for all xeXZ, and 1< j<m(a). We
remark that n(X, ;)=0 unless a e IT. For each x eII, we set

(2.10) 72 = 21§j3m(¢) n(Xm,j)z'
Then |n,| can be regarded as the length of the restriction 7, of 5 to g§.

LEMMA 2.8. Let w be the Casimir operator on G. Then the radial part
do(w) of w is given by

(2.11) do(w) = M(@) — 2 X sepr Ial*h2*
where n(w)=w,—2H, and hence é(w) is given by
(2-12) 6((0) = '))((D) -2 Zae[l Ina|2h2a

where y(0)=w,—<{p, p).

Proor. Since [0X, ;, X, 1=H, for ae X, and 1< j<m(«), we can deduce
from the expression of w given above,

w=w, — 2Hp + W, — 2 Zae!+ ZISjSm(a) Xa,jexa.j'

Put Y, ;=X,;+60X,; for aeX, and 1<j<m(x). Then Y,;ef,. Replacing
0X,,; by Y, j— X, ; and using the fact that w,, X, ;Y, ;€ U(g)f, we have

w=w, —2H, + 23,5, Zi<jsma Xz,; mod U(g)t.
Hence we obtain
O=w, = 2H, 4+ 23 5, 1?* X1 <jcme (XA ) mod U(g)t.
From (2.3), we can deduce that
n(w) = w, — 2H,
and
Oo(@) = M) + 2% pes, h** X1 <jcme V(X )

Since Y(X, ) =in(X,;) for aeZ, (1< j<m(x)) and moreover (X, ;)=0 unless
aell, we have

50(0)) = 7!((1)) -2 Zaeﬂlnalzhza‘
Since y(w)=n(w)’ and d(w)=7d,(w)’, it follows that

’)’(CO) =Wz — <P,P>
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and

3(w) = (@) = 2 Xoen M0,

§3. Eigenfunctions for U(g)" in C(G/K)

In this section we shall study the system of differential equations on
Cy(G/K): '

(3.1) zf = y(2)f  for zeU(g).

Here y,(vea*) is an algebra homomorphism of U(g)! into € given by (2.2). As
in § 2 we denote the space of all solutions of (3.1) by C3(G/K, x,).

We shall reduce the differential equations (3.1) to a system of differential
equations on A by using the results in § 2. Let Cy(A, x,) be the space of all
solutions of the system of differential equations on A given by

(3.2) 0(2)® = x(2)® for zeU(g)".

PrROPOSITION 3.1. The map fe Pf, gives a linear isomorphism of
Cy(G/K, x,) onto Cy(A4, 1,).

PrOOF. The restriction f, of feC3(G/K) to A belongs to C*(A4). Con-
versely for F € C*(A), if we define the function fon G by f(nhk)=y(n)F(h) (ne€ N,
he A, keK), then fe Cy(G/K) and f,=F. This implies that the map f—f,
gives a linear isomorphism of C3(G/K) onto C*(4). Moreover from Propo-
sition 2.4 we know that (zf),=60(2)f4 (fe C3(G/K), ze U(g)"). This means
that if fe C3(G/K, yx,) then f, satisfies

(3.3) 00(2)fu = x(2)f4 for zeU(g)

and conversely. Since d(z)=e"?ody(z)ee”, the function ®=e"*f, (fe CH(G/K,
X)) clearly belongs to Cy(4, x;). Conversely if @ e C3(A, x,), then e*® satisfies
(3.3). But then there exists a unique fe C3(G/K, yx,) such that f,=e’®. Thus
we obtain the proposition.

PROPOSITION 3.2. - Every element of Cj(G/K, y,) is a real analytic function
on G,

PrOOF. Since the function e’ is real analytic on 4 and the character  of
N is also real analytic, we have only to show that every @ e C3(4, x,) is real
analytic. Whereas @ satisfies the differential equation d(w)® =y, (w)® where
is the Casimir operator on G. From Lemma 2.8, it follows that

(34) (wa -2 Zaeﬂ lr’a'2]121)¢ = <V, V>¢



Whittaker functions on semisimple Lie groups 269

Here we used the fact that y,(w)={v, v>—<{p, p>. Since the Killing form is
positive definite on a,, the differential operator w, defined in (2.9) is an elliptic
operator. By the regularity theorem of elliptic operators, we see that the solution
of (3.4) is real analytic.

THEOREM 3.3. The space C3(G/K, y,) is finite dimensional and its
dimension does not exceed the order w of the Weyl group W.

Proor. In view.of Proposition 3.1, it suffices to show dim C(4, x,)<w.
Take an arbitary he A and fix it. Define a linear map ¢ of C3(4, yx,) into C*
by &@)=(®(h; w,),..., P(h; w,)) where w;=1,..., w, are homogeneous gene-
rators of U(a) over J introduced in §2. We will show that ¢ is injective. From
Proposition 2.7, it follows that each pe U(a) can be written, by taking a finite
set of elements z;, z;;€ U(g)' and g;,;€e 2% (1<i<w, 1<j<r),

P =2 00z) + 23 gij(MWwped(z)).
Consequently if @ € C3(4, x,), then

®(h; p) = Z (zZ)P(h; w) +3 3 gij(h)Xv(Zij)‘p(’?; ;)
= 1<izw (0(2) + 25 9:i(Wx(z:))P(h; ).

This implies that if ®(h; w;)=0 for | <i<w, then ®(h; p)=0 for all pe U(a).
Since @ is real analytic, we can conclude that ®=0 in a neighborhoood of an
arbitrary he A. But since A4 is connected, this means that ®=0 on A. Hence
¢ is injective and dim Cj(A4, x,)<w.

§4. The functions @ (h: v, ) and V(x: v, {)

Let € N* and 7 be the Lie algebra homomorphism of 1, into R correspond-
ing to Y. Let L denote the set of all linear functions A on a of the form A=
> wenm Ne Where n, (a € IT) are all non-negative integers. For A=Y n,x¢€ L, we put
n(A)=> n, Let L'=L—(0). Since a and a* are identified by means of the
Killing form, we can identify the symmetric algebra S(a*) with the algebra of
polynomial functions on a*, so that Aea* is a linear function on a* by the
rule v—> {2, v)> (vea*). Let Q(a*) be the field of rational functions on a*.

For each A€ L, we shall define a; € Q(a*) by induction on n(2) as follows.
Let ag=1 and for 7€ L’

4.1 , (K2 A +20)a; = 2 Fent 1N:a5 - 26

For the sake of convienience, we put a;=0if A& L. Let o, (1€ L’) be the hyper-
plane in a* consisting of v such that 2 {4, v)+<{4, A>=0. We denote by 'a* the
complement in a* of the union of all hyperplanes o, (A € L’). Then 'a* is an open,
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connected, dense subset in a*. It is obvious that the rational functions a; (1€ L)
take a well defined value at any point ve‘a*. We remark that any compact subset
of a* meets o, for only a finite number of 1€ L'.

LemMa 4.1. If A=Y, .uno €L’ such that at least one n, is odd, then
al=0.

Proor. We shall prove the lemma by induction on n(1). From the recursion
formula (4.1), it follows that a,=0 for « e I[1.. Thus the lemma holds when n(1)=
1. Let A= neL’ such that n; is odd for felIl. Then all of A—2u(xell)
have an odd integer coefficient. Thus by induction hypothesis a;_,,=0 for all
aell. Hence by (4.1), a,=0.

In view of the lemma, we have only to consider those 4 € L with even integral
coefficients. The following lemma is an improvement of Lemma 4.1. Let F
be the subset of IT given by F={aeIl; |n,|#0}. Then (4.1) can be written as

4.2) (K4 2>+20a, =2 3o Mal*az-2, (A€L).

