HIROSHIMA MATH. J. 14 (1984), 407–413

Locally finite simple Lie algebras

Shigeaki TôGô

(Received January 14, 1984)

In the study of infinite-dimensional Lie algebras, the notions of ascendant subalgebras and serial subalgebras are fundamental. The notions generalizing these ones, weakly ascendant subalgebras and weakly serial subalgebras, were introduced and investigated in [7] and [2]. On the other hand, taking account of a result of Levič [5], a recent result of Stewart [6, Theorem 8] is expressed as follows: A locally finite Lie algebra over a field of characteristic 0 has no nontrivial ascendant subalgebras if and only if it has no non-trivial serial subalgebras.

In connection with these, we shall mainly study locally finite simple Lie algebras over a field \mathfrak{k} of arbitrary characteristic. Actually there exist locally finite simple infinite-dimensional Lie algebras (Example 3).

In Section 2, we shall show that for a locally finite Lie algebra L over \mathfrak{k} , if H wser L then $H/\operatorname{Core}_{L}(H)$ is locally nilpotent (Theorem 5). We shall use this to give a simple proof and a refinement of Stewart's result stated above (Theorem 7).

In Section 3, we shall show that for a locally finite non-abelian simple Lie algebra L over \mathfrak{k} , if H wser L and $H \neq L$ then any finite-dimensional subalgebra of H belongs to $\mathfrak{e}^*(L)$, and

$$\bigcup \{H | H \text{ wser } L, H \neq L\} = \bigcup \{H | H \text{ wase } L, H \neq L\}$$
$$= \bigcup \{H | H \leq ^{\omega}L, H \neq L\} = \bigcup \{H | H \leq L, H \in \mathfrak{e}^{\ast}(L)\} = \mathfrak{e}(L)$$

(Theorem 10). As a consequence of this we shall show that a locally finite nonabelian Lie algebra L over f has no non-trivial weakly ascendant subalgebras if and only if L has no non-trivial weakly serial subalgebras, if and only if L is simple with $e^*(L) = \{0\}$, and if and only if L is simple with e(L) = 0 (Theorem 11).

1.

Throughout this paper, \mathfrak{k} is a field of arbitrary characteristic unless otherwise specified, and L is a not necessarily finite-dimensional Lie algebra over \mathfrak{k} . When H is a subalgebra (resp. an ideal) of L, we denote $H \leq L$ (resp. $H \triangleleft L$).

Let $H \le L$. For an ordinal ρ , H is a ρ -step weakly ascendant subalgebra (resp. a ρ -step ascendant subalgebra) of L, denoted by $H \le {}^{\rho}L$ (resp. $H \triangleleft {}^{\rho}L$), if

there exists an ascending chain $\{H_{\sigma}|\sigma \leq \rho\}$ of subspaces (resp. subalgebras) of L such that

- (1) $H_0 = H$ and $H_o = L$,
- (2) $[H_{\sigma+1}, H] \subseteq H_{\sigma}$ (resp. $H_{\sigma} \triangleleft H_{\sigma+1}$) for any ordianl $\sigma < \rho$,
- (3) $H_{\lambda} = \bigcup_{\sigma < \lambda} H_{\sigma}$ for any limit ordinal $\lambda \le \rho$.

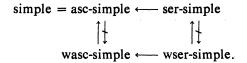
H is a weakly ascendant subalgebra (resp. an ascendant subalgebra) of *L*, denoted by *H* wasc *L*. (resp. *H* asc *L*), if $H \le {}^{\rho}L$ (resp. $H \triangleleft {}^{\rho}L$) for some ordinal ρ . When ρ is finite, *H* is a weak subideal (resp. subideal) of *L* and denoted by *H* wsi *L* (resp. *H* si *L*).

