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§ 1. Introduction

Let R be a compact Riemann surface of genus greater than one. Let H be

the upper half plane with the Poincare metric. Then R = HjΓ where Γ is a discrete

torsion-free subgroup of SL(2, R), acting freely on H via fractional linear trans-

formations. In the well known paper [10], A. Selberg constructed a function

ZΓ associated with R for which the location and order of the zeros of ZΓ gave us

information about the topology of R and the spectrum of the Laplace-Beltrami

operator on R. After that, in 1977, R. Gangolli showed how to attach a Selberg's

type zeta function to a compact quotient of symmetric space of rank one in his

paper [2].

By the way, these zeta functions can be thought of as providing information

about the class one spectrum of G on L2(G/Γ)9 where G is a semisimple Lie group

of real rank one. Namely, we decompose L2(G/Γ) into a direct sum of G-invariant

irreducible subspaces and investigate those irreducible subspaces that contain a

unique (up to scalar multiplication) K-invariant function. Here K is a maximal

compact subgroup of G.

Let M be the centralizer in K of the split component of a minimal parabolic

subgroup of G. Then the class one spectrum of G is contained in the representa-

tions induced from the trivial representation of M. D. Scott paid attention to

this fact in [9]. Let ξ be an irreducible representation of M. As for G = SL(2, C),

he constructed a zeta function ZΓ^ which gave information about those principal

series representations induced from ξ that appeared in the spectrum of G on

L2(G/Γ).

In the present paper, we consider the analogues of those results when G =

SU(n, 1). That is, we construct the zeta functions Z Γ τ of Selberg's type for

compact quotient of G, associated with the one dimensional representations τ of

K= U(n +1) Π G. The purpose of this paper is to show that these zeta functions

have almost all the properties possessed by Selberg's one. Our main results

are collected in Theorem 4.11.

In §2, we deal with preliminaries.

Making use of the trace formula, we will define the series ηΓ τ, the logarithmic

derivative of our zeta function. On that occassion, we use the suitable function
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belonging to <^Ϊ(G9 τ) (see §2). That was the reason why we came to necessity of

the characterization of %>\G, τ) under the τ-spherical Fourier transform. So we

mention about this subject in §3. Also, we will apply this result to a certain

function in (^ί(G, τ) and we shall obtain some consequence connected with the

multiplicities of the discrete series representations in L2(G/Γ).

The first half of §4 is devoted to studying ηΓt. That is, we investigate the

analytic continuation of ηΓtt. The functional equation of ηΓτ is derived there.

In the latter half, we define the zeta function and study its various properties which

are derived from the first half of this section. Lastly we refer to the product

expansion of ZΓτ.

§ 2. Preliminaries

Let G = SU(n, 1) (n>2). Recall that SU(n9 1) is the group of elements in

SL(n + l, C) leaving invariant the Hermitian form Σ?=i \zι\2 ~~ lz« + il2 Let

g be the Lie algebra of G.

We take X=l/(n + l)flG, the maximal compact subgroup of G. The Lie

algebra of K is ί = < Q > with X an n by n skew hermitian matirx and y

a complex number such that t r (Z) + j/ = 0. If p = I\ t^ Q | with Z an n-

dimentional colume vector, then g = ί © p is a Cartan decomposition of g with

respect to the involution θ. Here θ is given by Θ(X)= — *X ( l e g ) . The sub-

group Tof diagonal matrices in K is a compact Cartan subgroup of G. The Lie

algebra of Tis denoted by t.
ΓO. . I Ί

If Ho—\ \ 0 eg, then RH0 is a maximal abelian subalgebra of p.

Li oJ
We denote this subalgebra by α r

Set

A
p

coth t 0 sinh t

0 /„_! 0 }•
_ sinh t 0 cosh t.

LetM be the centralizer of Ap in K. Then M = \\ u \\ where u e U(n-1)

and e 2 ί βdet(w) = l. Let At be the subgroup of diagonal matrices in M. The

Lie algebras of M and At are written by m and αf respectively. Then A = AtAp

is a Cartan subgroup of G and the pair (T, A) is a complete set (up to conjugacy) of

Cartan subgroups of G.

Let α be the Lie algebra of A. Namely,
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α = \ H= H(t, iuu..., iun) =
lU-y

ιun

ιuΛ

tτ(H) = 0,

teR, Uj-e

The complexification ac of α consists of matrices of the same type as H with

complex elements t and wy. This is a Cartan subalgebra of g c = sl(n + l, C), the

complexification of g.

Let ek be the linear function on ac defined by

= iuΛ

Then

is the root system of g c with respect to α c . We choose an ordering so that the

positive roots are

Let

Φ+ = { α u + 1 = βi - eJ+1; 1 < ί <j < n}.

?_ = { α e Φ + ; α = OP+ = {α e Φ+ α # 0 on α j ,

Then we have

P+ = {αi,i+i; 1 < 7 < n} U {α f>lί+1; 1 < i < n} U {α1>M+1}.

Put p = 2 - 1 Σ«eP+

 α F ° r α e Φ + , let Xa be a root vector belonging to α,

and put π c = Σ α 6 p + ^ ^ α Then if n = n c n g , we have the Iwasawa decom-

positions g = ϊ φ α ί , φ n , G = KApN9 where of course N = expn. For any sub-

algebra ί of g, we denote by I* the dual of I.

