Weak boundary components in R^{N}

Dedicated to Professor M. Ohtsuka for his 60th birthday

Hiromichi Yamamoto

(Received December 23, 1982)

Introduction

Let D be a bounded plane domain and γ be a component of the boundary of D consisting of a single point. It is called by Sario [7] weak if its image under any conformal mapping of D consists of a single point. Jurchescu [3] gave a characterization of the weakness by means of extremal length.

In the N-dimensional euclidean space $R^{N}(N \geqq 3)$, Sario [8] introduced the notion of the capacity c_{γ} of a subboundary γ of a domain in R^{N} and posed the following question: Is a component γ of a compact set E in R^{N} a point if and only if $c_{\gamma}=0$ for the domain $R^{N}-E([8, \mathrm{p} .110])$? A boundary component γ is called weak if $c_{\gamma}=0$.

In the present paper we shall be concerned with this question. Let D be a domain in R^{N} and E be a compact set such that $\gamma=\partial E$ is a subboundary of D. We shall give an example (Example 1) in which γ is a point but $c_{\gamma} \neq 0$. Moreover, in case γ is an isolated subboundary, we shall show (Theorem 2) that $c_{\gamma}=0$ if and only if the Newtonian capacity $C_{2}(E)=0$. Since there exists a continuum E with $C_{2}(E)=0$ (cf. [1]), it follows that even for a continuum $E, \gamma=\partial E$ can be weak.

In §4, we shall give a characterization of the weakness by means of the extremal length of order 2. Let B be a ball in D and $\hat{\Gamma}$ denote the family of curves in the Kerékjártó-Stoïlow compactification each of which connects γ and B. We shall show (Theorem 4) that $c_{\gamma}=0$ if and only if the extremal length $\lambda_{2}(\hat{\Gamma})=\infty$. In §5, we shall derive the modular criterion of the weakness which is well known for Riemann surfaces (cf. [9]).

§ 1. Preliminaries

Let $R^{N}(N \geqq 3)$ be the N-dimensional euclidean space. We shall denote by $x=\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ a point in R^{N}, and set $|x|=\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{N}^{2}\right)^{1 / 2}$. For a set E in R^{N}, we denote by ∂E and \bar{E} the boundary and the closure of E with respect to the N-dimensional Möbius space $R^{N} \cup\{\infty\}$, respectively. Let $B(r, x)$ denote the open N-ball of radius r and centered at x. The area of $\partial B(1, x)$ will be written as ω_{N}. For a function u defined in a domain G, we let ∇u denote the gradient of
u in case it exists. We denote by $H(G)$ the class of all harmonic functions u on G, and by $H D^{2}(G)$ the class of all u in $H(G)$ such that its Dirichlet integral $\int_{G}|\nabla u|^{2} d x$ is finite.

Let D be a domain in R^{N}. Denote by \hat{D} the Kerékjártó-Stoïlow compactification of D. Let $\hat{\gamma}$ be a closed subset of the ideal boundary $\hat{D}-D$ of D and let $\hat{\beta}=(\hat{D}-D)-\hat{\gamma}$. Let $\left\{D_{n}\right\}$ be an exhaustion of D, that is, each D_{n} is a bounded subdomain of D, each component of $D-D_{n}$ is noncompact in D, each ∂D_{n} consists of a finite number of C^{1}-surfaces, $\bar{D}_{n} \subset D_{n+1}(n=1,2, \ldots)$ and $\cup_{n=1}^{\infty} D_{n}=D$. Let A_{n} be the union of the components of $\hat{D}-D_{n}$ each of which meets $\hat{\gamma}$, and $B_{n i}$ ($i=1, \ldots, i(n)$) be the rest of the components of $\hat{D}-D_{n}$. Set $\gamma=\cap_{n=1}^{\infty} \bar{U}_{n}$, where $U_{n}=A_{n} \cap D$. We shall call γ a subboundary of D. If $\hat{\gamma}$ is an ideal boundary component, then γ is a boundary component of D. When there is no ambiguity, we shall identify γ with $\hat{\gamma}$. A subboundary γ is said to be isolated if there exists an A_{n} with $A_{n} \cap \hat{\beta}=\varnothing$. We set $\gamma_{n}=\partial D_{n} \cap \partial A_{n}$ and $\beta_{n i}=\partial D_{n} \cap \partial B_{n i}(i=1, \ldots, i(n))$.

Take a point x^{0} in D and a ball $B=B\left(r, x^{0}\right)$ with $\bar{B} \subset D_{n}$ for all n. Denote by P_{n} the class of functions p on \bar{D}_{n} having the following properties:

$$
\begin{equation*}
p \in H\left(D_{n}-\left\{x^{0}\right\}\right) \cap C^{1}\left(\bar{D}_{n}-\left\{x^{0}\right\}\right) ; \tag{1.1}
\end{equation*}
$$

(1.2) $p(x)=-\left|x-x^{0}\right|^{2-N} /\left(\omega_{N}(N-2)\right)+h(x)$ in B, where $h \in H(B)$ and $h\left(x^{0}\right)=0$;
(1.3) $\int_{\beta_{n i}} \frac{\partial p}{\partial v} d S=0$ for $i=1, \ldots, i(n)$ and $\int_{\gamma_{n}} \frac{\partial p}{\partial v} d S=1$, where $\frac{\partial}{\partial v}$ is the outer normal derivative on D_{n} and $d S$ is the surface element.

We know (cf. [8]) that there exists a unique function $p_{n y}$ in P_{n} having the following properties:

$$
\begin{array}{ll}
p_{n \gamma}=k_{n \gamma} & \text { on } \quad \gamma_{n} \\
p_{n \gamma}=k_{n i} & \text { on } \quad \beta_{n i}(i=1, \ldots, i(n)) \tag{1.5}
\end{array}
$$

where $k_{n y}$ and $k_{n i}$ are constants. In reference to the pole x^{0}, we also use the notation $p_{n \gamma}=p_{n \gamma}\left(\cdot, x^{0}\right)$ and $k_{n y}=k_{n \gamma}\left(x^{0}\right)$.

