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Abstract. We study the pattern formation of the Gause-Lotka-Volterra system of com-
petition and nonlinear diffusion. This problem is related to segregation patterns between two
competing species. It is shown that coexistence is possible by the effect of cross-population
pressure in the situation where the inter-specific competition is stronger than the intra-specific one.

1. Introduction

In recent years, reaction-diffusion equation models have been proposed for

the study of population dynamics. Shigesada et al. [17] proposed a one dimen-

sinonal model of two competing species with self- and cross-population pressures

t*t = I(d11+dί2v)u]xx'+ (r 1-α 1 1.u

vt = [(<*22 + <*2i"Xy + (r2-a2ίu-a22v)v9

where u9 v are the population densities of the two competing species, dfί and ά{i

(ίφj) are the self- and cross-diffusion rates, rt are the intrinsic growth rates, au

and ciij {iφj) are the intra- and interspecific coefficients of competition. If

dι7 = 0 (iφj), (1.1) is reduced to a normal competition-diffusion equation that has

been extensively investigated. Kishimoto [9] proved that any nonnegative non-

constant steady state solutions are unstable under zero flux boundary conditions.

This result ecologically interprets that there occurs no spatial segregation between

two competing species. On the other hand, Mimura and Kawasaki [12] showed

that for suitable dί2>0 and/or d2ί>0 there exist new non-constant steady state

solutions bifurcating from a trivial solution

-aί2a2ί '

when ru atj (1,7 = 1,2) are chosen to satisfy ^ i 2 M 2 2 < r 1 / r 2 < a 1 1 / a 2 1 . This

occurs on the basis of the cross-diffusion induced instability.

From an ecological point of view, it is quite interesting to study coexistence

problem under α u / α 2 1 < α 1 2 / α 2 2 . The reason is that when du=0 (iφj\ (1.1)

never exhibit coexistence of two species and only one species can survive in com-
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petition. This indicates the competitive exclusion principle (Gause [6]). How-
ever, still for dij~0(iΦj) it is known that coexistence of two species is possible in
related models to (1.1) under άxι\alx<rγ\r1<axl\a11. Levin [10] examined
spatially discretized models of (1.1), Matano and Mimura [11] considered 2-
dimensional space models of (1.1) in suitable non-convex domains. Although
these results are established, the study of (1.1) (dij>0) was still left open.

In this paper, we consider (1.1) for rί5 aυ except aγl\a11<r^\r1<axx\alv

To do so, we deal with a simple case when dlx = 0, and taking

= α,

P «22 A

β, - r 1 - = d,

β(l-λu-μv)u,
t > 0, x e (0, 1) = /.

rewrite (1.1) as

ut =
(1.2)

vt = dvxx + 7 ( l ~ M - φ ,

The boundary conditions are assumed to be

(1.3) ux « vx = 0, t >J09 x e dL

The asymptotic behavior of solutions of (1.2), (1.3) with α=0 can be quali-
tatively classified into four cases (Figure 1);

(III)

(II)

(IV)

(I)

1
Figure!, Classification of constant sfeady states of (1.1) with <χ=Q in (X, /ί)-space.



Competing species models with density-dependent diffusion 427

( I ) (μ< 1 <λ) There is no non-constant steady state solution and

^oc (u(ί, x), v(t, x)) = (ΰ, v) uniformly in xeL

(II) (μ, A < 1) There is no non-constant steady state solution and

lim^oo (u(t9 x), v(t9 x)) = (1/λ, 0) uniformly in xel.

(III) (λ<l<μ) There may be non-constant steady state solutions but only
(I/A, 0) and (0,1) are stable steady states. Which species can survive
in competition depends on initial data.

(IV) (1 <μ, λ) There is no non-constant steady state solution and

lim^oo (u(ί, x), v(t, x)) = (0, 1) uniformly in xel.

The proofs are shown in, for instance, Kishimoto [9], Hsu [8].
There are a few difficulties in showing the existence of (stable, if possible)

non-constant steady state solutions of (1.2), (1.3) with α>0. First (1.2) does not
possess the property of order preserving, though the system with α = 0 has this
property. Secondly, for the case (II), (IV), there occurs no bifurcation from the
trivial solutions. On the other hand, for (III), there is a bifurcation from the
trivial coexisting steady state (ΰ, v). However, the resulting new non-constant
solutions are unstable. Therefore we must trace the secondary bifurcation which
seems to be a tough problem from an analytical viewpoint.

To be free from these difficulties, we restrict β« 1 for mathematical simplicity,
so that we are able to study the stationary problem of (1.2), (1.3) in the limit /?->0,
following the approach by Nishiura [14]. In Sections 2 and 3, using the singular
perturbation methods in the case when d is sufficiently small and the (finite
dimensional) degree theory, we show the existence of non-constant steady state
solutions of (1.2), (1.3) with β-»0 for some λ, μ in the cases (II) and (III). In
Section 4, we deal with the case β is not zero but sufficiently small and for suffi-
ciently small d9 construct non-constant, nonnegative steady state solutions exhib-
iting spatial segregation. In Section 5, we give the proofs of the results.
Unfortunately, the stability problem is not yet able to be discussed here. Therefore,
in Section 6, we will show some numerical simulations of (1.1), which confirm
that there exist stable non-constant steady state solutions for some λ, μ in the
cases (II) and (III). We would like to emphasize that coexistence of two competing
is possible due to the migration of cross-population pressure (see Figure 7).
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2. The shadow system (β | 0).

Through the transformation

(2.1) (l + αι>)iι = w,

we rewrite the stationary problem of (1.2), (1.3) as

w

(2.2) xel,

(2.3) wx = vx = 0, xedl,

where D = djy. If u, v are both nonnegative, the stationary problem of (1.2),
(1.3) is equivalent to (2.2) and (2.3) through (2.1). Therefore, henceforth we con-
sider the problem (2.2) and (2.3). Put, for simplicity,

/(w, v) = (l —
V l. +OLV

and

The nullclines of / and g look like Figure 2.
In this section, we consider the limiting case of (2.2) as /?->0. The resulting

system is

(2.4)

(2.5) 0 = Dvxx + g(w9 υ)9 xel,

(2.6) vx = 0, XE ei,

where w = c is a constant function because of the boundary condition (2.3).