Let Σ be the set of restrictions to ap of elements of P+. If 2β is the restriction

of α l n + 1 to αp, then the restrictions of all other elements of P+ are β. Hence we

have Σ = {β, 2β}. We note that β(H0)=l, and n = g/5©g2^. Here g^ and Q2β

are given by

0 ^ 0

- J 0 I

0 'J 0

y o
0 0

ly o

y

o
y J

Throughout this paper, we will denote by pα the number ρ(iία) = 2"1{2(n — 1)
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Let at be the standard Lebesgue measure on R. We take a Haar measure

dh on Ap by dt, when h = at = QxptH0. For any μeα*, we put v = v(μ) = μ(H0).

Then v is a parameter on α*, and maps α* isomorphically onto 1?. Let dv be the

Lebesgue measure on if?. Then dv/2π is the measure on R dual to the measure

dt on R. We denote by dμ the measure on α* that we obtain from dv/2π. Then

dh, dμ are dual in the sense of Fourier transforms.

Let dk and dm be the normalized Haar measures on K and M respectively.

On N we fix a Haar measure normalized by the following condition: Let

n=^θ(n~x) for neN, and for any xeG, let H(x)eap be defined by x =

κ(x) exp H(x)n(x), κ(x) e K, n(x) e Λf. The measure dn is to satisfy the condition

\ exp( — 2p(H(n))dn = l. Having fixed the above measures on K, At, N, we
JN

fix the Haar measure dx on G given by

dx = exp 2p(log h)dkdhdn.

For any subgroup L of G, let L be the set of equivalence classes of irreducible

unitary representations of L. If v e C ( ^ (&p)c) a n ^ ξ e M , let H^ denote the space

of functions

f:K >Eξ ((ξ,Eζ)eξ),

and

If feHξ let fv(katn) = exp(-(iv + po)t)f(k\ keK, teR, neN. Set

( ^ ( v W / ) W = / v ( ^ ^ ) - Then (πξfV9 Hξ) is a representation of G. If veJΪ

(^α*) then this representation is called a (unitary) principal series representation

of G. On the other hand, for ve ίR, the representation πξnV is called a comple-

mentary series representation of G whenever it is unitarizable. Such a repre-

sentation appears when ve /[ — p o , po~\.

The unitary dual t of Tcan be identified with a lattice Lτ in /ί*. The set of

regular elements will be denoted by L'τ. The Weyl group of G relative to T acts

on Lf

τ. Let LJ be a fundamental domain for this action. It is known that L\

uniquely parameterizes the so-called discrete series representations of G, cf. [4].

Tf fe CC(G), we define the Abel transform Ff by

Ff(mat) = exp (tp0) \ f{kmatnk~x)dndk (meM).
J K*N

Let Θξv = Θπξv (ξeM, veC) denote the character of-'.πξtVv Then it is known

that

(2.1) <^,v(/)=( [ Ff(mat)tt ξ(m)Qxp(itv)dtdnu
J M J R
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Applying the Fourier inversion formula and the Peter-Weyl theorem we have

(2.2) Ff (mat) = (l/2π) Σξ** \ ΘξtV(f) exp ( - itv) tr ξ(m)dv.
JR.

Now let Γ be a discrete torsion free subgroup of G such that G/Γ is compact.

Then every element yeΓ is conjugate in G to an element of the Cartan subgroup

A = AtAp. Choose an element h(y) of A to which y is conjugate, and let h(γ) =

ht(y)hp(γ). We then define uy = β(\oghp(y)). Though uy will depend on the

choice of h(y), its absolute value \uγ\ depends only on y.

An element yeΓ, yΦe is called primitive if it can not be expressed as <5Π,

for some n> 1, δ e Γ. We denote the set of primitive elements of Γ by PΓ. It is

known that every yΦe is equal to a positive power of a unique primitive element

δ. The integer j(y) is defined by y = <5̂ > [1].

Fix a G-invariant measure dx on G/Γ by requiring that for each fe CC(G)

we have

G/Γ

We denote the volume of G/Γ in the invariant measure dx by vol {GjΓ).

Let CΓ be the set of representatives in Γ for the Γ-conjugacy class of elements

ofΓ.

Let (T, Er) be a finite dimensional unitary representation of Γ-with character

χτ. Let L2{G/Γ, T) denote the set of functions/: G->£Γ such that

= T(y~ι)f(x) for all xeG and

and

( WfWUdx < oo
JG/Γ

where || || τ is the norm on Eτ.

Because G/Γ is compact the left regular representation U of G on L2(G/Γ, T)

splits into a direct sum of irreducible unitary representations of G and we can write

^ = Σπeό mΓ(π)π.

Here mΓ(π) = mΓ Γ(π) is the number of summands of U which lie in the class

πeό.

In this paper, our chief tool is Selberg's trace formula. The notion of an

admissible function (for the trace formula) is defined as usual, cf. [3], and one

has the trace formula

(2.3) Σnec mΓ,Aπ)Θn(f) = Xl(e) vo

-ίe) Xr(>0 \uγ\j
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which was derived in [14]. Here Θπ(f) stands for the character of πe<5, and

C(h) is a positive function depending only on the structure of G. The number

C(h(y))Ff(h(y)) depends only on the G-conjugacy class of y. The value C(h(y))

is given by

C(Λ(?)) = ε(h(γ))ξp(hp(y)rι Π (l-ξMy))"1)^

Here, for any μ e (αp)£, ξμ stands for the character of A defined by ζμ(h) = exp

μ(log h), and ε(h) is, for he A, equal to the sign of 1 — ξΛί,n+ί(h)~ι.

Let T) be the universal enveloping algebra of G. Let σ(x) = (2(n-f 1) tr

X2)1/2

9 where x = k exp X, x e p is the polar decomposition of x e G.

For any one dimensional unitary representation τ of K, let

where v=μ(H 0). We call φτ(v9 x) the τ-spherical function.