The following lemmas are known:
Lemma 1 ([8, the proof of Theorem 25]).

$$
\int_{\partial D_{n}} p_{n \gamma} \frac{\partial p_{n \gamma}}{\partial v} d S=k_{n \gamma}
$$

and

$$
\int_{D_{n}}\left|\nabla\left(p-p_{n \gamma}\right)\right|^{2} d x=\int_{\partial D_{n}} p \frac{\partial p}{\partial v} d S-\int_{\partial D_{n}} p_{n \gamma} \frac{\partial p_{n \gamma}}{\partial v} d S
$$

for every $p \in P_{n}$.

Lemma 2 (cf. [4, p. 20] and [9, Theorem III. 2E]). The sequerice $\left\{p_{n \gamma}\right\}$ is uniformly bounded on every compact subset of $D-\left\{x^{0}\right\}$.

By Lemma 2 we see that the sequence $\left\{p_{n \gamma}\right\}$ contains a subsequence, denoted by $\left\{p_{n \gamma}\right\}$ again, converging to a harmonic function p_{γ}, which is called a capacity function of γ, uniformly on every compact subset of $D-\left\{x^{0}\right\}$.

Since $k_{n \gamma}$ increases with n by Lemma 1, the limit $k_{\gamma}=\lim _{n \rightarrow \infty} k_{n \gamma}$ exists. The capacity c_{γ} of γ is defined by $c_{\gamma}=k_{\gamma}^{1 /(2-N)}$. A subboundary γ is called weak if $c_{\gamma}=0$, that is, if $k_{\gamma}=\infty$. We note that the capacity c_{γ} does not depend on the choice of exhaustion.

Take any $x^{1} \in D$ with $x^{0} \neq x^{1}$. By using Green's formula we have the following symmetry property (cf. [9, Theorem V. 2A])

$$
k_{n \gamma}\left(x^{1}\right)-p_{n \gamma}\left(x^{0}, x^{1}\right)=k_{n \gamma}\left(x^{0}\right)-p_{n \gamma}\left(x^{1}, x^{0}\right) .
$$

This implies that the weakness of γ does not depend on the choice of the pole x^{0} in D.

§ 2. Weak boundary components

Denote by $P=P(D)$ the class of functions p on D having the following properties:

$$
\begin{equation*}
p \in H\left(D-\left\{x^{0}\right\}\right) \cap H D^{2}(D-\bar{B}) \tag{2.1}
\end{equation*}
$$

(2.2) $p(x)=-\left|x-x^{0}\right|^{2-N} /\left(\omega_{N}(N-2)\right)+h(x)$ in B, where $h \in H(B)$ and $h\left(x^{0}\right)=0$;
(2.3) $\int_{\tau} \frac{\partial p}{\partial v} d S=0$ for every compact C^{1}-surface τ in $D-\left\{x^{0}\right\}$ which divides R^{N} into a bounded domain and an unbounded domain, and which does not separate γ from $\left\{x^{0}\right\}$.

Theorem 1 (cf. [9, Theorem III. 3B]). γ is weak if and only if $P=\varnothing$.
Proof. Suppose $P \neq \emptyset$. Since the restriction of $p \in P$ to D_{n} belongs to P_{n}, by Lemma 1 we have

$$
k_{n \gamma} \leqq \int_{\partial D_{n}} p \frac{\partial p}{\partial v} d S
$$

By Green's formula and (2.1) we obtain

$$
\begin{aligned}
\left|\int_{\partial D_{n}} p \frac{\partial p}{\partial v} d S\right| & \leqq \int_{D_{n}-B}|\nabla p|^{2} d x+\left|\int_{\partial B} p \frac{\partial p}{\partial v} d S\right| \\
& <\int_{D-B}|\nabla p|^{2} d x+\left|\int_{\partial B} p \frac{\partial p}{\partial v} d S\right|<\infty
\end{aligned}
$$

This implies $k_{\gamma}<\infty$.
Next we suppose $k_{\gamma}<\infty$. We shall show that the capacity function p_{γ} belongs to P. Obviously, $p_{\gamma} \in H\left(D-\left\{x^{0}\right\}\right)$ and it satisfies (2.2). It is easy to verify that p_{γ} has property (2.3). Therefore it is enough to show that $p_{\gamma} \in$ $H D^{2}(D-\bar{B})$. Since $\int_{D_{m}-\bar{D}_{n}}\left|\nabla p_{m \gamma}\right|^{2} d x>0$ for $m>n$, Green's formula gives

$$
\int_{\partial D_{n}} p_{m \gamma} \frac{\partial p_{m \gamma}}{\partial v} d S \leqq \int_{\partial D_{m}} p_{m \gamma} \frac{\partial p_{m \gamma}}{\partial v} d S .
$$

By Lemma 1 we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int_{\partial D_{n}} p_{\gamma} \frac{\partial p_{\gamma}}{\partial v} d S & =\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} \int_{\partial D_{n}} p_{m \gamma} \frac{\partial p_{m \gamma}}{\partial v} d S \\
& \leqq \lim _{m \rightarrow \infty} \int_{\partial D_{m}} p_{m \gamma} \frac{\partial p_{m \gamma}}{\partial v} d S \\
& =\lim _{m \rightarrow \infty} k_{m \gamma}=k_{\gamma} .
\end{aligned}
$$

Hence, by using Green's formula we have

$$
\begin{aligned}
\int_{D-B}\left|\nabla p_{\gamma}\right|^{2} d x & =\lim _{n \rightarrow \infty} \int_{D_{n}-B}\left|\nabla p_{\gamma}\right|^{2} d x \\
& \leqq \lim _{n \rightarrow \infty} \int_{\partial D_{n}} p_{\gamma} \frac{\partial p_{\gamma}}{\partial v} d S+\left|\int_{\partial B} p_{\gamma} \frac{\partial p_{\gamma}}{\partial v} d S\right| \\
& \leqq k_{\gamma}+\left|\int_{\partial B} p_{\gamma} \frac{\partial p_{\gamma}}{\partial v} d S\right|<\infty
\end{aligned}
$$

