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Introduction

Let D be a bounded plane domain and y be a component of the boundary of

D consisting of a single point. It is called by Sario [7] weak if its image under

any conformal mapping of D consists of a single point. Jurchescu [3] gave a

characterization of the weakness by means of extremal length.

In the iV-dimensional euclidean space RN ( N ^ 3 ) , Sario [8] introduced the

notion of the capacity cy of a subboundary γ of a domain in RN and posed the

following question: Is a component y of a compact set E in RN a point if and only

if cγ = 0 for the domain RN — E ([8, p. 110])? A boundary component γ is called

weakifc y —0.

In the present paper we shall be concerned with this question. Let D be a

domain in RN and £ be a compact set such that y = dE is a subboundary of D.

We shall give an example (Example 1) in which 7 is a point but cγφ0. Moreover,

in case y is an isolated subboundary, we shall show (Theorem 2) that cy = 0 if and

only if the Newtonian capacity C2(E) = 0. Since there exists a continuum E

with C2{E) = 0 (cf. [1]), it follows that even for a continuum E, y = dE can be weak.

In §4, we shall give a characterization of the weakness by means of the

extremal length of order 2. Let B be a ball in D and t denote the family of

curves in the Kerekjartό-Stoϊlow compactification each of which connects y and B.

We shall show (Theorem 4) that cy = 0 if and only if the extremal length λ2(t) = 00.

In §5, we shall derive the modular criterion of the weakness which is well known

for Riemann surfaces (cf. [9]).

§ 1. Preliminaries

Let RN ( N ^ 3 ) be the iV-dimensional euclidean space. We shall denote by
x = (x l s x2,...,xN) a point in RN

9 and set |X|=(Λ;2 + ;C2_| hx£) 1 / 2. For a set

E in RN, we denote by dE and E the boundary and the closure of E with respect

to the iV-dimensional Mδbius space RN U {00}, respectively. Let B(r, x) denote

the open iV-ball of radius r and centered at x. The area of <λB(l, x) will be written

as ωN. For a function u defined in a domain G, we let Fu denote the gradient of
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u in case it exists. We denote by H(G) the class of all harmonic functions u on G,

and by HD2(G) the class of all u in H(G) such that its Dirichlet integral \ |Vu\2dx
JG

is finite.
Let D be a domain in RN. Denote by D the Kerekjartό-Stoϊlow compacti-

fication of D. Let ^ be a closed subset of the ideal boundary D — DoϊD and let

β = (D — D) — % Let {Dn} be an exhaustion of D, that is, each Dn is a bounded

subdomain of D, each component of D — Dn is noncompact in D, each dDn consists

of a finite number of (^-surfaces, DnaDn+ί (n = l, 2,...) and KJ™=ίDn = D.

Let An be the union of the components of D — Dn each of which meets % and Bni

( ί = l , . . . , i(n)) be the rest of the components of D — Dn. Set γ = A^ = 1 Ϊ7Π, where

[/n = An Π D. We shall call γ a subboundary of D. If $ is an ideal boundary com-

ponent, then y is a boundary component of D. When there is no ambiguity,

we shall identify γ with £. A subboundary γ is said to be isolated if there exists

an An with An dβ = 0. We set γn = dDn n <H, and βni = dDn Π &Bn/ (Ϊ = 1,..., i(n)).

Take a point x° in D and a ball B = B(r, x°) with 5 c D n for all n. Denote

by Pn the class of functions p on Dn having the following properties:

(1.1) peH(Dn-{x°})nσ(Dn-{x°});

(1.2) p(x) = - |x-xo | 2" i V/(ωN(iV-2)) + h(x) in B, where A e H(B) and

Λ(x°) = 0;

(1.3) [ ψ-dS=0 for z = l,...,/(«) and ( -^-dS=l, where - / - is the

outer normal derivative on Dn and J 5 is the surface element.

We know (cf. [8]) that there exists a unique function pny in Pn having the

following properties:

(1.4) pny = kny on γn;

(1.5) P«v = /c r t ί o n β H i ( i = l , . . . , i ( n ) ) 9

where kny and kni are constants. In reference to the pole x°, we also use the

notation pnγ = pnγ( , x°) and kny = kny(x°).

The following lemmas are known:

LEMMA 1 ([8, the proof of Theorem 25]).