Let ^\G, τ) be the set of smooth function / on G for which

( I ) vD,Xf) - s u P χ e G { ( 1 + σ ( x ) ) r Ξ - 2 ( x ) \ D f ( x ) \ } < + oo f o r a n y n e Z a n d a n y
£>e£,

(II) f(kxk') = τ(k)f(x)τ(k') for fc, fc' e X.

Here Ξ(x) is equal to the zonal spherical function φι(Q~, x).

It is known that (€X{G, τ) is a Frecht space with vDr as seminorms.

§3. The result of P. C. Trombi [11] and its applications

Let ^ ! be a subset of R consisting of one dimensional representations. For

k=yί jeK (ueU(n),weC and det(u)w = l) and qeZ, we define τq(k) —

det(u)«. Then Kx is parametrized by Z.

In this section, we shall describe the result of Trombi concerning the chara-

cterization of i#ι(G, τ) under the τ-spherical Fourier transformation.

For each τeRu we define the one dimensional representation τ M of M by

restricting τ to M. It is known that the Plancherel measure μτ(v) = μjί(v) at (τ M , v)

is given by μτ(v) = (cτ(v)c t(- v))"1. Here cτ(v) is given by

when t = τq. Here Γ( ) is the classical gamma function [7].

Let Vτ denote the following set:

Vz = (v e C; v = ir, r < 0 and cT(v) = 0}.
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If τ = τ9, then we observe

P = | 0 (empty) if \q\ < n,

1 if \q\ > n.

Put ^ W = { v e C ; |Im v|<po = π} and K* = Vτ n p j
For a moment, we consider the case \q\>n. Let m = min {n, \q\ — n}. Then

we see that

{ k: even if |#.| = n mod2 1
- ίfc; 1 < k < m,

k: odd if |?| # n mod2 J

Let φτ(v, x) (x E G) be the τ-spherical function corresponding to ve C.
These τ-spherical functions possess the properties that φτ( — v, χ) = φτ(v, x) and
φτ(v9 x) = φτ(v, x). Since φτ(ik, x) are linearly independent over C, we can
choose αy e C?(G, τq) (j e iVτ

0«) such that

φ-Wiik, x)dx = δJk (k 6 iK;«)

Suppose that F(ζ, v) is a function defined on Λί x C, diflferentiable on
with respect to v. Let S denote the algebra of differential operators

on C. For each ueS and αe/?, let vllfβ(F) = sup V 6 l n t ( ^ ( P β ) ) i ί 6 A Ϊ |F({, v; ιι)|

Let #i(G, τ) be the linear space of all functions F(ξ, v ) o n M x C which
satisfy the following properties: (1) F(ξ, v) = 0 if ξΦτM, (2) F(ξ, v) is holomorphic
in vGIntO*Xpβ)), (3) F(ξ, -v) = F(ξ, v) and (4) for all t/eSandαe/?, vM>α(F)are
finite.

It is easy to see that #i(G, τ) is a Frechet space under the seminorms vM α

(ueS, αe/?).
Next, we set Lί(τ) = {AeLί; [ω(A)|^: τ] κ ^0}. Here ω(A) (eG) is the

discrete series representation corresponding to λ as in Section 2.
Let #1(6, τ) denote the linear space of functions H on Lf such that //(A) = 0

unless λeL$(τ) and μα(//) = supΛeL+ (1 + ||A||)α|//(A)| are finite for all oceR.
Here || || denotes the norm introduced by the Killing form on g.

Topologize ^f(G, τ) by the seminorms μα (αe /?), we see that #}(G, τ) is a
Frechet space.

If \q\<n, then we put Vι(G, τq) = <£\{G, τq) x iff(6, τg). On the other
hand, if l ί |>n, let <gι(G,τq) be the linear subspace of #i(G, τ 4)x^KG, τ̂ ) of
thofce functions F = (F/1, F r ) which satisfy the following linear relation;

FT(λ) = Σ,w;< Θaiλ)(*j)FA(τ?9 ij)
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for all λ e Lf such that ω(λ)$Ξ G1. Here G1 denotes the set of equivalence classes

of irreducible unitary representations of G whose K-finite matrix coefficients

belong to L\G). Give V\(G9 τ)x&ϊ(G, τ) the product topology and ^ ( O , τ)

the induced topology. Then ^ι(G9 τ) is a closed subspace of product space.

Hence it is a Frechet space.

^ G , τ), we define two maps as follows: &A(f){ξ, v) = Θξ>v(f) and

= Θω(λ)(f) for all ξ e M, v e C and λ e Lf.

PROPOSITION 3.1. (Trombi [11]) There is a linear isomorphism

onto &1(G, τ) under the map & = (&Λ, J^T).

For the purpose of applying the trace formula for fe <^7l(G, τ), we need the

following fact mentioned in [1].

PROPOSITION 3.2. The elements of ^1{G, τ) are admissble.

Making use of the above two propositions we obtain

PROPOSITION 3.3. Let ω(λ) (λeLf) be the discrete series representation of

G and d(ω(λ)) its formal degree. Suppose that ω(λ) has a one dimensional

Krtype τq (i.e. .[ω(λ)|κ: τ j κ ^0)/or some qe Z and ω(λ) e G1. Then we have

mΓtT(ω(λ)) = χT(e)wo\iGIΓ)d(ω(λ))

for our normalization of Haar measure.

