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§ 1. Introduction

Let X be a countable set of nodes, Y be a countable set of arcs, K be the

node-arc incidence function and r be a strictly positive function on Y. The

quartet N = {X, Y, K, r} is called an infinite network if the graph {X, Y9 K} is

connected, locally finite and has no self loop. For notation and terminologies,

we mainly follow [4] and [5].

Let L(X) be the set of all real functions on X and L+(X) be the subset of

L(X) which consists of non-negative functions. For ueL(X\ the Laplacian

Au E L(X) is defined by

Au(x) = - ΣyeYK(x, jOKjO-1 ΣzeχK(z, y)u(z)

and the Dirichlet integral D(u) of u is defined by

Denote by D(N) the set of all u e L(X) such that D(ύ) < oo.

For h E L(X), we denote by PhD(N) the set of all Dirichlet finite solutions u

of the discrete Poisson equation Δu = h, i.e.

PΛD(JV) = {ueD(N) , Au = h} .

We say that h e L(X) is distinguished if h^Q and PhD(N)^0. This notion

was introduced by M. Nakai and L. Sario [2] in order to study the existence of

Dirichlet finite non-harmonic biharmonic functions on Riemannian manifolds.

Our main purpose of this paper is to obtain discrete analogues of results in [2]

concerning conditions for a given h to be distinguished. We shall also show that

the distinguishedness of a given h E L(X) is related to the existence of flows with a

current source.

In §2 we recall some facts of discrete Green potentials which play important

roles in our study. Our main results are given in §3. Note that Theorem 3.4

has no counterpart in [2]. Relations between distinguishedness and existence of

flows are discussed in §4. Results in this section have no counterparts in [2]
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either. In §5, representations of the D-minimum solutions of given distinguished

functions are discussed.

§ 2. Green potentials

We first recall some facts from the theory of discrete Green potentials in [4]

and [5].
Let N' = (X', Y'> be a finite subnetwork of N and let g%' be the harmonic

Green function of N' with pole at aeX', i.e., ΔgN

a'(x)= -εa(x) on X' and #*'(*) = 0

on X — X', where εfl e L(X) is defined by εa(a) = 1 and εβ(x) = 0 if x φ a.
For every feL(X), the Green potential GN>f and the energy GN/(/,/) of

/(with respect to gN/) are defined by

Then we have GN f(x)—0 on X — X' and

(2.1) JG^/Cx) =-/(*) on X'.

For u, i; e L(X), we consider the inner product

of M and t;, if the sum is well defined.
We can easily prove

LEMMA 2.1. If veL(X) vanishes on X-Xf, then (g%', v) = v(ά).

COROLLARY 1 . D(G^/) = G^(/, /)•

COROLLARY 2. // GN</, /) = 0, then f= QonX'.

LetL0(X) be the set of all u eL(X) with finite support and denote byD0(A^)
the closure of L0(X) in D(N) with respect to the norm \\u\\ = [β(w) + w(x0)

2]1/2

(xQ e X). An infinite network N is said to be of hyperbolic (resp. parabolic) type

if there exists (resp. does not exist) the harmonic Green function ga of N with pole

at α, i.e., gaeD0(N) such that Aga(x)= -eβ(x) on X. Denote by 0G the class of
parabolic infinite networks. Let {Nn} be an exhaustion of N and let g(

a

n) be the
harmonic Green function of Nn with pole at a. Then g^<g^+ί). In case

NeOG, g(

a

n\x)-+ao as w-»oo for each xeX. In case NφOG, gan\x)-*ga(x) for
each xe JΓ and D(g(

a

n) — ga)-*Q as n->oo.
In case NφOG, the Green potential G/(x) and the energy G(/, /) oίfeL(X)

are defined by
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ΣzeX 0zW/(z) = ΣzeX 9j&f(z) ,

ΣxβX ΣzeX 0,(Z)/(X)/(Z)

whenever they are well defined.

In case JV e 0G, we have D(N)=D0(N). In case NφOG, the Royden decom-
position reads

where HD(N) = {ueD(N); Λu = ϋ} and the sum is the vector space direct sum
(cf. [5; Theorem 4.1]).

