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Derivatives of Stokes multipliers
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§1. In the paper [2] we dealt with the two point connection problem for the
general system of linear differential equations

(1.1) ‘ t—‘%— = (Ao+ Ayt + -+ A x,

where ¢ is a complex variable and the coefficients 4;(i=0, 1,..., q) are n by n com-
plex constant matrices. We shall briefly reconsider our theory of solving the
connection problem in the case where there appear logarithmic solutions.
And the purpose of this paper is to show that there holds the Frobenius theorem
in a global sense, that is, concerning the Stokes multipliers of a set of logarithmic
solutions, once the Stokes multipliers for the non-logarithmic solution are known,
all the Stokes multipliers for its adjunct logarithmic solutions can be determined
only by means of the differentiation with respect to the characteristic exponent.

Let

(1.2) X(2) = (xo(1), x1(£)s-.., x,(£))
= 320 (Go(m, po), Gy(m, po),..., Gy(m, po))tm+ee+
= 2ﬁ=0‘®(m, po)t’”+"°+", .

J being the (y+1) by (y +1) shifting matrix

0 "',0 /

be a matrix solution of (1.1) involving the logarithmic term #/ near the regular
singularity t=0. Then the coefficient matrix ®&(m, p,) is giveﬁ by a matrix
solution of the following system of linear difference equations for p=p,:
Letting p be a parameter,

A3 (mtp=—A0)6(m, p) + &(m, p)J
© = A,6(m—1, p) + 4,6(m—2, p) +--+AB(m~q,.p).
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Putting &(m, p)=(Go(m, p), G,(m, p),..., G,(m, p)), we write down (1.3) in the
column vectorial form
(1.4)  (m+p—Ao)Go(m, p) = A;Go(m—1, p)
+ A,Go(m—2, p) +---+ A,Go(m—gq, p),
1.5  (m+p—A40)Gfm, p) = A,G(m—1, p)
+ A,G(m=2, p) +---+ A,G(m—q, p) — G;—4(m, p)
(i=1,2,...,7).
Then from this it is easy to see that G(m, p) (i=1, 2,..., y) can be given by the

derivatives of Gy(m, p) with respect to the parameter p. In fact, let us define
the differential operator

L_ 1 @
(1.6) 0 = T

and then the Leibniz rule of differentiation is written in the form

an 0'[uv] = Xj-o 0! [u]0'[v].
As an immediate consequence of (1.7), we have
(1.8 G{(m, p) = [Go(m, p)]  (i=1,2,.., p)®.

We here assume, for simplicity, that 4, is similar to a nonsingular diagonal
matrix diag (4,, 4,,...,4,). Then, near another singularity ¢t=oco, which is the
irregular singulairty of rank g, there exists the formal matrix solution

Y() = (y'(1), Y2(®),..., y"(1)),
where the column vectors y*(t) are of the form
k
y*(t) = exp (%"—t'1+—;-‘1_2—i—t‘l"l+ ookt Jere 32 HE(s)ts
(k=1, 2,..., n).
The coefficient H*(s) satisfies the system of linear difference equations

(1.9) (Ag—A)H (S) + -+ (4, —a¥)H (s — g +1)
+ (4o +s—g—m)H*(s—q) = 0.

Now we reduce the connection problem of deriving relations between X(t)

*) The Gi(m, p) are functions of (m+-p), and hence in the paper (2] we used the differentiation
with respect to the variable m.
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and Y(¢) to that for the difference equation (1.3).
Let g¥(m, p) (I=1, 2,..., q) be a fundamental set of solutions of the modified
gamma equation

(1.10)  (m+p—pw)gh(m, p) = okgk(m—1, p) +-- + af_,g*(m—q +1, p)
+ Ahg'(m—q, p)
and let us define the (y+1) by (y+ 1) matrix functions #¥(m, p) by

(1.11) 91(m, p) = exp (75 )lgt(m, p)]

= (14+J0! +-+J707) [gk(m, p)]
(k=1, 2,...,n;1=1, 2,..., 9).
One can then verify
(L12) ®(m, p) = Lo Xi=1 Zte1 H(s)(Tlo(p),-.., TT,(p))¥i(m+s, p).
In fact, to prove this, we put
(1.13) Fi(m, p) = X220 HY5)0'[gt(m, p)]  (i=0,1,...,9)

and then, since the H*(s) are independent of the parameter p, we immediately
see that

(1.14) Fi(m, p) = 0'[Fl(m, p)]  (i=1,2,...,7).