Therefore $p_{\gamma} \in H D^{2}(D-\bar{B})$. The proof is completed.
Corollary 1. If γ contains the point at infinity, then γ is not weak.
Proof. Let $p(x)=-\left|x-x^{0}\right|^{2-N} /\left(\omega_{N}(N-2)\right)$. Then $p \in P$, so that $k_{\gamma}<\infty$.
Example 1. We shall give an example of D which has a boundary component γ consisting of a single point and satisfying $k_{\gamma}<\infty$. We introduce the polar coordinates $\left(r, \theta_{1}, \ldots, \theta_{N-1}\right)$ in R^{N}, that is, $r=|x|, x_{1}=r \cos \theta_{1}, \ldots, x_{N-1}=$ $r \sin \theta_{1} \cdots \sin \theta_{N-2} \cos \theta_{N-1}, x_{N}=r \sin \theta_{1} \cdots \sin \theta_{N-2} \sin \theta_{N-1}$, for $x=\left(x_{1}, \ldots, x_{N}\right)$. Consider sequences $\left\{a_{n}\right\},\left\{b_{n}\right\}$ and $\left\{\delta_{n}\right\}$ defined by

$$
a_{n}=\left(n+\sum_{k=2}^{n} k^{-2}\right)^{1 /(2-N)}, \quad b_{n}=\left(n+\sum_{k=1}^{n} k^{-2}\right)^{1 /(2-N)}
$$

and

$$
\int_{\left\{x ;|x|=1,0 \leqq \theta_{1}<\delta_{n}\right\}} d S=n^{-2}
$$

Set

$$
E_{n}=\left\{x ; b_{n} \leqq|x| \leqq a_{n}\right\}-\left\{x ; 0 \leqq \theta_{1}<\delta_{n}\right\}
$$

and

$$
D=R^{N}-\cup_{n=1}^{\infty} E_{n}-\{0\} .
$$

Let $\gamma=\{0\}$. Then γ is a boundary component of D. It is easily verified that $|x|^{2-N}$ has a finite Dirichlet integral on D. Let $x^{0} \in D$. Then the function

$$
\left(-\left|x-x^{0}\right|^{2-N}+|x|^{2-N}-\left|x^{0}\right|^{2-N}\right) /\left(\omega_{N}(N-2)\right)
$$

belongs to P, so that by Theorem 1 we have $k_{\gamma}<\infty$.

§3. An isolated subboundary and Newtonian capacity

Let E be a compact set in R^{N}. The Newtonian capacity of E is defined as

$$
C_{2}(E)=\inf \int|\nabla f|^{2} d x
$$

where the infimum is taken over all functions $f \in C^{\infty}$ that have compact support and are identically equal to 1 on E. Let G be a bounded domain containing E. We say that E is removable for $H D^{2}$ if every function in $H D^{2}(G-E)$ can be extended to a function in $H D^{2}(G)$. It is well known that E is removable for $H D^{2}$ if and only if $C_{2}(E)=0$ (see, e.g., [1, §VII, Theorem 1]).

Theorem 2 (cf. [9, Theorem X. 3A]). Let E be a compact set such that $R^{N}-E$ is a domain. Let D be a subdomain of $R^{N}-E$ and $\gamma=\partial E$ be an isolated subboundary of D. Then $C_{2}(E)=0$ if and only if γ is weak.

Proof. Suppose $C_{2}(E)=0$. By assumption we can take a bounded domain G such that $G \supset E, D \supset G-E$ and ∂G separates γ from $\beta \cup\left\{x^{0}\right\}$, where $\beta=\partial D-\gamma$. We may assume that $G \supset \gamma_{n}$ for all n. Since every u in $H^{2}(G-E)$ can be extended to a function \tilde{u} in $H D^{2}(G)$, we have

$$
\int_{\gamma_{n}} \frac{\partial u}{\partial v} d S=\int_{\gamma_{n}} \frac{\partial \tilde{u}}{\partial v} d S=0
$$

for all n. This implies $P(D)=\varnothing$, so that γ is weak by Theorem 1 .
Conversely we suppose $C_{2}(E)>0$. Let μ be the equilibrium mass-distribution on E and consider the potential

$$
U_{2}^{\mu}(x)=\int_{E} \frac{d \mu(y)}{|x-y|^{N-2}} .
$$

It is known that $U_{2}^{\mu} \in H D^{2}\left(R^{N}-E\right)$ and

$$
\int_{\tau} \frac{\partial U_{2}^{\mu}}{\partial v} d S \neq 0
$$

for every compact C^{1}-surface τ in $R^{N}-E$ which separates the point at infinity from E. Therefore we can take a non-zero constant ℓ satisfying

$$
\ell \int_{\gamma_{n}} \frac{\partial U_{2}^{\mu}}{\partial v} d S=1
$$

for all n. Let $x^{0} \in D$. Then the function

$$
-\left|x-x^{0}\right|^{2-N} /\left(\omega_{N}(N-2)\right)+\ell\left(U_{2}^{\mu}(x)-U_{2}^{\mu}\left(x^{0}\right)\right)
$$

belongs to $P(D)$. From Theorem 1 it follows that γ is not weak. Thus our theorem is proved.

Corollary 2. Let E be a compact set such that $R^{N}-E$ is a domain. Suppose $\partial E=\gamma$ is a subboundary of a domain D. If γ is weak, then $C_{2}(E)=0$.

Proof. Let $G=R^{N}-E$. If $C_{2}(E)>0$, then $P(G) \neq \emptyset$ by Theorems 1 and 2. Since the restriction of $p \in P(G)$ to D belongs to $P(D)$, we have $P(D) \neq \emptyset$. It follows that γ is not weak from Theorem 1.

Remark 1. If $N \geqq 3$, then there exists a continuum E with $C_{2}(E)=0$ (see, e.g., [1, §IV, Theorem 1]). Hence there exists a continuum E in $R^{N}(N \geqq 3)$ such that $\gamma=\partial E$ is weak for the domain $R^{N}-E$. Thus Example 1 and Theorem 2 give a negative answer to the problem 11 in [8].