PROOF. Let λoeL$. If ω(A o )e6 1 , then we need not consider the linear

relation in the definition of &1(G, τ). So we may take the element F = (FA, Fτ)

of V\G, τ) such that FA = 0, Fτ(λo)=\ and Fτ(λ) = 0 for all λφλ0. Proposition

3.1 says that there is a function/in ^1{G, τ) such that #r(f) = F. Applying the

trace formula to this admissible fun ction /, we get

mΓfT(ω(λ0))Θω(λo)(f) =χτ(e)vo\(GIΓ)f(e)

= χΊ(e)vo\(G/Γ)ΣλeL+d(ω(λ))Θω(λ)(f)

= χτ(e) vol (G/Γ)d(ω(λ0))Θω(λo)(f).

REMARK 1. Applying Trombi's result in the general situation, namely,

without restriction about the dimension of the representation of K, we obtain the

same result as in Proposition 3.3 for any element of G1.

REMARK 2. Suppose that π is in Gr. Then, as a consequence of the above

consideration, we find that the quantity mΓT(π)/χτ(e) is independent of the choice

of the finite dimensional unitary representation Γof Γ.



Zeta functions of Selberg's type 605

§4. The Zeta function

In this section, we should like to define the logarithmic derivative ηΓ)Ί)τ of

Z r r τ and study its analytic continuation.

Let ε o > 0 be a fixed real number and let g be a real valued function in C°°(/?)

such that (1) g is even, (2) g vanishes in some neighborhood of zero, (3) g is

constant, equal to c for | x | > ε 0 and (4) 0<g<c. Such functions surely exist.

The value of c and ε0 will be chosen conveniently later on.

We now put εq(j) = i((- l)n+«+J +1). For each τqeKu we define a

polynomial Pq = PXq as follows:

ί 1 if \q\ < n
Pq(v) =

I Π 7 ( 2 2 )e7J) if \q\>n,
where m=min {n, |<?| —w}.

Let Dq be a differential operator on R whose Fourier transform is Pq.

For any complex number s, define a function q&s on MAp by

(4.1). q^s(mat) = τγ(m-')Dq(g(\t\)Qχp(p^s)\t\) (meM).

Since ^ vanishes in a neighborhood of zero, q&s is a smooth function on MAr
/•oo

Let H(r)=\ g'(x) exp (irx)dx (reC). Because of the properties of g, we
Jo

see that g' is in C™(R) and ^'(x) = 0 if | x | > β 0 . Hence an application of the
classical Paley-Wiener theorem gives us the following lemma as in [2].

LEMMA 4.1. H is an entire function. Moreover, for any integers n>\ and

m > 0 , we can find the constant C w # / >0 such that we have the estimates

\d»H(r)ldr Cm,H(\r\ + I ) " " if Im r > 0,

_ Cm,n(\r\ + IT" exp (βo|Im r|) if Im r < 0.

Using this function //, we can calculate the Fourier transform q&s(ζ, v) of

at the character (χξ, v) of My4p.

LEMMA 4.2. For Re(s — 2po)>0, we have

0 if

(4.2) f # f « ) i ^ - p j - v ) ff(/(,-Po) + v ) 1

^ s-po-iv

The proof of this lemma is similar to that of Scott [9, p. 181]. So we omit it.

PROPOSITION 4.3. Suppose that Kcs>2p0. Then there exists a function
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qgs in <$\G9τq) such that ΘξtV(qgs) = q&s(ξ9 v) and Θω(λ)(qgs) = 0 for all ξelti

and λ e L£.

PROOF. It is clear that qΦs(ξ9 v)=0 if ξφτ1* and βs(ξ9 -v) = „#,(£, v). If

Res>2p09 then (s — p0±ίv)"1 have all their derivatives bounded in a strip |Im v| <

ρo+ε where 0<ε<Re ( s — 2ρ0). From Lemma 4.1 Pq(v)H(ί(s — po)±v) are

holomorphic and rapidly decreasing functions of v in any strip |Im v | < b . Con-

sequently q&s is an element of ^ Λ ( G , τ^).

Next, we shall show that (q&s9 0) is an element of <£i(G9 τq). Since

0e#f(<5, τq), it suffices to show that the linear relation holds for (qΦs9 0). But

we can easily check it directly as follows. In the case \q\ < n9 we see that Vτ

o

q=0.

Therefore we need not consider the linear relation in the definition of c€ι{G9 τq).

Next, suppose that \q\>n. Then, since Pq(ίj) = 0 for ally ( l < y < m ) , one finds

that j&siΐq4, i/) = 0. Hence it is clear that the linear relation holds.

On account of Proposition 3.1 we have the desired result in any case.

For each τqeKΐ9 Proposition 4.3 and (2.2) say that

(4.3) Fq9s = q&s.

By the assumption on Γ9 it is known that the numbers {|wy| ye CΓ — {e}} are

bounded away from zero [2]. If we choose and fix ε0 so small that it is smaller

than all of these values, we have

(4.4) g(\Uy\) = c (yeCΓ-{e}).

If we restrict the function g to the region {t\ \t\ >ε 0 } on which g(t) = c holds,

then we are able to show that

(4.5) £>q(g(t) exp (ρ0 -s) \t\) = cPq(i(p0-s)) exp (p0 -s) \t\,

by the direct calculations.

Put π,, v = πtM?v. If q = n (mod2), \q\>n9 then it is known that the represen-

tation π9 > 0 is reducible. Moreover, for such q9 we have π ^ o ^ 7 r ^ o © π ~ o . Here

π j o (resp. π~>0) is so-called the limit of discrete series representation of G satisfying

ίπq,o\κ:> τq]—^ f° r # < 0 (resp. {TI~Q\K'9 T J = 0 for g>0) (cf. [5], [6]). Hence

we see that

(*) mr(π+ o)θχ,o(q9s) + ™rθς,0)Θ~t0(qg5) = Γ mΓ{π^Q)Θ^0(qgs) if q > 0,

L mM'q^θqoίqQs) ^ 1 < ^

So, with the idea of giving ourselves the least possible trouble, we make a change

in the definition of πqt0 to the following effect;
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j.o i f Q > °>

L " o if <? < 0.