On the other hand, it can be proved from (1.9) and (1.10) that nqg functions
Ft(m, p) (k=1,2,...,n;1=1, 2,..., q) satisfy the same difference equation as
(1.4):

1.15) (m+p—Ao)Fky(m, p) = A Fl(m—1, p)
+ A, Fl(m=2, p) ++-+ AFh(m—gq, p)

and moreover they form a fundamental set of solutions. Hence, by the theory
of linear difference equations, we have

(1.16) Go(m, p) = Li=1 i1 Tho(m, p)Fio(m, p),

where the T}y(m, p) are periodic functions of m with period 1, and however,
when m takes integral values, they may be considered as constants. The formula
(1.16) determines the constants T%(m, p)= T%(p) depending on p.

Next, for i=1, 2,..., y successively, we see from (1.14) and the differentiation
of (1.15) that for the T};(p) (j=0, 1,..., i—1) already determined, the function .

2het Th=t 21 TH-5(p)F¥;(m, p)
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becomes a particular solution of (1.5) and hence we have

(1.17) Gi(m, p) = Yoo Xiey D=y TH—j(p)F¥;(m, p),

which determines the constants T¥(p) depending on p. Consequently, we
obtain ’

(Go(m, p), Gy(m, p),..., G(m, p))
= Yf=1 Zie1 (Flo(m, p), Fiy(m, p),..., Ff,(m, p))
X (Tto(p)+ Th(p) + -+ T,(p)J?)
= 2i-1 Xk 220 HX ) (gl (m+s, p), 0'[gt(m+s, p)],..., O"[gl(m+s, p)])
X (Th(p)+ TH(p) + -+ Th(p)J7),
which just implies (1.12) since
(ag, ay,..» a))(bo+byJ +---+b,J") = (bg, by,..., b)) (ag+a;J +--+a,J?).

Now, taking account of (1.8) and operating ¢ on (1.16), we have by the
Leibniz rule

- Gi(m, p) = Xf=y Ty Xhao 0 [Th(p)10/[Fo(m, p)]
= Y=t L1 =0 0/ [Tho(p)1F i (m, p).
We have thus obtained
THEOREM 1. In (1.12) there hold
(1.18) Ti(p) = 0'[Th(p)]  (i=1,2,...,9).

We now come back to the connection problem between X(f) and Y(¢). In
the above consideration we put p=p,. Defining

(1.19) . ZH(t, 5) =170 Z im0 G (m+s, po)t™,
from (1.12) we have
X(t) = 220 Xk=1 21 Hk(s)(Tfo(Po), T4(po)s--.» TH,(po)) ZX(t, s)T.

From this expansion formula and the- global behavior of ZXt, 5), we finally
obtain the required result [2; Theorem 5.5]:

X))~ Yw)Ts, as t— oo in Sy,

where the sectors Sy (N € Z) cover the whole Riemdnn ‘surface of logarithm and
each matrix Js, consists of n vectors for k=1, 2,..., n chosen according to the
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sector Sy from the vectors (T%y(po), T%1(po)s---» T¥%,(po)) exp (27ip(J + po— )
(pe 2).

Lastly, it is remarked that the above consideration covers all the cases where
Ao has not only a finite number of multiple eigenvalues but also eigenvalues
which are congruent modulo integers. . For instance, assume that A4, is similar
to Jordan canonical matrix of the form

*] 0
IAII

Ao ~ Azz_
Ay
0 =

where the eigenvalue p; of the Jordan block A;; with size r; differs by integers
from the others, i.e., p; —p;€ Z,

0=p1—p2Sp1—P3=Sp1—pp

and for such a set of Jordan blocks there exists a set of logarithmic solutions of
the form

(1.20 - X(0) = (X,), X,0),..., (O,
where

Xl(t) = P Z;l)=0 (ﬁi(m)tm (l=1a 29---’ P)'
Then we can express G(m) in terms of Gym, p) defined in (1.8) as follows:
Putting yo=0, y;=ry+r,+--+r; (j=1, 2,..., p), we have
®,(m) = (Gy,_,(m—Pl +pi> P1)s Gy,_,+1(m—P1 +Pis P1)seees Gy,—l(m—Pl +pi P1))
(i=1,2,.,p).

From this fact we can see again that all the Stokes multipliers of (1.20) are derived
from those of the non-logarithmic solution

xo(t) = 171 3o Go(m, p)t™
by means of (1.18).