For a totally ordered set Σ , H is a weakly serial subalgebra (resp. a serial subalgebra) of type Σ of L, denoted by H wser L (resp. H ser L), if there exists a collection $\{\Lambda_{\alpha}, V_{\alpha} | \sigma \in \Sigma\}$ of subspaces (resp. subalgebras) of L such that

- (1) $H \subseteq \Lambda_{\sigma}$ and $H \subseteq V_{\sigma}$ for all $\sigma \in \Sigma$,
- (2) $\Lambda_{\tau} \subseteq V_{\sigma} \subseteq \Lambda_{\sigma}$ if $\tau < \sigma$,
- (3) $L \setminus H = \bigcup_{\sigma \in \Sigma} (\Lambda_{\sigma} \setminus V_{\sigma}),$
- (4) $[\Lambda_{\sigma}, H] \subseteq V_{\sigma} (\text{resp. } V_{\sigma} \triangleleft \Lambda_{\sigma}) \quad \text{for all } \sigma \in \Sigma.$

Then any weakly ascendant (resp. ascendant) subalgebra of L is weakly serial (resp. serial).

Let Δ be any one of the relations wasc, \leq^{ω} , asc, were and ser. Then we call a Lie algebra $L \Delta$ -simple if $H\Delta L$ implies H=0 or L. By Example 1 we have the following diagram of implications:



Then there exists a Lie algebra satisfying wser-simplicity (Example 2).

An element x of L is called a left Engel element of L if for any $y \in L$ there exists an integer n = n(x, y) > 0 such that $[y, {}_{n}x] = 0$, and the set of left Engel elements of L is denoted by e(L). Similarly a subset S of L is called a left Engel subset of L if for any $y \in L$ there exists an integer n = n(S, y) > 0 such that $[y, {}_{n}S] = 0$, and the collection of left Engel subsets of L is denoted by $e^{*}(L)$ ([7]).

The Hirsch-Plotkin radical $\rho(L)$ of L is the largest locally nilpotent ideal of L.

A class of Lie algebras is a collection of Lie algebras over \mathfrak{t} together with their isomorphic copies and the 0-dimensional Lie algebra. We denote by $\mathfrak{F}, \mathfrak{F}_1, \mathfrak{N}, \mathfrak{E}, \mathfrak{LF}$ and \mathfrak{LR} the classes of finite-dimensional, 0 or 1-dimensional, nilpotent, Engel, locally finite and locally nilpotent Lie algebras respectively.

LEMMA 1 ([7, Lemma 1]). Let $H \le L$. Then $H \le {}^{\infty}L$ if and only if for any $x \in L$ there exists an integer n = n(x) > 0 such that $[x, {}_{n}H] \subseteq H$.

As an immediate consequence of Lemma 1 we have

408

LEMMA 2. (1) For any $x \in L$, $x \in e(L)$ if and only if $\langle x \rangle \leq \omega L$. (2) For any $H \leq L$, if $H \in e^*(L)$ then $H \leq \omega L$.

LEMMA 3 ([4, Lemma 2.1]). Let H wasc L. Then for a finite subset X of L and finite subsets $Y_1, Y_2,...$ of H, there exists an integer $n = n(X, Y_1, Y_2,...) > 0$ such that $[X, Y_1,..., Y_n] \subseteq H$.

LEMMA 4 ([1, Proposition 13.2.4] and [2, Corollary 2.4]). Let $L \in L\mathfrak{F}$ and let $H \leq L$. Then H wser L (resp. H ser L) if and only if $H \cap F$ wsi F (resp. $H \cap F$ si F) for any finite-dimensional subalgebra F of L.

2.

In this section we shall give a simple proof and a supplement for Stewart's theorem stated in the introduction.

Our key lemma is a special case of the following theorem. For $H \le L$, we denote by $\operatorname{Core}_{L}(H)$ the largest ideal of L contained in H as usual.

THEOREM 5. Let L be a locally finite Lie algebra over a field \mathfrak{t} . If H wser L, then $H/\text{Core}_L(H)$ is locally nilpotent.