DEFINITION 1. We call a solution of (2.4)-(2.6) by a triplet (D, c, v) satisfying
i) v is non-negative, non-constant and is of class Cι(I)Γ\ C2(/),

ii) £>, c are positive constants,
iii) (D, c, v) satisfies (2.4)-(2.6).

When v(x) is strictly monotone increasing, u(x) is strictly monotone decreasing
from (2.1). Such inhόmogeneity of (w, v) exhibits spatial segregation of two
competing species. Thus, we will be concerned with solutions of (2.4)-(2.6),
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where one of the components v(x) is strictly monotone increasing in /.

LEMMA 1. Suppose that α, c satisfy i) 0 < α ^ 1 or ii) 0 < c ^ 1 or in) for fixed

α( > 1), (α + l)2/4α g c. Then there is no solution of (2.4)-(2.6).

Henceforth, we fix α(> 1) arbitrarily. Then c must satisfy 1 < c < ( α + l)2/4α.

Following [14], we investigate the problem (2.4)-(2.6). We first fix c and

then consider the problem (2.5), (2.6). This problem can be fully analyzed, since

it is simplified to be the scalar equation with respect to v. Let u_(c), vo(c), v+(c)

(v-<vo<v+) be three solutions of g(c, t;) = (l —c/(l+αι>) — v)v = 0 for fixed c,

that is, ι;_(c) = 0, ϋo(c) = [(α~l)-{(α + l)2-4αc}1/2]/2α and t;+(c) = [(α--l) +

{(α + 1 ) 2 -4αc}1/2]/2α. Define G(v; c) by

Γυ

G(v; c) = \ g(c9 s)ds,
Jvo{c)

and then define E±(c) and E*(c) by E±(c) = G(v±(c); c) and £*(c) = min (£_(c),

£+(c)), respectively. Put Aδ = (l+δ9 (α + l) 2/4α-5) for any 5^0 and write Ao

as A simply. Define Γ, T, T5 (<5 >0) by

{c}.9

and

From Lemma 3.1 in Nishiura [14], we have

LEMMA 2. Consider (2.5), (2.6) for fixed c (1 < c < (α + l)2/4α). T/ien

exists an E-parameter family of solutions (D(E, c), v(x; E, c)) for 0<E<E*(c)

where v is nonnegatiυe and strictly monotone increasing with respect to xel.

Moreover, (D, v) satisfies

( i ) υ(x;E,c)e C°(I x Tδ) n C°°(/ x Γ),

/or sufficiently small <5>0,

(ii) l im £ i Q v(x; E, c) = ι;0

•fV-(c) compact uniformly in [0,1) i/£_(c)<jE+(c) ;

v+(c) compact uniformly in (0,1] ί/

compact uniformly in I\{x = m},
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where m is defined by m = m(co) = m+(c o) 1 / 2/(m+(c o) 1 / 2-f m_(co)1 / 2) in which

^±(co)
:=\(dldv)g(co, v±(c0))\ with c0 uniquely determined by £_(co) = £ + (c o ) ,

(iii) D(E, c)" 1/ 2 = \ξ+(£'C) {2(£-G(c, υW

where ξ±(E, c) (£_ <vo<ξ+) are two consecutive zeros of E — G(c9 t;) = 0,

(iv) D(E9 c)eC°(Tδ) Π C™(T) for any δ > 0.

REMARK 1. From (iii) of Lemma 2, we find l im £ t £ * ( c ) D(£, c) = 0. Then

we find by (ii) of Lemma 2 that if E is close to £_(c) (1 <c<c0), there occurs a

boundary layer at the right hand side x = 1, if E is close to E*(co\ an internal layer

in the neighborhood of jc = m, and if E is close to E+(c) ( c o < c < ( α + l)2/4α), a

boundary layer at the left hand side x = 0.

Next we substitute the solution v(x; E, c) of (2.5), (2.6) obtained in Lemma 2

into the equation (2.4)

0 = ̂ / ( c , v(x; E, c))dx = F(E9 c)

and then look for a pair (£, c) satisfying F(Er c) = 0 for (£, c) e Γ.

THEOREM 1. Let λ be l/co<λ<l. Then, generically, there exists a one-

dimensional submanifold S (in T) of pairs (E, c) satisfying F(E, c) = 0 such

that S connects the two points of S Π dT, Moreover,

(A) when 0 < μ < λ +

s n dτ= {(

(B) w/ien A+ l ~ \ <μ<λ+
v Ό+(C0) "

(C) w/ien A + ^ ^ < μ,

S Π 3Γ={(£.(1/A), l/A),(0, c)},

= (l+αy)tί with (δ, ϋ) = ((μ-l)/(μ-A), (l-A)/(/x-A)) (Figures 2 (A)-(C)
show the curves f=g = 0 in the cases (A)-(C) respectively).

By the relation (1+OCI;)M = C and (iii) in Lemma 2, Theorem 1 implies the

existence of the solution branch for (D, u, v) in I = RxC 2 (/)xC 2 (/) . In the

cases (A) and (B), it is expected from Remark 1 that there exist at least two

solutions (w, v) for sufficiently small Z). In the former case, one solution has a
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Figures 2. The curves /=0, # = 0 for different values of λ, μ, a.

boundary layer at the right hand side corresponding to (£__(1/A), I/A) and the other

has an internal layer in the neighborhood of x = m* (which will be defined in

Theorem 3) corresponding to (£*(c0), c0). In the latter case, one has a boundary

layer at the right hand side corresponding to (£_(1/A), I/A) and the other has a

boundary layer at the left hand side corresponding to (£+(c), c). The common

feature to the cases (A), (B) is that, taking D as a bifurcation parameter, primary

bifurcations from the trivial solutions do not occur but a "spontaneous"

bifurcation does, whereby the solution branch in X connects the two different

types of singularly perturbed solutions when D is small. On the other hand, for

the case (C), there occurs a primary bifurcation from the trivial solution (ΰ, v) =

((μ — l)/(μ —A), (1—A)/(μ — A)) at D = {OL(U — V) — l}v/(l + ctv)n2

9 and hence the

solution branch in X connects the singularly perturbed solution and the

bifurcating solution from (u, ύ). Thus, we find that the cases (A), (B) and the

case (C) exhibit different types of bifurcations. (An analogous phenomenon is

observed for prey-predator models, see Nishiura [15].)