LemMma 4.2. If A=23%,.pn,0€Ll’ such that ng#0 for some Bell—F,
then a;=0.

ProoF. For each non-negative integer n, we set
Li,={A=2%,enna€L’; ng # 0 for some fell —F and
ZaeF n, = n} .
It suffices to show that if A€ Ly, (n>0) then a,=0. We shall prove the lemma
by induction on n. Let n=0. Then %€ Ly, is of the form 2 3 s _rngf and
hence A —2a¢ Lfor all xe F. Consequently the right hand side of (4.2) vahishes.
But the coefficients {4, 1) +24 are not identically zero for A€ Lr,. Thus a;=0.

If we notice that when Ae Ly, then A—2a€ Ly, for all x€ F, our lemma is an
immediate consequence of the induction argument.

REMARK 4.3. If ¥ is the trivial character and hence n=0, then clearly a;=0
for all Ae L.

In what follows we assume that y is a fixed non-trivial character unless
otherwise stated.

COROLLARY 4.4. Let Yy=y,eN* such that F={a}, that is, |ns|=0 for
BeIll—{a}. Then a,=0 unless A=2nu and a,,, is given by

(Il Y T+
(43) aZna(v) _< 2(&, a) ) n!F(va+n+l)
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where v,={v, a)/{a, a) and I'(-) is the classical gamma function.

PrOOF. The first assertion is obvious from Lemma 4.2. If F={a} and
A=2na, then it follows from (4.2) that for n>1

(4712 <(X, a) +4n <d, v>)a2na(v) =2 IrlalzaZ(n— l)a(v)

and hence

@2na (V)= (I1,1?/2<et, 0D) (1/n(v,+1)) @r(n—1)a(V)-
This implies (4.3).

For each non-negative integer n, we set L,={A=23 , . nna€L; Y jert Ny=
n}. The following estimate on a, is important to construct a certain solution of
(3.2).

LemMMA 4.5. Let U be an arbitrary compact subset in 'a* and n an arbitrary
non-negative integer. Then there exists a positive constant ¢ depending only
on U such that for ve U and L€ L,

44 la, (M| < c"/(n!)>.

PrOOF. The case n=0 is obvious. So we may assume n>1. It is known
(cf. [3]) that we can select a positive constant ¢, depending only on U such that
K4, AY+2<4, vD|=>c,n? for all AeL, and ve U. If we put c,=max{2|n,|?; ae
IT}, then it follows from (4.1) that

la, (W <ca(en®) ' T penmlaz— 2,0

For ve U, set A,(v)=max{|a,(v)|; AeL,}. Then the above inequality implies
that there exists a positive constant ¢ such that 4,(v)<cn=24,_,(v). We define
B,(v) by the recursion formula By(v)=1 and B,(v)=cn2B,_,(v) for n>1. Then
it is obvious that B,(v)=c"/(n!)2. On the other hand it holds by induction that
A, (v)<B,(v) for all n. Hence we obtain A4,(v)<c"/(n!)? for n>0. This immedi-
ately shows (4.4).

Fix Y=y, € N* and consider the series
(4.5) ¢(h: v, lp) = hV ZAEL a;'(v)h)'

where ve’a*, he A and a; (A€ L) are defined by (4.1). We remark that when
V¥ =y, (the trivial character) it follows from Remark 4.3 that

(4.6) d(h:v,Yy)=h" for heA and vea*.

In what follows we again assume that =y, is a non-trivial character of N.
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LEMMA 4.6. The series @(h: v, y) converges absolutely and uniformly for
he A and ve'a*. It defines an analytic function of (h, v)€ A x'a*.

Proor. It suffices to show that the series

2 ns0 X el a,(v)h*

converges absolutely and uniformly on A x‘a*. Let U and V be any relatively
compact open subsets in ‘a* and A respectively. From Lemma 4.5, we can deduce
that for ve U,

| X nz0 Lier, (VI < X s c[(n)? 3 5er, I

Let {H,, H,,..., H;} be the basis of a, which is dual to I1={a,, a,,..., a,}. If
we write h=exp (3 ;<< t;H;), then hh=exp(2 X n;t;) for A=23 ,;no;€L,.
Put

r=sup{ei; h=exp(Xt,H)eV, 1<i<l}.

Then r< + o0 and for any (h, v)e Vx U

4.7 (PIES Z;.el,“ a;(Mh*| < 3,50 IL,l(cr?)"[(n!)?

where |L,| denotes the number of elements of L,. Note that |L,|=(n+[—1)!/
(I—1)!n!, which is a polynomial in n of degree I. Hence the right hand side of
(4.7) converges. This proves the lemma immediately.

COROLLARY 4.7. Under the same assumption as in Corollary 4.4, we have
(4.8) @(h: v, §) = T(v,+ D) (In,)//2<a, ) =hv=v=2I, (2|n,1h*]\/ 2{a, &),
where I, () denotes the modified Bessel function of fisrt kind and order v,.

ProoOF. In view of Corollary 4.4, we have ®(h: v, Y)=h"3 -0 a2,(V)h?"*,
and by (4.3)

¢(h- Vv, l//) = r(va + ])h\' ZnZO (lr’alhz/(2<as a>)1/2)2"/’l!r(\)a +n+ ])~
Since 1(z)=(z/2)* ¥ ,=0(2/2)*"/n'['(s+n+1), we can easily obtain the corollary.

Our next aim is to show that as a function of i, ®(h: v, ) belongs to C3(A,
%) We start with the following lemma.

LEMMA 4.8. Let w be the Casimir operator on G. Then for he A and
ve’a*,
O(h; o(w): v, ¥) = 1 (@)P(h: v, ).

Proor. If we apply the formula (2.12) of é(w) to @(h: v, ¥), we can obtain
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O(h; d(w): v, ) = T, v +2, v+2) — <p, pYla(v)h?
—h ZAEL (2 Zaen lnalza}.— Za(v))h)"

Since y,(w)=<v, v> —<{p, p), it follows that

D(h; 8(w): v, ¥) = x(@)P(h: v, Y1)
+ hY Z {(<)‘s l>+2<l,v))a,1(V) -2 Zael’l 'nalzal—Za(V)}hl'

However a,(v) is defined by (4.1) and hence the second term vanishes. So we
have the lemma.

To show that @(h: v, y) e CP(A, y,), we shall need some preparations. Let
% be the set of all mappings b: A—b, of Linto C such that the series >, b,h*
gives an analytic function on A. For vea* and be &, we define an analytic func-
tion on A by ¢ (h)=h" Y, b,h*. We shall compute ¢, (h; 6(u)) where u € U(g).
From Lemma 2.6 we know that there exist a finite number of elements f;e 2*
and ¢; € U(a) such that §(u)=y(u)+ X f;q; for ue U(g). We remark that each
feR* can be written as f(h)=3 d,h* where u runs through a finite subset of
L’. Moreover for each p e U(a) it holds that

(4.9) &\(h; p) = h* Tse (v + Dbsh*

Combining these facts, we can deduce that ¢ (h; o(u)) is again of the form
o (h; dw)) = h* 3, c;h* for a suitable choice of ce #. To make clear the
dependence of ¢ on v, u and b, we will write c(v, u, b) instead of c.

LEMMA 4.9. Keeping the notations above, we have

(i) for fixed u and b, cy(v, u, b) is a polynomial function of vea* for
all AeL,

(ii)  co(v, u, b)=(u)(v)bo,

(111) C;.(V, w, b)=(Xv(w)+<'l’ A>+2 <)s v>)b/1 -2 Zae" |’7a|2b}.-2a
for Ae L' where w is the Casimir operator on G and finally

(iv) c(v, 2125, b)=c,(v, 2y, ¢(v, 25, b)) for z,, z, € U(g)! and Le L.