DEFINITION 2.1. For a distinguished h, a function u in PhD(N) is called a

D-minimum solution if ueD0(N).

By the above observation, we have

THEOREM 2.1. Lei /i be distinguished.
(i) // NφOG, then there exists a unique D-minimum solution uh and

(ii) If N e 0G, then every u ε PhD(N) is a D-minimum solution.

§ 3. Existence theorems

Denote by FS(N) the set of all finite subnetworks of N. As a discrete

analogue of [2; Theorem 1], we have

THEOREM 3.1. In order that heL(X) be distinguished it is necessary and
sufficient that

(3.1) 0 < sup {GN,(h, h); N'eFS(N)} < oo.

PROOF. First we assume that h is distinguished. Take u e PhD(N) and
N' = ( X f , Y'yeFS(N). Putv = u + GN,h. Then Av = Au-h = Q on X' and hence

D(u) = D(v-GN.h) = D(υ) + D(GN.K) - 2 Σxeχ [4φc

Since GN/h e L0(^). We have by Corollary 1 of Lemma 2.1

GN.(h, h) = D(GN,h) < D(u) < oo.

Since fc^O on X, there exists N'eFS(N) such that GN<Λ, /ι)>0 by Corollary 2

of Lemma 2.1. Thus (3.1) holds.

Conversely assume that (3.1) holds. Let {Nn} (Nn = (Xn, 7rt» be an ex-
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haustion of N and x0 eXί and put vn= —GNnh. We may assume that GNί(h9 h)

>0. Then h^O on Xίt For m>n, we have by (2.1) and Lemma 2.1

fa,, O = -

so that D(vn - vj = D(υJ - D(υn\ Put un = t?, - ι;M(x0) Then 4 wπ = ft on Xn and
{wj is a Cauchy sequence in the Hubert space D(N) with the norm \\u\\. Hence
there exists UeD(N) such that \\un — w||->0 as n-»oo. Then {wπ(x)} converges to
w(X) for each x e Z by [5; Lemma 1.1], and hence Aΰ = h on X. Namely h is
distinguished.

By applying this theorem, we have

PROPOSITION 3.1. Let NeOG. Then any heL+(X) is not distinguished.

In case NφOG, denote by E(G) the set of all/eL+(X) such that G(/, /)< oo.

Then we have

PROPOSITION 3.2. Let NφOG and let heL+(X). Then h is distinguished

if and only if h^O and heE(G).

COROLLARY 1. Let NφOG and h± and h2 be elements of E(G) such that

hί^h2 Then h = hί — h2 is distinguished.

Denote by OQD the class of all infinite networks N for which {u e />C/V); Δu = — 1}
= 0. We proved in [7; Theorem 3.1] that NφOQD if and only if leE(G).
Thus we can easily prove

COROLLARY 2. Let NφOQD. If h is nonzero and bounded on X, then h is

distinguished.

As a discrete analogue of [2; Theorem 2], we have

THEOREM 3.2. In order that heL(X) be distinguished it is necessary and

sufficient that

(3.2) 0 < sup {[Σ*e* h(x)f(*WID(f) /e L0(X), f * 0} < oo .

PROOF. Assume that u e PhD(N). For any /e L0(X), we have

so that

[Σ«**(*)/(*)]2 = l(",/)l2 < D(ύ)D(f).

Since /i^O, there exists feL0(X) such that Σ*β* *(*)/(*) 5* O Thus the SUP"
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remum in (3.2) is positive and dominated by D(u).
Conversely assume that (3.2) holds. Let NΈFS(N) and put f=G^h.

Then fe L0(X) and

Thus (3.2) implies (3.1).

Now we shall give necessary conditions for h to be distinguished. A subset

B of X is said to be wide at the ideal boundary of N if there exists a sequence

{xn} of nodes in B such that xnφX(xm)(i.e.9 K(xn, y)K(xm, j) = 0 for all ye Y)

if n 7^ m and

(3.3) Km sup^ n2[ΣS!=ι Σ,ey !*(**, y)^)'^'1 = oo.