THEOREM 2. Let A be 0<λ<l/co. Then, generically, for μ > A + l T \

there exists a one-dimensional submanifold S (in T) of pairs (£, c) satisfying

F(E, c) = 0 such that S connects the two points of S Π dT. Moreover,

(D) when λ 4- \ < μ < λ +
υ+(c0)

S i)eT={(E*(co),co),(E+(c),c)},

(E) when λ + < μ,

(Figures 2 (£))-(£) show the curves f=g = O in the cases (D)-(E) respectively).

We find that, by taking D as a bifurcation parameter, the case (D) exhibits a
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Figures 2. The curves/=0, ^ = 0 for different values of λ, μ> a.

spontaneous bifurcation and (E) does the usual bifurcation from the trivial

solution (U, v).

PROPOSITION I. If

(F) μέ<£- and 0 < 2 ^

or

then there is no solution of (2.4)-(2.6).

Figure 3 shows the regions of (A)-(G) in the (A, μ)-space. It is interesting

Figure 3. Existence and non-existence regions of non-constant steady states of (1.1) in (λ, μ)-
space.
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to compare Figure 1 (α = 0) with Figure 3 (any fixed α > l ) . For any (λ, μ)

satisfying (A) and (II) there exist at least two non-constant solutions, though the

case α = 0 does not, and for (λ, μ) satisfying (A) and (III), there exist at least two

non-constant solutions in addition to the constant solutions (I/A, 0), (0, 1).

3. Spatial pattern of solutions in the limit β i 0.

In the preceding section, we showed the existence of non-constant solutions

of (2.4)-(2.6) in implicit forms. In this section, we study the precise spatial forms

of these solutions. Unfortunately, we are not able to study this problem except

the case when D is sufficiently small. From Theorem 1, we already know that

in the case (A) there are at least two nonnegative, non-constant solutions for

sufficiently small D, one is the boundary layer solution, and the other is the

internal layer one. We will construct these solutions by using singular pertur-

bation techniques. We only consider the case (A), since (B)-(E) can be treated

in a similar way to (A).

THEOREM 3. Put D = ε2, and fix arbitrarily (A, μ)e(A). Then there exists

ε o > 0 such that an ε-parameter family of solutions (ε2, c(ε), v(x; ε)) of (2.4)-(2.6)

exists for 0<ε<εo, and satisfies

(3.1) lim ε i

(3.2) Hm^o v(x> ε) = vm*(co) compact uniformly in xel\{x =

where

v+(c0) (m

in which m* is uniquely determined by the relation \ /(c 0 , υm*(c0))dx = 0.

THEOREM 4. Let (λ, μ)e(A). Then there exists £0>0 such that an

^-parameter family of solutions (D(£), c(£), υ(x; £)) of (2.4)~(2.6) exists for

0<£<£0 and satisfies

(3.3) lim. o £ 0 0 = 0,

(3.4) l i m , i χ

(3.5) liπijuo v(x' > •#) = 0 compact uniformly in xe [0, 1).

4. Spatial pattern of solutions f or 0 < β «1.

We showed the existence of solutions of (2.4)-(2.6) for suitable λ9 μ and α
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and explicitly constructed them for sufficiently small D. Our original problem

is to solve (2.2), (2.3) with β>0. Intuitively, we may approach it by the per-

turbation procedure with a power series expansion for w(x; β), v(x;β) of the form

; β) (x)/?", v(x; β) =

where (w0, v0) is apparently one of the solutions of (2.4)-(2.6). Theorems 1 and

2 show that (w0, v0) is isolated. We could, therefore, invoke the implicit function

theorem to obtain a solution (w(x; /?), v(x; β)) of (2.2), (2.3), and we might get

the solution branch for β>0 by extending the shadow branch S. In this section

we will only treat the case when D is sufficiently small by using singular per-

turbation methods. We only consider the case (A). Other cases (B)-(E) will be

treated similarly.

THEOREM 5. Let (λ, μ) e (A). Then there exist ε0 and β0 such that for

0<β<βo a family of nonnegative solutions (ε2, w(x; ε, /?), v(x; ε, β)) of (2.2), (2.3)

exists for 0 < ε < ε o , and satisfies

(4.1) l im, ; 0 lim ε i Ow(x; ε, β) = c0,

(4.2) lim^ i 0 l im ε l 0 v(x; ε, β) = υm*(c0) compact uniformly in xe/\{x = m*}.

THEOREM 6. Let (λ, μ) e (A). Then there exist £0 and β0 such that for

0<β<βo a family of nonnegative solutions (D(έ9 β)9 w(x; £9 β\ v(x; ί9 β)) o/(2.2),

(2.3) exists for 0<£<£0 and satisfies

1

(4.3) 1 ^ , 0 1 ^ 1

(4.4) lim^;o limjeiOw(x; £, β) =-j-

(4.5) lim^ i OlimA 4 θι?(x; £, β) = 0 compact uniformly in x e [ 0 , 1).

The shapes of u ( = w/(l + av)), υ obtained in Theorems 5 and 6 are illustrated

in Figures 4 and 5, respectively.

V

Figure 4. Internal transition layer solutions

when D is small.

Figure 5. Boundary layer solutions when D

is small.
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5. Proofs.

PROOF of LEMMA 1.

Suppose l ^ α > 0 , then we fine that if l ^ c , then g(c, v)<0 for v>0 and if

1 > c > 0 , then there is ξ such that g(c, v)>0(0<v<ξ), g(c, v)<O(ξ<v). For the

former case, it is obvious to see that there is no solution of (2.4)-(2.6). Consider

the latter case. Suppose a monotone increasing solution v(x) of (2.4)-(2.6).