( \{PPmi)\ \ P η f \
JDn

 Y JdDn OV JdDn

for every p e Pn.
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LEMMA 2 (cf. [4, p. 20] and [9, Theorem III. 2E]). The sequence {ρny} is

uniformly bounded on every compact subset of D- {xQ}.

By Lemma 2 we see that the sequence {pnγ} contains a subsequence, denoted

by {pnγ} again, converging to a harmonic function pv which is called a capacity

function of y, uniformly on every compact subset of D — {.x0}.

Since knγ increases with n by Lemma 1, the limit fcy = limn_>00 kny exists.

The capacity cy of y is defined by cy = /cJ/(2~N>. A subboundary y is called weak

if cy = 0, that is, if kγ = oo. We note that the capacity cy does not depend on the

choice of exhaustion.

Take any xιeD with x ^ x 1 . By using Green's formula we have the

following symmetry property (cf. [9, Theorem V. 2A])

Kγ(xι) - Pnγ(x°, xι) = knγ(x°) - pny(x\ x°).

This implies that the weakness of γ does not depend on the choice of the pole

x° in D.

% 2. Weak boundary components

Denote by P = P(D) the class of functions p on D having the following

properties:

(2.1) peH(D-{x0}) Π HD2(D-B);

(2.2) p(x) = - \x-x°\2-Nl(ωN(N-2)) + h(x) in B, where h e H(B) and

h(x°) = 0;

(2.3) \ -^S-
Jτ OV

^dS = 0 for every compact C^-surface τ in D — {x0} which divides
OV

RN into a bounded domain and an unbounded domain, and which does not

separate y from {x0}.

THEOREM 1 (cf. [9, Theorem HI. 3B]). y is weak if and only if P = 0.

PROOF. Suppose Pφ0. Since the restriction of peP to Dn belongs to Pn,

by Lemma 1 we have

dDn

By Green's formula arid (2.1) we obtain

If pψ-ds gf \rP?dχ
dB

\Pp\2dx\p\ \{
D-B I JdB

oo.
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This implies ky<co.

Next we suppose fcy<oo. We shall show that the capacity function py

belongs to P. Obviously, pyeH(D — {x0}) and it satisfies (2.2). It is easy to

verify th&t py has property (2.3). Therefore it is enough to show that pye

HD2{D — B). Since \ \Fpmy\
2dx>0 for m>n9 Green's formula gives

By Lemma 1 we have

1 f fay JP 1
limπ^oo \ py-γJL-db = limM.

Pmy
dDm

>oo l i m m

->oo \
JδDn

OPmγ

dv
dS.

f dPm

~™)SDn

Pmy~dv~

Pmy- dv
dS

= lim^oo kmy = kr

Hence, by using Green's formula we have

\ \ΓpJ2dx = lim t̂-oo \
JD-B JDn-l

Λ. C dpy j I (* dpyS lim^-.oo \ py—=JL-dS + \\ Py—^1-
JδDn dv IjdB dv

\ί -dS < 00.

Therefore py e HD2(D — B). The proof is completed.

COROLLARY 1. Ifγ contains the point at infinity, then γ is not weak.

PROOF. Let p{x)= -\x-x°\2~Nl{ωN(N-2)). Then peP, so that ky<co.

EXAMPLE 1. We shall give an example of D which has a boundary component

γ consisting of a single point and satisfying ky<co. We introduce the polar

coordinates (r9θί,...,θN-1) in RN, that is, r = |x|, x{ = r c o s 0 1 } . . . , xN.λ =

r s i n 0 1 s in0 N _ 2 cos0 N _ 1 , xN = r sin0 1 s in0 N _ 2 s in0 N _ l s for x = (x l 5..., xN).

Consider sequences {αn}, {Z?M} and {δn} defined by

an =

and

Set
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En = {x; bn ^ \x\^an) - {x; 0 ^ θx < δn}

and

Let y = {0}. Then γ is a boundary component of D. It is easily verified that

\x\2~N has a finite Dirichlet integral on D. Let x°eD. Then the function

belongs to P, so that by Theorem 1 we have kγ<oo.

% 3. An isolated subboundary and Newtonian capacity

Let £ be a compact set in RN. The Newtonian capacity of E is defined as

where the infimum is taken over all functions fe C00 that have compact support

and are identically equal to 1 on E. Let G be a bounded domain containing E.

We say that E is removable for HD2 if every function in HD2(G-E) can be

extended to a function in HD2(G). It is well known that E is removable for HD2

if and only if C2(E) = 0 (see, e.g., [1, §VΠ, Theorem 1]).

