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§ 1. Introduction

Let G be a classical real linear Lie group, g its Lie algebra and let exp: g-»G
be the exponential map of G. It is now well known the description of conjugacy
classes in G and orbits in g under the conjugation action of G, as seen in the paper
[1] by N. Burgoyne and R. Cushman. In [2], D. Z. Djokovic has studied that
which of conjugacy classes lies in the image of the exponential map, and he
obtained the many results based on the conjugacy classes. It is of interest to
determine which conjugacy classes lie in the interior, boundary or exterior of
exp g in G, for the ordinary topology of g and G. In this paper, we shall observe
this for a special classical group.

In the papers [7] and [8], the author showed the following for G=GL(n, R)
or G = SL(n, R): Let x be an element in G. Then (i) x is an interior point of
exp g in G if and only if x has no negative eigenvalues, (ii) x is a boundary point
of exp g in G if and only if x has negative eigenvalues and the multiplicities of the
negative eigenvalues are all even.

Let O(p, q) be the orthogonal group of the signature (p, q), o(p, q) its Lie
algebra and let O0(p, q) be the connected component of the identity element in
O(p, q). In the paper [9], for p>q>0 the author showed that exp: o(p9 q)->
O0(p9 q) is surjective if and only if g = 0, 1. Hence 0(2, 2) is the simplest one
that exp: o(p, q)-+O0(p, q) is not surjective.

In this paper, we give the complete table for G = 0(3, 2) that shows which of
conjugacy classes lies in the interior, boundary or exterior of exp g in G, and we
also give similar results on 0(2, 2) as a corollary, The main results are Theorem 9
and the corollaries in Section 4. In particular, the boundary of exp o(2, 2) in
0(2, 2) and the boundary of exp o(3, 2) in 0(3, 2) are characterized as follows:

(i) Let x 6 0(2, 2). Then x is a boundary point of exp o(2, 2) in 0(2, 2) if
and only if eigenvalues of x axe all real negative and the multiplicity of each ei-
genvalue of x is even (2 or 4).

(ii) Let x e 0(3, 2). Then x is a boundary point of exp o(3, 2) in 0(3, 2)

if and only if x is conjugate to (Λ /)in 0(3, 2), where x' is a boundary point of

exp o(2, 2) in 0(2, 2).
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Recently D. Z. Djokovic ([3], [4]) determined the closure of an arbitrary
orbit and the closure of an arbitrary conjugacy class, for a classical group. But
it seems, in author's opinion, that his description of the closures of conjugacy
classes does not give every information about the boundary of exp g in G. We
shall explain this in the following example.

EXAMPLE. Let G = GL(2, R) and take χ = ( ~ * _ j \ If there exists an

element y in exp g such that the closure C~ of the conjugacy class C of y con-
tains x, it follows that x is a boundary point of exp g in G. But since the char-
acteristic polynomial of each element in C~ agrees with that of y, the characteristic
polynomials of y and x are equal. Furthermore y e exp g. Hence the Jordan

form of y in G is ( ~~Q ___ *) = —1 2 and so C~ = { — J2}. This contradicts the

assumption xeC~. Therefore there exists no y in exp g such that the closure
C~ of the conjugacy class C of y contains x.

Next, we shall show that x in the above example is a boundary point of

expg in G = GL(2, R). Let O<0<π, and put S ( 0 ) = ( π ~ θ J ) , R(θ) =

( ί ! ) τ h e n w e h a v e Hmθ^πS(θ)-1R(θ)S(θ) = x. This procedure~~" sin Ό cos
plays an essential role in this paper. (See [7] and [8] for the relating discussion.)

The author wishes to express his sincere gratitude to Professor K. Okamoto
for his valuable advices.

§ 2. Preliminaries and notation

Let V be a finite-dimensional vector space over the field R of real numbers,
equipped with a non-degenerate symmetric bilinear form τ: VxV-+R. The
orthogonal group, O(V, τ), is the group of linear automorphisms of V preserving
τ and let o(V, τ) be its Lie algebra. Then O(F, τ) is determined up to isomorphism
by the signature (p, q) of τ and so we shall write O(p, q) for O(F, τ). When we
make a basis of V be fixed, we identify V with Rp+q (the column vector space).
Let J be the non-singular symmetric matrix associated with τ. Then we identify
O(F, τ) with O(J), where O(J) is the set of all real matrices A such that <AJA=J.

We shall denote by o(J) the Lie algebra of O(J). Let 1PA be (ip _°j\

where Ip is the identity matrix. Then we note that 0(1Ptq) is isomorphic to O(J)
by the map Te O(IP)q)-+P~tTP e O(J) for some non-singular real matrix P such
that tPlPΛP = J. The pseudo-orthogonal group O(p,q) (that is, p>0 and q>0)

has four connected components O(p, <?)!-, (ε, ε ' = ± ) . Let Γ= (Ίj ΐ*12)\p be

an element of G = O(Ipq). Then the four connected components G\> are given by

Gf, = {Te O(IPiq); σ(det Tx) = ε, σ(det Γ2) = ε'},



Exponential image and conjugacy classes in the group 0(3, 2) 313

where σ(det T() is the sign of the determinant of Γf. We note that Gi = O0(IPtq)
andalsodetΓ=(detT1) (detT2)-1, |det Tt\ = \άet T 2 |>1 (cf. [9]).