PrOOF. The assertion (i) is clear from (4.9). We consider the. term
> fitho(h; q;) in ¢y(h; 5(u)). Since each f;e€Z*, the term corresponding to
/=0 does not appear. This implies (ii). The proof of the assertion (iii) is quite
analogous to that of Lemma 4.8. From Proposition 2.4 it follows that 8(z,z,)=
8(z,)d(z,) for z,, z, eU(g)t and hence ¢, (h; d(z,2,))=0¢(h; 6(z,)0(z,)). This
implies (iv).

THEOREM 4.10. Let &(h: v, Y) be the analytic function on A x "a* defined by
(4.5). Then it satisfies for all z e U(g)', ®(h; 6(z): v, )=y, (2)P(h: v, ¥).
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Proor. For fixed ve’a*, we denote by a(v) the mapping A—a,(v) of Linto
C defined by the recursion formula (4.1).. Since @(h:v, Y)=h" Y a,(v)h?*
Lemma 4.6 implies that a(v)e #. Remembering that the Casimir operator
o lies in the center of U(g) and hence wz=zw for all ze U(g)!, we can deduce
from (iv) of Lemma 4.9 that

c(v, @, c(v, z, a(v))) = c(v, z, c(v, w, a(v))).

However, we have already seen that @(h; é(w): v, ¥)=yx,(w)P(h: v, ¥) and hence
(v, o, a(v))=yx,(w)a(v). Thus we get

(v, @, (v, z, a(v))) = x(@)c(v, z, a(v)) .
Applying (iii) in Lemma 4.9, we obtain for Ae L',
1(@)c;(v, 2, a(v)) = (x(@)+<4, 4> +2{4, v))ex(v, 2, a(v))
=2 Ysen Mal?ea1-24(v, 2, a(v))
and hence
(K4, A>+2<4, v))ex(v, 2, a(V)) = 2 Zent Malea-24(; 2, a(v)).

Therefore c,(v, z, a(v)) (Le L’) satisfies the same recursion formula as that of
a,(v). The only difference lies in the initial terms. Combining these facts with
(ii) in Lemma 4.9, we obtain c,(v, z, a(v))=y,(2)a,(v). Since

(h; 8(2): v, ¥) = h* e, €30, 2, a(W)H?,
it follows that &(h; 6(z): v, Y)=x,(2)P(h: v, ¥).
COROLLARY 4.11. Let y € N* and define a function V(x: v, ¥) on Gx'a* by
(4.10) V(x: v, ¥) = Y(n(x)h(x)*S(h(x): v, ¥)

where x = n(x)h(x)k(x) is the Iwasawa decomposition of x€ G. Then V(x: v, y)e
v(G/K, 1)

ProOF. The corollary is a direct consequence of Proposition 3.1 and the
above theorem.

Before ending this section, we will study the dependence of ®(h: v, ) and
hence V(x: v, ) on Y € N* more closely. Let Y=y, e N* and let F=F(}) be
the subset of IT such that F=F(y)={x e II; |n,| #0} where |n,| is defined in (2.10).
We remark that y is a non-degenerate character if and only if F=1II and y is the
trivial character if and only if F=¢.

Let L(F)={AeL; A=Y ,rn,0} and L(F)'=L(F)—(0). We denote by 'af
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the complement in a* of the union of all hyperplanes o, (A€ L(F)"). Clearly
‘a¥ contains ‘a*. From Lemma 4.2, it follows that a; (1 € L(F)) are well defined
on 'a¥ and moreover &(h: v, ) can be written

D(h: v, ) = h* T 4e1.r) a:(VAA

Without any essential change of the proof of Lemma 4.5, we can deduce that
®(h: v, ) converges in fact for (h, v) € 4 x 'a¥.

Let P, be the standard parabolic subgroup of G corresponding to the subset
F=F@y) of II. We denote the Langlands decomposition of Pp by Pr=NpA Mp.
The Lie algebra aq ¢ of Af is given by {H € ay; a(H)=0 for allae F}. Let X, (F)
be the subset of X', consisting of roots which are integral linear combinations
of elements of F. Then the Lie algebra n,  of Npis given by ng p =3 oc5, -5, (r) 88
Let ao(F)=23 ,rRH,. Then ay(F) is a subalgebra of a, and ay=a, r@ay(F).
If we denote by A(F) the analytic subgroup of A with Lie algebra ay(F), then any
h € A can be written uniquely as h="h, h, where h; € Ap and h, € A(F). Let ny(F)
be the subalgebra of n, given by no(F)= 3 ,c;, (r) 85 and N(F) the corresponding
analytic subgroup of N. Then ny=n, @ ny(F) and the map (n,, n,)—n,n, of
Npx N(F)into N is an analytic isomorphism of varieties. By definition, Y(n,)=1
for all n, € Nr and the restriction Y of y to N(F) induces a non-degenerate
character of N(F). We further remark that N(F)=N n My, A(F)=An M  and
if we put K(F)=K n Mg, then M= N(F)A(F)K(F) is an Iwasawa decomposition
of M compatible with that of G.

Using these facts, we proceed the study of ®(h: v, ). Since hi=1 for all
h, € Ar and a € F, we can easily obtain

(4.11) D(hyhy: v, ) = hy®(hy: v, ) (hy € Ap, hy € A(F)).

Furthermore, we can deduce from the recursion formula (4.2) that a,(v) (1 € L(F))
depend only on the restriction vy of v to ag(F) and the restriction Yy of ¥ to
N(F).

In view of the above results, we conclude that the function ®(h,: v, )
(h, € A(F)) is nothing but the one constructed, by replacing the role of G by that
of My, for the character Y of N(F) and vpea(F)*. Henceforth we may write
®(hy: v, Y)=Pp(hy: ve, Yy) if we emphasize its dependence on M.

Finally, we consider the function V(x: v, ) introduced in (4.10). Recall
that V(nhk: v, y)=y(n)h*®(h: v, y) where ne N, he A and ke K. If we write
n=n,n, (n, € Np, n, € N(F)) and h=hh, (h, € A, h, € A(F)), then

V(nhk: v, ¥) = Y(n)hy**hsd(hy: v, §) .

If we define p(F)=2"1 ¥ .5, (ry m(@)x and pp=p— p(F), then we can easily check
that h%=h%r and h§=h4F). Hence
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V(nhk: v, §) = hy**ry(n)hs O Pp(hy: v, Yp) .
At this point, we define a function Vi(m: v, Yp) on My by
(4.12) Ve(nahoky: ve, W) ="//r("z)’1§(p)¢r(h23 Ve VE),

where n, e N(F), h, € A(F) and k, € K(F). Using the decomposition G=PpK =
NeApM K, we can conclude V(n hymk: v, ) =h}*PrVi(m: v, Yr) for n; € N,
hie Ap, me Mgand ke K. Thus the essential properties of V(x: v, ) are reduced
to those of V(m: vg, Yr), which is defined on the subgroup My of lower rank
with a non-degenerate character Y.

We summarize the above results in the following:

PROPOSITION 4.12. Let Yy e N* and set F={aell; |n,]#0}. If we write
x€ G as x=n h,mk according to the decomposition G=NgArMcK, then we have

V(x:v, ) = i eVi(m: vg, Yp)

where Vi(m: vg, Yg) is given by (4.12).

§5. The fundamental solutions

Using the results in the preceding sections, we shall construct w linearly
independent elements of C3(G/K, y,) for certain values vea*. Here w is the
order of W. The method is quite similar to the one developed by Harish-
Chandra in [3].

Let vea* and define the subgroup W, of Wby W,={se W; sv=v}. Let J,
be the algebra of all W, -invariants in S(a). Then J, contains J. For pea*,
let S(u) be the maximal ideal of S(a) such that S(u)={p € S(a); p(1#)=0} and set
Jw=J, nS(p).