Remark 2. By the inversion with respect to $B(1,0)$, a line segment $E=$ $\left\{x=\left(x_{1}, 0, \ldots, 0\right) ; 0 \leqq x_{1} \leqq 1\right\}$ is mapped to $E_{0}=\left\{x=\left(x_{1}, 0, \ldots, 0\right) ; 1 \leqq x_{1}<\infty\right\} \cup$ $\{\infty\}$. Since $C_{2}(E)=0, \gamma=\partial E$ is weak for the domain $R^{N}-E$. But $\gamma_{0}=\partial E_{0}$ is not weak for the domain $R^{N}-E_{0}$ by Corollary 1. Thus we see that the weakness in $R^{N}(N \geqq 3)$ is not invariant under quasiconformal mappings.

§4. Extremal length criterion

Let D be a domain in R^{N}. By a locally rectifiable chain in D we mean a countable formal sum $c=\sum c_{i}$, where each c_{i} is a locally rectifiable curve in D. If f is a non-negative Borel measurable function defined in D and $c=\Sigma c_{i}$ is a locally rectifiable chain in D , then we set $\int_{c} f d s=\Sigma \int_{c_{i}} f d s$, where $d s$ is the line element. Let Γ be a family of locally rectifiable chains in D. A non-negative Borel measurable function f defined in D is called admissible in association with Γ if $\int_{c} f d s \geqq 1$ for every $c \in \Gamma$. The module $M_{2}(\Gamma)$ of Γ is defined by $\inf _{f} \int_{D} . f^{2} d x$, where the infimum is taken over all admissible functions f in association with Γ, and the extremal length $\lambda_{2}(\Gamma)$ of Γ is defined by $1 / M_{2}(\Gamma)$. In case $\hat{\Gamma}$ is a family of curves in \hat{D} such that the restriction $\left.c\right|_{D}$ is a locally rectifiable chain
in D for each $c \in \hat{\Gamma}$, we denote by $\lambda_{2}(\hat{\Gamma})$ the extremal length of $\left\{\left.c\right|_{D} ; c \in \hat{\Gamma}\right\}$. Hereafter, by a curve we shall mean a locally rectifiable curve. The following properties are well known (see, e.g., [2, Chapter I]):
(4.1) If every $c_{1} \in \Gamma_{1}$ contains a $c_{2} \in \Gamma_{2}$, then $\lambda_{2}\left(\Gamma_{1}\right) \geqq \lambda_{2}\left(\Gamma_{2}\right)$.
(4.2) If $\Gamma \subset \cup_{n} \Gamma_{n}$, then $M_{2}(\Gamma) \leqq \sum_{n} M_{2}\left(\Gamma_{n}\right)$.
(4.3) Let $\left\{G_{n}\right\}$ be mutually disjoint open sets and Γ_{n} be a family of curves in G_{n}. If Γ is a family of curves such that each $c \in \Gamma$ contains at least one $c_{n} \in \Gamma_{n}$ for every n, then $\lambda_{2}(\Gamma) \geqq \sum_{n} \lambda_{2}\left(\Gamma_{n}\right)$.

Let α_{0}, α_{1} be subboundaries of D with $\alpha_{0} \cap \alpha_{1}=\varnothing$. Denote by $\Gamma\left(\alpha_{0}, \alpha_{1} ; D\right)$ (resp. $\hat{\Gamma}\left(\alpha_{0}, \alpha_{1} ; D\right)$) the family of curves in D (resp. \hat{D}) each of which connects α_{0} and α_{1}. (A subboundary of D will be identified with the corresponding closed subsets of $\hat{D}-D$.) Suppose that α_{0} is an isolated subboundary consisting of a finite number of compact C^{1}-surfaces. Let $\left\{D_{n}\right\}$ be an approximation of D towards $\partial D-\alpha_{0}$, that is, each D_{n} is a bounded subdomain of D, each ∂D_{n} consists of α_{0} and a finite number of compact C^{1}-surfaces, $\bar{D}_{n} \subset D_{n+1} \cup \alpha_{0}$ ($n=$ $1,2, \ldots$) and $\cup_{n=1}^{\infty} D_{n}=D$. Let $A_{1 n}$ be the union of the components of $\hat{D}-D_{n}$ each of which meets α_{1}. Set $\alpha_{1 n}=\partial D_{n} \cap \partial A_{1 n}$. The following lemma follows in the same manner as in [10, Lemma 4].

Lemma 3. $\lim _{n \rightarrow \infty} \lambda_{2}\left(\hat{\Gamma}\left(\alpha_{0}, \alpha_{1 n} ; D_{n}\right)\right)=\lambda_{2}\left(\hat{\Gamma}\left(\alpha_{0}, \alpha_{1} ; D\right)\right)$.
Let G be a bounded domain such that ∂G consists of a finite number of compact C^{1}-surfaces α_{0}, α_{1} and $\beta_{j}(j=1, \ldots, k)$. We know (cf. [6]) that there exists the principal function h with respect to α_{0}, α_{1} and G, which is characterized by the following properties:
(1) $h \in H(G) \cap C^{1}(\bar{G})$;
(2) $h=0$ on α_{0} and $h=1$ on α_{1};
(3) $h=$ const. on each β_{j} and $\int_{\beta_{j}} \frac{\partial h}{\partial v} d S=0$ for $j=1, \ldots, k$.

The following property is known ([10, Theorems 5 and 12]):

$$
\begin{equation*}
M_{2}\left(\hat{\Gamma}\left(\alpha_{0}, \alpha_{1} ; G\right)\right)=\int_{G}|\nabla h|^{2} d x \tag{4.4}
\end{equation*}
$$

Let γ be a subboundary of D and $\left\{D_{n}\right\}$ be an exhaustion of D. Consider the capacity function $p_{n y}$ of γ_{n} with pole at $x^{0} \in D$. Let $B_{r}=B\left(r, x^{0}\right)$ with $\bar{B}_{r} \subset D_{n}$ for all n. Set $a_{n, r}^{0}=\max _{x \in \partial B_{r}} p_{n \gamma}(x)$ and $a_{n, r}^{1}=\min _{x \in \partial B_{r}} p_{n \gamma}(x)$.