For the exponential map exp: o(p9 q) = g->0(p, q) = G, we denote the interior,
closure, boundary and exterior of expg in G by Int(expg), Cl(exρg), δ(exρg)
and (expg)*, respectively. Then it is obvious that expgctGί, δ(expg) =
Cl(exρg)\Int(expg) and (exρg)e=(Gί\Cl(exρg))U Gΐ U G+ U Gl. We note
that exp g, Int (exp g), Cl (exp g), d(exp g), (exp g)e and G\. are all normal subsets
in G=O(p, q).

Here we shall explain an outline in a form convenient for us, about the
meaning and the notation of types introduced by N. Burgoyne and R. Cushman

[1].
Let O(V, τ') be an orthogonal group and let AeO(V9τ)9 BeO{V'9τ').

Then we write (A, F, τ)~(B9 F', τ') if there exists a real linear isomorphism φ
of V onto V such that φΛ = Bφ and τ(u9 v) = τf(φu9 φv) for all u9veV. An
equivalence class for the above equivalence relation " ~ " is called a type. If Γ
denotes a type and (A9 F, τ)eΓ, we put dim Γ=dim F. We denote a Lie group
type by Γ and a Lie algebra type by A. From [1, Prop. 1], the determination of
conjugacy classes is equivalent to the classification of types, that is, for A, Be
O(V, τ), there exists xeO(V9 τ) such that x~ίAx = B if and only if (A, V, τ )~
(2J, V9 τ). Thus, from now on, if A e O(V, τ) and (A, V9 τ) e Γ, we often use Γ in
a sense of the conjugacy class in O(V> τ) of A.

Let AeO(V9 τ) and (A9 V9 τ) e Γ. Suppose that F= Vί + V2 is a τ-orthogonal
disjoint sum of proper ^4-invariant subspaces. Then the groups O(Vi9 τ\Vt) are
well defined and A\ViEθ(Vi9 τ|F£). Let Γf be the type containing (A\Vi9 Vi9 τ|Ff).
Then we set Γ = Γt + Γ 2 .

The type Γ is called indecomposable if it cannot be decomposed as the sum
of two or more types.

Let A e o(V, τ), (A, V, τ)eΔ and let A = S + N be the additive Jordan decom-
position of A9 that is, S9 N e o(V9 τ), 5 is semisimple, N is nilpotent and SN=NS.
If JVm#O and iVm+1=0, m is called the height of A and we write m=htΛ.

Now suppose that A is an indecomposable type with ht A = m. If (/I, F, τ) 6 -d,
set V~ = V/NV and for t eF, put t;~=ι; + iVF. Define /1~ and τ~ by /4~t;~ =
(Ai?)" and τ~(u~9 v~) = τ(u9 N

mv). Of course ^4~=S". Then the proof of
[1, Prop. 2] guarantees the following;

( i ) V" can be regarded as an S-invariant subspace of V and then V can be
regarded as F " +NV~ + —\-NmV~ (direct sum).

(ii) dimJViF"-=dimF- for 0 < i < m , and S = S" + ~- + S~ (m + 1 copies,
direct sum).

(iii) For u = Σ?=o NΓMr and v=Σf=0N
svs9 where ur9υseV~9 τ(u9υ) =

Since τ is symmetric, we note that τ~ is symmetric if m is even, and alternating



314 Mitsuru NISHIKAWA

if m is odd. If ζ9... are eigenvalues of A~ =S~, the indecomposable type A with

ht A = m is written as the form Am(ζ,...). Then dim Am(ζ9...)=(m +1) (number of

eigenvalues £,... of A" with multiplicities counted).

All indecomposable types (of Lie algebra type) for orthogonal groups are

given in [1, p. 349, Table II] as follows: (1) Am(ζ9 - £ , ζ, - 0 , ζΦ ±ζ, (2)

4ΛC, - 0 , C = ^ 0 , (3) 4i(C, - 0 , C = ~ ^ 0 , (4) Ji(0), m even, and

(5) 4,(0, 0),m odd, ( β = ± ) .

Let A be one of the above indecomposable types. Then it follows from

[1, Appendix 2] that 5~ and τ~ associated to a representative (A, V9 τ)eA can

be exactly expressed as follows;

(1) For Am(ζ9 —ζ9ζ9 — 0, where ζ = a + ib9 there exists a basis <e1? e2>

3̂> O of ^~ s u c h that the matrices of S~ and τ~ with respect to the basis are

given by

= / a b N

— b a j

0 - ί

)
a

-b

b \

a )' 1

, τ--l/2

τ-=l/2

'°

\1

,0

- 1

- 1

1\

0/

1

if m is even,

i if m iS odd.

- 1 0/

(2) For Am{ζ9 —ζ)9 there exists a basis {el9fiy of V~ such that S~ and τ~

with respect to the basis are given by

S~ = ( ζ o \ , f" = /• 0 1 \ if m is even, τ" = / 0 I \ if m is odd.

0 —C / . \ 1 . 0 j • V - 1 0

(3) For Aε

m(ζ9 -ζ)9 there exists a basis ( e ^ / i ) of V~ such that S" and τ~

with respect to the basis are given by

S~ = ( 0 -iζ A, τ ^ = ε( -1 0 \ if m is even,

iC o j V o l

τ- =β(/O""Y 0 1 \ if mis odd.