In the next section, as an interesting example illustrating just this case, we
treat of the connection problem for the extended Airy equations.

§2. Now we shall consider the connection problem for the extended Airy
equation

zny(n)_ — 5z'1y = O’
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where d=(—1)". By the change of variables z=t" we can reduce this single
linear differential equation to the system of the same type as (1.1), where 4, =
Ay=-=A4,_ ,=0:

@.1) t% = (Ao + A t9)x.

Here the constant matrices A, and A, are of the form
(2'2) AO = diag(als G25.00h an) aj =(n—j)(n+q) (J=1, 2"“9 n),
0 1 O

(2.3) A, =

As we have seen in the paper [2], if g=n, then we have a fundamental set of
non-logarithmic solutions. In this case- we completely solved the connection
problem for (2.1). (See [3].) However, if 1<q<n-—1, then there appear
logarithmic solutions. In fact, corresponding to the first g characteristic expo-
nents o;(j=1, 2,..., g) in (2.2), one can find non-logarithmic solutions :

@24) x(0) = 19 S0 gmm  (j=1,2,...,9)

and then, for each j (1=j=<q) there exist y;=max {y=0, j+qy=<n} linearly
independent logarithmic solutions incidental to x;(f). That is, we have g sets of
solutions

(25) (xj(t)9 xj+q(t)a'~-s xj+y1q(t)) (.]=19 2,'--, q),
which correspond to the characteristic exponents
(2.6) (G)s Gjagsees Ojayia)>

respectively. So from now on we investigate the connection problem for one
set of solutions of (2.5). Let us denote one of (2.6) by

2.7). (Pos P15 P2s-+4s Py) s

where p;=po—iq(n+q) (i=1,2,..., ).
Then, corr¢sp_onding to (2.7), we have a matrix solution

(2.8) X() = (%o(8); x1(D),..., X,(1))
= (R6(8)s £1(Ds--., £,
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where J denotes a (y+1) by (y+1) shifting matrix and

2.9 2@ =t T og(m)ym (i=0, 1,..., 7).

The coefficients g,(m) satisfy the following systems of linear difference equations
(2.10)  (m+po— Ao)go(m) = A8o(m—9q),

(2.11) (m+pi—Ao)gm) = A,g(m—q)—g;—(m+pi—p;—y)  (i=1,2,...,9).

Using the functions G(m, p) defined in §1, we can express g(m) (i=0, 1,...,7)
in the form

(2.12) gi(m) = G(m—po+pi, Po) (i=0, 1,..., 7).

On the other hand, since A, is similar to diag(4,, 4,,..., 4,), where 4,=
nexp [—2%"—(——%+k— l)] (k=1, 2,...,n), we have a formal matrix solution
Y(&)=((r), y*(0),..., y"(t)), the column y*(¢) being of the form

(2.13) yk(t)=exp(—’1q-k.ﬂ oo B s (k=1,2,..., n).

The constants p are equal to (n+q)(n—1)/2 and the coefficients H*(s) satisfy the
system of linear difference equations (1.9) with A;=A,=--=4,_,;=0 and o=
af=-=ak_;=0.

As for the modified gamma equation (1.10), in this case, it .is exactly the
gamma equation of g-th order

(2.14) (m+p—m)g*(m) = Lg*(m—q).
We take as a fundamental set of solutions of (2.14)

{(ﬁ)lltzw;“_”}mw—nu
q

r(ﬂ%’i + 1)

@.15) gt(m) = %

(wg=exp (2ni/q); I=1, 2,..., q),

which then define the matrix functions ¢¥(m, p) by (1.11).

We are now in a position. to apply the theory of the preceding section to the
above problem. To this end, we first have to solve the linear difference equation
(1.4) under the initial condition that G4(0, p)#0 and Gy(r, p)=0 (r<0). It can
be immediately seen that '

Go(gm, p) # 0, Go(m', p)=0 (m'#qm).