Then there is x0 such that φc o ) = £ From (2.5)

$*°0(c, v(x))dx< 0.

This is a contradiction to the monotone increasing nature of υ. Cases (ii), (iii)

can be easily treated so we omit the proofs. |

PROOF of THEOREM 1.

From Lemma 3.2 in Nishiura [14], we have

LEMMA 3.

( i ) F(E,c)eC°(T) n

(ii) ^(E,c)eC%Tδ) for any δ > 0,

(iii) F(09c)=f(c,vo(c)),

(iv) hm(EtC)^E>(ζ)t ) \
[f(ζ9 υ+(ζ)) (co<ζ<(α+l)2/4α),

(v) when (E, c) ( e T) belongs to a sufficiently small neighborhood of

, c)) - / ( c , ξ_(£, c))] > 0.

We first show the following lemma:

LEMMA 4. Suppose that (λ, μ) satisfies (A). 77ien ί/iere exists Eo such that

there exists a continuous function c{E)for E0<E<E*(c0) and

( i ) (Z)(£, c(£)), c(£), t<x; E, c(£))) satisfies (2.4M2.6),

(ii) lim£ t £ + ( c o ) v(x; E, c(E)) = t?m*(c0) compact uniformly in I\{x = m*},

(iii) l im£ t £* ( c o )c(£) = c0,

(iv) limE,E.(c
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PROOF. Fix arbitrarily (λ9 μ) satisfying (A). Then we find that/(c0, V-(c0))
<0 and/(c0, v+(co))>09 and therefore for sufficiently small k>09

f(c9 t>_(c)) < 0 for c e [c0 - k9 c0]

and

/(c, v+(c)) > 0 for ce[c

Put £' = max(£L(co-fc), E+(c0 + k)) and for any fixed E (£ '^£<£*(c 0 )), we
define c±(E) by the inverses of E±(c)=E, by using the strict monotonicity of E±(c)
with respect to c. Then it turns out that

and for £' ^ £ <

f(c+(E), v+(c+(E))) > 0

From (v) of Lemma 3, there exists E" such that

| £ , c)*0 for ceSec£Γ

for any £ satisfying £"^£<£*(c 0 ) , where Sec£ T={c|(£, c)e T}. That is,
there uniquely exists ceSec£ T satisfying F{E, c) = 0 for any E (max(£', E") =
E0SE<E*(c0)). The continuity of c(E) is also proved by using the usual implicit
function theorem, (ii) is proved in Theorem 3.3 in Nishiura [14]. (iii) is derived
from the relations c_(£)<c(E)<c+(E) and lim£t£*(Co) c±(E) = c0. (iv) is obvious
from (iii) of Lemma 2. |

We will prove (A) of Theorem 1. Recalling the functional form of F9

(5.1) F(E9c;λ,μ)

= \ 1 —r~t / ° τ*—^—μv(x; E, c) Up- ~—_ x dx,
J/L l+<xυ(x;E9 c) p v \J l+αϋ(λr; E, c)

we first note that there is only one point (£_(1/A), lfλ) in dT\{(E*(co)9 c0)} such
that F(E, c) = 0. From the continuity of F((i) of Lemma 3), we can take two
points P 1 = ( £ 1 , cx), P 2 = (£ 2, c2) in Tsatisfying

(5.2) 1< ct < 1/λ <c2 < c0, 0 < Ex < E.(lβ)< E2 <E*(co)9

and

\ F(E9 cί)>0 for E1^E^E
(5.3)

1 F(E9 c2) < 0 for E2 ^ E ̂  £_(c2).

On the other hand, it follows from (i) of Lemma 3 that there are c3 and c4 satisfying
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c3 < c ( * o + f <'o>) < c4<

Define two points P39 P4 by P 3 = ((£0 + £*(c0))/2, c3), P 4 = ((£o + £^co))/2, c4).

We take smooth simple curves Al9 A2, A3 and A4 in" Γ with the properties that i)

Px and P 4 are connected by A2 and P 2 and P 3 by ^44, on which F # 0, ii) P 3 and P 4

are connected by At and P x and P 2 by A3, iii) the curve made of At — A4 is a simple

closed one in Γ. Here we use a finite dimensional degree theory. From the facts

that deg(F, Al9'0)'*0 (Lemma 4) and f > 0 on A2 and A4, it follows that.deg

(F, ^43, 0)^0. Thus we find that there is at least one pair (£, c)eyl3 satisfying

F(£, c) = 0, and that there is a connected component S of solutions of (2.4)-(2.6)

in Γ. Also, 5 i)"dTs {(E*(c0), c0)} follows from (iii) of Lemma 4; Finally We

show SnθT9{(£_(l/A), I/A)}. Consider two sequences (Elm cln), {E2m c2w)

which satisfy EXQ = EU E20=E2, cί0 = cί9 c20 = c2, and l im n ^ 0 0 £ l r t =lim n ^ 0 0 E2n =

£_(1/A), lim,,^ c lΛ=limn_>00 c2rt=I/A. We construct A2n9 A3n A4n in the same way

as A2> A3 and A4 in the above, and then obtain the connected components Sn in

T. Thus, we find that, taking a subsequence {SΛ(fe)} of {Sn}, limk^ ^ Sn(k) = S,

whose closure contains (£_(1/A), I/A).

We next show (B) of Theorem 1. For this case, we find that there are only

two points (£_(1/A), I/A), (E+(c)9c) (in δT) satisfying F(£, c)=0. Fix μu μ2

arbitrarily such that

μ < A + - ^ A r < μ2 < A + ^ ^ T ^ .
^ J ϋ ( c ) ^ 2 1 1 / α

By noting that for fixed A(l/co<A<l),

limiEfC)^iE_iί/λ)Λ/λ)F(E, c) = 0 uniformly in μ,

we can take (Eί9 cx), (£ 2 , c2) in Γ, satisfying (5.2), (5.3) suitably in a similar way

to the case (A). Hence, by the homotopy in variance on the parameter μ(μx ^

μ:gμ2), we have

(5.4) 0 * deg(F( /i,), ^ 3 , 0) = deg(F( μ2), ^ 3 , 0).