PROOF. We may assume $\operatorname{Core}_{L}(H)=0$ without loss of generality. Let \mathscr{S} be the collection of finite-dimensional subalgebras of H and put

$$M = \bigcup \{F^{\omega} | F \in \mathscr{S}\},\$$

where $F^{\omega} = \bigcap_{m=1}^{\infty} F^m$. Then *M* is a subspace of *H*. We assert that $M \triangleleft L$. In fact, let $x \in L$ and $F \in \mathscr{S}$. Then $F(x) = \langle x, F \rangle \in \mathfrak{F}$. By Lemma 4 $H \cap F(x)$ wsi F(x). Put $F_1 = H \cap F(x)$. Then $F \leq F_1 \in \mathscr{S}$ and $[x, {}_nF] \subseteq F_1$ for some *n*. It follows that

$$[x, F^{\omega}] \subseteq [x, \bigcap_{m=1}^{\infty} F^{n+m-1}] \subseteq \bigcap_{m=1}^{\infty} [x, F_{n-1}F]$$
$$\subseteq \bigcap_{m=1}^{\infty} [F_{1, m-1}F] \subseteq \bigcap_{m=1}^{\infty} F_{1}^{m} = F_{1}^{\omega} \subseteq M.$$

Hence $M \triangleleft L$, as asserted. By our assumption we have M = 0 and therefore any $F \in \mathcal{S}$ is nilpotent. Thus $H \in L\mathfrak{N}$.

Furthermore we need the "only if" part of the following

LEMMA 6. Let L be a locally finite Lie algebra over a field of characteristic 0. Then H ser L and $H \in L\mathfrak{N}$, if and only if $H \leq \rho(L)$.

PROOF. If $H \le \rho(L)$, then we use Lemma 4 to see that H ser $\rho(L)$ and therefore H ser L. The converse follows from [1, Theorem 13.3.7].

THEOREM 7. For a locally finite non-abelian Lie algebra L over a field of characteristic 0, the following statements are equivalent:

Shigeaki TôGô

(1) L is simple (= asc-simple).

(2) L is ser-simple.

(3) $\rho(L) = 0$ and $\operatorname{Core}_{L}(H) = 0$ for any serial proper subalgebra H of L.

PROOF. (1) \Rightarrow (3). Let L be simple. If $\rho(L) = L$, then any minimal ideal of L is central by [1, Lemma 7.1.6] and therefore L is abelian. Hence $\rho(L)=0$. Clearly Core_L(H)=0 for any serial proper subalgebra H of L.

(3) \Rightarrow (2). Assume (3) and let *H* ser *L*, $H \neq L$. Then by Theorem 5 $H \in L\mathfrak{N}$. It follows from Lemma 6 that H=0. Hence *L* is ser-simple.

 $(2) \Rightarrow (1)$ is obvious.

3.

In this section we shall investigate weakly ascendant and weakly serial subalgebras of locally finite Lie algebras.

We begin with the following

PROPOSITION 8. Let L be a Lie algebra over a field t.

(1) Let H wasc L. If $H \in \mathfrak{L}\mathfrak{N}$ then any finite-dimensional subalgebra of H belongs to $\mathfrak{e}^*(L)$ and if $H \in \mathfrak{E}$ then any element of H belongs to $\mathfrak{e}(L)$.

(2) Let \mathfrak{X}_i (i=1, 2) be any classes of Lie algebras such that $\mathfrak{F}_1 \leq \mathfrak{X}_i \leq \mathfrak{E}$. Then the following subsets of L coincide each other:

- a) $\bigcup \{H | H \text{ wasc } L, H \in \mathfrak{X}_1\},\$
- b) $\cup \{H | H \leq ^{\omega} L, H \in \mathfrak{X}_2\},\$
- c) $\cup \{H | H \leq L, H \in \mathfrak{e}^*(L)\},\$
- d) e(L).

PROOF. (1) In case $H \in L\mathfrak{N}$, let F be any finite-dimensional subalgebra of H and let $x \in L$. Then by Lemma 3 there exists an integer $n = n(x, F) \ge 0$ such that $[x, {}_{n}F] \subseteq H$. Since $H \in L\mathfrak{N}$, $\langle F, [x, {}_{n}F] \rangle \in \mathfrak{N}$. It follows that $[x, {}_{n+m}F] = 0$ for some m. Hence $F \in \mathfrak{e}^*(L)$.

In case $H \in \mathfrak{E}$, let $y \in H$ and let $x \in L$. Then by Lemma 3 there exists an integer $n = n(x, y) \ge 0$ such that $[x, y] \in H$. It follows that [x, y+y] = 0 for some *m*. Hence $y \in \mathfrak{e}(L)$.