‘For any open subset U in a*, we denote the algebra of holomorphic functions
on U by 0(U). Clearly S(a) is regarded as a subalgebra of @(U). For each
uea*, let d(u) be the derivation of ¢(U) defined by f(v; d(u))=(d/dt) f (v+tw)l,=¢
for fe@®(U) and vea*. It is obvious that the map u—d(u) can be uniquely
extended to an algebra isomorphism of the symmetric algebra S(a*) into the algebra
of holomorphic differential operétors on O(U).

"For vea*, let 5#(v) be the subspace of S(a*) given by

H(v) = {ve S(a*); p(v; d(v)) = 0 for all pe S(a)J,(v)}.

Then it is well known (cf. [3]) that S(a*)=s#(v)® S(a*)J{ where J} is an ideal of
J, of elements of positive degree and moreover dim s#(v)=w(v). Here w(v) is
the order of W,.

Now fix e N* and let F=F () be the subset of IT introduced in §4.
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LEMMA 5.1. Let ve'a}. For ves#(v), we define a function A by ®(h)=
@(h: v; 0(v), ¥). Then ®,eC3(A, 1,).

PrOOF. We know from Theorem 4.10 that &(h; §(z): v, Y)=p(2)(V)P(h: v,
Y) for ze U(g)!. Since d(v) commutes with §(z), we have

P(h; 6(2)) = P(h: v; A(v)N(2), ).

For each ze U(g)!, let D, be a differential operator on a* defined by D,=0d(v)°
y(z) —y(z)(v)0(v). Then for all z e U(g)t, it holds that

®,(h; 6(2)) — W(2)(MP,(h) = @(h: v; D, §).

Hence it is sufficient to prove D,=0 for all z. Suppose D, #0 for some z € U(g)".
Then we can select p, € S(a) such that p,(v; D,)#0. Put p,=(y(z)—y(2)(V))p,.
Then it is clear that p,(v; D,)=p,(v; d(v)). On the other hand we know y(z)eJ
and hence y(z) € J,. From the definition of p,, we have p, € S(a)J,(v). But since
v e #(v), it follows that p,(v; d(v))=0 and consequently p,(v; D,)=0. This con-
tradicts the choice of p,.

For vea* we put r(v)=[W: W,] and select a set of complete representatives
s;=1, §3,..., Sy Of W/W,. Then the elements v;=s;v (1 <i<r(v)) are all distinct.
Moreover each W,, is isomorphic to W, and hence w(v;)=w(v) and r(v;)=r(v)
for 1<i<r(v).

Let Qp be the set of v e’af such that

(i) v,e’a¥ for 1<i<r(v) and

(i) v;—v;& L(F)~ for any pair of indices i#j (1<i, j<r(v)), where L(F)~=

ZaeF Zd.
Then Q, is again a connected, open, dense subset of a*. For simplicity, put
Hi=#(v) (1<i<r(v)). Then dims#;=w(v) for alli. Let {v;; 1<j<w(v)}
be a basis of #;. We define w functions @;; (1<i<r(v), 1<j<w(v)) on A by
¢ij(h)=¢(h: Vi3 a(vij), ¥).

LEMMA 5.2. Let veQp. Then the above defined w functions ®;; form a
basis of C3 (A4, x,)-

PrOOF. From Lemma 5.1, it follows that @;;e C}(4, x,). So we have only
to show the following fact; if we choose non-zero elements v, € 5#; (1 <i<r(v)),
then the functions @, (h)=®(h: v;; d(v;), Y) are linearly independent. For sim-
plicity, we put &;(h: v)=a,(v)h*** for Ae L(F). Then we 'may write @(h: v, ¥)=
2 aeLr) Sa(h:v). It can be easily checked that there exists a certain polynomial
function p, , of log h € ay for A € L(F) and v e S(a*) such that

Ca(h: v; 0(v)) = py,(log k) h*2.
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Hence we obtain
D, (h) = ZleL(F) Ea(h:vi; 0(0) = X saeL(r) Pavll08 h)hv i+,

Now suppose that ¢; (1<i<r(v)) are complex numbers such that ¥ ¢;®,=0.
Then

2 1<i<r(v) 2 aeL(F) CiPa,p(log R)R¥i+4 = 0.

Since v;—v;&L(F)~(i#j), the exponents v,+i (1<i<r(v), Ae L(F)) are all
distinct. By the above fact and Lemma 4.6, we can apply the corollary to Lemma
57 in [3]. The result is ¢;p,; ,, =0 for 1<i<r(v) and A€ L(F). On the other
hand, it is evident that p, ,(log h)=v(log h) for all i. Since v;#0, it follows that
Po,»,#0 and so ¢;=0.

We say that v is a regnlar element of a* if (v, a>#0 for allaeX. Ifvisa
regular element, then W,=(1), all sv (s € W) are distinct and s£(v)=(0).

Let QF be the set of regular elements v € a* satisfying

(i) sve’a} for all se Wand

(i) sv—tve& L(F)~ for any pair (s, t) € Wx W such that s#¢.

COROLLARY 5.3. Let ve Qy. Then w functions ®(h: sv, ) (se W) form a
basis of C3(A, x,)-

In view of Proposition 3.1 and the above corollary, we establish the following
result.

THEOREM 5.4. Let veQr. Then the functions V(x:sv, {¥) (se W) form
a basis of C3(G/K, y,).

§6. The Whittaker function W(x: v, )

In this section, we introduce a joint eigenfunction W(x: v, §) in C3(G/K,
%), Which is closely related to the Whittaker model of a class one principal series
representation of G.

Let vea*. We denote by X% the space of all smooth functions ¢ on G
satisfying @(nhmg)=h"*rp(g) for ne N, he A, me M and geG. Let n, be the
representation of G on X ¢ defined by n,(g9)¢(x)=¢(xg) for g, xe G and ¢ € XT.
The representation =, is called a class one principal series representation of G.
We denote by X, the subspace of all K-finite elements in X%.

We define a function 1, on G by

(6.1) 1,(x) = h(x)*** (x€G)

where we write the Iwasawa decomposition of x as x = n(x)h(x)k(x) with n(x)e N,
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h(x)e A and k(x)e K. It can be easily checked that
(6.2) 1,(nhmxk) = h**r1(x)

for neN,heA, meM, xeG and ke K. This means that the function 1, is a
K-fixed element of X,. We remark that 1, satisfies

(6.3) L,(x; 2) = 1(D1(x) (x€G)

for all ze U(g)t. This follows from Lemma 2.1 and the fact that the space of
K-fixed elements in X, is one dimensional and stable under U(g)'.
Let y =y, e N* and vea*. We introduce an integral W(x: v, §) by

(6.4) W(x: v, ¥) = SN 1(s3 nx)y-Y(n)dn (xeG).

Here dn is the Haar measure on N normalized in § 1 and s, is a representative in
K of the unique element, denoted by the same letter s,, in Wsuch that soZ, =—2,.
Note that (6.4) does not depend on the choice of the representatives of sy e W.
When ¢ is a non-degenerate character, the above integral was already studied in

(2], [4], [6] and [10].
Before considering the convergence of (6.4), we shall examine the formally
consistent properties of the integral W(x: v, Y). It follows from (6.2) that

(6.5) W(nxk: v, ¥) = y(m)W(x: v, )

for neN, xeG and ke K. Since A normalizes N and it holds that d(hnh~1)=
h?rdn, we can deduce

W(h: v, ) = h‘°”+PS 1 (s3 myh(n)-1dn  (he A)
N
where y* is a character of N given by

Wh(n) = Y(hnht) (he A, neN).

When x=e (the identity element of G), we denote the value W(e: v, ) simply by
W(v, ¥), that is,

(6.6) WO, ¥) = | 165"y (m)dn.
Then we can write
6.7) W(h: v, ) = hoteW(v, y*) (heA).