We have

THEOREM 3.3. // there exists a positive number ε>0 such that {xeXi
h(x)>ε} is wide at the ideal boundary of N, then PhD(N) = 0.

PROOF. Let B = {x e X\ h(x)>ε} and choose a sequence {xn} in B such that

xnφ X(xm) if n + m and (3.3) holds. Put/n=Σ2=ι ε^. Then /„ e L0(X),

Σ*ex fcφΛOO = Σϊ-i h(xk) > nε,

D(fn) = Σ2=ι D(εXk) = ΣZ=ι Σy6y

It follows that

= oo.

Hence PΛD(N) = 0 by Theorem 3.2.

LEMMA 3.1. Let NeOG and ueD(N). If Σ*eχ MW(X)|<OO,

PROOF. Since NeOG, there exists a sequence {/„} in L0(^) such that 0<
fn<\ on X and ||/n-l||->0 as n->oo (cf. [4; Theorem 3.1]). Then (w,/M)-»
(M, 1) = 0 as n->oo. We may assume that Au^O. For any ε>0, we can find a

finite subset X' of X such that Σ*ex-x' Mw(x)|<ε. Since {/„} converges point-
wise to 1, there exists n0 such that \fn(x)-l\<ε/c on X1 for all n>n0 with c =

I We have

„(*)( + 2

2ε < 3ε
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for all n>n0. Thus we have Σxex Δu(x) = Q.

THEOREM 3.4. Let NeOG and h be distinguished. If ΣxeX \h(x)\<ao,

PROOF. There exists ueD(N) such that Au — h on X. Our assertion is an

immediate consequence of the above lemma.

§ 4. Relations with a flow problem

Let us consider the following flow problem on an infinite network N =
{X,Y,K,r}:

(FPh) Given h e L(X\ find w e L(Y) such that

Σyeγ K(x, 3θw(>0 = -h(x) on X, H(w) = Σyeγ rO>Mj02 < oo.

This problem was studied by H. Flanders [1] in the case where h e L0(X). In

[1], h is called a current source.

We have

THEOREM 4.1. // h is distinguished, then problem (FPh) has a solution.

PROOF. Let uePhD(N) and define weL(Y) by w(y) = r(y)-1 ΣxeXK(x,

y)u(x). Then we have H(w) = D(u) and

Σyey K(x, y)w(y) = - Au(x) = - h(x).

Thus w is a solution of problem (FPh).

In order to study the converse of this theorem, we recall the notion of paths

defined in [3]. For a, xe X, a path P from a to x is the triple (CX(P), CΎ(P\ p)

of a finite ordered set CX(P) = {x0, x l9..., xn} of nodes, a finite ordered set Cy(P) =

{y\ι y29 ~> yn} °f arcs and a function p on Y called the path index of P such that

x0 = a, xn = x, Xi φ xk(i ± fe), e(yi) = [X._ί9 x.} ,

- Xίx,.!, y,) and p(y) = 0 if

THEOREM 4.2. // /z^O αnJ problem (FPh) has a solution, then h is
distinguished.

PROOF. Denote by Fh(Ύ) the set of all solutions of problem (FPh) and
consider the following extremum problem: Minimize H(w) subject to w e Fh(Y).
Let α be the value of this problem and let {wj be a sequence in Fh(Y) such
that //(wπ)-»α as n-»oo. Since (wπ + ww)/2eFΛ(Y), we have
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B + wJ/2) < H((wπ + WJ/2) + H((wB - wm)/2) =

so that H(wn — wm)->0 as n, ra->oo. By the relation

we see that {wπ( v)} is a Cauchy sequence for each y e 7. Let w(y) be the limit of

{wπ(j)} Then it is easily seen that weFΛ(7) and /ί(w) = α. Let w'eL(7) be a

finite cycle, i.e., the support of w' is a finite set and Σy<=γK(x> y)w'(y) = Q on X
For any real number f, we have iv + ίw' 6^(7), so that H(w)<H(w + ίw'). It

follows that

(4.1) Σy

Let α, x e X and define ΰ e L(X) by

= 0 and M(X) = Σyeγ Ky)p(y)w(^) (x ^ α) ,

where p(j ) is the path index of a path P from a to x. By (4.1), we see that ΰ is

independent of the choice of P and uniquely determined by iv. We shall prove

that

(4.2) ΣxeχK(x9y)ΰ(x) = r(y^(y) on Y.