(2) Denote by A_{x_1} , B_{x_2} and C the sets in a), b) and c) respectively. Then by Lemma 2 we have

$$\begin{array}{ll} A_{\mathfrak{E}} \supseteq A_{\mathfrak{X}_1} \supseteq A_{\mathfrak{F}_1} \\ \cup & \cup \\ B_{\mathfrak{E}} \supseteq B_{\mathfrak{X}_2} \supseteq B_{\mathfrak{F}_1} \supseteq C = \mathfrak{e}(L) \,. \end{array}$$

But by (1) we have $A_{\mathfrak{E}} \subseteq \mathfrak{e}(L)$. Hence we have the statement.

410

PROPOSITION 9. Let L be a locally finite Lie algebra over a field \mathfrak{k} .

(1) Let H wser L. If $H \in \mathfrak{L}\mathfrak{N}$ then any finite-dimensional subalgebra of H belongs to $\mathfrak{e}^*(L)$ and if $H \in \mathfrak{E}$ then any element of H belongs to $\mathfrak{e}(L)$.

(2) Let \mathfrak{X}_i $(1 \le i \le 3)$ be any classes of Lie algebras such that $\mathfrak{F}_1 \le \mathfrak{X}_i \le \mathfrak{E}$. Then the following subsets of L coincide each other:

- a) $\bigcup \{H | H \text{ wser } L, H \in \mathfrak{X}_1\},\$
- b) $\cup \{H | H \text{ wasc } L, H \in \mathfrak{X}_2\},\$
- c) $\cup \{H|H \leq \omega L, H \in \mathfrak{X}_3\},\$
- d) $\cup \{H|H \leq L, H \in \mathfrak{e}^*(L)\},\$
- e) e(L).

PROOF. (1) In case $H \in L\mathfrak{N}$, let F be any finite-dimensional subalgebra of H and let $x \in L$. Then $F_1 = \langle F, x \rangle \in \mathfrak{F}$. By Lemma 4, $H \cap F_1$ wsi F_1 . Hence $[x, nF] \subseteq H \cap F_1$ for some n. Put $G = \langle F, [x, nF] \rangle \leq H$. Then $G \in \mathfrak{N}$ and therefore [x, n+mF] = 0 for some m. Thus $F \in \mathfrak{e}^*(L)$. In case $H \in \mathfrak{E}$, $H \in L\mathfrak{F} \cap \mathfrak{E} \leq L\mathfrak{N}$ and therefore it follows that any element of H belongs to $\mathfrak{e}(L)$.

(2) Denoting by $A_{\mathfrak{X}_1}$ the set in a), we have $A_{\mathfrak{G}} \supseteq A_{\mathfrak{F}_1} \supseteq \mathfrak{e}(L)$ by Lemma 2 and $A_{\mathfrak{G}} \subseteq \mathfrak{e}(L)$ by (1). Hence $A_{\mathfrak{X}_1} = \mathfrak{e}(L)$. Owing to Proposition 8, we have the statement.

Now we can show a structure theorem of locally finite simple Lie algebras.

THEOREM 10. Let L be a locally finite non-abelian simple Lie algebra over a field \mathfrak{k} .

(1) If H were L and $H \neq L$, then any finite-dimensional subalgebra of H belongs to $e^{*}(L)$ and any element of H belongs to e(L).

(2) Let \mathfrak{X}_i $(1 \le i \le 3)$ be any classes of Lie algebras such that $\mathfrak{F}_1 \le \mathfrak{X}_i \le \mathfrak{E}$. Then the following subsets of L coincide each other:

- a) $\cup \{H | H \text{ wser } L, H \neq L\},\$
- b) $\cup \{H | H \text{ wasc } L, H \neq L\},\$
- c) $\cup \{H|H \leq \omega L, H \neq L\},\$
- d) $\cup \{H | H \text{ wser } L, H \in \mathfrak{X}_1\},\$
- e) $\cup \{H | H \text{ wasc } L, H \in \mathfrak{X}_2\},\$
- f) $\cup \{H|H \leq \omega L, H \in \mathfrak{X}_3\},\$
- g) $\cup \{H|H \leq L, H \in \mathfrak{e}^*(L)\},\$
- h) e(L).