Then we have

Remark that πqt0 is irreducible if q φ n (mod 2). Let Qq = {π ε G π ε L2(G/Γ, T)

and β π ( ^ s ) # 0 } . Define two subsets Q* and g* o f Q by

π9tλ ε G and πqtλ e L2(GIΓ, T)},

Q\ = {λeiR+-{0} π ^ e 6 and π ί f A ε LHG/Γ, T)} .

Since the definition of τq implies that πqtV is equivalent to π^_ v , Q^ is parametrized

by the set Qq U β^ under the convention for the definition of πq%0. Hereafter, we

are looking on Qq as Q\ U Q\.

Now we define

(4.6) Aq(s) = Σ*eQq m(q, A),#s(τf, λ).

Here we put m(q, λ) = mΓ(πqλ).

The following result is proved by Wallach [13].

PROPOSITION 4.4. There is a real number cc0 such that for any δ e £ and all

α>α Λ

| ( ) | Γ < + oo

where Ω is the Casimir operator on G.

Making use of Proposition 4.1 and 4.4, we obtain

PROPOSITION 4.5. The function Aq(s) has a meromorphic continuation to

the whole complex plane. The poles of Aq occur at the points s = po±iλ (λeQq).

These poles are all simple and the residue at s = po±iλ is m(q, λ)Pq(λ)H(0).

Here, if Pq(λ) = 0, then we interpret that there is no pole at s = po±iλ.

By Proposition 3.2, the function qgs is admissible if R e s > p o . So we get,

with the help of (4.3), (4.4) and (4.5),

q() = χT(e)wo\(GIΓ)qgs(e)
(4.7)

+ cPq(i(p0-s)) Σ χτiy)\uy\j{yrγC{h{y))τ^{ht{yr' exp(po-s)\uy\.
C { )) Σ

γeCΓ-{e)

For Res>2p 0 , we define ήΓ,τ,τq(
s) by the second term on the rieght side of

(4.7). For simplicity we put ήq(s) = ήΓtTtτq(s).
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Since qgs is admissible, the sum is absolutely convergent and it is readily seen
to be absolutely and uniformly convergent in any half plane Re s > 2ρ0 + ε with
ε>0. Hence ήq(s) is holomorphic in the half plane Re s>2p0.

We will now consider the term χτ(e)yol (G/Γ)qgs(e) and show that it is
meromorphic with respect to 5. By the Plancherel theorem, we have

(4.8)
qgs(e) = \ ΘξfV(qgs)μξ(v)dv

= (1/2,0

by virtue of (4.3) and the evenness of the functions Pq and μq (see §3).
We now shift the integration into the complex plane by using rectangular

contour as in [2]. The function μq is meromorphic in the upper half plane, and
can only have simple poles which are listed below.

TABLE 1. rk = rqk\ the pole of μq

dk = q,k' > the residue of μq at the pole rk

(JceZ)

\q\<n

\q\>n

(mod 2)

\q\>n

qφn

(mod 2)

rk

rk = i(p0 + \q\+2k)

(k>0)

rk = 2i(k+ί)

rk + (\q\-n)/2

(k>0)

= i(po+\q\ + 2k)

(0<k<(\q\-n-W

rk + (\q\-n+l)/2

(k>0)

dk

idk = \^nJ2(n + \q\ +2k)

fn + \q\ + k-ί\ fn + k-ί\
\ n-ί J\ n-ί J

idκ--k + \(^\+n^2 + k)

/(\q\ + n)l2-k-2\
\ n-ί J

idk+(M-n)/2 = (idk )

f(\q\ + n-ί)l2-k-ί\
Λ n-ί )

y lΎt Trie case iQfl ^ *^J
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The same argument of [2] shows that

(4.9) qβs(e) = i Σteo Hi\{L~P^rk) P,(rt)dk (Re s>2Po)

^ Po ιrk

by the residue theorem.

PROPOSITION 4.6. The series on the right side of (4.9) covnerges absolutely

and uniformly for s in any compact set disjoint from the numbers {po + irk},

and defines a meromorphic function of s in the whole complex plane. This

function has simple poles at the points po + ίrk(k>0, he Z) and has the residue

iH(0)Pq(rk)dkats = po + irk.

The second assertion of Proposition 4.6 is proved by using Lemma 4.1.

But since the proof is similar to that of [2, Proposition 2.6], we omit the proof.

Note that the value ίχτ(e) vol (G/Γ)H(0)Pq(rk)dk is real since dk is pure imag-

inary. As seen in [2], under our normalization of measure, it turns out that

vol (G/Γ) is a rational multiple of the Eular-Poincare characteristic E of the mani-

fold K\G/Γ. Also, Table 1 shows that idk is a rational number and we are able

to choose the denominator of the residue of the function χτ(e)vo\(GIΓ)qgs(e) so

that it depends only on G and not on k and q. Hence there is a positive integer

κ = κ(G) such that ivo\(G/Γ)dk = ekElκ, where ek = ekq is an integer. Note that

ekE and idk have the same sign.

Recall that, in defining ήq(s) we had used a constant c, with g(t) = c when

t>ε0. We now take K for c. Then we see that H(0) = κ and since Pq(rk) is an

integer, the residues of the function χτ(e) vol (G/Γ)qgs(e) are all integers.