On the other hand, for μ=μ 2 , we can take two points P 5 = ( £ 5 , c5), P 6 = (£ 6 , c6)

in T satisfying

(5.5) c0 < c5 < c < c6 < (α+l)2/4α, 0 < E6 < E+(c) < E5 < E*(c0),

and

Γ F ( £ , c 5 ) < 0 for £ 5 ^ £
(5.6)

[ F(£, c6) > 0 for E6^ES E+(c6).

From /(c 0 , v±(co))<0 for μ = μ 2 , it follows that F(£,'c;'λ, μ2)=^r0 in a small
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neighborhood of (£*(c0), c0). Thus, there are four smooth simple curves A3, A5,

A6 and Aγ in Γwith the properties that i) P2 and P5 are connected by A5 and P6

and P1 by Al9 on which F^O, ii) Px and P2 are connected by A3 and P5 and P6

by A6, iii) the curve made of AZ9 A5, A6 and AΊ is a simple closed one in T. Then,

by (5.4), 0^deg(F, A3, 0)=deg(F, A69 0). Thus, there exists the connected

component S of solutions of (2.4)-(2.6) in T. It is also seen that S n 3T=

{(£_(l/λ), 1/λ), (£+(c), c)}. Case (C) is similarly proved. Finally, we show that

the connected component S in each case is generically a one-dimensional sub-

manifold in Γ, i.e., it consists of smooth curves which do not interesect one another

in Γ. From (5.1), we can see that (δ/dλ)F(E9 c; λ9 μ)\λ=0 is equal to

— \ c 2 ( l + α φ c ; E, c)Y2dx which is not equal to zero in T. From Theorem 3.9

in [14], therefore, it follows that S is generically a one-dimensional submanifold
in 7. I

Theorem 2 can be proved in a similar way to Theorem 1, so we omit the

proof.

When (A, μ) belongs to (A), the nonlinearities of / and g are qualitatively

analogous to those in Mimura, Tabata and Hosono [13], who treated prey-

predator systems. Therefore, Theorem 5 and incidentally Theorem 3 can be

proved by using Theorem 2 in [14]. We first prove Theorem 6.

PROOF of THEOREM 6.

It is expected that w(x) is almost constant but v(x) has a boundary layer at

x = l for sufficiently small D, β. Following the approach by Hosono [7], we

construct boundary layer solutions. For some £>0, let us divide / into two

subintervals / 1 = ( 0 , 1 — ̂ ), / 2 = ( 1 — -β, 1) and consider two boundary layer

problem:

(5.7)
wx(0) = υx(0) = 0,

and

_ ' xel2,

(5.8) ~ Vχx + 9 W ' V '
w(l — £) = ξ9 v(l — £) = t/0(ί),

, wx(ϊ) = vx(ϊ) = 0, v(ί) = yy,

where ξ, η are positive constants. The relation of ξ, η,Dto£ will become clear later.
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By the transformation y=x/(l — £)9 (5.7) is written as

(5.9)

I w/0) = vy(0) = 0, w(l) = ξ, t>(l) = vo(ξ)9

where /(w, ϋ)=(l-^) 2 /(w, v) and ^(w, t;) = (l-f) 2 0(w, t;). In the limit D i 0,

the second equation of (5. 9) is formally reduced to 0=g(w, v), from which we take

v = 0. Substituting it into the first equation, we have

(5.10) 0 = wyy + βf(w, 0), yeϊ9

wy(0) = 0,

LEMMA 5. For any fixed ξ0, ξx ( l/2A<ξ o <lM<ξi) « n d ^>0» (5.10) has
a unique monotone solution wo(y; £, ξ, β) satisfying

(5.11) - ^ ^ w o ( l ; ^ ξ , ^ ) ] > 0 for ξ0 < ξ < ξv

PROOF. Let w(y; a, β) be a solution of the first equation in (5.10) subject

to w(0) = α, w/0)=0. Fix ξθ9 ξx satisfying 1/2A < ξ0 < I/A < ίx and J?> 0 and take

α0, at ( l /2A<α o <lM< α i ) such that w^; aθ9 β) (resp. w(j; α l 5 /?)) is strictly

monotone decreasing (resp. increasing) and w(l; α0, β) = ξ0 (resp. w(l; α l 5 )?) =

ξx). Then we know that if α~,a_ are chosen to satisfy aί>a~>a->aQ,

w(y9 α", )?)>>v();; α_, β)>\βλ holds for any ye/, which shows the existence of

a unique solution woθ>; C9 ξ, β) of (5.10). We will show (5.11). Let a(ζ) be

a(ξ) = wo(l9 £9 ξ, β) and write wo(y9 £9 ξ9 β) as wo(y; a{ξ)) simply. Note that

Θ(y> ζ)=(S/da)wo(y'9 a(ξ)) is a strictly monotone increasing function, because

it satisfies

( Θyy=-fw(wo(y;a(ζ))90)Θ yel9

{ Θy(0) = 0, θ( l ) = 1.

which shows (5.11). |

Thus, we obtain an outer solution (w, v)=(wo(y; £, ξ, β)9 0) of (5.9) in the
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limit D i 0. When D is not zero, one can expect from the boundary condition

v(l) = vo(ζ) that there occurs a boundary layer at y = ί. In order to obtain a

lowest approximation to the solution of (5.9) in the whole interval, we consider

the boundary layer equation derived from the second equation of (5.9) by using

the stretched variable η = (l—y)lε (we put £> = ε2 for simplicity),

ί 0 = zηη + g(ξ, ί)9 (-oo<ι/<0),

I
From Lemma 2.1 in Fife [2], we know

LEMMA 6. Fix arbitrarily £o,ξθ9ξ1 satisfying 0<£0<l

77ί£?« (5.12) has a unique monotone solution £(η £, ξ)for 0<£<£0 and ξ0<ξ <ξ1%

Furthermore, £, 2η exponentially decay uniformly in 0<£<£0 and ξo<ζ<ζi

as η-> — oo.