Hence we conclude from (6.5) and (6.7) that if x=nhk (the Iwasawa decompo-
sition of x),
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(6.83) W(x: v, ¥) = y(mh="*?W(v, ).

Thus the study of (6.4) can be reduced to that of W(v, ). We shall rewrite it
in a more convenient form. Recall that the map n+—syfisg! is an analytic isomor-
phism of N onto N and it holds that d(syiisg!)=dn where dii is the Haar measure
on N introduced in § 1. Since 1, is right K-invariant, it follows from (6.6)

(6.9) W, ¥) = SN 1) ()1 i

where Y, is a character of N defined by
Yul(fi) = Y(sofisg!) (i eN).
Let D be the subset of a* given by
D = {vea*; Re(v,) >0 forall aeX,}
where v,=<{v, a)/{a, o) and Re(v,) denotes the real part of v, eC.

PROPOSITION 6.1. Let e N*. Then the integral W(x: v, ¥) converges
absolutgly and uniformly for (x,v)eGxD. It gives a smooth function of
x € G, which is holomorphic in ve D.

Proor. First we consider the case when Y =y, (the trivial character of N).
Since Y=y, for h € A4, it follows from (6.8) and (6.9) that W(x: v, y)=hsv+? W(v,
Vo) (x=nhk) and

W, Yo) = SN 1 (A)dA.

But this integral is well known to be uniformly convergent for ve D, which is
usually called Harish-Chandra’s c-function and denoted by c(v) (cf. [5]).
Thus we obtain the proposition when =, and moreover

(6.10) W(x: v, o) = c(v)hso**?  (x = nhk).

Next we consider the general € N*. Since |y, (7)|=1 for he A and neN,
we conclude from (6.9) that

W, yh)| < SN |1,(77)|d7.

But since the right hand side is convergent for ve D, W(v, y*) converges absolutely
and uniformly for (h, vyJe AxD. From this and (6.8), we get the proposition.

COROLLARY 6.2. Let YyeN* and veD. Then W(x:v, y)eCy(G/K, x,).
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Proor. The corollary is a direct consequence of (6.3) and the above propo-
sition. '

REMARK 6.3. We have already shown in [4] that if { is a non-degenerate
character then W(x: v, /) can be extended to an entire function of vea*. .

Our next aim is to prove that for general iy € N*, the integral W(x: v, ¥)
can be continued to a meromorphic function of vea*. For that purpose, we
first write down the explicit formula of ¢(v). Let X{ be the set of ae X, such
that /2 is not a root. For each a €2}, we set '

N=d. — F(v)r2 (v, + m(a)/2))
(6.]]) Ca(‘) = da [‘(\?a + ;n(a)/z)r(z—l(va + ”l(a)/l ¥ /72(‘2&))}

where d, is the constant given by

da —_ 2(11|(z)~m(21))/2(n/<a’ a>)(m(a)+m(2a))/2'

Then it is well known (cf. [10]) that under the normalization of a Haar measure
on N introduced in § 1, the c-function is given by

(6.12) (V) = Tz cav).

This implies that ¢(v) and hence W(x: v, o) are in fact meromorphic functions
of v. ' S

To proceed further, we shall need some preparations.  Let F=F() be the
subset of IT such that F={a€ell; |n,|]#0}. To begin with, we shall consider the
map a— —sg'a of X into itself. Since sg!=s, in W andsyX,=—2,, we have
—sg! 2, =2, and hence —sg![T<X,. But —sg!II is a simple root system and
consequently —sg!'II=1I1. If we set Fy=—sg'F={—s5'a; a€ F}, then F, is
again a subset of /I and it holds that —syF, =F.

Let Pp, be the standard parabolic subgroup of G corresponding to the subset
F, of I1. We denote the Langlands decomposition of P, by Pp,=NgAp.Mpg,.
Let X (F4) be the subset of X, of integral linear combinations of the roots of F,.
Then the Lie algebra ay r, of A, is given by {H € ay; «(H)=0 for all € F,} and
the Lie algebra ng p, of Np, is of the form 3 .., _y,(r, 95 Put ag(Fy)=
2 aer.(rs) RH, and let A(F,) be the analytic subgroup of A with Lie algebra
ag(Fy). Moreover set no(Fy)=73 ,c5, ro 9* and denote by N(F,) the analytic
subgroup of N with Lie algebra ng(Fy4). Then A(F,)=AnN Mg, and N(F,)=N
N Mg,. Furthermore if we put K(F,)= KN Mg,, then it holds that Mg, =
N(F)A(F,)K(F,) and it is an Iwasawa decomposition of My, compatible with
that of G. Finally we define subalgebras Tiy(Fy) and T, r, of fi, respectively ‘by

Wo(Fy) = Zoer, (ko) 80% Moks = Daers -4 (Fo) 80%
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Let N(F,) and N, be the analytic subgroup of N with Lie algebras fiy(F,) and
Mo r, respectively. Then the map (7, i1,)—>n 7, is an analytic isomorphism of
Ng,x N(F,) onto N.

LEMMA 6.4. For ve D, the integral W(v, ) can be reduced to

(6.13) W, §) = cFo(v) SMM ()W) 1 d

where cF*(v) is given by
(6.14) P2 () = [Maers - 5. Foy €aV)-

ProoOF. From (6.9) it follows that

Woun = L) () i

NroXN(F«
We remark that since —soF, =F and consequently soN(Fy)sg!=N(F), it follows
that y,(A,)=1 for all i, e N., and the restriction of ¥, to N(F) is a non-
degenerate character of N(F,). Hence we have

W, ) = S RECRAVNCARILNS

NroxN(F»
Let i, =n,h,k, be the Iwasawa decompsition of 7,. Then n, € N(F,), h, € A(F,)
and k, € K(F,). Since the function 1, is right K-invariant, it holds that 1,(n;71,)=
1,(ii,n,h,). Moreover since n,h, e Mg,, it follows that v, =(nyh,)n(nyh,) e
Np, and dv, =dn,. Using these facts, we obtain

W) = ks W) d

But by (6.2), we know that 1(n,h,i,)=h}*?1(7A,) and hence 1, (n,h,n,)=
1(n)1,(f,). Therefore the above integral can be decomposed into

615 W= L@ @)

The first integral is evaluated as follows. We note that c(v)=W(v, ¥,) can be
written, as in the same manner,

e0) =, L@y, 1,

The second integral can be viewed as the c-function for M, and hence its value is
given by [1;3(r.) c(v) Where Z3(Fy)=23 N2 (Fy). Consequently we can deduce
from (6.12) that
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SNF 1,(n,) dn,= Hzxe}.’:—-h-(l"‘) c.(v).

Let W, be the subgroup of W generated by the reflections s,(ax € F,). We
denote the longest element in W, by s,. Then sj!=s, and s, 2, (Fy)= —2 . (Fy).
Let s, be the element of W such that s,=s¢s7!. Then F= —s¢(Fy)=5x(Fy).
Recall that we denote by P, the standard parabolic subgroup of G corresponding
to FcIl and we write the Langlands decomposition of Pr as Pp=NgpAM.
Furthermore we remember that M .= N(F)A(F)K(F) is an Iwasawa docomposition
of Mg, which was constructed in §4. Since s,(F4)=F, it holds that s,Pp,
Sel=Pg, S Mp,s3! =Mp, sy A(Fy)s3! = A(F) and s,N(F)s3'=N(F).

Let Y, be a character of N(F,) defined by y,(n,)=y(sen,s3') for n, e
N(F,). Since the restriction ¥, of ¥ to N(F) is a non-degenerate character, the
character Y, of N(F,) is also non-degenerate. In what follows, we denote the
restriction of v to ag(Fy) by v, if necessary.