THEOREM 2 (cf. [9, Theorem X. 3A]). Let E be a compact set such that

RN — E is a domain. Let D be a subdomain of RN — E and γ = dE be an isolated

subboundary of D. Then C2(E) = 0 if and only if γ is weak.

PROOF. Suppose C2(E) = 0. By assumption we can take a bounded domain

G such that GZDE, D^G-E and dG separates γ from β U {x°}9 where β = dD-γ.

We may assume that G 3 γn for all n. Since every u in HD2(G - E) can be extended

to a function u in HD2(G), we have

)yn dv " " ) y n dv " "

for all n. This implies P(£)) = 0, so that γ is weak by Theorem 1.

Conversely we suppose C2(E) > 0. Let μ be the equilibrium mass-distribution

on E and consider the potential

_dμ(y)_

It is known that U^eHD2(RN-E) and
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for every compact C1-surface τ in RN — E which separates the point at infinity

from E. Therefore we can take a non-zero constant £ satisfying

Jjn OV

for all n. Let x°eD. Then the function

- \x-xψ-η(ωN(N-2)) + £(U»2{x) -

belongs to P(D). From Theorem 1 it follows that γ is not weak. Thus our

theorem is proved.

COROLLARY 2. Let E be a compact set such that RN — E is a domain.

Suppose dE = γ is a subboundary of a domain D. If γ is weak, then C2(E) = 0.

PROOF. Let G = RN-E. If C 2 (£)>0, then P(G)Φ0 by Theorems 1 and 2.

Since the restriction of p e P(G) to D belongs to P(D), we have P(D)Φ0. It follows

that γ is not weak from Theorem 1.

REMARK 1. If JV^3, then there exists a continuum E with C2(E) = 0 (see,

e.g., [1, §IV, Theorem 1]). Hence there exists a continuum £ in RN (JV^3)

such that γ = δE is weak for the domain RN — E. Thus Example 1 and Theorem 2

give a negative answer to the problem 11 in [8].

REMARK 2. By the inversion with respect to 5(1,0), a line segment E =

{x = (xί9 0,...,0); O ^ x ^ l } is mapped to E0 = {x = (xu 0,..., 0); l ^ x ^ o o } U

{oo}. Since C2(E) = 0, y = dE is weak for the domain RN-E. But yo = dEo

is not weak for the domain RN — Eo by Corollary 1. Thus we see that the weakness

in RN (N^3) is not invariant under quasiconformal mappings.

§ 4. Extremal length criterion

Let D be a domain in RN. By a locally rectifiable chain in D we mean a

countable formal sum c = Σ c, , where each cf is a locally rectifiable curve in D.

If / is a non-negative Borel measurable function defined in D and c = Σ c, is a

locally rectifiable chain in D, then we set \ / ί / s = Σ \ fds, where ds is the
Jc Ja

line element. Let Γ be a family of locally rectifiable chains in D. A non-negative

Borel measurable function / defined in D is called admissible in association with
Γ if f fds ^ 1 for every ceΓ. The module M2(Γ) of Γ is defined by infr \ J2dx,

Jc JD

where the infimum is taken over all admissible functions / in association with

Γ, and the extremal length λ2(Γ) of Γ is defined by 1/M2(Γ). In case Γ is a

family of curves in D such that the restriction c\D is a locally rectifiable chain
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in D for each cet, we denote by λ2(Γ) the extremal length of {c\D; cef}.

Hereafter, by a curve we shall mean a locally rectifiable curve. The following

properties are well known (see, e.g., [2, Chapter I]):

(4.1) If every cλ e Γx contains a c 2 e Γ 2, then λ2(Γ1) ^ λ2(Γ2).

(4.2) If Γ c WBΓB, then M2(Γ)^ΣnM2(Γn).

