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Derivatives of Stokes multipliers
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§ 1. In the paper [2] we dealt with the two point connection problem for the

general system of linear differential equations

(1.1) A-

where t is a complex variable and the coefficients At(i=09l9...9q) are n by h com-

plex constant matrices. We shall briefly reconsider our theory of solving the

connection problem in the case where there appear logarithmic solutions.

And the purpose of this paper is to show that there holds the Frobenius theorem

in a global sense, that is, concerning the Stokes multipliers of a set of logarithmic

solutions, once the Stokes multipliers for the non-logarithmic solution are known,

all the Stokes multipliers for its adjunct logarithmic solutions can be determined

only by means of the differentiation with respect to the characteristic exponent.

Let

(1.2)

J being the (γ +1) by (γ +1) shifting matrix

7 o i 0 N

0 1

, Pol 6i(m, Po), , Gy(m, p o ) ) ί w + p o + J

{ 0
V 1

be a matrix solution of (1.1) involving the logarithmic term tJ near the regular

singularity ί = 0. Then the coefficient matrix (5(m, p 0) is given by a matrix

solution of the following system of linear difference equations for ρ = ρ0:

Letting p be a parameter,

(1.3) > p) + ®(m, ρ)J

- l , p) 4- A2<S(m-29 p)
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Putting (5(m, p)=(G0(m, p), G^m, p),..., Gγ(m, p)), we write down (1.3) in the
column vectorial form

(1.4) (m +p-A 0 )G 0 (m, p) = ̂ G o ί m - l , p)

+ Λ 2G 0(m-2, p) +•••+ AqG0(m-q, p),

(1.5) (m + p - Λ o ^ m , P) = ^ ( m - l , p)

+ A2Gi(m - 2, p) + + ArG;(m - «, p) - <?ι- i(w, p)

0 = 1, 2,..., y).

Then from this it is easy to see that G^m, p) (i = l, 2,..., γ) can be given by the
derivatives of G0(m, p) with respect to the parameter p. In fact, let us define
the differential operator

and then the Leibniz rule of differentiation is written in the form

(1.7) d'luvl^ΣUoP-'luWlv].

As an immediate consequence of (1.7), we have

(1.8) Gim, p) = δ<[G0(m, p)] (i = l, 2,..., p)*>.

We here assume, for simplicity, that Aq is similar to a nonsingular diagonal
matrix diag (λu λ2,-.., λ»). Then, near another singularity t=oo, which is the
irregular singulairty of rank q, there exists the formal matrix solution

where the column vectors yk{t) are of the form

yk(t) =

(fc=l,2,..., n).

The coefficient Hk(s) satisfies the system of linear difference equations

(1.9) (^-Afc)HH5)+.. +(^[ 1-αϊ)H f e(s-^ + l)

+ (A0 + s-q-μk)Hk(s-q) = 0.

Now we reduce the connection problem of deriving relations between X(t)

*) The Gi{mi p) ait functions of (m+/>), and hence in the paper [2] we used the differentiation

with respect to the variable m«
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and Y(t) to that for the difference equation (1.3).
Let gk(jn, p) (/ = 1, 2,..., q) be a fundamental set of solutions of the modified

gamma equation

(1.10) (m + p-μk)0*(m, p) = ctkgk(m-l, p) + . . .+ α*_ l f l f*(m-« + l, p)

+ λkg
k(m-q, p)

and let us define the (y-h 1) by (y +1) matrix functions &k(m, p) by

(1.11) *ϊ(m, p) = exp (j-^)[0Ϊ(m9 p)]

One can then verify

(1.12) <5(m, p) = ΣS-oΣϊ-i Σf-

In fact, to prove this, we put

(1.13) FUm, p) = Σ £ o H W Q r t ( m , p)] 0 = 0, 1,..., y)

and then, since the Hk(s) are independent of the parameter p, we immediately
see that

(1.14) FUm, p) = a*[Ffo(w, p)] (i = l, 2,..., y).

On the other hand, it can be proved from (1.9) and (1.10) that nq functions
Fko(m, p) (fc=l, 2,..., n; /=1, 2,..., g) satisfy the same difference equation as
(1.4):

(1.15). (m+p-A0)Fk

0(m, p) = ^ i ^ m - l , p)

+ ^ 2Fϊo(m-2, p) + . . . + AqF
k

l0{m-q, p)

and moreover they form a fundamental set of solutions. Hence, by the theory
of linear difference equations, we have

(1.16) G o(m fp)=ΣE.iΣf.iTϊo(m,p)Fϊo(m,p)> "

where the T\0(m, p) are periodic functions of m with period 1, and however,
when m takes integral values, they may be considered as constants. The formula
(1.16) determines the constants Γfo(m, p) = Tfo(p) depending on p.