We now introduce an integral We,(my: vg,, Yg,) With my € Mg, by

(6.16) Wemy: Vro W) = SW RECEURTNCARE

Then the value We,(v,, Yr,) at e of (6.16) can be written, by using the facts that
STIN(Fy)s, = N(Fy) and Y,(s,7,57") =Y (71,) for 71, € N(F,),

(6.17) Weivpa ) ={ LAl d
COROLLARY 6.5. For veD, the integral W(v, ) can be written as
(6.18) W, ¥) = cF*WWeVr, Yr) -

Moreover it can be continued to a meromorphic function of v € a*.

PrOOF. The first assertion follows from Lemma 6.4 and (6.17). We can
deduce from (6.14) that c¢F*(v) is in fact a meromorphic function of v. On the other
hand, the integral (6.16) is exactly the same as the Whittaker integral for M,
with v, € a(F4)* and the non-degenerate character ¥, of N(F,). Hence it follows
from Theorem 4.8 in [4] that the integral (6.16) can be extended to an entire
function on a(F,)*. Consequently we obtain the corollary.

We summarize the above results in the following;

THEOREM 6.6. For any Y e N*, the integral W(x:v,y) (xe€G) can be
continued to a meromorphic function of v € a*, which remains to be an element of
C3(G/K, 1,)-

DEFINITION 6.7. We say that W(x: v, {) is the class one Whittaker function
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on G of type (v, ¥), or simply the Whittaker function on G.

In what follows, we shall relate the Whittaker function W(x: v, ) on G
with the Whittaker function We(my: vg,, Wg,) on Mg,. We recall that sy Pps, =
Py, and s3'Mpsy=M,..

LEmMMA 6.8. Keeping the above notations, we have
(6.19) W(m: v, ) = cP*(v) Wi (s Ve, W)
where me My and my=sz'ms, € My,.

ProoF. To begin with, we shall show the lemma when he A(F). Remember
that W(h: v, Y)=h"*?W(v, y*) and moreover it holds from Corollary 6.5 that
W(v, ") = cF*V)We,(Vg,, W")E,). By definition, we have

(W")E(n2) = Y(senasy?) = Y(sahanhy'syt)

where n,e N(Fy,) and hy=sz'hs,. Since he A(F) and hence h, € A(F,), we
can conclude that (Y*)p, =(r,)"*. Consequently,

W, y*) = P W, (vr,, (Yr)")  (he A(F)).
On the étller hand, we can easily obtain, as in (6.7),
We(hy: Vi, Yg,) = B0t EDW (ve,, (YE,)"™)

where p(Fy) =271 3 4ex, (r) M(@)a.  Since

hilv-f-p(l"n) — hs:(slv-rp(l"v)) = hsov+p(F)

where p(F)=2"' 3 v, sy M(@)a and moverover h*‘f)=he for he A(F), we have
(6.20) W(h: v, §) = hov oW (v, Yh) = P Wp,(ha: Vi Y5

where h e A(F) and hy =sz'hs,. This proves the lemma when m=he A(F). Let
m=nhk be the Iwasawa decomposition of me M. Then ne N(F), he A(F)
and ke K(F). Correspondingly, the Iwasawa decomposition of m, =s3'ms, €
Mg, is given by m,=n,h.k, where n,=sy'ns, € N(Fy), hy=s3'hs, € A(F,) and
ky=s3'ks, € K(Fy). From (6.8), we know that W(m: v, Y)=y(n)W(h: v, ¥).
On the other hand, we can easily obtain W (my: ve,, Yr)=Vr M) We(hy: Ve,
V). Since n,=sz'ns,, we have Yp(n,)=¥(n). Combining these facts with
(6.20), we obtain the lemma.

COROLLARY 6.9. Retain the above notations. If we write xeG as x=
nyhymk according to the decomposition G=NgArMgK, we obtain

W(x: v, §) = cF*(v)hse P e Wi (my: vE,, Yr,)
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where m,=s3'ms,.

§7. The connection between W(x: v, ) and V(x: v, {)

We have already seen in Theorem 5.4 that for v e QF, the functions V{(x: sv,
¥) (se W) form a basis of C3(G/K, yx,). On the other hand, we have shown in
Theorem 6.6 that W(x: v, y) e C3(G/K, x,). Hence there exist complex numbers
by(v, ¥) (se W) depending on v and ¥ such that for ve Qf, y e N* and x€G,

(7'1) W(x: v, lt//) = ZseW bs(v, l//)V(x: SV, l//)

Our aim is to decide b(v, ¥) for se W. We start with the following lemmas.
Let a} (resp.ag) be the set of H ea, such that a(H)>0 (resp. a(H)<0) for all
allael,. i

LEMMA 7.1. Put h,=exp (tH) where t>0 and Heay. Then for ve D and
Y e N*, we have .

(7.2) lim,_, , hysov=pW(h,: v, ¥) = c(v)
where c(v) denotes Harish-Chandra’s c-function.

Proor. It follows from (6.7) that for ve D,
Iy o W hy: v, §) = 1,055 mwe(n) 1.
‘ N

If we assume that Y=, and n=exp (¥ X,) where X, e gf (x€X.), then Yy «(n)=
exp (in(X hzX,)). Since h,eexp(ag), it follows that lim,, ., h*=0 for all
aeX, and hence lim,, ,, Y"(n)=1 for all ne N. Thus we conclude from
Proposition 6.1 that for ve D,

lim, . , , hr oo W(h,: v, §) = g 1(s3 n)dn.
N

But the right hand side is clearly equal to ¢(v).

LEMMA 7.2. Let h, be as in Lemma 7.1. Then for ve DN Qf, Y€ N* and
se W, we have

' 1 if s=sq
lim,_, ¢, hy vtV (h,: sv, Y) =
, 0 if s# s,
PrROOF. We note that

BtV (h sv, §) = BV Sy a5V



286 Michihiko HASHIZUME

where the right hand side is convergent absolutely and uniformly for (h, v) € A x
Q. Since lim,, , ., h*=0 for A e L(F)', to prove the lemma we have only to show
that lim,,, , h$v~ov=0 if s#s,. Note that (sv—sqv)(H)=(sg'sv—v)(sg'H)
- for Hea, and if Heajy then sg!Hea}. Since veD, that is, Re({v, 2))>0
for e X,, we can deduce from Lemma 3.3.2.1 in [14] that Re(v(sg'H))>
Re(sgisv(sg!H)) for Heay and s#s,. This means that Re((sv—sov)(H))<0
for H e ay and s#s,. Hence lim,, , ,, h{*~%"=0. ‘

Applying Lemma 7.1 and Lemma 7.2 to (7.1), we obtain the following lemma.
LeEMMA 7.3. For ve D N Qr and y € N* we have
(7.3) by (v, ¥) = c(v).

To proceed further, we first assume that y is a non-degenerate character and
hence F=II. In this case we simply write Q'=Q7,. If we set

Y(h: v, ¥) = h=PW(h: v, ¥) for heA,
then it follows from (7.1) that
(7'4) lIl(h‘ v, lp) = ZSEW bs(v9 l/’)‘b(h. sV, lp)

LeMMA 74. Let w,, w,,..., 0, be the homogeneous generators of S(a) over
J introduced in §2. Then wxw matrix

(D(hg; w;: sv, lﬁ))lgiéw,sew

is non-singular for any hoe A and ve Q'.

Proofr. For otherwise, we can choose complex numbers a; (s € W), not all
zero, such that "y a . @(hy; w;: sv, Y)=0 (1<i<w). Put f(h)=3 . w a,P(h: sv,
y) for he A. Then feCy(A4, x,). Since f(hy; w)=0 (1<i<w), we conlcude
from the proof of Theorem 3.3 that f(hy; p)=0 for all pe U(a). But since f is
analytic and A is connected, this implies f=0 on A. On the other hand, ®(h: sv,
V) (s € W) are linearly independent and hence a,=0 for all se W. This contradicts
our choice of a,.