A - 1 0
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(4) For J^(0), m even, there exists a basis <e> of V~ such that S~=Όand

(5) For Am(0, 0), m odd, there exists a basis (eufxy of V such that S~ = 0
a n d τ " = / 0 1\

WO/

For the group O(V9 τ), let ^ e O(V9 τ) and (.4, F, τ) e Γ. Then we can, in a

unique way, write A = SexpN9 where SeO(F, τ), Neo(V9 τ), S is semisimple,

JV is nilpotent and SN = NS. For this nilpotent N, similar terms as the case

o(V9 τ) can be used and similar results of [1] hold. We refer the related results

to T. Iwamoto [5]. All indecomposable types for orthogonal groups can be

obtained by using the Cayley transformation [1, p. 352] from those of the Lie

algebras. An explicit table of all indecomposable types for orthogonal groups is

given in [2, p. 83].

Now we shall again give the following theorem [9, Theorem 1] which is a

convenient form of a part of the main theorem of [1].

THEOREM 1 (N. Burgoyne and R. Cushman). In the group 0{p9 q), or in

the Lie algebra o(p9 q)9 the following statements hold.

(i) Let Γ be a type of O(p9 q). Then the decomposition Γ=Ti+
i» +Γ8

into indecomposable types is unique and we have the relations;

= )dim Γ = dim Γ t +••.•+ dim Γ5

and

where (n+(Γ), n-(Γ)) denotes the signature of Γ. It is noticed that if the signa-

ture of a type Γ is (n+(Γ), n_(Γ)), Γ can be considered as a type in the group

O(n+(Γ\ n_(Γ)) and we have dimΓ = n+(Γ) + n_(Γ).

(ii) Conversely if Γ,,...,ΓS are indecomposable types belonging to the

same family as O(p9 q) satisfying the above restrictions on dimension and n_,

then Γι-\ \-Γs is a well defined type in O(prq).

A type Γ of O(p, q) is said to be an exponential if Γ = exp A for some type A

of the Lie algebra o(p, q) (cf. D. Z. Djokovic [2]). We state the following

theorem which is a theorem in D.Z. Djokovic [2, p. 84] because it is-also -es-

sential for our purpose.

THEOREM 2. A type Γ of O(p, q) is an exponential if and only if the multi-

plicities of the non-exponential ( = exceptional) indecomposable types in Γ are

all even.

REMARK 1. It follows from [2, p. 83] that the non-exponential indecom-
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posable types for 0(p, q) are Γm(λ9 λ"1), λ real, λ<0 and λΦ — 1, and Γ±(—1), m
even.

§ 3. Indecomposable types and conjugacy classes in 0(3, 2)

In Table 1, we list up all indecomposable types A in o(p9 q) arranged in order
of n_(ϋd). We note that an indecomposable type A in Table 1 actually occurs if
and only if n+(A)<p and ri-(A)<q by Theorem 1.

Table 1 (indecomposable types ofo(p, q))

Δ

ΔW)
Δt(ζ, ~ζ)

Δlk - 4(0)
^2*-2(C - 0

^ϊ*-2(0)

^ϊ*-4(C, - 0
J+k_6(0)

Δ*k-3(0, 0)
Δ4k.3(ζ, - 0

^J*-3(C, - 0
^»-a(C, -ζ, t, - D
•^8*-4(0)

^«-2(C. - 0

Δit-i(ζ, - 0
JJ t_2(0)

^4t-l(0»0)

^«-i(C, - 0
Ja.itf, -C, ί, - 0
JJk(0)

4i»(C, - 0

ζ" -ζ

ζ = ζφ

ζ=-ζ

ζ = ζφ

C - - C

c - - c
f r

s — s>

f — — T

^ ±ζ

ζ=-ζ

Φ

0

#

0
Φ

Φ

Φ

0

Φ

Φ

0

0

0

0

0

0

0

n+(Δ)

1
2

2fc-2
2fc- 1

2fc

4k — 4
4fc-3
4fc-2

4fc - 2
4 k - 2
4 k - 2
4fc- 1

4fc

4fc-2
4 k - 1

4k
4fc

4fc
4fc

4k + 1
4k+ 2

0
0

2 k -
2 k -
2 k -

4 f c -
4 f c -
4 f c -
4 f c -
4 k -
4 k -
4 f c -
4 k -

4k
4k
4fc
4k
4fc
4fc

4fc
4fc

0

1
1
1

2
2
.2
2
2
2
2
2

( fc^l)

(e=±)

In particular we shall list in Table 2 all indecomposable types which actually
occur in 0(3, 2).
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Table 2 (indecomposable types <?/0(3, 2))

algebra types Δ

j+(0)

Δ&ζ, - 0
ΔQΦ)

Mζ, -0
Δ-2(0)

MC, -0
J+(0)

Δ^O, 0)

Aχ<£, -0

Δ\(ζ, -0

MC, -ζ, ζ, -ζ)

Δt(0)

ζ=-ζφθ .

ζ = ζΦ0

ζ=-ζΦO

ζ = ζφθ

ζ=-ζφθ

group types Γ

ΓJ(1),ΓS(-1)
ΓZiίλ-1) \λ\ = l,λΦ ± 1

ΓQ(1), Γo(-l)

Γj(l), Γjί-l)

Γz(λ9 λ-1) \λ\ = l,λΦ ± 1

ΓJ(1), ΓJ(-l)
Γt(l9 1), ΓΛ-l, -1)
ΓjίA, A"1) I = AτάA"-1

Γ|(λ, A" 1 ) |A| = 1 , A # ± 1

U(i),rj(-i)

1

2

0

1

2

0

1

2

2

2

2

3

n.