Next, for i = l, 2,..., y successively, we see from (1.14) and the differentiation
of (1.15) that for the Tk

u(p) ( j=0, 1,..., i-1) already determined, the function

•ΣJ-i ΣS-i Σfcin^ί^F^ίm, p)
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becomes a particular solution of (1.5) and hence we have

(1.17) Gt(m9 p) = Σ}-o Σϊ- i Σ?=i 7V,.(p)i^(m, p),

which determines the constants T\t{p) depending on p. Consequently, we
obtain

(G0(m9 p), G^m, p),..., Gγ(m, p))

= Σ ί - i Σ?=i (Ffcίrn, p), FWm, p),..., F{Fy(m, p))

x (Γίo(p)+ni(p)/+ + nr(PV7)

= ΣE-i Σ?=i Σr-oH*(s)(ffϊ(w + s, P), ̂ [ ^ ( m + 5, p)],...,

which just implies (1.12) since

Now, taking account of (1.8) and operating dι on (1.16), we have by the
Leibniz rule

.GAmrp) = Σί-i Σf-i ΣUdi~Jmo(p)WlFMm, p)]

= Σϋ=i Σf-i ΣUai'Jiτιo(P)lFij(m9 p).

We have thus obtained

THEOREM 1. In (1.12) there hold

(1.18) T?f(p) = VITUPΏ (i = l, 2,..., y).

We now come back to the connection problem between X(t) and Y(t). In
the above consideration we put ρ=ρ0. Defining

(1.19) Z)(t, s) = ίPo ΣS-o»ΪOw + j , Po)ίM,

from (1.12) we have

From this expansion formula and the global behavior of Zf(t, s), we finally
obtain the required result [2; Theorem 5.5]:

X(t) ~ Y(U)^SN as t • oo in SN,

where the sectors SN (N e Z) cover the whole Riemann surface of logarithm and
each matrix S"Sjf consists of n vectors for fe=l, 2,...? n chosen according to the
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sector SN from the vectors (T^0(p0), T^{po)9...9 Tϊy(p0))Qxp(2πip(J + p0-
(peZ).

Lastly, it is remarked that the above consideration covers all the cases where
Ao has not only a finite number of multiple eigenvalues but also eigenvalues
which are congruent modulo integers. For instance, assume that Λo is similar
to Jordan canonical matrix of the form

0

* 2 2

0

where the eigenvalue pi of the Jordan block Au with size rt differs by integers
from the others, i.e., p^—pie Z,

0 = Pi - p 2 S Pi - Pa = ' ^ Pi - PP

and for such a set of Jordan blocks there exists a set of logarithmic solutions of
the form

(1.20)

where

Hi) = t" (i = l, 2,..., p).

Then we can express (S^m) in terms of G^m, p) defined in (1.8) as follows:
Putting 7o = 0, yj = r1 + r2 + -~ + rJ(j=l, 2,..., p\ we have

0 = 1, 2,..., p).

From this fact we can see again that all the Stokes multipliers of (1.20) are derived
from those of the non-logarithmic solution

*o(0 G0(m9 Pί)tm

by means of (1.18).
In the next section, as an interesting example illustrating just this case, we

treat of the connection problem for the extended Airy equations.

§2. Now we shall consider the connection problem for the extended Airy
equation

Zny(n) _ S z q y _ Q.
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where <5 = ( — l)n. By the change of variables z = tn we can reduce this single
linear differential equation to the system of the same type as (1.1), where At =

(2.1) A-

Here the constant matrices Ao and Aq are of the form

(2.2) Ao = diag(σ1? σ2,..., σn) = 1, 2,..., n),

(2.3)

1
0

0
\δnn0

0

Ί

As we have seen in the paper [2], if q^n, then we have a fundamental set of
non-logarithmic solutions. In this case we completely solved the connection
problem for (2.1). (See [3].) However, if l<Ξg<Ξn —1, then there appear
logarithmic solutions. In fact, corresponding to the first q characteristic expo-
nents σj(j=*l929...9 q) in (2.2), one can find non-logarithmic solutions

x.(0 = t*J Σm=o β/ 0 = 1, 2,..., q)(2.4)

and then, for each j (l^j^q) there exist yy = max{y^0, j + qγ<^n} linearly
independent logarithmic solutions incidental to Xj(t). That is, we have q sets of
solutions

(2.5) (xj(t)9 xj+q(t),..., xj+γjq(t)) 0 = 1, 2,..., q)9

which correspond to the characteristic exponents

(2.6) (σpσj+q,...9σj+yjq),

respectively. So from now on we investigate the connection problem for one

set of solutions of (2.5). Let us denote one of (2.6) by

(2.7) (Po> Pu P2 >'"y Py)>

where pi=Po — iq(n + #) (* = 15 2,..., y).
Then, corresponding to (2.7), we have a matrix solution

(2.8) X(t) = (X0(ί), Xl(t),..; Xy(t))
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where J denotes a (y +1) by (y +1) shifting matrix and

(2.9) *M = t" ZS-oβiO*)*" (i=0, 1,...,7).

The coefficients g^m) satisfy the following systems of linear difference equations

(2.10) (m + p 0 ~ 4o)9o( ™) = Λ$o( ™ - 4),

(2.11) (m f p f-^o)9i(^) = AqQi(m-q)-Qi_ί(m+pi-pi_ί) (i = l, 2,..., y).