PROOF. If H wser L and $H \neq L$, then $H \in L \mathfrak{N} \leq \mathfrak{E}$ by Theorem 5. Hence, denoting by A, B, C and $D_{\mathfrak{X}_1}$ the sets in a), b), c) and d) respectively, we have $D_{\mathfrak{K}} \supseteq A \supseteq B \supseteq C \supseteq \mathfrak{e}(L)$. Thus the statement follows from Proposition 9.

As immediate consequences of Theorem 10 we have

THEOREM 11. Let L be a locally finite non-abelian Lie algebra L over a

Shigeaki TôGô

field t. Then the following statements are equivalent:

- (1) L is wser-simple.
- (2) L is wasc-simple.
- (3) L is \leq^{ω} -simple.
- (4) L is simple and $e^{*}(L) = \{0\}$.
- (5) L is simple and e(L)=0.

THEOREM 12. For a locally finite Lie algebra L over a field t, the following statements are equivalent:

- (1) L is wser-simple.
- (2) L is wasc-simple.
- (3) L is \leq^{ω} -simple.

4.

EXAMPLE 1. Let L be the Lie algebra over a field of characteristic $\neq 2$ with basis $\{x, y, z\}$ such that [x, z]=2x, [y, z]=-2y, [x, y]=z. Then L is asc-simple and ser-simple. Since $\langle x \rangle$ wsi L, L is neither wasc-simple nor wser-simple.

EXAMPLE 2. Let L be the Lie algebra over a formal real field with basis $\{x, y, z\}$ such that [x, y] = z, [y, z] = x, [z, x] = y. Then L has no non-trivial weak subideals ([3, Example 4.3]). Hence L is wasc-simple and wser-simple.

EXAMPLE 3. For any integer $n \ge 2$, a matrix in $\mathfrak{sl}(n, \mathfrak{k})$ may be regarded as a matrix in $\mathfrak{sl}(n+1, \mathfrak{k})$ with the n+1 th row and column consisting of 0. Thus $\mathfrak{sl}(n, \mathfrak{k}) \subseteq \mathfrak{sl}(n+1, \mathfrak{k})$ ($n \ge 2$). Then $L = \bigcup_{n=2}^{\infty} \mathfrak{sl}(n, \mathfrak{k})$ is a locally finite simple Lie algebra over \mathfrak{k} . In fact, let $H \triangleleft L$ and $H \ne 0$. Then there is an integer m > 0 such that $H \cap \mathfrak{sl}(n, \mathfrak{k}) \ne 0$ for any $n \ge m$. Since $\mathfrak{sl}(n, \mathfrak{k})$ is simple unless the characteristic of \mathfrak{k} divides $n, H \cap \mathfrak{sl}(n, \mathfrak{k}) = \mathfrak{sl}(n, \mathfrak{k})$ and $H \supseteq \mathfrak{sl}(n, \mathfrak{k})$ for such an n. Hence H = L and L is simple. Furthermore, since $\langle e_{12} \rangle \le^2 L$, L is neither wasc-simple nor wser-simple.

References

- [1] R. K. Amayo and I. Stewart: Infinite-dimensional Lie Algebras, Noordhoff, Leyden, 1974.
- [2] M. Honda: Weakly serial subalgebras of Lie algebras, Hiroshima Math. J. 12 (1982), 183-201.
- [3] M. Honda: Joins of weak subideals of Lie algebras, Hiroshima Math. J. 12 (1982), 657-673.
- [4] M. Honda: Joins of weakly ascendant subalgebras of Lie algebras, Hiroshima Math J. 14 (1984), 333-358.

412

- [5] E. M. Levič: On simple and strictly simple rings, Latvijas PSR Zinātņu Akad. Vēstis Fiz. Tehn. Zinātņu Sēr. 6 (1965), 53-58.
- [6] I. Stewart: Subideals and serial subalgebras of Lie algebras, Hiroshima Math. J. 11 (1981), 493-498.
- [7] S. Tôgô: Weakly ascendant subalgebras of Lie algebras, Hiroshima Math. J. 10 (1980), 175–184.

Department of Mathematics, Faculty of Science, Hiroshima University