0

0

1

1

1

2

2

2

2

2

2

2

REMARK 2. It follows from Remark 1 that non-exponential indecomposable

types are just Γ J ( - l ) , Γΐ(-1), Π ( ~ l ) , Γ 3 ( - l ) f ΓJ(-1), Γ0(λ9 λ^) and

Γ^A, A"1) where λ real,. λ < 0 and λΦ - 1 .

By Theorem 1 we can now describe in Table 3 all conjugacy classes in 0(2, 2)

and 0(3, 2).

Table 3

(I) All conjugacy classes in 0(2, 2)

(α2) Γ\(λ, A"1) |λ| = 1, λ Φ ± 1

(α3) Γt(A, A"1) l = λφχ-i

(α4) Γ t(l, 1), Γ ^ - l , -1)

Os) ^o(±l) + Π ( ± l )

(α6) Γ^λ, A- 0 + Γό(μ, μ~ι) |A| = |μ| = 1, A ̂  ± 1, μ # ± 1

(α7) Γ}(±1) + Γ}(±1) + Γo(A, A"1) |A| = 1, A # ± 1

(b 2 ) ΓQ^X, A J ) H- Γ0(μ, μ 1 ) /[ = A # A 1 , μ =

(6 ) F+(A A" 1 ) 4- i ^ ~ ( + l ) -f ./"'""(+1) IAI = 1 A # 4- 1

(65)
(Π) All conjugacy classes in 0(3, 2)

;
(c,)
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(c2)
(c3)

± 1
ϊ = λ

Next we shall give the following important table (Table 4) which plays a

practical role in the last section. Since matrix representations of types in O(p9 q)

are determined by those of indecomposable types Γ by Theorem 1, in this table

we give the matrix representations of the indecomposable types in Table 2. If

(A, Rn++n-9 J) is a representative of an indecomposable type Γ in Table 2, where

J is the symmetric matrix indicating the bilinear form, we simply write (A, J) e Γ,

and especially in the case J = In+,„_ we write (A°, J°) for (A, J). (A, J)'s are mainly

described in [6, pp. 486-487]. This notation (A°, J°) is very useful to give

explicitly the representative of each conjugacy class for O(/2,2) or 0(/3 > 2). When

two representatives (A°, J°), (A, J) of Γ are given, we shall describe a real matrix

P such that"tpjop^j a n d ' p-\A°P=A.

Table 4 (matrix representations of indecomposable types in 0(3, 2))

(J) Γ+(λ λ~1) 1/11 = 1 λ Φ ~t- 1'

A° = £(0) = / cos θ sin 0 \, > = J 2 i 0 , (A = eiθ).

\ — sinθ cosθ /

(Γ) Γsα, A"1), μ | = 1, λΦ±l;A° = R(θ), J° = / 0, 2, (A = e").

(2') Γo(±l) ; A° = ( ± l ) , J° = /o!i.

/ " 2 \ Γ7 / 5 Q — 1 \ T 1 —L 1 — l Λ ° O — 1 / 1 i 1 — 1 1 1 — 1 \ T° T

( 3 ) i 0 ( / t , / 1 ) , λ = λ φ λ , A = 2 1 / / + Λ A A — A \ > J = i i , i J

\ /L — /L"1 λ + λ~* J

A = f λ 0 \, J=ί 0 1 \, P = 7(1/2)/ 1 1 \ .

Vθ : A~i / V 1 0 •/ \ 1 - 1

(4) Γ j ( ± l ) ; Λ° = ± / 0 . - 1 0 \, /

3 0 272

Φ ° 3 /
A = + /l 0 0\, J = / 0 -1/2 - 1 \ , P = / - 7 2 / 8 0 7 2

1 1 0

0 1 1/

-1/2 1 0

\ - 1 0 0/

72/8 -72 -72

\ -1/4 - 1 - 2
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(4')

1/2 1 \ , P = / - 1 / 4 -

(5) 1 1/2

-1/2 1

0 1/2

0

1/2 0

1 1/2

J° = J
2 > 2 ;

= ε / / 1 1

0 1
0

\ 1/2 0 -1/2 1

J = / 0 I2 χ,

h 0

0
\

»/ 1 1 \-i

0 1

We note that the type Γ t(—1, — 1) can be also presented as

- 1 1/2 0 1/2 \

-1/2 - 1 1/2 0

0 1 / 2 - 1 1/2

\ 1/2 0 -1/2 - 1 /

\ , / = / 0 I2

h o

'( - 1 1 A " 1

0

> V o - l

/ - 1 1

0 - 1

0

0

- 2

-V2

V2

/ 2 12

h -h
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(6) Γ^λ-1), λ" = A#A"1;

-A"2 λ+λ-1 A"2 λ-λ-1

λ-λ-1 1 λ + λ~ι 1

= /

A"2 λ-λ~ι -λ~2

2 > 2;

A= I( A 1

0 A

0

0
2 . 0 /

A l y 1

o x I /

/ / 2 /2

\ /2 - 7 2

(7) Γ\(λ, A-1), |A| = 1, A φ±l;A = / R(θ) 0

(A=eίβ) \ Λ(θ)

/ = ( - ε sin θ) (1 -cos ΘY1K, where # = / 0

- 1

f PAP~ι if - s s i n θ > 0

[ PΆP'-1 if - ε s i n θ < 0

where P = (-ε(2-2 cos θ)-1 sin

and

/I 0 0 - 1 \

0 1 1 0

0 - 1 1 0

\l 0 0 1/

1 0 0 1\

0 1 - 1 0

0 1 1 0

\ - l 0 0 1/

(8) Γ0(λ,λ-\ l,
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A° = 2~1

321

( | A | -

0

2,2 >

(A-

o
(9) Γί(±l);