Lemma 4. There exists an $r_{0}>0$ such that, for every r with $0<r<r_{0}$, the following inequalities hold:

$$
k_{n \gamma}-a_{n, r}^{0} \leqq \lambda_{2}\left(\hat{\Gamma}\left(\partial B_{r}, \gamma_{n} ; D_{n}-\bar{B}_{r}\right)\right) \leqq k_{n \gamma}-a_{n, r}^{1} .
$$

Proof. Let $E_{n, r}^{i}=\left\{x ; p_{n \gamma}(x) \leqq a_{n, r}^{i}\right\}(i=0,1)$. Then, there exists an $r_{0}>0$ such that $D_{n}-E_{n, r}^{i}(i=0,1)$ is a domain for every r with $0<r<r_{0}$. Since $\left(p_{n \gamma}-a_{n, r}^{i}\right) /\left(k_{n \gamma}-a_{n, r}^{i}\right)$ is the principal function with respect to $\partial E_{n, r}^{i}, \gamma_{n}$ and $D_{n}-$ $E_{n, r}^{i}$, by Green's formula and (4.4) we have

$$
\lambda_{2}\left(\hat{\Gamma}\left(\partial E_{n, r}^{i}, \gamma_{n} ; D_{n}-E_{n, r}^{i}\right)\right)=k_{n \gamma}-a_{n, r}^{i} \quad(i=0,1) .
$$

Since

$$
\lambda_{2}\left(\hat{\Gamma}\left(\partial E_{n, r}^{0}, \gamma_{n} ; D_{n}-E_{n, r}^{0}\right)\right) \leqq \lambda_{2}\left(\hat{\Gamma}\left(\partial B_{r}, \gamma_{n} ; D_{n}-\bar{B}_{r}\right)\right) \leqq \lambda_{2}\left(\hat{\Gamma}\left(\partial E_{n, r}^{1}, \gamma_{n} ; D_{n}-E_{n, r}^{1}\right)\right)
$$

by (4.1), we obtain the required inequalities.
Theorem 3 (cf. [9, Theorem IV. 3G]). Let γ be a subboundary of D with $k_{\gamma}<\infty$ and let $B_{r}=B\left(r, x^{0}\right)$ with $\bar{B}_{r} \subset D$. Then

$$
k_{\gamma}=\lim _{r \rightarrow 0}\left\{\lambda_{2}\left(\hat{\Gamma}\left(\partial B_{r}, \gamma ; D-\bar{B}_{r}\right)\right)-r^{2-N} /\left(\omega_{N}(N-2)\right)\right\} .
$$

Proof. By Lemmas 3 and 4, we obtain

$$
k_{\gamma}-\lim _{n \rightarrow \infty} a_{n, r}^{0} \leqq \lambda_{2}\left(\hat{\Gamma}\left(\partial B_{r}, \gamma ; D-\bar{B}_{r}\right)\right) \leqq k_{\gamma}-\lim _{n \rightarrow \infty} a_{n, r}^{1}
$$

The capacity function p_{γ} has the property

$$
p_{\gamma}(x)=-\left|x-x^{0}\right|^{2-N} /\left(\omega_{N}(N-2)\right)+h(x) \quad \text { in } \quad B_{r},
$$

where $h \in H\left(B_{r}\right)$ and $h\left(x^{0}\right)=0$. Since $\left\{p_{n \gamma}\right\}$ converges to p_{γ} uniformly on ∂B_{r}, we have

$$
\lim _{n \rightarrow \infty} a_{n, r}^{0}=-r^{2-N} /\left(\omega_{N}(N-2)\right)+\max _{x \in \partial B_{r}} h(x)
$$

and

$$
\lim _{n \rightarrow \infty} a_{n, r}^{1}=-r^{2-N} /\left(\omega_{N}(N-2)\right)+\min _{x \in \partial B_{r}} h(x)
$$

Therefore we see that

$$
\begin{aligned}
k_{\gamma}-\max _{x \in \partial B_{r}} h(x) & \leqq \lambda_{2}\left(\hat{\Gamma}\left(\partial B_{r}, \gamma ; D-\bar{B}_{r}\right)\right)-r^{2-N} /\left(\omega_{N}(N-2)\right) \\
& \leqq k_{\gamma}-\min _{x \in \partial B_{r}} h(x) .
\end{aligned}
$$

Since $h\left(x^{0}\right)=0$, letting $r \rightarrow 0$ we obtain the theorem.
Theorem 4. Let γ be a subboundary of D. Let G be a subdomain of D such that $\partial G \cap D$ is a compact C^{1}-surface, $D-\bar{G}$ is a domain and $\partial(D-\bar{G})$ contains γ. Then γ is weak if and only if $\lambda_{2}(\hat{\Gamma}(\partial G, \gamma ; D-\bar{G}))=\infty$.

Proof. From Lemmas 2, 3 and 4 it follows that $k_{\gamma}=\infty$ if and only if $\lambda_{2}(\Gamma(\partial B, \gamma ; D-\bar{B}))=\infty$ for some, as well as for any, $x \in D$ and for sufficiently small $r>0$, where $B=B(r, x)$.

Suppose $\lambda_{2}(\hat{\Gamma}(\partial G, \gamma ; D-\bar{G}))=\infty$. Take a ball $B=B(r, x)$ with $\bar{B} \subset G$. By (4.1) we conclude that $\lambda_{2}(\hat{\Gamma}(\partial B, \gamma ; D-\bar{B}))=\infty$, so that $k_{\gamma}=\infty$.

Conversely suppose $k_{\gamma}=\infty$. We can take a finite number of balls $B^{i}=$ $B\left(r, x^{i}\right)(i=1, \ldots, j)$ in D with the following properties:
(1) $x^{i} \in \partial G \cap D(i=1, \ldots, j)$ and $U=\cup_{i=1}^{j} B^{i}$ contains $\partial G \cap D$;
(2) $\partial D \cap \bar{B}^{i}=\varnothing(i=1, \ldots, j)$ and $\Omega=D-\bar{G}-\bar{U}$ is a subdomain of $D-\bar{G}$;
(3) $\lambda_{2}\left(\hat{\Gamma}\left(\partial B^{i}, \gamma ; D-\bar{B}^{i}\right)\right)=\infty(i=1, \ldots, j)$.