Using a C00 cutoff function ζ(t) satisfying ζ = l(θ<t<^\ ζ = 0 (*>γ\ w e

define z(y; ε, £, ξ)by z(y; ε, £, ξ) = £((l -y)f*\ £, ξ)ζ(l - y ) . Thus, we obtain the

lowest approximation (w°, v°) = (wo(y; £, ξ9 /?), z(y; ε, £, ξ)) to the solution of

(5.9). We then seek a pair (r, s) such that w(1) = w°4-r, v(ί) = v° + s become an

exact solution of (5.9). Since this was done in [13, Lemma 4.3], we only state

the result.

LEMMA 7. There exist &$, β0 such that (5.9) has a solution (w(1), v(1)) for

0<ε<ε0 and 0<β<βo which satisfies

(i) i|w(1) -

(ii) ||t;(1) - v°\\cϊo(n >0, ( ε » 0 ) ,

uniformly in £ (0<£<£0) and ξ ( ξ o < ^ < ^ 1 ) , where H2(I) is the Sobolev space

with the norm

and Clo(l) is the space of 2-times continuously differentiable functions on I

with MJC(0) = 0 = M(1) and with the norm

u(x)\ .

REMARK 2. From (ii) of Lemma 7, we find that
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We next consider (5.8). By the transformation y = (;c-l)/^ + l, (5.8) is

reduced to

ye I,
(5 13) \0 = δvyy + 9(w,v),

, w/1) = vy(l) = 0, I<1) = η,

where δ = D/£2. Assume D and £ satisfy (5 = O(l) as £ | 0. It turns out that,

when £ I 0 (or D j 0) in (5.13), w(y) = ξ and then v satisfies

[ 0 = δvyy + g(ξ9v), yel,
(5.14)

[ t<0) = vo(ξ), v(l) = η, vy(ί) = 0.

Here we look for a pair (<5, v) satisfying (5.14) for a given η.

LEMMA 8. Fix arbitrarily ξ satisfying l<ξ<c0. For any η (vo(ξ)<η<

v+(ξ))9 there uniquely exists "a monotone increasing solution v2(yi η, ζ) of (5.14)

with δ=δo(η, ξ\ where

PROOF. It follows from (5.14) that

f dτ- Γ
The lemma is proved by using this representation. |

Thus, we find the lowest approximation to the solution of (5.13),

(w, f?) = (£, v2(y; η, ξ)) for δ = δo(ξ, η).

Let us seek a solution (<5, w(2), ^(2)) of the problem (5.13) which takes the form

δ = δo(η, ξ) + t,

τ> ^ , ^ 5 ί, J5) = ξ +..r(y; τ, ^ y/, ξ, β),

where (r, s) is a remainder to be determined. From (5.13), we know that (r,

satisfies
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f R2(r, s; τ, $, η, ξ, β) = rn + £2βf(ξ + r, v2 + s) = 0,
(5.15)

I S2(r, s; τ, 4, η, ξ, β) = (δo + τ)(v2+s)yy + g(ξ + r, v2+s) = 0,

with the

(5.16)

(5.17)

Set

boundary

ί K0) =

I ry(ί) -
s(l) =

conditions

5(0) =

= s/1)

0.

0,

= 0,

T2(t; x, 4, η, ξ, β) = (R2(f, τ, t, η, ξ, β), S2(ί; τ, /, η, ξ, β))

with ί=(r, s). We first consider the problem (5.15), (5.16). That is, we look
for a solution ίe(C§(/))2 satisfying T2=0, where Cl(I) is the space of 2-times
continuously differentiable functions on / with «(0) = ux(l) = 0.

LEMMA 9. Let β>0, ί<ξ<c0 and vo(ξ)<η<v+(ξ) be arbitrarily fixed.
( i ) T2 = T2(t; τ, £) is a continuously diffentiable mapping from (Cg(/))2xR2

into (C°(/))2,
(ii) Γ2(0;0,0) = 0,
(iii) Γ2t(0; 0, 0) is an isomorphism of (Cg(/))2 onto (C°(/))2,
where T2t is the Frechet derivative of T2.

PROOF, (i), (ii) are obvious. We only show (iii). T2t(0; 0, 0) is described
by

ί (£T
72,(0; 0,0) =

The operator (d/dy)2 is an isomorphism of C§(/) onto C°(I). On the other hand,
Lemma 8 shows that Φ(y) = (dldy)v2(y9 η9 ξ) is positive and satisfies

) = 0.

Thus we find the other solution φ(y) independent of φ(y)

which satisfies Lδoψ=0, ^(1) = 0 and lim^ 0 ψ(y) = — l/φ'(0). Using two functions
φ, ψ, we can construct the bounded Green's kernel of the operator Lδo, which
shows that Lδo is an isomorphism. |
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Thus, from Lemma 9 we can apply the implicit function theorem to Γ2 = 0.

LEMMA 10. Let Bq = {(τ9 ^ ) e R 2 | | τ | < g , 0<£<q}. There exist a positive

number q0 and a unique continuous mapping ί(τ, β) from Bqo into R2 such that

( i ) ί(0,0) = 0,

(ii) Γ2(ί(τ, £), τ, £) = 0,

(iii) ί(τ, ^)

Thus, we obtain the solution (w(2), v(2)) of (5.8) in the absence of vi2)(ΐ) = η.

We next give the relation between τ and ϋ to satisfy v(2)(l) = η i.e. 5(1; τ,

£, η, ζ, β) = 0. Rewrite the second equation of (5.15) as

(5.18) 0 = Lδos + gu(ξ, v2)r + τ(v2 + s)yy + Ng(r, s),

where Lδo = δ0(dldy)2 + gυ(ξ, v2) and Ng is the higher order term. Since Lδo is

invertible from C§(/) into C°(/)5 (5.18) is rewritten as

(5.19) s = L-δίl-gu(ξ, v2)r - τ(f;2 + s ) w - Ng(r, 5)].