We put, denoting the column vector by the suffix ', -
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Golgm, p) = (9™(m, p), g@(m, p),..., g™ (m, p)).
If for some v (1 <v=<n), we impose the condition that g(*>(0, p)#0, g®(0, p)=0
(i#v), then,_ as long as (m+ p— A,) is non-singular, we can observe that
t2.16) Go(g(nm+k), p) = (0,..., 0, g*)(nm+k, p), 0,..., 0),
k=v-— k(modn),
and moreover we can take, e.g.,
1

r m+1+l—_j+_p:ﬂ_) .
n ng

5 m
2.17) gWO(mm+v—1, p) = (7) ITj=1

According to our theory, if we can know the explicit value or the asymptotic
behavior of Gy(m, p), then we can always determine the Stokes multipliers T%,(p)
from (1.16) by means of the limiting method. (See [3]). In this case considered,
we have

n/i,)v-1 n /4. =ik
(2.18) Tho(p) = B (42 ) oi)
(k=1,2,...,n5 =1, 2,..., q).

" Now we shall return to the original problem. Below p, is assumed to be o,
for some v (1=v=q). From (2.12) and (2.16-7) we can know the explicit values
of g;(m) and then from (1.17) we have

(219) gm) = Ei-o Xi=1 Loy Thi- (po)Fti(m—po+p; po)  (i=0, 1,..., 7).
From this we obtain
(2.20) (1) = 1Pt X2 gi(m)tm

= 100 pospe=t g ()"

+ koo Th=1 i1 T j(po) F¥;(m, po)tm+eo

= tp Zro o gy (m)t™ + %(1) (i=0,1,..., y),

whence, putting
X = (Zo(1), %,(1),..., 1),
we have the. expansion 'fbrﬁiulé in terms of the functic_i;is (1-1-9)'
221) X)) = T2o Zi=1 Ty HY()(Tho(po), THi(po)ss-» TH(p0)) ZE(2, 5).
We here apply the following proposition to X(f).

ProposITION [2; Theorem 3.1] -
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Zk(t, s)~9,, exp (iq"—tq)tﬂk'ﬂ —tro{Gh(s =)t 1+ Fh (s —2)t72 + -}
as t—oo in the sector

Sk: =3 4 2y < argipt < — &4 2y
q q q q

where J;,. denotes the Kronecker delta.

Then we have
(222) X)) ~ Zp=1 YO (Tho(po)s Th1(p0)s--» Thiy(po))t™’

= 2m=1(Go(—m, po), G{(—m, pg),..., G(—m, po)te™™
as t tends to infinity in the sector '
(2.23) Sy, 1ys.os L) = NPy Sk,
Taking account of
Zm=1 G(—=m, po)t?o™™ = 301 poip S(—m)t™  (i=0, 1,...,7),

and applying (2.22) to the matrix solution X(f) expressed, as is seen from (2.8)
and (2.20), in the form

X(@) = X
+ (0, Zhgrt gy (m)emter,..., Frocfrmt g, (m)tm et
we consequently obtain the following
THEOREM 2. As t tends to infinity in the sector (2.23), there holds
X(t) ~ Zi=1 Y*O(T0(P0)> Tk, 1(Po)s---» TF,1(Po))
— Zm=1(8o(—m)tre, g, (—m)t71,..., g,(—m)ter)™+,

where the Stokes multipliers are explicitly given by (2.18) and Theorem 1, i.e.,

Th(po) = #[Tho(p0)] = 7 {log((42) "ot )} Tho(pe) (=0, 1,.... .

For the extended Airy equation, the same result as above has been derived
by B. L.J. Braaksma [1]. Applying Theorem 1, we can also solve completely
connection problems for the extended Bessel equation

27y 4 ayz7 YD ot a2y’ + (a,—62%)y = 0

and moreover the generalized hypergeometric equation
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z"y™ + Yy (@ + 522"y =0,

the a,, the b;(b;=0(I=1,2,...,v-1), b,#0), 6 and v being complex numbers,
in case the characteristic equation is of the form

[p1s + a1[plu-1 +:-++ ay = (P—po)*(p —p1)**---(p— p,)*?{--},

where the p; differ by integers each other. See [3, 4].

References

[1] B.L.J. Braaksma: Asymptotic analysis of a differential equation of Turrittin, SIAM
J. Math. Anal.,, 2 (1971), 1-16.

[2] M. Kohno: A two point connection problem, Hiroshima Math. J., 9 (1979), 61-135.

[3] M. Kohno: Connection problems, Lecture notes (given at .LR.M.A., Université Louis

Pasteur, Strasbourg), 114 p.
[4] M. Kohno and S. Ohkohchi: Generalized hypergeometric equations of non-Fuchsian
type, Hiroshima Math. J., 13 (1983), 83-100.

Department of Mathematics,
Faculty of Science,
Hiroshima University