By means of Proposition 4.5, 4.6 and the definition of the function ήq(s),

we get the following proposition.

PROPOSITION 4.7. For any τqeKί9 ήq(s) has meromorphic continuation to

the whole complex plane, via the relation ήq(s)=Λq(s)~χT(e) vol (G/Γ)qgs(e).

The poles ofήq(s) are all simple, and are as follows:

Pole

s = Po

s = p0

±
+

iλ

irk

Residue

Kftijiq, λ)Pq(λ)

- ekEXl{e)Pq{rk)

(λe

( f c ; O, ke Z).

Here, if for some λeQq there is k such that λ = rk, then we understand the residue

at this pole is (κmΓ(q, rk) — ekEχτ(e))Pq(rk). Also, ί/Λ = 0 is in Qq, the residue

at this pole is 2κmΓ(q, 0)Pq(0). Of course, if Pq(μ) = 0, then s = ρo±iμ is not a

pole.

To show that ήq satisfies a functional equation, it is convenient to perform the
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change of variable r= -i(s-ρ0) and let ήq(r) = ήq(ir + p0) = ήq(s). If Rcs>2p09

that is Im r< — ρ09 then

(4.10) ήq(r) = κPq(r) Σ Xτ{y)\uy\KyYιC{h(y))τ^{ht{y))-' e x p ( - ί φ y | )
γeCΓ-{e}

and the sum is absolutely and uniformly convergent in any half plane I m r <

— po—δ(δ>0). By Proposition 4.7 we get

(4.11) ηq(r) = - / ΣχeQq m(q, λ)Pq(λ)

-χT(e) vol (G/Γ) Σ ^ o ^ " ^ Pq(rk)dk.

The residues of ήq(r) at r = ±λ(λeQq) (resp. r=rk /c>0)are — iκmr(q9 λ)Pq(λ)

(resp. iekEχj(e)Pq(rk)).

Now let

Φq(t) =

In order to prove the functional equation, we need the following lemma.

LEMMA 4.8. There is a sequence {xm}->oo (m-»oo) so that for any y>0

there is a polynomial P such that

sup {^(r)P(lrl)-1 |Im r\ < y, ± Re r e {xm}} < + oo.

The proof of this lemma is a slight extention of that of [9, Proposition 4.14],

making use of Proposition 4.4. We omit the proof.

PROPOSITION 4.9. For τqeKί9 we have a functional equation:

(4.12) ήq(s) + fjq(2p0 - s) + Φq(s - p0) = 0.

PROOF. Put Φq(r) = Φq(s-ρ0). To prove (4.12), it suffices to show that the

following equation holds:

(4.13) η£r) + η£-r) + φ£r) = om

Because of (4.11), the meromorphic function ήq(r) + ήq( — r) has only simple

poles at r = ±rk with residues ±iekEχT(e)Pq(rk) respectively. On the other hand,

the poles of Φq{r) are at rk and — rk, and the residues are — iekEχτ(e)Pq(rk) and

iekEχτ(e)Pq(rk) respectively. It follows that the left side of (4.13), say qq(r), is

an entire function. We will show that qq(r) = 0.

Fix ε > 0 and let b be an even holomorphic function that is rapidly decreasing

in the strip {z; | Imz\<p o +2e}. Let y = po+ε and for any positive real number x

such that ±x<£Qq9 let Ox be a rectangular contour in the complex r-plane with
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vertices ±x± iy. Let Ex (resp. E-.x) be the side from x — iy to x+ i>> (resp. — x + iy

to — x —1» and let BJ (resp. f*~) be the side from x + iy to -x + iy (resp. — x —1>

to x — iy). Note that the function b is holomorphic inside of Ox. Thus by the

residue theorem, we have

b(r)ηq(r)dr

= 2πi{iχτ(e) Σ\rk^Po ekEPq(rk)b{rk)

Put Ooo^lim,.^^ Ox. Then, since/? is even we get

(4.14) ^ b(r)ηq(r)dr

= - 2πχΓ(e)£ Σ|r k (<po ekPJrk)b(rk) + 4πκ ΣλeQq m(q, λ)Pq(λ)b(λ).

On the other hand, the evenness of b and the relation — ήq( — r) = ή

Φq(r)-~<ίq(r) imply that

ί b(r)ηq(r)dr = 2 ί b(r)ηq(r)dr + \ .
J O X J Bx J Bx

- [ . b(r)qq(r)dr + [ b(r)ηjr)dr + [ b(r)ήq{r)dr.
jBx JEX JE-X

Combinning Lemma 4.8 with the fact that b is rapidly decreasing, we conclude

lim^oo XφQq \ b(r)ηq(r)dr = 0.

JE±x

Therefore we have

(4.15) ( Kr)W")dr

JOoo

^ ^ ^ b(r)qq(r)dr

where L_,, denotes the line in the complex plane t — iy as / goes from — oo to oo.

From (4.14) and (4.15), we can write

(4.16) - 2~l

Xl{e)E Σ\rh\*,. ekPq(rk)b(rk) + K ΣΛ^Q, Mq, λ)Pq(λ)b(λ)

= (l/2π) { ( b(r)ηq(r)dr + 2~Λ b(r)Φq(r)dr

- 2-ι \ b(r)qq(r)dr\ .
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On the line L_y9 the series (4.10) that defines ήq converges absolutely and
uniformly, so we have

(4.17) (l/2π) ( b(r)ηq(r)dr
J L-y

= K ΣyeCr-ίe) Xτ(l) \uy\i{y)-lC{h(y))^{ht(y))^

( Pq(r)b(r) exp(- ir\uy\)dr.
L-y

Since Pg(r)b(r)exp( — ir\uy\) is holomorphic and b is rapidly decreasing, we may
shift the contour of integration to the real line. Hence we have

(4.18) ( Pq(r)b(r)exp(-ir\uy\)dr = \ Pq(r)b(r)exp(-ir\uy\)dr.
J L — y J R

Now we define a function B in ̂ ι(G, τq) by

B(ξ,r) = V 0 if ξqkτf,

[ Pq(r)b(r) if ξ £ τ»f.