On the other hand, the first of (5.15) is written as

(5.20) r = -L-1l

in which we used the fact that L = (djdy)2 is invertible from Cg(/) into C°(/).

By using (5.20), (5.19) becomes

(5.21) s = L-δϊlgu(ξ, v2)(L-'[£2βf(ξ9 v2) + ^2j3N /(r, s)])

- τ(t;2H-s)yy - N / r , s)],

where JVy is the higher order term. Define Ξ(τ, ^) by Ξ(τ, ^) = s(l; τ, ^, η, ξ, β)

for fixed η9 ξ and J5.

LEMMA 11. Ξ(τ, ^) is α mapping from Bqo into R vv/iic/? satisfies

(i) H(0,0) = 0,

(ϋ)

PROOF. Since s(y; 0, 0 )=0 from (i) of Lemma 10, (i) is obvious. Noting

that t=0(|τ| + \£2\) ((iii) of Lemma 10), we find

B(0, 0) = - L ϊ oi[(^-)2,,2(l 0, 0, ξ. η,

which gives (ii).
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LEMMA 12. Consider the equation Ξ(τ, £) = 0. Then there exist £0 such

that Ξ(τ, £) = 0 has a unique solution τ(£) with τ(0)

PROOF. The proof is achieved by using the standard implicit function

theorem. |

Thus, we have

LEMMA 13. Let β>09 l<ξ<c0 and vo(ξ)<η<v+(ξ) be arbitrarily fixed.

Then there exists £0>0 such that, for δ(£; η, ξ) = δo(η9 ξ) + τ(£; η, £), (w(2)0>;

τ(£; η9 ξ)9 £, η9 ξ9 β)9 v(2)(y; τ(£; η, ξ)9 £9 η9 ξ9 β)) is a unique solution of (5.8)

which satisfies

uniformly in η and ξ.

REMARK 3. From Lemma 13, it follows that

(i) l i m £ i O i ^

(ii) ]imgi0 *(*%&- ) Z = δ0(η9ξ)-i\η g(ξ,s)ds.
2 \ ay o/ J(ξ)

Lemmas 7 and 13 construct the solutions (w(1), v(ί)) and (w(2), ϋ( 2 )) of the

problems (5.7) and (5.8) respectively. Therefore, in order to complete the proof

of Theorem 6 we determine two parameters η and ξ so that these two functions

are matched in the C^sense. Noting D = ε2 = δ£2

9 we write w(1), t;(1) as

w( 1 )(x; £9 ξ9 β), v(1)(x; £9 ξ9 β), respectively. From Lemmas 7 and 13, we know

w ( 1 ) ( l - 4 ; S, ξ, β) = w ( 2 ) ( l - 4 ; t, η, ξ, β) = ξ,

v(ί)(l-£ 9 £9 ξ9 β) = υm(l-£; £9 η9 ξ9 β) = vo(ξ).

Define Φ, Ψ by

Φ(£9 η9 ξ9 β) = ^ w ( 1 ) ( l - < ; £9 ξ9 β) ~ ^ - w ( 2 ) ( l - ^ ; £, ξ9 β)9

Ψ(£9 η9 ξ9 β) = *^(t-*-Όw(\-i\ £9 ξ, /I)) 2 - (£jt-υm(l-tι £9 ξ9 ^

respectively. When £ | 0 and ξ-+l/λ, it follows that by Lemma 5,

(5.22) Φ(0, η9 l/λ9 β) = *j£ wo(l 0, I/A, β) = 0

and by Remarks 2 and 3
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(5.23) Ψ(0, η, 1/λ, β) = - δo(η, I/A)"1 (" g(l/λ9 s)ds.
Jo

Here we determine 7̂ = ̂ 7* by

f V )ds = 0.
Jo

Furthermore, it follows that by Lemma 5,

(5.24) -^-*(0, η, 1M, β) = ^ - ( - ^ o ( l ; 0, £, j»))| ^ ^ > 0

and by (5.14),

(5.25) Aιp(o, ,,*, 1/λ, /?) = -

because g(l/λ, η*)>0. Thus, we can apply the implicit function theorem pres-

ented by Fife (Theorem 4.3 in [3]) to the problem Φ= Ψ = 0, and then we conclude

that for sufficiently small £ (>0) there exist η(£), ξ(£) such that

(5.26) Φ(£, η{£\ ξ(£)9 β) = Ψ(£,.η(£)9 ξ(£)9 β) = 0

and

Thus, we can prove the existence of an ^-family of (w(x; £9 β), v(x; £, β)) satisfying

(2.2), (2.3) with D = D(£).

Finally we show that there exist £ί9 βt such that w, v obtained in the above

are nonnegative functions on / for 0<£<£l9 0<β<βx.

It suffices to show the nonnegativity of v. For sufficiently small.£, we find

that v(x)>0 in a neighborhood of x = l. Presuppose that v(x)<0 for some

x ( < 1). Then, there is x 0 e I such that v(x0) = 0, υx(x0) ^ 0. vx(x0) = 0 is excluded

because of the uniquness of the solution. Therefore f x (x o )>0, which, together

with the boundary condition, implies the existence of x 1 ^ 0 such that ι? J t(x i)^0,

v(x)<0 for x 1 < x < x 0 . Thus, integrating the second equation of (2.2) with

respect to x, we have

^ £.- [X°g(w9v)dx.
JXί

Noting g(w9 v)>0 for sufficiently small £ and β, we know vx(x0)<0, which is

contradiction. •



446 Masayasu MIMURA, Yasumasa NISHIURA, Alberto TESEI and Tohru TSUJIKAWA

PROOF of THEOREM 4.