Let y E 7 and e(y) = {x l 9 x2}. Let P be a path from α to x^ In case x2 e Cλ(P),

we have p(j;)= -K(x2, y) = K(xi9 y) and w(xi) = u(x2) + r(3/)X};)w();), so that

In case x2 φ CX(P), let P' be the path from a to x2 generated by the path P and the

arc y and let p' be the path index of P' '. Then p'(y)=—K(xl9 y) = K(x2, y)

and ΰ(x2) = ΰ(xί) + r(y)pf(y)w(y)9 so that (4.2) holds. It follows that D(w) =

H(w)<oo and Aΰ(x) = h(x) on X. Namely h is distinguished.

As an application of this result, we have

THEOREM 4.3. Let h eL0(X), ft^O αnd Σχeχ^W = 0. TΛen ft is dis-

PROOF. Let Λl be the support of /?, i.e., A = {xe^; ft(x)^O) and let bφA.

Define wfe e 1(7) by

where pλ denotes the path index of a path from b to x (x ̂  fo). Since the support

of px and the set A are finite sets, we have H(wb)< oo. Since Σyeγ ̂ (z» y)jpjc(}
;) =

εx(z) (z^h), Σyey^(^? y)Px(y)= -1 and Σχeχ^W = 0, we see that w6 is a solu-
tion of problem (FPft). Thus ft is distinguished by Theorem 4.2.
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§ 5. Representation of D-minimum solutions

In order to represent the D-minimum solution uh for a distinguished h as the
limit of [GNnh}> we first study the discrete analogue of harmonizable functions.

For/eL(X) and N' = (X', Y'yεFS(N), let h»f'=f+GN.(Af). This is the
unique function such that Ahγ(x) = 0 on X' and hψ(x)=f(x) on X-X'.

We say that /e L(X) is harmonizable if {Λ/n} is convergent for every ex-
haustion {Nn} of N.

We have

LEMMA 5.1. IfNφOG, then every feD0(N) is harmonizable and Λ5Kx)->0
as n-^ oo for every exhaustion {Nn} of N.

PROOF. Let Nn = (Xn, 7M> and put /B = A?». Since fn=f+GNn(Af)9fne
DQ(N). By an argument similar to the last half of the proof of Theorem 3.1,
we see that D(fn—fm)->0 as n, m-»oo. It follows from [5; Theorem 3.3] that
{/„} converges pointwise to a function veD0(N). Since Afn = 0 on Xn9 we have
Aυ = 0 on X. Thus, [5; Lemma 1.3] implies 0 = 0.

The present proof of this lemma is due to Professor F-Y. Maeda of Hiro-
shima University.

COROLLARY. If NφOG, then every feD(N) is harmonizable.

PROOF. Let feD(N). There exist ueHD(N) and veD0(N) such that
For every exhaustion {Nn} of AT, we have by Lemma 5.1

ΛJ!"(jc) = ΛJf-(x) + ΛJf-(x) = «(x) + Λ? (x)

as n->oo.

THEOREM 5.1. L^ί NφOG and h be distinguished. Then the unique D-
minimum solution uh is given by uh— — lim^oo GNnh, where {Nn} is an exhaustion
ofN.

PROOF. Since h^ = uh + GNnh and uheD0(N), our assertion follows from
Lemma 5.1.