0 I2

49/48 -5/12 V2/4 7/12 1/48

5/12 3/4 -V2/2 -1/4 5/12

72/4 V2/2 1 V2/2 V2/4

7/12 1/4 72/2 5/4 7/12

\ -1/48 5/12 -72/4 -7/12 47/48/

J° = 3,2 >

= ±/ 1

1

0 \ = /0

1

1

1/2

1

1 1

U/24 1/6 1/2 1 1/

1\

\1

7(1/2) /I 0

0 1

0 0

0 1

\i 0

0

0

0

0

0

- 1

0

1

0 - 1 '

REMARK 3. Since - Is e O(/3(2)ΐ, we have ΓJ( - 1 ) <= 0(3, 2);.

In the following theorem, we shall partition the conjugacy classes

0(2, 2) or G=0(3, 2) described in Table 3 into expg, Gί\expg, G±, G+

It can be easily done by Theorem 2.

THEOREM 3. (I) The case G=0(2, 2).

Conjugacy classes contained in exp g

for G =

and Gz.
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\λ\ = 1, A Φ ± 1
λ > 0, A Φ 1

(α7) ΓS(A, A" 0 + Γo(μ, /I"x) |A| = \μ\ = 1, 2 Φ ± 1, μ # ± 1
(α8) 2ΓJ(1) + Γo(λ, λ~r) \λ\ = 1, λ φ ± 1
(α9) 2ΓS( -1) + Γo(A, λ~x) |λ| = 1, λ Φ ± 1

Γ0(A, A"1) + Γ0Cfi, μ'1) λ>0, μ>0, λφl, μΦl
2Γ0(λ9 λ - 1 ) λ<0, λΦ-1
rj(A, λ-ι) + 2Γo(i) μi = l, λ Φ ± l

~1) + 2Γό(-i) μi = i, λΦ±i
• Γo(2, 2"1) 4- Γό(l) λ>0,λφl

2ΓS(1) + 2Γo(l)

Conjugacy classes contained in G+\exp g

(βx) Γ^λ-1) λ<0,λφ-l

(βi) U ( - 1 ) + Π ( " l )

(βd Γo(λ, λ~x) + Γ0(μ, μ"x) A < 0, μ < 0, A Φ μ,
λφ -l,μΦ -I

(βs) ΓS(-1) + ΓO(A, A-^ + Γoί-l) A<0, A^ - 1 .

Conjugacy classes contained in Gϊ

(y3) r s α λ - o + Γ s ω + Γ p ί - i ) μι = i, A # ± I

(74) U(l) + Γ0(A, A- >) + Γό( -1) A > 0, A * 1
(7s) n ( - l ) + Γ0(A, A-1) +.Γo(l) A < 0, λ Φ - 1
(y6) 2ΓS(1) + Γ5(1) + Γ5(-1)
(y7) •.2ΓJ(-1) + F5(l) + Γ o ( ^ l ) .

Conjugacy classes contained in G+

(δ3) ΓJ(1) + Γ£(-1) + ΓS(A, A- 0 μ| = 1, A Φ ± 1
(54) ΓJ(-1) + Γ0(λ, A-!) + Γo(l) 'A > 0, A # 1
(δ5) Γm + Γ^i-^ + Γoi-D X<o,λΦ-ί
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056)
(<57) ΓS(l) + ΓS(- l ) + 2Γo(- l ) .

Conjugacy classes contained in Gz

(ω,) Γ0(λ, λ~!) + Γ0(μ, μ~ *), A, μ real, λμ < 0,
λφ ± 1 , μφ ± 1

(ω2) ΓS(-1) + ΓO(A, l - ^ + Γ ^ - l ) A>O,A#1
(ω3) ΓS(1) + Γ0(l, A" 0 + Γo(l) A < 0, A # - 1
(ω4) ΓS(1) + ΓJ( - 1 ) + Γ-0(ί) + Γ-o( -1).

(II) Γfte case G = 0(3, 2).

Conjugacy classes contained in exp g

2ΓJ(-1) + Γ0(A, A-») + Γό(l) A > 0, λ Φ 1
(ai2) ΓS(A, A" >) + Γ0(/i, μ~ *) + Γo(l), |λ| = 1, A # ± 1, μ > 0, μ Φ 1
(a23) ΓJ(λ, A" i) + ΓJ(1) |A| = 1, A # ± 1
(«24> Γ0(A, A"') + Γl(l) A>O,A^1

Conjugacy classes contained in Gί\exp g

(β\) Γt(X) + (fid ( l < / ^ 5 ) .

Conjugacy classes contained in Gt

to HO) + to (1 < m ̂  7)
(7β) Π ( - 1 ) + Γ0(A, A-i) + Γ0(μ, μ"1), Aμ < 0, A, μ rββ/,

A # ± l , μ # ± l
(yi) 2ΓJ(-1) + Γ0(λ, A-1) + Γ5(-1), A > 0, A ̂  1
(7lo) n a A-i) + Γ0(μ, μ-») + Γo(-1),

|A| = 1,A# ± l , μ
(y'n) Γ o ^ A - ^ + Γ j ί - l ) A>O,A#1.