LEMMA 7.5. The coefficients byv, Y) (s€ W) are holomorphic functions on
Q.

Proor. Fix heA. From the above lemma, there exist holomorphic
functions ag(v) on Q' (se W, 1<i<w) such that Y ., a;(vV)®(h; w;: tv, Yy)=1
or 0 according as t=s or not. Hence from (7.4) we conclude

by(v, ¥) = ¥ 1<icw asi(M¥(h; w;: v, ¥).

Since Y is a non-degenerate character, W(h: v, ¥) is an entire function of v and
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hence Y(h; w;: v, Y) are also entire functions of v. Thus we establish the lemma.

We have shown in [4] that for a non-degenerate character y/, the Whittaker
function W(x: v, Y) satisfies the functional equations

(7.5) W(x: v, ¥) = M(s, v, \)W(x: sv, )

for each se W. Here M(s, v, ) (s e W) are meromorphic functions of v, which
are determined recursively as follows. If s=s, (x € IT), then

(7.6) M(s,, v, ¥) = e(V)e(— V)71 (Ina]/2(2€at, ))/2)?V
where e, (v) is given by
e,(v)! = I'2~Y(vy+m(a)/2+ 1)) T2~ (v, + m(a)/2 + m(2a))).

If se Wand a € IT such that I(s,s)=1(s)+ 1, then
7.7 M(s,s, v, ¥) = M(s, v, YI)M(s,, sv, ¥).
Here I(s) denotes the length of se W.

LemMA 7.7. For se W, we have

by(v, ¥) = M(s¢s, v, Y)b(sosv, ¥).
Proor. Combining (7.5) with (7.1), we can easily obtain that
by(v, ¥) = bg-1(tv, YIM(t, v, ¥)

for s, te W. In particular, if we take t=s5's=s,5, we have the lemma.

THEOREM 7.8. Let Y be a non-degenerate character of N. Then by(v, {)
(s e W) are holomorphic functions on Q' and they are given by

(7.8) by(v, ¥) = M(s0s, v, Y)c(so5V)
and consequently it holds that
(7.9) W(x: v, ¥) = X sew M(soS, v, Y)c(sosV)V(x: sv, ¥).

PROOF. In view of Lemma 7.7, it is enough to show that b, (v, ¥)=c(v) for
veQ'. But from Lemma 7.3, it follows that b (v, Y)=c(v) for ve DN Q’. Since
€' is connected and both b, (v, ) and c(v) are holomorphic on @', we conclude
that b, (v, Y)=c(v) on Q.

Now we shall consider the case when y is not necessarily a non-degenerate
character. We set F={aell; |n,|#0} and F,= —sg'F. Let m, (resp.f,) be



288 Michihiko HAsHiIZUME

the complexification of the Lie algebra of M, (resp. K(F,)) and let U(my)!* be
the centralizer of f, in the universal enveloping algebra U(in,) of m,. For v, €
a(F,)* (the complex dual space of an(Fy)), we define, as in (2.2), an algebra
homomorphism y,, of U(in,)" into C. Let y, be a character of N(F,).. We
denote by Cy,(Mf,/K(Fy), x,,) the space of fe C*(M,) such that

(1) f(nemyky) = Yu(ng) f(my) (ng€ N(Fy), my € Mp,, ky € K(Fy)),

() zf = x(2)f forall zeU(mn,)'™.

‘As in §4, we shall construct a basis of Cy(Mp,/K(Fy), x,,). Let L(Fy) be
the set of all linear forms on ay(F,) which are linear combinations of elements
of F, with nonnegative integer coefficients. We consider a series

(7.10) Pr My vy Vo) = W3 3 scriray a1V

where h, € A(F) and a, (Ae L(F,)) are defined by the recursion formula: ao=1
and

(71 l) (<)” )'> +2<}’ v*))al(v*) =2 Zael’* |’1:|2al—21(v*)

for e L(F4+)—(0). Here n* denotes the Lie algebra homomorphism of ny(Fy)
into R that corresponds to ¥,. Then, as in Lemma 4.6, it defines a smooth
function on A(F,), which is holomorphic in v, € 'a(F4)*. Here 'a(F4)* denotes
the complement in a(F,)* of all hyperplanes o, (1€ L(F4)—(0)). Moreover if
we set

(7.12) VedMy: Vi, Yy) = Ya(ny)hEFOPp (hy: vy, W)

where m, =ny,h,k, is the Iwasawa decomposition of m, € M,, then we can deduce
from Corollary 4.11 that Vj.(m,: vy, ¥,) belongs to Cy (Mg, /K(Fy), x,.)- Let
Q(F,) be the set of regular elements v, in a(F,)* such that sv, € 'a(F,)* for all
s€ Wg, and svy—tv, & L(F,)~ for any pair (s, t)e Wg, x Wg, with s#¢t. Then
as in Theorem 5.4, we see that for v, € Q(F,) the functions Vp(m,: svy, ¥y)
(s € Wg,) form a basis of C3, (Mg, /K(Fy), Xy.)-

In the following, we assume that v, = v, and Y, =y,. We remark that since
vy is the restriction of vea* to ao(Fy) it holds that (vy),=v, where (vy),= Vs,
o> /{a, a) for a € F,. Moreover we remark that ¥, is a non-degenerate character
of N(F,) and it follows from the definition of Y, that n*=n,,, for a € F,.

LEMMA 7.9. Let vo=vg, and Y=Y, Then it holds that
Dr(hu: Vi Yu) = P(h: 54y, Y)
where he A(F), hy=s3'hsy € A(F).
PROQ_F. We recall that @(h: s,v, ¥) is defined by
D(h:syv, ¥) = B 3 per () (4R
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where a, (u e L(F)) are given by a,=1 and

(7.13) (Ctts 1> +2 Kty 54V2)au(sx) = 2 L ger IMpl*a, - 2p(54)

for pe L(F). Since syF,=F and the map A—s,4 is a bijection of L(F,) onto
L(F), we can rewrite (7.13) as

({5xhs SxAD +2 (54 55VD)A51(S4Y) = 2 2 e, l’?s.a'zas.u—u)(s*v)

where A€ L(F,)'. Since s, preserves < , », we have

' (714) (<)" ’{> +2 <)’ v>)asn).(s*v) =2 ZaeFt lns-a'2a3t(l—2«z)(s*v) .
On the other hand, the recursion formula of a,(v,) in (7.11) can be written as
(715) (<;"9 '1> +2<A’, V>)a;_(\’) =2 ZaeF. ‘nsmlza).—?.u(v)’

since vy =vg, and Y, =y, Comparing (7.14) with (7.15), we can conclude that
a,,,(sev)=a,(v) for all A € L(F,). Hence

(b(h: SxVs ‘//) = hs* ZaeL(l"-) al(v)hs‘l = h; ZaeL(Fa) a).(v)h?l'u
which implies the lemma.

COROLLARY 7.10. Under the same assumption as in Lemma 7.9, we have

VedMa: va, Ya) = V(m: syv, )
where me My and my=s3'ms, € M,.

ProOOF. Let m=nhk be the Iwasawa decomposition of m. Then the
Iwasawa decomposition of m, is given by m,=n,h.k, where n,=s3'nsy, hy=
sglhs, and k,=s3'ks,. By definition, we have

Vet v, Ua) = Ya(n) B FODp (hy: vy, Yi) .
Since Yyu(ny)=y(n), h5FD=hoF) and @p (hy: vy, Yy) is equal to B(h: s,v, ¥),
we get
VeMy: v, Ya) = Y(mh? O D(h: 5,0, ).
But the right hand side is clearly equal to V(m: syv, ¥).