THEOREM 5.2. Let NεOG and h be distinguished. For each uεPhD(N)
and an exhaustion {Nn} of N, there is a sequence {cn} of real numbers such that

PROOF. Put un = GNnh — GNnh(x0). Then there exists UeD(N) such that
"""II^Ό as w->oo (cf. the proof of Theorem 3.1). Let uEPhD(N). Since
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N eOG, we have u= — ΰ + c with a real constant c. Let us put cn = GNnh(xo) + c.
Since {un} converges pointwise to w, we have u(x)= — limπ_0 0( — GNnh(x) + cn).

In case NφOG, we say that a function feL(X) is G-absolute if G|/|(α) =

Σxex^αWI/W^00 at one anc* hence, by Harnack's principle (cf. [6; Lemma
1.3]), at al ia eX.

We have

THEOREM 5.3. Let NφOG. If h is distinguished and G-absolute, then
uh=-Gh.

PROOF. Since h is G-absolute, GNn\h\(x)<G\h\(x)«x> and uh(x) =
— lim^oo GNnh(x)= —Gh(x) by Theorem 5.1.

As a corollary, we have the following Riesz-type decomposition:

COROLLARY 1. Let NφOG and uεD(N). If Δu is G-absolute, then u is
decomposed in the form: u = πu — Gh, where h = Au and πu is the harmonic part
of u in the Royden decomposition.

PROOF. We may assume that h = Δu^=ΰ. Then h is distinguished. Let
v = u — πu. Then v is the D-minimum solution for h. Since h is G-absolute, we
have v= — Gh by Theorem 5.3.

Since any heE(G) is G-absolute, we have by Proposition 3.2

COROLLARY 2. Let NφOG and heL+(X). If h is distinguished, then
uh=-Gh.

Denote by OQP the class of all infinite networks N for which {u e L+(X)
Au— — 1} = 0. We proved in [7; Theorem 3.1] that NφOQP if and only if 1 is
G-absolute. Thus if NφOQP, then any bounded function heL(X) is G-absolute.
In order to obtain a similar result in the case where h is not bounded, we study the
growth of a distinguished function.

LEMMA 5.2. Let NφOG and let h be distinguished and heD(N). For any
ε>0, putAε = {zεX', |Λ(z)|>β} andBε = {zεX; |/ι(z)|<ε}. Then

(5.1) Σ .̂ί

(5.2) Σ Λ Λ

for some and hence for all xeX.

PROOF. Let φc) = min[max(/ί(x), — ε), ε]. Then v is bounded and D(ι/)<
D(/ι)<oo. Note that v(x)h(x) is equal to ε|/ι(x)| if xeAε and to h(x)2 if xεBε.
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Let {Nn} be an exhaustion of N and let g^ be the harmonic Green function of

Nn with pole at x. Since g(

x

n) and gx are bounded, we see that g(^v and gxv are
bounded and belong to D(N). Let uh be the D-minimum solution for h. Then

we have

(5.3) ΣzeX g™(zWz)h(z) = Σze* fl^X*) [̂ (Z)] = ~(Λ "ft) -

There exists a constant c>0 independent of n such that D(g(

x^υ)<c[D(g(

x

}) +

D(v)~]. Since Dfoί0 — flrJ-^O as n->oo, {ΰG/i"^)} is bounded. By using the fact
that {gx

n)v} converges pointwise to gxv and uheD0(N), we have

lim^oo (g(

x

n}v, uh) = (gxv9 uh) .

Recall that vh>Q on X and {gx

n)} converges increasingly to gx. We have by
(5.3)

Σzex9x(z)v(z)h(z) = - (gxv, uh).

From the relation

our assertion follows.

THEOREM 5.4. LetNφOQP and h be distinguished. If heD(N), then h

is G-absolute, so that uh= —Gh.

PROOF. Since NφOQP, we see by [4; Theorem 3.2] that NφOG. Let

Aε and Be be the same as in Lemma 5.2. We have

It follows from (5.1) that h is G-absolute.

The above proof shows that we can slightly sharpen this result as follows:

THEOREM 5.5. Let NφOG and h be distinguished. If heD(N) and if

there exists ε>0 such that ΣzeBB9x(z)<c°9 then h is G-absolute.

Theorems 5.4 and 5.5 are discrete analogues of [2; Theorem 7].
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