Then applying Proposition 3.1, we see that there is a function / in ^1{G, τβ)
such that &(/) = (B, 0). The Fourier inversion formula on MAP implies

(4.19) τf(fc((y))-i(l/2π)( Pq(r)b(r)cxV(-ir\uy\)dr
J R

= (l/2π) Σ « . Λ ( tr«Λ((y))B(ί, r)exp(-ir|«r|)dr
J R

= Ff(h(γ)).

Since Φ4(r) is atempered function and b is rapidly decreasing, using the
residue theorem again we may shift the contour of the integration to get

(4.20) (l/4π)j t b(r)Φq(r)dr

= (l/4π) \ b(r)Φq{r)dr + {iβ){iχT{e)E Σ | Γ k | £ p . b(-rk)ekPq(rk)}
J R

The last equality is the Plancherel theorem.
From the equalities (4.16)-(4.20) we obtain



Zeta functions of Selberg's type 613

(4.21) (l/4π) \ b{r)qq(r)dr
J L — y

= κ{χτ(e) vol (G/Γ)/(e) + Σ ^ c - w Xiiv) \uy\j{yyιC{h{y))Ff(h{y))

- ΣX.Q, mid, Wλ)Pq(λ)}.

Applying the trace formula to the admissible function /, it is clear that the right

side of (4.21) is equal to zero. Therefore, by shifting the contour of integration

from L_y to R, we get

(4.22) \ b(r)qq(r) = 0.
J R

Since b is arbitrary even holomorphic and rapidly decreasing function in the

strip | I m r | < p o + 2 ε , and qq is an even function, one deduces from (4.22) that

qq(r) = 0 on R. But qq is entire, hence qq = 0, and Proposition 4.9 is proved.

Now put

(4.23) »ί?(s) = n4(

and

Φ°M = -

Suppose that \q\>n. Then Pq(i(s-Po)) = Πy=i {-(s-po)
2 + j2}εq(j). In

this case, s=po±j (jeiVl*) is not a pole of ήq(s) by means of Proposition 4.7.

Thus η°q(s) can have additional simple poles at s = p0 ± j , j e i V^«. Now let

rj(j) = Res s = P o ±J ηq(s) (j e iVj*).

Then the functional equation ηq(s) + η°(2p0 — s) = φ°q(s) implies that

r+

q(J) ~ r-{j) = djj) (jeiVj ) .

Here we put

dq(j) = Ress=/,o +J φq(s) (j e i V**).

We now define the following two functions:

< 0 if \q\<n,

U
(4.24)

j 0 if \q\<n,



614 Masato WAKAYAMA

Moreover we define

(4.25)

and

= φq(s)-Gq(s).

Put Qq = {λeQq; Pq(λ)^0}. Note the fact that Qq<^ζ)q. We now sum-

marize these observations.

PROPOSITION 4.10. For τqeKuηq is a meromorphic function with simple

poles. The (non-trivial) poles ofηq are located at s~po±iλ (λ e Qq) with residues

κmΓ(q, λ)for any q. Apart from these poles, there exist a series of the (trivial)

poles as follows:

TABLE 2.

\q\£2n

\q\>2n

q = n

(mod 2)

\q\>2n

qφn

(mod 2)

Pole

-dίl+2fc)

(fc^O)

-i\q\+2k)

(fĉ O)

n-2(fe+l)

([n/2]</c^(k|-n)/2-l)

~(\q\+2k)

(k>0)

n-(2k+\)

(C(« + l)/2]<fe^

(|q|-n-l)/2)

Residue (-Kidkχτ{e) vol(G/Γ))

idk=^ξ(n + \q\+2k).

fn + \q\ + k-l\ fn + k-l\
\ n-\ )\ n-ί )

same idk as in the case \q\<,2n

id_ k+ίf(\q\ + n)l2 + k\
ιd*--ψ^\ n-i )•

(Qq\ + n)l2-k-2\

same idk as in the case \q\<,2n

id _ k(k + i)((\q\ + n-l)l2 + k\

/(\q\ + n-ί)l2-k-ί\

The poles described above are the only poles of ηq.

Furthermore ηq satisfies the functional equation:

-s) = φq(s).

REMARK 1. If q ̂ 0 , then Table 2 shows that the trivial poles are all negative.
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REMARK 2. If q = 0 and 5 = 0 is a non-trivial pole of ηq(s) (that is iρ0 e Qq),

then we understand that the residue of the pole at this point is κmΓ(09 iρo) —

κidkχτ(e)vo\(GIΓ).

REMARK 3. If O e ^ then, of course, the residue at the point s = p0 is

2κmr(q, 0).

Since the function ηq(s) = ηΓfTiτg(s) has only simple poles with integer residues,

we can find a meromorphic function Zq(s) = ZΓTtXq(s) such that (d/ds) (log Zq(s)) =

ηq(s). The function Zq will be defined up to multiplicative constant. Hence we

can choose a point soe C with Re so > 2p0 and a constant c0 which normalizes

suitably Zq such that

Zq(s) =

We now come to our main result.