Conjugacy classes contained in G+

(δ'2S)

(ίiβ) 2ΓS(1) + Γ0(λ, A"!) + Γo( - 1 ) A < 0, A # - 1
(5i7) ΓS(A, A-i) + Γo(μ, μ"1) + Γ3(-1),

|A| = 1,A# ± l , μ < 0 , - μ # - 1
(*aβ) Π(λ, A- 0 + ΓJ(-1) |A| = 1, A # ± 1
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(δ'29) Γ0(λ, λ-1) + Γ ϊ ( - 1 ) λ < 0, λ Φ - 1
(δ'3O) Γ ί ( - l ) .

Conjugacy classes contained in Gz

(ω'a) Γt(ί) + Γ0(λ, λ~η + Γ0(μ, μ-1), λμ<0, λ, μ real,

λφ±ί,μφ±l

2ΓS(1) + Γ0(λ, λ~ *) + ΓJ(1) λ < 0, λ Φ - 1

Γ%{λ, λ~!) + Γ0(μ, μ~») + Γo(l), |A| = 1, λ Φ ± ί,μ < 0,

μΦ-ί
(ω'n) Γoiίλ-^ + Γjil) λ<0,λΦ-ί.

In Theorem 3, observing real negative eigenvalues of conjugacy classes

contained in 0(2, 2)% and 0(3, 2)J, we obtain the following statements.

COROLLARY, (i) Eigenvalues of each element of 0(2, 2)ί\exp o(2, 2) are

all negative.

(ii) Any conjugacy class for 0(2, 2) whose eigenvalues are all real negative,

coincides with one of the conjugacy classes (α5), (α1 2), (αi9), (βj, (β2), (β3),

(J?4) and (/?5).

(iii) Any conjugacy class for 0(3, 2)ί whose eigenvalues consist of 1 and

four real negative numbers, coincides with one of the conjugacy classes (0C5),

(α'12), (*'i9)> (β'il (β'2), (β's), (βd and (β'5).

§4. Int (exp g), 5(exp g) and (exp g)β in G=O (3, 2)

In this section we shall observe the structures of the interior, boundary and

exterior of the exponential image in G, where G mainly stands for 0(3, 2). In

what follows, we shall use the same symbols and notations as in Theorem 3 unless

otherwise stated.

By Theorem 3, eigenvalues of elements of G+\exp g are listed up as follows:

(i) Uλ9λ9λ'1

9λ-ι\ λ<0, λΦ - 1
(ii) 1, - 1 , - 1 , - 1 , - 1 ;
(iii) 1, λ, λ~\ μ, i- 1; λ < 0, μ < 0, λ Φ μ, μ'\ λ Φ - 1, μ Φ - 1
(iv) 1, - 1, - 1, λ, λ"1; λ < 0 , λ Φ - L

Hence by the continuity of eigenvalues, we have the following propostion.

PROPOSITION 4. The conjugacy classes contained in exp g except for (α^),

(α'12) and (α'19) are contained in Int (exp g).

REMARK 4. For x e θ ( 2 , 2 ) = O(J), we idenify x with / I 0\ eO(J%
\0 x)
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where J' = (\ 0\. Under this identification we regard 0(2, 2) as a subgroup
\0 J)

of 0(3, 2).

PROPOSITION 5. (<x'5): Γϊ(l) + Γx(-19 -1), (α'12): ΓS(1) + 2ΓO(A, λ"1) where

A<0, λΦ - 1 , and (a'19): ΓJ(1)4-2ΓJ(~1) + 2Γ3(-1) are contained in δ(exρg) Π

expg.

PROOF. We already know that these conjugacy classes are in expg, while

(/?i) is not in exp g. We identify (α^) and (/?i) with (α5) and (βx), respectively.

Then by Table 4 we can choose the representatives of (α5) and (jSJ as follows:

(A9J)e(a5);A = ; / -

0 - 1

0

and for the same 7,

0

</ _ i i

0 - 1

= // A 1

0 λ

0

\ 0 12

I2 0

0

λ 1 \Ί

0 A

Since lim^.-! Aλ=A, we obtain (α5)c3(exp g) n exp g.

Similarly, for (αi2), by considering the type (/%) we have

Γ0(μ, Γ0(v,

where μ<0, v<0, μφ-\, vφ - 1 and μ^v, v"1.
We identify (αi9) and (ββ with (α19) and (j?4), respectively. Then by

Table 4, a representative of (β4) is given by

0 λ-λ-i 0

0 μ + μ"1 0 μ-μ"

-A^1 0 A + λ-1 0

^ 0 μ - μ ' 1 0 μ + μ'1/

where λ<0, λ # - l , μ<0, μφ-1 and λΦμ,μ~x. Since lim^^.i ^ 4 λ μ = - / 4 ,

we obtain (α'19) c β(exρ g) n exp g.

PROPOSITION 6. (β\): ΓJ^+Γ^A, A"1), λ<0, λ # - l is contained in
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<9(expg)n(Gί\expg).

PROOF. We identify (β[) with (ySx), and we choose (Λλ, J) in the proof oΐ

Proposition 5 as a representative of (βj). Let 0<θ<π and put

Sλ(θ) = ί -λiπ-θ) 0

I 0 1
Then we have

= — λ( cos 0 sin 0

— sin θ cos θ

— λ cos 0

- λ 2 (π-0)s in !

and

We now put

= / Sλ(θ)

0

and ΓA(0) =

(π^θr^sin

— λ cos 0

0 2

0

Then we get Qλ(θ), Tλ(θ)eO(J) and (Γ/0), J)eΓ0(μ, μ~\ μ, μ'1), where μ =
μ | e <β = —χeiβ. Furthermore we obtain that

= / 1

0
\

0

λ 1

0 λ

\ =

I

Noticing that Γ0(μ, μ'1, μ, μ~ι) is an exponential type, we get 05i)<=3(expg) Π

(Gί\expβ).