In order to construct a boundary layer solution, we divide / into two sub-
intervals /!=(0, l-£)9 I2=(l-£, 1) and for fixed w = c, consider the following
two boundary layer problems for v:

jce/ l5

χel29

where η is a positive constant. (5.27), (5.28) can be solved in a similar way to the
proof of Theorem 6. Then it turns out that the solutions vt of (5.27) and υ2 of
(5.28) are functions of (η, c, £) on It and J2, respectively. Next we determine two
parameters η and c as functions of £ so that υ1 and υ2 are matched in C1 -sense and
vl9 v2 and c satisfy (2.4). To do so, consider the equations

Φfo, c, £) = Γ"V(c, vx)dx + Γ /(c, ϋ2)dx = 0,
JO Jl-i

(5.27)

and

(5.28)

J O - Dvxx

Dvxx

+

+ g(c,

V)

υ)

Ψ(η9 c, £) = y [ (^^ i ( l -^ ; ^ c, £)J - (^v2(l-£; η, M))2] = 0.

These equations can be solved similarly to (5.26), so we omit the details. |

6. Conclusion

We have shown that there exist non-constant solutions of (2.2), (2.3) when
D, β are sufficiently small. In the case when (A, μ) belongs to (A) Π (III) (for
instance, see Theorem 1) we constructed two different types of singularly perturbed
solutions when D is small. One is of internal transition layer type and the other
is of boundary layer type (Figures 4 and 5). As expected from the case β = 0
(Theorem 3), we address ourselves to an interesting question "Is there any inter-
relation between these two solutions?". By numerical computations, we observe
that there is the global branch of the solution (D, w, v) in the space X = Tl+x
C2(I) x C2(/), connecting the two singular perturbed solutions, being separated
from the constant solution branches (Z), I/A, 0), (Z), 0, 1) (Figure 6). Furthermore
it is numerically observed that the solution of internal transition layer type is
thought to be stable and the one of boundary layer type is thought to be unstable
(Figure 7). Though the problem is different from the competitive type, we should
refer to the recent works on prey-predator type by Fujii et al. [4], Nishiura [15]
[16], Fujii and Nishiura [5] from a global bifurcation point of view, and Aronson,
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(0,1)

(ii)

Figure 6a. The spontaneous bifurcation with respect to D. A solid line represents an
internal transition layer solution and a dashed line a boundary layer one.

1 0

(i)

1 0

(in

1 0

(iii)

•

u

0 I (

V

1

(v)

Figure 6b. Spatial patterns of u and v when D varies. α=5, β = l9 Λ=0.68, μ = \.2
(this case corresponds to case (III)) and (i) D=0.005, (ii) D=0.004, (iii), (iv)
Z>=0.001, (v) £=0.0.
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Figure 7. Spatio-temporal profiles of solution of (1.1).
correspond to the case (iii) in Figure 6b.

The values of the coefficients

Tesei and Weinberger [1] for the stability on non-constant solutions of (2.2),
(2.3) with D = 0. Finally, we would like to conclude that even in the situation
where the inter-specific competition is stronger than the intra-specific one, the
system treated in this paper exhibits coexistence of two competing species on the
basis of suitable cross-population pressure.

References

[ I ] Aronson, D. G., Tesei, A.: Weinberger, H., On a simple density-dependent diffusion
system. Preprint (1983).

[ 2 ] Fife, P. C.: Semilinear elliptic boundary value problems with small parameters. Arch.
Rational Mech. Anal. 52, 205-232 (1973).

[ 3 ] Fife, P. C.: Boundary and interior layer phenomena for pairs of second-order differential
equations. J. Math. Anal. Appl. 54, 497-521 (1976).

[4] Fujii, H., Mimura, M., Nishiura, Y.: A picture of the global bifurcation diagram in
ecological interacting and diffusing systems. Physica D 5D, 1-42 (1982).

[5] Fujii, H., Nishiura, Y.: Global bifurcation diagram in nonlinear diffusion systems.
Mathematic Studies, Lecture Notes in Num. Appl. Anal. 5, 17-35 (1982) Kinokuniya-
North Holland.

[ 6 ] Gause, G. F.: The struggle for existence. Baltimore. William and Wilkins Co. (1934).
[ 7 ] Hosono, Y.: Existence of unstable spatially inhomogeneous solutions of reaction-

diffusion equations. Appl. Anal. Seminar in Hiroshima Univ. (1983).
[ 8 ] Hsu, S. B.: On general two-species competition model with diffusion. Preprint (1983).
[ 9 ] Kishimoto, K.: Instability of non-constant equilibrium solutions for a system of

competition-diffusion equations. J. Math. Biol. 13 105-114 (1981).
[10] Levin, S. A.: Dispersion and population interactions. Amer. Nature. 108, 207-228

(1974).
[II] Matano, H., Mimura, M.: Pattern formation in competition-diffusion systems in non-

convex domains. Publ. RIMS. Kyoto Univ. 19, 1051-1081 (1983).
[12] Mimura, M., Kawasaki, K.: Spatial segregation in competitive interaction-diffusion

equations. J. Math. Biol. 9, 49-68 (1980).
[13] Mimura, M., Tabata, M., Hosono, Y.: Multiple solutions of two-point boundary value



Competing species models with density-dependent diffusion 449

problems of Neumann type with a small parameter. SIAM. J. Math. Anal. 11, 613-631

(1980).

[14] Nishiura, Y.: Global structure of bifurcating solutions of some reaction-diffusion systems.

SIAM. J. Math. Anal. 13, 555-593 (1982)

[15] Nishiura, Y.: Global structure of bifurcating solutions of some reaction-diffusion

systems and their stability problem. Computing Methods in Applied Sciences and

Engineering, 5, eds. Glowinski, R and Lions, J. L., North-Holland (1982).

[16] Nishiura, Y.: Every multi-mode singularly perturbed solution recovers its stability.

to appear in the proceeding of "workshop on modelling of patterns in space and time",

ed. Jager, W.

[17] Shigesada, N., Kawasaki, K., Teramoto, E.: Spatial segregation of interacting species.

J. Theor. Biol. 79, 89-99 (1979).

*Department of Mathematics,

Faculty of Science,

Hiroshima University
tτDepartment of Computer Sciences,

Kyoto Sangyo University
tt1[Facoltά di Ingegneria

II Universitά Degli Studi di Roma