(4.3) Let {Grt} be mutually disjoint open sets and Γn be a family of curves in

GM. If Γ is a family of curves such that each ceΓ contains at least one cneΓn

for every n, then

Let α0, α! be subboundaries of D with α0 Π α t = 0 . Denote by Γ(α0, α x ; D)

(resp. /*(α0, α^; D)) the family of curves in D (resp. D) each of which connects

α0 and ccί. (A subboundary of D will be identified with the corresponding

closed subsets of D — D.) Suppose that α 0 is an isolated subboundary consisting

of a finite number of compact C1-surfaces. Let {Dn} be an approximation of

D towards dD —α 0, that is, each Dn is a bounded subdomain of D, each dDn con-

sists of α0 and a finite number of compact C1-surfaces, DnczDn+1\j oco (n =

1, 2,...) and \J^=ί Dn = D. Let Aln be the union of the components of 6 — Dn

each of which meets aι. Set ocίn = dDn f] dAίn. The following lemma follows in

the same manner as in [10, Lemma 4].

LEMMA 3. K m , . , λ2(t(α0, α l n ; £„)) = A2(f (α0, αx D)).

Let G be a bounded domain such that dG consists of a finite number of com-

pact (^-surfaces α0, cc1 and βj ( j = l,..., /c). We know (cf. [6]) that there exists

the principal function h with respect to α0, αx and G, which is characterized by

the following properties:

(1) heH(G) n C\G);

(2) /Ϊ = 0 on α0 and h = 1 on OLX

(3) ft = const, on each β, and f - ^ - ^ = 0 for j = 1,..., k.
Jβj dv

The following property is known ([10, Theorems 5 and 12]):

(4.4) M2(Γ(α0, α i ; G)) = ( |Fft|2Λc.
JG

Let y be a subboundary of D and {Dn} be an exhaustion of D. Consider the

capacity function pnγ of yn with pole at x° eD. Let Br = B(r, x°) with BrczDn

for all w. Set < r = maxx e a j B r pΛy(x) and αJ>r = min x e e B r pny(x).

LEMMA 4. There exists an ro>0 such that, for every r with 0 < r < r o , the

following inequalities hold:

kny - < r g λ2(Γ(8Br, yn; Dn-Br)) g kny - < r .
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PROOF. Let ££ j Γ = {x; pny(x)^ai

ntr} (ί = 0, 1). Then, there exists an ro>0

such that DΛ —EJiΓ (ί = 0, 1) is a domain for every r with 0 < r < r o . Since

(Pnγ-ain,r)l(Ky-
an,r) *s the principal function with respect to d£ί,Γ, yn and Dn-

£ ι

r t Γ , by Green's formula and (4.4) we have

,, y,; />„-£*,,)) = /c,,y - < Γ (i = 0, 1).

Since

λ2(t(δ£0 r 5 r π ; Z),,-£θ r ) ) g A2(f (δflr, yM; />„-£,)) g λ2(t(5£ί,rf yπ; D . - £ ί f Γ ) )

by (4.1), we obtain the required inequalities.

THEOREM 3 (cf. [9, Theorem IV. 3G]). Let y be a subboundary of D with

ky<co and let Br = B(r, x°) with BraD. Then

kγ = lim^o {A2(f (3Br, y; D - 5 r ) ) - r^^/(ω N (N-2))} .

PROOF. By Lemmas 3 and 4, we obtain

fcy - l ίm,,^ a°n,r ̂  λ2(t(dBr9 y\ D-Br)) ^ kγ - l i m ^ . αi> r.

The capacity function py has the property

py(x) = - |x - x°|2^/(ωN(ΛΓ - 2)) + h(x) in Br9

where heH(Br) and /ι(x°)=0. Since {pny} converges to p y uniformly on dBn

we have

^ l, ^ N ( ~ 2 ) ) 4-

and

l i m ^ ^ β ; t Γ = -r2-N/(ωN(N-2))

Therefore we see that

kγ - maxxeeBrh(x) g λ2(Γ(dBri y; D-Br)) - r2~Nl(wN(N-2))

Since /i(x°) = 0, letting r-»0 we obtain the theorem.

THEOREM 4. Lef yfeeα subboundary ofD. Let G be a subdomain ofD such

that dGnD is a compact Cι-surfacey D — G is a domain and d{D — G) contains

y. Then y is weak if and only if λ2(P(dG9 γ; D - G ) ) = o o .

PROOF. From Lemmas 2, 3 and 4 it follows that kγ = oo if and only if

λ2(f(dB9 γ; D — B)) = oo for some, as well as for any, xeD and for sufficiently

small r > 0 , where B = B(r, x).
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Suppose λ2(P(dG, y; Z)-G)) = 00. Take a ball B = B(r, x) with B<=G. By

(4.1) we conclude that λ2(t(dB, y; D-B))= oo, so that fcy= oo.