Keeping the assumption v, =v, and Y, =y ,, we shall consider the Whittaker
function Wg (my: vy, ¥s) on Mg, introduced in (6.16). Following the same line
of the proof of Theorem 6.6, we can conclude that Wg,(my: vy, ¥y) € C3(MF,/
K(F,), x.). Hence it can be written as

(7.16) Wr My Vi, Ua) = Zsewrs bV Ua) Vi Myt V4, Yy)
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for suitable constants by(vy, Y4) (s€ Wg,). Since Y, is a non-degenerate character
of N(Fy), Wg(my: vy, Yy) is an entire function of v, € a(F,)* and satisfies the
functional equations

We (M2 Vi, Ya) = M(S, Vi, W) Wi, (M2 sV, Yry)

for all se Wg,. Here M(s, vy, ¥y) (s€ Wg,) are defined recursively, by replacing
v and 5 by v, and n, respectively in (7.6) and (7.7). We remark that since (v,),=
v, and n¥*=n,,, for a € F, we may write e (v4)=e,(v) and

(717) M(sa’ V*, lI/*) = a(v)ea(_v)_l(ns.a/2(2<a’ a>)1/2)2v¢

for « € F,. Furthermore we can deduce, as in Theorem 7.8, that the coefficients
by(vy, ¥4) are holomorphic in Q(F,)" and they are given by

(7.18) by(va, Yx) = M(syS, Vi, Ya)cp.(s,5V)

where s, is the longest element of Wy, and ¢y, is the c-function of M[,, which is
given by

(7.19) cr(V) = Taex2 ray €a(¥) -

LemMa 7.11. Let v, =vg, and Yy =Y,. Then we have
(7.20) W(m: v, ¥) = P (M) Zsew . Cr(51V)M(51S, Vi, Ys)V(m: 545V, )
for me Mg and v, € Q(F,)'.

ProoF. We have already seen in Lemma 6.8 that W(m: v, )= cF*(v)W,-
(My: vy, Yy) Where my,=sz!'ms,. On the other hand, from Corollary 7.10 it
follows that Vi, (my; vy, Ye)=V(m: s,v, ¥). Hence by (7.16), we have

W(m: v, l//) = CF‘(V)ZSGWF.bs(V*’ l//=I=)V(W‘ S*SV, '//)
Since by(vy, V) (s € Wg,) are given by (7.18), the lemma follows.

THEOREM 7.12. Let \ be a character of N and define F and Fy by F=
{aell; |n,|#0} and Fy=—s5'F. Let v, be the restriction of vea* to ay(Fy)
and let Y, be the character of N(F,) defined by Y.(n,)=y(sxnsss') for nye
N(F,). Then the Whittaker function W(x:v,¥) on G can be expressed for
vy € Q(F,) as follows;

W(x: v, lﬁ) = cF‘(v)ZSEWFt CF.(SISV)M(SIS, Vs !//*)V(x: SxSV, '/’)

Here the functions cF*(v) and cg,(v) are meromorphic functions on a* given by
(6.14) and (7.19) respectively. Moreover M(s, vy. V) (s € Wg,) are meromorphic
functions of vy, which are determined recursively as follows; if s=s,(a€F,),
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then M(s,, V4, Yy) is given by (1.17) and if se Wy, and a € F,, such that I(s,s)=
I(s)+1, then M(s,s, vy, Ys)=MC(s, vy, Y4 )M(s,, SV, Yy). Finally the function
V(x: v, y) on G is already introduced in (4.10).

Proor. If we write x=n,h,mk following the decomposition G=
NpAMK, we can easily obtain

W(x:v, §) = hpr*PrW(m: v, §)
and
V(x: 548V, ) = h§*sVtPrV(m: s,sv, ).

But since h{*¥=(h,)}’ and (h,)y=55'h;5« € Af,, it holds that hjsvter=hsver
for all se Wg,. Similarly since so=s,s,, we have hjevtPr=h¢vter,  Conse-
quently, by Lemma 7.11 we can obtain the theorem immediately.

§8. An example

In this section we consider the case when yy € N* such that the corresponding
subset F() of II consists of only one element «. We will show that in this case
the Whittaker function W(x: v, ¥) can be written in terms of the modified Bessel
function of second kind. In what follows, we set F=F(y)={a}, f= —sg'a and
hence F, ={B}.

THEOREM 8.1. Let Y e N* satisfying the above condition. If we write
he A as h=h,h, where h, € Ap and h, € A(F), we have

(8.1) W(h: v, §) = c(MI(—(sov)a) " hP"**=K(hy: v, )
and
(8.2)  K(hy: v, ¥) = 2In,l/(2<a, aD)t/2)~ oS ®OK () (2]n,|h5/(2<a, a))!/?)

where p(0)=(m(x)/2+ m(20))a, p,=p—p(2) and K, is the modified Bessel
Sfunction of second kind and order (syv),.

In particular when G is of real rank one and F(Y)=I1={a}, then for he A
we get

(8.3) W(h:v, ¥) = 2¢,(MI (V)™ (Inal /(2€et, a)'/2)"=h? K, (20 |h*[(2<e, 23)/?).

PROOF. Put s, =s05;5'. Then we have already seen in Corollary 6.9 that for
h, € Ap and h, € A(F),

(8.4) W(hihy: v, ¥) = c(v)eg(V) ™ hier* 2= We ((ho)x : Vros V)

where (h,),=s3'h,s,. Here we used the facts that pp=p, and cF{(v)=



292 Michihiko HASHIZUME

c(v)cg(v)~!. In the following we compute Wg,(hy: vy, Yr,) for h e A(F) explicitly.
In the proof of Lemma 6.8 we have shown that

Wehy: Ve, Ug,) = st PO We (ve,, (Y")F,),

which can be given by the integral

sov+p() S L(A)Wh(soiss ) 1di
N(F»)

*

(cf. (6.17)). Since F,={B}, we have fi,(Fy)=go? ®g52# and hence each i1 € N(F,)
can be written uniquely as 7 =exp (Y+Z) where Ye g;# and Z € g52f. But since
—sof=0a and hence Ad (sq)g5? =g§, we conclude that if i =exp (Y+2),

Yh(sofisg ') = exp {ih*n(Ad (so)Y)}.

For simplicity, we introduce a linear form {; on gz# by (u(Y)=n,(Ad (s0)Y).
Then it is clear that |{4|=|n,]. On the other hand, G. Schiffmann showed in
[10] that if n=exp (Y+ Z),

1) = {(1+27'<B, PO YI?)? + 2(B, BYI1Z|*}~*
where |Y|2= —B(Y, 0Y), |Z|?*= —B(Z, 6Z) and p=(vz+m(f)/2+m(2p))/2. Con-
sequently Wg,(hy: Vg,, ¥r,) is given by

hsovtae(a) Sﬂ'” o2 LA+ 27KKB, BOIY)?)?

o x8g

+2¢B, BX|Z|?}#exp { —ih* {y(Y)} dY dZ.
The above integral can be explicitly calculated (cf. [4]) and the result is
2¢,(MI(ve) (a1 /(2<B, B)! /2y shsovroctvaaK | (2]{4lh*[(2{B, B)'/?).

Since f=—sg'a, it follows that (B, B> =<a, a), vg=—(sov), and hence
hsovtvsz=1 for he A(F). In view of the fact that |{,|=|n,|, we can deduce that
We(hy: Vr,, Yr,) is equal to

cgWMI(—(sov)) 1K (h: v, ).

Combining this with (8.4), we obtain (8.1). If G is of real rank one, then sy=s,
and —syv=v. Moreover since F=1II, it holds that A(F)=A. If we note that
c(v)=c,(v) and the modified Bessel function satisfies K_, =K, , we conclude that
(8.3) is a direct consequence of (8.1).
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