Since

$$
\hat{\Gamma}(\partial \Omega \cap \partial U, \gamma ; \Omega) \subset \cup_{i=1}^{j} \hat{\Gamma}\left(\partial B^{i}, \gamma ; D-\bar{B}^{i}\right),
$$

by (4.1) and (4.2) we have

$$
\begin{aligned}
M_{2}(\hat{\Gamma}(\partial G, \gamma ; D-\bar{G})) & \leqq M_{2}(\hat{\Gamma}(\partial \Omega \cap \partial U, \gamma ; \Omega)) \\
& \leqq \sum_{i=1}^{j} M_{2}\left(\Gamma\left(\partial B^{i}, \gamma ; D-\bar{B}^{i}\right)\right)=0 .
\end{aligned}
$$

Thus we see that $\lambda_{2}(\hat{\Gamma}(\partial G, \gamma ; D-\bar{G}))=\infty$. The proof is completed.
Corollary 3. Let γ, γ_{0} be subboundaries of D such that $\gamma \supset \gamma_{0}$. If γ is weak, then so is γ_{0}.

§5. Modular criterion

Let γ be a subboundary of D and $\left\{D_{n}\right\}$ be an exhaustion of D. We note that A_{n} consists of a finite number of mutually disjoint components $A_{n}^{1}, \ldots, A_{n}^{k(n)}$ of $\hat{D}-D_{n}$ each of which meets γ. Set $\Omega_{n}=\left(D_{n+1}-\bar{D}_{n}\right) \cap A_{n}$. Then Ω_{n} consists of a finite number of mutually disjoint domains $\Omega_{n}^{1}, \ldots, \Omega_{n}^{k(n)}$. Set $\alpha_{n}^{i}=\partial \Omega_{n}^{i} \cap$ $\gamma_{n}, \beta_{n}^{i}=\partial \Omega_{n}^{i} \cap \gamma_{n+1}(i=1, \ldots, k(n))$, and define the values $\hat{\mu}_{n \gamma}$ by

$$
\log \hat{\mu}_{n \gamma}=\left\{\sum_{i=1}^{k(n)} M_{2}\left(\hat{\Gamma}\left(\alpha_{n}^{i}, \beta_{n}^{i} ; \Omega_{n}^{i}\right)\right)\right\}^{-1} .
$$

Theorem 5 (cf. [9, Theorem XI. 1A]). A subboundary γ of D is weak if and only if there exists an exhaustion $\left\{D_{n}\right\}$ of D for which $\prod_{n=1}^{\infty} \hat{\mu}_{n \gamma}=\infty$.

Proof. Suppose such an exhaustion $\left\{D_{n}\right\}$ exists. We may assume that $\bar{B}_{r} \subset D_{1}$. Set $\hat{\Gamma}_{n}=\cup_{i=1}^{k(n)} \Gamma\left(\alpha_{n}^{i}, \beta_{n}^{i} ; \Omega_{n}^{i}\right)$. Since $\Omega_{n}^{1}, \ldots, \Omega_{n}^{k(n)}$ are mutually disjoint, we see easily that $M_{2}\left(\hat{\Gamma}_{n}\right)=\sum_{i=1}^{k(n)} M_{2}\left(\hat{\Gamma}\left(\alpha_{n}^{i}, \beta_{n}^{i} ; \Omega_{n}^{i}\right)\right) . \quad B y$ (4.1) and (4.3) we have

$$
\lambda_{2}\left(\hat{\Gamma}\left(\partial B_{r}, \gamma_{n} ; D_{n}-\bar{B}_{r}\right)\right) \geqq \sum_{m=1}^{n-1} \lambda_{2}\left(\hat{\Gamma}_{m}\right)=\log \left(\prod_{m=1}^{n-1} \hat{\mu}_{m \gamma}\right) .
$$

By assumption and Lemma 3, letting $n \rightarrow \infty$ we see that $\lambda_{2}\left(\hat{\Gamma}\left(\partial B_{r}, \gamma ; D-\bar{B}_{r}\right)\right)=\infty$. From Theorem 4 it follows that γ is weak.

Conversely suppose that γ is weak. Let $\left\{D_{n}\right\}$ be any exhaustion of D. Set $\tilde{\gamma}_{n}^{i}=A_{n}^{i} \cap \gamma(i=1, \ldots, k(n))$. We note that each $\tilde{\gamma}_{n}^{i}$ is a subboundary of $D, \gamma=$
$\cup_{i=1}^{k(n)} \tilde{\gamma}_{n}^{i}$ and $\tilde{\gamma}_{n}^{i} \cap \tilde{\gamma}_{n}^{j}=\varnothing$ for $i \neq j$. Set $\widetilde{\Omega}_{n}^{i}=\left(A_{n}^{i}-\gamma_{n}\right) \cap D, \tilde{\alpha}_{n}^{i}=\partial \widetilde{\Omega}_{n}^{i} \cap \gamma_{n}$. Since $\hat{\gamma}_{n}^{i}$ is weak by Corollary 3 , we have $\lambda_{2}\left(\hat{\Gamma}\left(\tilde{\alpha}_{n}^{i}, \tilde{\gamma}_{n}^{i} ; \widetilde{\Omega}_{n}^{i}\right)\right)=\infty$ by Theorem 4. Set $\widetilde{\Omega}_{n, m}^{i}=\widetilde{\Omega}_{n}^{i} \cap D_{m}, \tilde{\alpha}_{n, m}^{i}=\partial \widetilde{\Omega}_{n, m}^{i} \cap \gamma_{m}$ for $m>n$. Then $\left\{\widetilde{\Omega}_{n, m}^{i}\right\}_{m=n+1}^{\infty}$ is an approximation of the domain $\tilde{\Omega}_{n}^{i}$ towards $\partial \tilde{\Omega}_{n}^{i}-\tilde{\alpha}_{n}^{i}$. By Lemma 3 we see that

$$
\lim _{m \rightarrow \infty} \lambda_{2}\left(\hat{\Gamma}\left(\tilde{\alpha}_{n}^{i}, \tilde{\alpha}_{n, m}^{i} ; \tilde{\Omega}_{n, m}^{i}\right)\right)=\lambda_{2}\left(\hat{\Gamma}\left(\tilde{\alpha}_{n}^{i}, \tilde{\gamma}_{n}^{i} ; \tilde{\Omega}_{n}^{i}\right)\right)=\infty .
$$