Conversely suppose fcy = oo. We can take a finite number of balls B' =

J5(r, x f) (i = 1,...,7) in D with the following properties:

(1) xf e5(7 (ID 0 = 1,...,/) and U = vj/=1 fl1 contains dG Π D;

(2) 5 D n B f = 0 (i' = l,...,./) and Ω = D-G-U is a subdomain of D - G ;

(3) A2(f(δB', y; D-fi ')) = oo 0 = 1,...,;).

Since

n 31/, y; O) c w/ = 1 Γ(3B', y; D-B«)

by (4.1) and (4.2) we have

M2(Γ(δG, y; D - O ) ^ M2(Γ(βΩ n 51/, y; O))

Thus we see that λ2(t(dG, y; D —G))= oo. The proof is completed.

COROLLARY 3. Lei y, y0 fee subboundaries of D such that y^yo // y is

weak, then so is y0.

§ 5. Modular criterion

Let y be a subboundary of D and {£>„} be an exhaustion of D. We note that

An consists of a finite number of mutually disjoint components A*,..., v4j(n)

of ΰ — Dn each of which meets y. Set Ωn = (Dn+1—Dn) n v4M. Then ί2π consists

of a finite number of mutually disjoint domains ΩJ,..., Ω*(n\ Set αί =

yπ, ]8i = 3Oi Π yπ + 1 (i = l,..., fc(n)), and define the values μny by

THEOREM 5 (cf. [9, Theorem XI. 1A]). A subboundary y of D is weak if

and only if there exists an exhaustion {£>„} of D for which Π£=i finy — 00-

PROOF. Suppose such an exhaustion {Dn} exists. We may assume that

BrczDί. Set fn = \jk

ii
n^f{θLi

n,β
i

n\Ωi

n). Since ΩJ,..., ΩJ<M> are mutually

disjoint, we see easily that M2(fn) = Σk

iί
ri) M 2 ( f (α£, j9£; Ω£)) By (4.1) and (4.3)

we have

A2(f (ai»r> yπ; /)»-Br)) ^ Σ^\A2(f J = logίΠK1!^).

By assumption and Lemma 3, letting n->oo we see that λ2(Γ(dBr, y; D — 5 r)) = oo.

From Theorem 4 it follows that y is weak.

Conversely suppose that y is weak. Let {£)„} be any exhaustion of D. Set

yί = ̂ i ίly (i = l,..., fe(n)). We note that each yj is a subboundary of D, y =
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XJiίi* fn and fn n γJ

n = 0 for i Φj. Set &» = (AJ - j n ) nfl, αi = δ β j n yπ. Since

7J is weak by Corollary 3, we have λ2(f(6ίi

n, yj; Ωj)) = oo by Theorem 4. Set

fiίiW = fiin Dm, a i i m = £ f i i . » n y M for ιtι>n. Then {Ωi,m}^=M+1 is an approxi-

mation of the domain Ωj towards d£2£—αj,. By Lemma 3 we see that

lim^oo λ2(t (αj, α ί ^ fiί.J) = A2(f (αj, ft; flj)) = oo.

Hence, for n — \ we can take m(l) with ra(l)>l such that A2(/*(αi, α j > m ( 1 ) ;

βi f M (i)))^fe(l) for all ι = l,..., fc(l). Next, for n = m(l), take m(2) with m(2)>

m(i) such that λ2(t(δίi

m(ί), αί, ( 1 ) > m ( 2 ) ; fii(i)>lfl(2)))^fc(m(l)) for all i = l , . . . , /c(m(l)).

We continue this process and obtain a subsequence {Dm(j)}f=ί of {I>n}?=i.

Since log/2 m 0 ) y ^ 1 (7 = 1,2,...), we obtain an exhaustion {DmU)} with 117=1

y = °° ^ n e proof is completed.

The modulus μnγ of Ωn is defined by

(cf. [5]). Since log μnγ ^ log μny by (4.1), we have

COROLLARY 4 ([5, Theorem 1]). // there exists an exhaustion {Dn} of

D for which ΠS=i π̂y = 0°? t n e n 1 ϊ s weak.

A bounded domain R is called a ring domain if its complement consists of

two components.