THEOREM 4.11. For each τqeKu the function Zq has following properties.

(A) Zq is holomorphic in a half plane Rcs>2p0 and has a meromorphic

continuation to the whole complex plane.

(B) The following functional equation holds:

Zq(2p0 - s) = C l exp Q ' - φq(z)dz) Zq(s)

where ci = Zq(2po - so)Zq(so)'ί.

(C) Zq satisfies a sort of modified Riemann hypothesis. Namely, the non-

trivial zeros of Zq lie on the line {se C Re s = po} except for the finite ones.

These finite exceptional values are, provided that they exist, all real and lie in the

interval [0, 2p0] symmetrically about p0. The corresponding representations

are all in the complementary series. Moreover, the order of the non-trivial

zeros ofZqats = po±iλ(λeζ)q, λ^O) isκmj{q, λ). If0eQq then the order of the

zero at the point s = p0 is 2κmΓ(q, 0). // g = 0 then the point s = 0 is somewhat

special (see (E bis)).

(D) Zq has the trivial zeros and poles at s = po + irktq with the order \ektqE>

χT(e)\ = \κidkiqχτ(e) vol (G/Γ)\ (see Proposition 4.10) listed below,
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TABLE

n: odd

n: even

3.

q = Q

qφO

q = 0

0<|^f |<2n

\q\>2n

q: even

\q\>2n

q: odd

Po + irk,q

-2k (fc>l)

-(\q\+2k) (k>0)

-2k (k>ί)

-(\q\+2k) (fc>0)

-(\q\+2k) (k>0)

n-2(k+ί) (n/2<k<(\q\-n)l2-l)

-(\q\+2k) (k>0)

n-(2k+ί) (n/2<k<(\q\-n-ί)l2)

zero or pole

zero

pole

pole

zero

pole

zero

(Ebis) Suppose that q = 0. If n is odd, then ηq(s) has the zero at 5 = 0
with the order κmΓ(0, iρ^) — e00EχT(e). On the other hand, ifnis even, then ηq(s)
has the zero (resp. pole) at 5 = 0 if and only if the sign of the number κmΓ(09 iρ0) —
eOtOEχτ(e) is positive (resp. negative). One way or the other, the order of the
zero or pole at this point is \κmΓ(0, ipo) — e0t0Eχτ(e)\.

(F) Enumerate the roots in P+ as α l9..., αt. Let L be the semi lattice in
α£defined by L = {^t

i=ίmi(xi; mt >0, m{eZ}. For λEL, define mλto the number
of distinct ordered t — tuples (m l5..., mt) such that A=ΣS=im£αr F°r any
yeΓ, yφe, we now further demand that h(γ) = hp(γ)ht(γ) be chosen so that hp(y)
lies in A+={at; t>0}. We now put

(-Fq(z))dz,

for Res>2po. Since the residues r^(j) at the poles z = po±j (l<j<min{n,
\q\ — n}) of the meromorphic function Fq(z) need not be integers, fq{s) is only well
defined in C\(—oo, 0]. Therefore we take and fix a particular path in the half
plane Re5>2p0, when the above integral is interpreted as a contour integral.
With these understood, the function Zq has an infinite product representation in
the half plane Re s>2po, that is, there is a non-zero constant C such that

' exp (-suδ))™.Zq(s) = Cfq(s

Here I is identity matrix and det means determinant.
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PROOF. The assertions (A) and (B) follow from the definition of Zq and the

functional equation of ηq. Also, Proposition 4.10 implies (C). As to the judge-

ment of the trivial zero or ρole? we will make use of the results of Table 2. If

the sign of the number — ekqE (or — idkι9) is positive (resp. negative), then Zq has

zero (resp. pole). This implies the properties (D) and (E bis).

The proof of (F) proceeds from the formula

(4.26) ^ ) = κ Σ y e C r - ( e } X τ ω K I ^ ^

for the logarithmic derivative of Zq, valid for Re s>2ρ0. Beacuse of our special

choice of Λ(y), we see that ε(h(y)) = 1, and u y > 0 , and we find that

C{h{y)) = ξ^iγ))-1 Παep+ (1 -

Thus (4.26) can be written as

(d/ds) log Zq(s)

(4.27) = K ΣsePΓ Σ ^ i {Xτ(δj)uδ Παe/>+ (1 -

x exp(-sjuό} - Fq(s).

Now expand (l — ξΛ(h(δ))~j)~ι as a power series,

This series converges because ξaih^δ))'1 < 1 by our choice of h(δ). Next multiply

together these series for the various α e P + , then we find that the product

ΠαeP+ (1 -

Therefore (4.27) becomes, with a rearrangement,

(4.28) (d/ds) log Zq(s) = K Σ t e P r Σ « L Σ&i

UsmλχΛδJ)ξMδ)rjτ^ht(δ))-J exp(-sjuδ) - Fq(s).

If ε,(<5), ε2(<5),..., ε,,(̂ ) are the eigenvalues of T(δ), then

Hence we can write

(dlds) log Zq(s) = κΣf-i Σί.Pr ΣΛCL mλud

x.Σ ^i•β,(«)Jίλ(A(5))- 'τf (A,(5))-> exp (-*/«,) -

= f ΣUΛ ΣsεPt ΣxeL mλuδ

^ exp (-T O <) _
1 exp (suδ) ^
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These manipulations are valid because of the absolute convergence of the

series (4.26) for ηq(s). Integrating this logarithmic derivative, we find that

Zq(s) = Cfq(S) UUl ΠsePr ΓL.L 0 -

where CΦO. This is exactly the assertion of (F).
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