Hence, for $n=1$ we can take $m(1)$ with $m(1)>1$ such that $\lambda_{2}\left(\hat{\Gamma}\left(\tilde{\alpha}_{1}^{i}, \tilde{\alpha}_{1, m(1)}^{i}\right.\right.$; $\left.\left.\widetilde{\Omega}_{1, m(1)}^{i}\right)\right) \geqq k(1)$ for all $i=1, \ldots, k(1)$. Next, for $n=m(1)$, take $m(2)$ with $m(2)>$ $m(1)$ such that $\lambda_{2}\left(\Gamma\left(\tilde{\alpha}_{m(1)}^{i}, \tilde{\alpha}_{m(1), m(2)}^{i} ; \widetilde{\Omega}_{m(1), m(2)}^{i}\right)\right) \geqq k(m(1))$ for all $i=1, \ldots, k(m(1))$. We continue this process and obtain a subsequence $\left\{D_{m(j)}\right\}_{j=1}^{\infty}$ of $\left\{D_{n}\right\}_{n=1}^{\infty}$. Since $\log \hat{\mu}_{m(j) y} \geqq 1(j=1,2, \ldots)$, we obtain an exhaustion $\left\{D_{m(j)}\right\}$ with $\prod_{j=1}^{\infty}$ $\hat{\mu}_{m(j) \gamma}=\infty$. The proof is completed.

The modulus $\mu_{n \gamma}$ of Ω_{n} is defined by

$$
\log \mu_{n \gamma}=\left\{\sum_{i=1}^{k(n)} M_{2}\left(\Gamma\left(\alpha_{n}^{i}, \partial \Omega_{n}^{i}-\alpha_{n}^{i} ; \Omega_{n}^{i}\right)\right)\right\}^{-1}
$$

(cf. [5]). Since $\log \mu_{n \gamma} \leqq \log \hat{\mu}_{n \gamma}$ by (4.1), we have
Corollary 4 ([5, Theorem 1]). If there exists an exhaustion $\left\{D_{n}\right\}$ of D for which $\prod_{n=1}^{\infty} \mu_{n \gamma}=\infty$, then γ is weak.

A bounded domain R is called a ring domain if its complement consists of two components.

Theorem 6 (cf. [9, Theorem XI.1C]). Let γ be a subboundary of D consisting of a single compact continuum. In order that γ be weak, it is necessary and sufficient that, for any positive number ℓ, there exist a finite number of ring domains $R_{1}, R_{2}, \ldots, R_{m}$ in $D-\bar{B}_{r}$ satisfying the following conditions:
(1) R_{1}, \ldots, R_{m} are mutually disjoint;
(2) Each R_{i} separates γ from $B_{r}(i=1,2, \ldots, m)$ and separates R_{i-1} from $R_{i+1}(i=2,3, \ldots, m-1)$;
(3) $\sum_{i=1}^{m} \lambda_{2}\left(\Gamma_{i}\right) \geqq \ell$, where Γ_{i} is the family of all curves in R_{i} each of which connects two boundary components of R_{i}.

Proof. Suppose such a finite number of ring domains $R_{1}, R_{2}, \ldots, R_{m}$ exist. By (4.3) we have

$$
\lambda_{2}\left(\hat{\Gamma}\left(\partial B_{r}, \gamma ; D-\bar{B}_{r}\right)\right) \geqq \sum_{i=1}^{m} \lambda_{2}\left(\Gamma_{i}\right) \geqq \ell .
$$

This implies $\lambda_{2}\left(\hat{\Gamma}\left(\partial B_{r}, \gamma ; D-\bar{B}_{r}\right)\right)=\infty$, so that γ is weak by Theorem 4.
Next suppose that γ is weak. By Theorem 5 we see that there exists an exhaustion $\left\{D_{n}\right\}$ of D with $\prod_{n=1}^{\infty} \hat{\mu}_{n \gamma}=\infty$. Since γ is a single compact continuum, we see that $\Omega_{n}=\left(D_{n+1}-\bar{D}_{n}\right) \cap A_{n}$ is a domain. For given $\ell>0$, take an n_{0} such
that $\sum_{n=1}^{n_{0}} \log \hat{\mu}_{n \gamma} \geqq \ell+1$. Set $G=\left(A_{1}-\gamma_{1}\right) \cap D_{n_{0}+1} . \quad$ By (4.1) and (4.3) we have

$$
\lambda_{2}\left(\hat{\Gamma}\left(\gamma_{1}, \gamma_{n_{0}+1} ; G\right)\right) \geqq \sum_{n=1}^{n_{0}} \log \hat{\mu}_{n y} \geqq \ell+1
$$