PROPOSITION 7. The conjugacy classes (β'J: ΓJ(1) + Γ0(A, /I" J) + Γ0(μ, μ" 0,

2<0, μ<0, A#-l, μφ-\ and λφμ,μ~\ and (β'5): ΓJ

Γ0(λ, A '^ + Γόί-l), A<0, A^ - 1 are contained in GJ\Cl(expg).

PROOF. By Theorem 3, these conjugacy classes are contained in GJ\exp cj.

Let {A, J) and (A\ J') be representatives of (/Ĵ ) and (β'5), respectively. Then both

A and A' belong to the exterior of expgl (5, R) in GL(5, # ) by the facts stated in

§1, because A and A' have negative eigenvalues with the multiplicity one. Hence

we obtain that (/%) is contained in 0O(J)\C1 (exp o(J)) and (β'5) is contained in

O0(J')\Cl(expo(./')).
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PROPOSITION 8. The conjugacy classes (β'2): ΓJ(1)+ΓJ( -1) + Π ( -1)

and {β'z)\ Γ$(l) + Γ 2 (-1) + Γo(-1) are contained in δ(exp g) Π (G|\exp g).

In order to show Proposition 8, we shall consider a representation of the

group SL(29 R) x SL(2, R) in the four dimensional real vector space M2(R) which

is the set of all 2 x 2 real matrices as usual. We now choose

l 0 \ , E2 = ί 0 1 \ , £ 3 = / 0 1 \ , £ 4 = / 1 0

0 1 / \ -1 o / I 1 0 / \ o -1

as a basis of M2(R), then an element yl in M2(R) can be written as

^ = X
1
E

1
 + X

2
£

2
 + *3^3 + X4E4. = I Xt + X4 X

2
+ X

3

\ X
2
 ~r" X3 X± X4

For the fixed basis, we define the symmetric bilinear form τ on M2(R) by

τ(A9 A) = det i4 = x\ + xf - x | - x i

Then 0(M2(JR), τ) can be identified with O(/2>2). For (gl9 g2)eSL(2, R)x

SL(29 R), we define Φ(gu g2): M2(R)-+M2(R) by '

Since det Φ(gl9 g2)A=άet A, we have Φ(gu g2) e 0(M2(R% τ). It is obvious that

Φ: SL(2, R)xSL(2, R)->0(M2(R), τ) is homomorphism and the image of Φ is

contained in 00(M2(R), τ). Let dΦ be the differential of Φ. Then we have

dΦ(X, Y)A = XA - AY for AeM2(R) and (X, Y)esl(29 R) ® s/(2, R).

Since the diagram

SL(29 R) x SL(2, R) -^ O0(M2(R), τ) = O0(/2,2)

expxexp exp

si (2, R) ® j / (2, Λ) - ^ o(Λ/2(Λ)f τ) = o(I2§2)

is commutative and since SL(2, Λ) x SL(2, #) is connected, the mapping Φ:

SL(2, K) x SL(2, R)->00(M2(Λ), τ) = O0(72j2) is surjective. By explicit calculation

one can show the following lemma.

LEMMA, (i) Forg1=Ya b\ g2=/x y\eSL(2, R), the matrix repre-
\c d) \z w)

sentation of Φ(gu g2): M2(R)-*M2(R) with respect to the basis <£x, E2, £ 3 ,

E4} is given by
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> 92)

= 2 " ι / aw — bz — cy + dx — az — bw + ex + dy

— ay + bx — cw + dz ax + by + cz + dw

— cry + bx + cw — dz

\ aw — bz + cy — dx

— αz +

ax + by — cz — dw

— az — few — ex — dy

+ ex — αw -f bz — cy —

— az + bw — ex + dy

= 4 " 1 / a + d -b + c b + c a - d\

b — c a + d a — d —b — c

ax — by + cz — dw — ay — bx — cw — dz

αx — fej — cz + dw — ay — bx + cw + dz

aw + bz + cy + dx /

^a — d — b — - b — c a + d'

I x + w y — z

— y + z x + w

— y — z x — w

\—x + w — y — z

—y — z —x + w\

x — w —y — z

x + w —y + z

y — z x + wI

(ii) The kernel of Φ is {(/2, J 2 ), ( - / 2 , - J 2 ) } .

(iii) trace Φ(gug2) = (trace g x) (trace g 2 ) .

Here we shall give the proof of Proposition 8. Let us identify (β'2) and

(β'3) with (β2) and (jS3), respectively and put

B 0 a n d X(θ) = / π - 0 ° \ "

0 0 / v 0 1

Then we have that B, X(θ) e s/(2, R) and

Φ(exp B, exp X(θ))

On the other hand, since

exp B = / 1 1 \ and expX(θ)

0 1 /

° θ

-Θ 0 0 1

0 < 0 < π.