Using the functions Gf(m, p) defined in §1, we can express gf(m) (i=0, 1,..., y)
in the form

(2.12) gf(m) = Glm-po + pi, p0) (i = 0, 1,..., y).

On the other hand, since Aq is similar to diag(A1? λ29..., λn), where λk=

nexp ——(— -y+fc — l j (fc = l, 2,..., n), we have a formal matrix solution

γ(t)=(/(O* J2(ί), , yn(t))9 the column .yfc(ί) being of the form

(2.13) y*(t) = e x p ( A ^ k Σr=o^fcWr5 (fc = l, 2,...,

The constants μfc are equal to (n + g)(n —1)/2 and the coefficients Hk(s) satisfy the
system of linear difference equations (1.9) with Λί^=A2 = "t=Aq^i=0 and α̂  =

As for the modified gamma equation (1,10), in this case, it is exactly the
gamma equation of q-th order

(2.14) (m + P~μύgk(rn) = λkg
k(m-q).

We take as a fundamental set of solutions of (2.14)

(2.15)

(ω €»exp(2πi/β); / = 1, 2,...,

which then define the matrix functions &k(m, p) by (1.11).
We are now in a position to apply the theory of the preceding section to the

above problem. To this end, we first have to solve the linear difference equation
(1.4) under the initial condition that G0(0, p)^0 and G0(r, p) = 0 (r<0). It can
be immediately seen that

•G0(ίm, py.96-0, G0(m\ p) = 0 (m'Φqm).

We put, denoting the column vector by the suffix *,
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9 p) =.(g™(m, P), 9{2\m, p),..,, 9(nKm9 p))*.

If for some v ( lgv^n), we impose the condition that #(v)(0, p)#0, #(ί)(0, p) = 0
), then, as long as (ra + p —Ao) is non-singular, we can observe that

(2.16) G0(q(nm + k), p) = (0,..., 0, 0<*'>(nm + /c, p), 0,..., 0)*

k' = v - k (mod n),

and moreover we can take, e.g.,

(Z.7,

According to our theory, if we can know the explicit value or the asymptotic
behavior of G0(m9 p), then we can always determine the Stokes multipliers T%(p)
from (1.16) by means of the limiting method. (See [3]). In this case considered,
we have

/qιAp-μkynY/q

ωι-

Now we shall return to the original problem. Below p 0 is assumed to be σv

for some v (l^v^q). From (2.12) and (2.16-7) we can know the explicit values
of 9i(m) and then from (1.17) we have

(2.19) gf(m) = ΣJ-o Σ ί - i Σί-i Tiί.^p0)Fίj(m^p0+pj9 p0) (i=0, 1,..., y).

From this we obtain

(2.20) m = tptΣ2=o*ίrn)VH

= tpi ΣSILT"1 9i(^)ίm

+ Σj=o ΣZ=i Σί-i Γ^- Cpo)/^?/!!!, Po)ίm+^0

= ίpί ΣSS.T"19i(m)r + x,(ί) (ί = 0, 1,..., y),

whence, putting

we have the expansion formula in terms of the functions (1.19)

(2.21) X(t) = Σs°°=o Σ2=i Σf-i Hk(s)(Tk

w(Po),

We here apply the following proposition to

PROPOSITION [2; Theorem 3.1]
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(7

as ί-»oo in the sector

: - iZL + 2π_/' < a r g î/*, < - JL
9 q ~ qg

9 q ~ q q

where διv denotes the Kronecker delta.

Then we have

(2.22) £(o-Σ^/ω(rupo),n k l(po),.-.,n k/po))<-'

- Σ ϊ - i (Go(-m, po)» G1(-w,.Po). . ., Gy(-m,

as ί tends to infinity in the sector

(2.23) S(lul2,...,ln) = r\^1Stk.

Taking account of

• Σ ϊ - i Gi-m, po)t»°-m = Σ£=i-p0+P, β<(-wi)ίp|-" α - 0 , 1,..., y),

and applying (2.22) to the matrix solution X(f) expressed, as is seen from (2.8)
and (2.20), in the form

X(t) =

+ (0, y

we consequently obtain the following

THEOREM 2. /Is t tends to infinity in the sector (2.23), there holds

Άt) ~ Σί-i J*(0(Πfco(Po), Γffcl(p0),...,

- Σm=i (9o(-wί)ί"°, giί-m)!"',..., g^

w/tere ί/te Stokes multipliers are explicitly given by (2.18) and Theorem 1, i.e.,

For the extended Airy equation, the same result as above has been derived
by B. L. J. Braaksma [1]. Applying Theorem 1, we can also solve completely
connection problems for the extended Bessel equation

znyW + a1z""V""1 ) + • " + a«-iz/ + (an-δzv)y = 0

and moreover the generalized hypergeometric equation
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zny(n) + £ π = i ( e j + £ / Z «) z »-y»- l> = 0,

the ah the b i ( fe i =0(/ = l, 2,..., v —1), ftv^0), <5 and v being complex numbers,

in case the characteristic equation is of the form

where the p f differ by integers each other. See [3, 4 ] ,
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