We note that ∂G consists of a finite number of C^{1}-surfaces $\gamma_{1}, \gamma_{n_{0}+1}, \beta_{1}, \ldots, \beta_{i_{0}}$ each of which is a component of ∂G. Let \tilde{u} be the principal function with respect to $\gamma_{n_{0}+1}, \gamma_{1}$ and G, which is characterized by the following properties:
(1) $\tilde{u} \in H(G) \cap C^{1}(\bar{G})$;
(2) $\tilde{u}=0$ on $\gamma_{n_{0}+1}$ and $\tilde{u}=1$ on γ_{1};
(3) $\tilde{u}=\tilde{c}_{i}$ on β_{i} and $\int_{\beta_{i}} \frac{\partial \tilde{u}}{\partial v} d S=0\left(i=1, \ldots, i_{0}\right)$, where each \tilde{c}_{i} is a constant with $0<\tilde{c}_{i}<1$.
Set $\ell_{0}=\lambda_{2}\left(\hat{\Gamma}\left(\gamma_{1}, \gamma_{n_{0}+1} ; G\right)\right)$ and $u(x)=\ell_{0} \tilde{u}(x)$. Let $c_{1}<c_{2}<\cdots<c_{j_{0}}$ be all the different values of $\ell_{0} \tilde{c}_{1}, \ldots, \ell_{0} \tilde{c}_{i_{0}}$. Take an $\varepsilon>0$ such that
(1) $c_{j-1}+\varepsilon<c_{j}-\varepsilon\left(j=1, \ldots, j_{0}+1\right)$, where $c_{0}=0$ and $c_{j_{0}+1}=\ell_{0}$,
(2) $\sum_{j=1}^{j_{o}+1}\left(c_{j}-c_{j-1}-2 \varepsilon\right) \geqq \ell_{0}-1$,
(3) u has no critical points on level surfaces $\left\{x ; u(x)=c_{j-1}+\varepsilon\right\}$ and $\{x$; $\left.u(x)=c_{j}-\varepsilon\right\}\left(j=1, \ldots, j_{0}+1\right)$.

Set $R_{j}=\left\{x ; c_{j-1}+\varepsilon<u(x)<c_{j}-\varepsilon\right\} \quad\left(j=1, \ldots, j_{0}+1\right) . \quad$ Since u has no critical points on the level surface $\alpha=\left\{x ; u(x)=c_{j-1}+\varepsilon\right\}$, it consists of a finite number of mutually disjoint analytic surfaces. We see easily that each component of α divides R^{N} into a bounded domain containing $\gamma_{n_{0}+1}$ and an unbounded domain containing γ_{1}. Since $u=$ const. on β_{i} and $\int_{\beta_{i}} \frac{\partial u}{\partial v} d S=0$, by using Green's formula we see that α consists of a single analytic surface such that $R^{N}-\alpha$ consists of a bounded domain Ω_{0} containing $\gamma_{n_{0}+1}$ and an unbounded domain containing γ_{1}. By similar arguments we see that the level surface $\alpha^{\prime}=\left\{x ; u(x)=c_{j}-\varepsilon\right\}$ is a single analytic surface such that $R^{N}-\alpha^{\prime}$ consists of a bounded domain Ω_{0}^{\prime} containing $\gamma_{n_{0}+1}$ and an unbounded domain containing γ_{1}. Since $c_{j-1}+\varepsilon<$ $u(x)<c_{j}-\varepsilon$ for any $x \in \Omega_{0}^{\prime}-\bar{\Omega}_{0}$, we conclude that R_{j} is a ring domain. It is clear that the sequence $\left\{R_{j}\right\}_{j=1}^{j_{o}+1}$ satisfies the conditions (1) and (2) in theorem.

Since $u_{0}=\left(u-c_{j-1}-\varepsilon\right) /\left(c_{j}-c_{j-1}-2 \varepsilon\right)$ is harmonic on $R_{j}, u_{0}=0$ on α and $u_{0}=1$ on α^{\prime}, we have

$$
M_{2}\left(\Gamma_{j}\right)=\int_{R_{j}}\left|\nabla u_{0}\right|^{2} d x=\int_{\alpha^{\prime}} \frac{\partial u_{0}}{\partial v} d S=\left(c_{j}-c_{j-1}-2 \varepsilon\right)^{-1} \int_{\alpha^{\prime}} \frac{\partial u}{\partial v} d S
$$

(see, e.g., [10, Theorem 4] and [11, Theorem 3.8]). On the other hand, by (4.4) we have

$$
\ell_{0}^{-1}=\int_{G}|\nabla \tilde{u}|^{2} d x
$$

By using Green's formula we see that

$$
\int_{\alpha^{\prime}} \frac{\partial u}{\partial v} d S=1
$$

Therefore we have $M_{2}\left(\Gamma_{j}\right)=\left(c_{j}-c_{j-1}-2 \varepsilon\right)^{-1}$. From this we derive that

$$
\sum_{j=1}^{j_{o}+1} \lambda_{2}\left(\Gamma_{j}\right)=\sum_{j=1}^{j_{0}+1}\left(c_{j}-c_{j-1}-2 \varepsilon\right) \geqq \ell_{0}-1 \geqq \ell,
$$

so that we obtain the required results.
Example 2. Set $R_{n}=\left\{x ;(2 n+1)^{1 /(2-N)}<|x|<(2 n)^{1 /(2-N)}\right\}(n=1,2, \ldots)$. Let D be a domain such that $D \supset R_{n}$ for all n and $\gamma=\{0\}$ is a boundary component of D. It is well known that $\lambda_{2}\left(\Gamma_{n}\right)=\left(\omega_{N}(N-2)\right)^{-1}$. By Theorem 6, γ is weak.

References

[1] Carleson, L., Selected problems on exceptional sets, D. Van Nostrand, Princeton, 1967.
[2] Fuglede, B., Extremal length and functional completion, Acta Math., 98 (1957), 171219.
[3] Jurchescu, M., Modulus of a boundary component, Pacific J. Math., 8 (1958), 791-809.
[4] Ow, W., Capacity functions in Riemannian spaces, Doctoral dissertation, Univ. of Calif., Los Angeles, Calif., 1966. 63 pp.
[5] Ow, W., Criteria for zero capacity of ideal boundary components of Riemannian spaces, Pacific J. Math., 23 (1967), 591-595.
[6] Rodin, B. and L. Sario, Principal functions, D. Van Nostrand, Princeton, 1968.
[7] Sario, L., Strong and weak boundary components, J. Analyse Math., 5 (1956/57), 389-398.
[8] Sario, L., Classification of locally euclidean spaces, Nagoya Math. J., 25 (1965), 87-111.
[9] Sario, L. and K. Oikawa, Capacity functions, Springer, Berlin-Heidelberg-New York, 1969.
[10] Yamamoto, H., On a p-capacity of a condenser and $K D^{p}$-null sets, Hiroshima Math. J., 8 (1978), 123-150.
[11] Ziemer, W. P., Extremal length and p-capacity, Michigan Math. J., 16 (1969), 43-51.

Department of Mathematics, Faculty of Science, Kochi University