THEOREM 6 (cf. [9, Theorem XI. 1C]). Let γ be a subboundary of D con-

sisting of a single compact continuum. In order that γ be weak, it is necessary

and sufficient that, for any positive number £, there exist a finite number of ring

domains Rt, R2,--> Rm

 ι n D — Br satisfying the following conditions:

(1) JR l v.., Rm are mutually disjoint;

(2) Each Rι separates γ from Br (i' = l, 2,..., m) and separates Rt-t from

Ri+I(i = 29 3,..., m-1);

(3) Σ f = 1 2 2 ( Λ ) έ ^ where Γt is the family of all curves in Rt each of

which connects two boundary components of Rf.

PROOF. Suppose such a finite number of ring domains Rt, R2,..., Rm exist.

By (4.3) we have

λ2(t(dBr9 γ; D-Br))^ Σf=i

This implies λ2(t(dBr, y; D — Br)) = 00, so that γ is weak by Theorem 4.

Next suppose that γ is weak. By Theorem 5 we see that there exists an ex-

haustion {£>„} of D with ΠίS=i finγ — 00' Since γ is a single compact continuum,

we see that Ωn = (Dn+ί — Dn) Π An is a domain. For given £>0, take an n0 such



Weak boundary components in RN 455

that Σn°= i l o g / 2 n y ^ + l. Set G = ( ^ 1 - y 1 ) n A, 0 + i . By (4.1) and (4.3) we have

λ2(t(yl9 yno+ί; G)) ^ Σ ^ i log/1,,, ^£ + 1.

We note that δG consists of a finite number of C1-surfaces yu yΠo+1, βi,.. , j8, 0

each of which is a component of dG. Let ίi be the principal function with respect

to γno+l9 7i and G, which is characterized by the following properties:

(1) ί ϊ e H ( G ) n C 1 ( δ ) ;

(2) w=0 on yB 0 + 1 and u = l on ^

(3) w = c. on β. and \ -^-dS = 0 (i = l,..., i0), where each c. is a constant
Jβi dv

withO<c f<l.
Set to = λ2(Γ(yuyno+1;G)) and u(x) = £ou(x). Let c 1 < c 2 < - < c i o be all

the different values of £ocl9..., £ocio. Take an ε > 0 such that

(1) Cj-ί+ε<cJ-ε(j = l,...J0 + l), where co = 0 and cJo+ι = £θ9

(2) Σjo=\ί(Cj-cj-ί-2ε)^£0-U
(3) w has no critical points on level surfaces {x; u(x) = cJ -ί +ε} and {x;

Set Rj = {x; c7 _ 1 + ε<w(x)<c J —ε} ( j = l,..., j o + l). Since u has no critical

points on the level surface α = {x; M(x) = cJ _ 1 + ε } , it consists of a finite number

of mutually disjoint analytic surfaces. We see easily that each component of α

divides RN into a bounded domain containing yno + 1 and an unbounded domain

containing γt. Since u = const, on β( and \ -^-dS = 0, by using Green's
Jβi dv

formula we see that α consists of a single analytic surface such that RN — α consists
of a bounded domain Ωo containing yno + x and an unbounded domain containing

y t. By similar arguments we see that the level surface α' = {x; u(x) = Cj — ε}

is a single analytic surface such that RN — otr consists of a bounded domain Ωf

0

containing yno+1 and an unbounded domain containing yt. Since c i _ 1 + ε <

u(x)<Cy — ε for any xeΩJ)-Ω 0 ,we conclude that Rj is a ring domain. It is clear

that the sequence {Rj}^1 satisfies the conditions (1) and (2) in theorem.

Since uo = (u — cj_1—ε)l(cJ — Cj_ί—2ε) is harmonic on Rj, wo = O on α and

u o = l on α', we have

M2(Γj) = [ \Fuo\
2dx=[ ^SLdS=(cj-Cj-1-2ε)-Λ ^-dS

JRj Jet' OV Jet' CV

(see, e.g., [10, Theorem 4] and [11, Theorem 3.8]). On the other hand, by (4.4)

we have

V = ί \Fu\2dx.
J G

By using Green's formula we see that

OV
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Therefore we have M2{ΓJ) = {cj — cj-1 — 2ε)~!. From this we derive that

so that we obtain the required results.

EXAMPLE 2. Set Rn = {x; (2n + iy^2-^ <\x\<(2nY^2-^} (n = l, 2,...). Let
D be a domain such that D=>Rn for all n and γ = {0} is a boundary component of
D. It is well known that λ2(Γn) = (ωN(N-2))-ί. By Theorem 6, γ is weak.
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