, Z(θ)) e exp o(/ 2 > 2).

x(θ) y(θ) \
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where x(0)=cos0, y(θ)=(π-θ)-1sinθ and z(0)= -(π-0)sin0, we have

Φ (exp B, exp X(θ)) =

4-!/2 -1 1 0\

1 2 0 - 1

1 0 2 - 1

\0 -1 1 2/

2x(θ) y(θ)-z(θ) -y(θ)-z(θ) 0

-y(θ) + z(θ) 2x(0) 0 -y(θ)-z(θ)

-y(θ)-z(θ) 0 2x(θ) -y(θ) + z(θ)

0 -y(θ)-z(θ) y(θ)-z(θ) 2x(θ)

Therefore by noticing limβ_>πx(0)= — 1, \imβ^πy(θ)=ί and limβ_>πz(0)=O, we

obtain

β ^ B Φ(exp B, exp 4"1 /2 - 1 1 0\ 1-2 1 - 1 o\
-1 - 2 0 -1

-1 0 - 2 -1

\ 0 -1 1 - 2 /

As a representative of
as follows:

1 2 0 - 1

1 0 2 - 1

\0 -1 1 2/

= 7 - 1 1 -1 0\

-1 -1/2 -1/2 0

- 1 1/2 -3/2 0

0 0 - 1 /

we can choose (T°, /2>2) by Table 4

\ 0

ηno
0

- 3

-272

1

0

0

0

-272

- 3

°V
0

0

If we put

0 0 0 - 1 /

-572/8 -372/8 0

72/2 572/8 372/8 0

0 3/4 5/4 0

Λ 0 0 0 1/
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then we have Q e 0(12i2)

Q~1T°Q

and

= /

\
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- 1

- 1

- 1

0

1

-1/2

1/2

0

- 1

-1/2

-3/2

0

0

0

- 1 ^

Thus we obtain that the conjugacy class (β'3):

d(expg)n(Gί\expg).

For (β2): ΓJ( —1) + Γ£(—1), we can choose its representative (5°, /2 > 2) by

Table 4 as follows:

= / - I 0 0 0 \ .

0 - 3 0 -2^/2

0 - 2 ^ 2 0 - 3

\ 0 0 1 0 /

Now if we put K = / 0 1 \ , then we have X 2 = / 4 , KT°K = S° and

1
1 0

K 0(J2>2) K = o(/2 > 2). Therefore we get

S° = KT°K = KQ(\h

= limβ_π exp (KQ(dΦ(B,

and KQ(dΦ(B9X(θ)))Q'1Keo(I2)2). Thus the conjugacy class (j82): ΓS(1) +

ΓJ( — 1) + ΓJ( — 1) is contained in d(exp g) Π (GJ\exp g). This completes the proof

of Proposition 8.

By summarizing from Proposition 4 to Proposition 8, we obtain the main

theorem.

THEOREM 9. Let G = O(3, 2) and g = o(3, 2). 77ien conjugacy classes de-

scribed in Theorem 3(11) can be partitioned into G = Int(expg)U (d(expg) Π

exp g) U (δ(exp g) n (Gί\exp g)) U (GJ\C1 (exp g)) U Gί U G; U Gz, where

Int(exρg) : (pQ9 (1 < k < 25, k Φ 5, 12, 19)
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d(expg) n expg

δ(expg) n (Gί\expg)

Gi\Cl(expg)

Gί

Gz

(αή), («iΛ («ί9)

0»i), (Pi), (βd

(β'ά (β's)

(l<fc<ll)

(l<fc<30)

COROLLARY 1. Let G = O(2, 2) and g = o(2, 2). T/zen conjugacy classes

described in Theorem 3(1) are similarly partitioned as in Theorem 9. That is,

(aΛ), (1 < k < 18, fc # 5, 12)

(βil (βi\ (βs)

(M tf 5)
(ykl (l<fe<7)

Int (exp g)

d(exρg) n expg

d(exp g) n (GJ\exp 9)

Gί\Cl(expg)

Gί

Gz

In Theorem 9 and Corollary 1, by aiming at real negative eigenvalues and by

calculating traces of all conjugacy classes for 0(2, 2) and 0(3, 2), we get the

following cororllary.

COROLLARY 2. (I) The case G = 0(2, 2). For x e θ ( 2 , 2), we have the

following.

( i ) xG0(2, 2)ί\Int(expo(2, 2)) if and only if eigenvalues of x are all

real negative.

(ii) xed(expo(2, 2)) if and only if eigenvalues of x are all real negative

and the multiplicity of each eigenvalue is even (2 or 4).

(iii) x G 0(2, 2)X Π (exp o(2, 2))e if and only if eigenvalues of x are all real

negative and there exists an eigenvalue with multiplicity one.

(iv) Let x e 0(2, 2)\. Then x e Int (exp o(2, 2)) if and only if trace x > - 4

or xG(αx).

(II) The case G = 0(3, 2). For x e 0(3, 2), we have the following statements,

and the assertions (i)', (ii)', (iii)' are described by using the same identification

as in Remark 4.

( i ) ' x G 0(3, 2)ί\Int (exp o(3, 2)) if and only ifx is conjugate to (\ 0 \ in
\0x')

0(3, 2), where x' e 0(2, 2)ί\Int (exp o(2, 2)).



332 Mitsuru NISHIKAWA

(ii)' xeθ(expo(3, 2)) if and only if x is conjugate to /I 0 \ in 0(3, 2),
\0 x'J

where x' e <3(exρ o(2, 2)).
(iii)' xeθ(3, 2)% n (exρo(3, 2))e if and only if x is conjugate to (I 0 \ in

\0 x'J
0(3, 2), where xf e 0(2, 2)% Π (exp o(2, 2))e.

(iv)' Let xeθ(3, 2)ί. T/ien x e Int(exρ o(3, 2)) if and only if tracex>
— 3 or xe(α{).
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