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Introduction

A Lie algebra is called supersoluble if it has an ascending series of ideals

whose factors are of dimension < 1 . Many authors, especially Barnes [5] and

Barnes and Newell [6], have presented some properties of finite-dimensional

supersoluble Lie algebras. A group is said to be supersoluble (or hypercyclic)

if it has an ascending normal series whose factors are cyclic. Some properties of

finite supersoluble groups have been presented in [12]. In [2] and [4] Baer has

investigated supersoluble groups and has established the close connection with

hypercentral groups. The purpose of this paper is first to show the connection

between supersoluble Lie algebras and hypercentral Lie algebras, secondly to

generalize some properties of hypercentral Lie algebras to those of supersoluble

Lie algebras, and thirdly to characterize supersoluble Lie algebras by the weak

idealizer condition. We shall also investigate locally supersoluble Lie algebras.

In Section 1 we shall give basic properties of supersoluble Lie algebras.

Baer [2, Proposition 2] has shown that the derived group of a supersoluble

group is hypercentral. In Section 2 we shall show the Lie analogue of this and

characterize the Hirsch-Plotkin radical of a supersoluble Lie algebra as the unique

maximal hypercentral ideal. In Section 3 we shall give criteria for a supersoluble

Lie algebra to be hypercentral and for a locally supersoluble Lie algebra to be

locally nilpotent, by using the nonexistence of non-abelian 2-dimensional sub-

algebras. We shall also give a criterion for a locally finite Lie algebra over an

algebraically closed field to be locally nilpotent. It is known [12, p. 7] that the

product of two finite supersoluble normal subgroups of a group need not be

supersoluble. We shall show in Section 4 that over a field of characteristic zero

the sum of two supersoluble (resp. locally supersoluble) ideals of a Lie algebra is

always supersoluble (resp. locally supersoluble). We shall also investigate

coalescence. It has been shown that every infinite-dimensional hypercentral

(resp. locally nilpotent) Lie algebra has an infinite-dimensional abelian ideal

(resp. subalgebra) [1, Theorems 10.1.1 and 10.1.3]. We shall show in Section 5

that we may replace 'hypercentraΓ or 'nilpotent' by 'supersoluble' in the preceding

assertion. Bear [4] characterized supersoluble groups and locally supersoluble

groups by the weak normalizer condition. We shall consider its Lie analogue in

Sections 6 and 7. Proofs are slightly different.
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1.

Throughout this paper we shall be concerned with Lie algebras over an

arbitrary field Φ which are not necessarily finite-dimensional unless otherwise

specified. We shall always denote by L a Lie algebra.

The notation will follow that of [1]. In particular H^L(resp. H<L, H<JL,

H si L, H<\nL) indicates that H is a subset (resp. a subalgebra, an ideal, a subideal,

an n-step subideal) of L. For A, B^L, ΛB is the smallest subspace containing A

which is θ-invariant. ζα(L) is the αth term of the upper central series of L.

5i (resp. gr, 2t, 9ΐ, E2I, 3> LΪt, L ^ ) is the class of Lie algebras which are of dimension

< 1 (resp. finite-dimensional, abelian, nilpotent, soluble, hypercentral, locally

nilpotent, locally finite). If X and ty are two classes of Lie algebras, then Xty is

the class of Lie algebras L having an ideal IeX such that Ljlety. If L e ϊ ? ) ,

then L is called an £-by-2)-algebra. E ( < I ) £ (resp. E ( < ] ) £ ) is the class of Lie al-

gebras which have an ascending (resp. a finite) series of ideals whose factors belong

to X. More precisely L e έ(<])3£ (resp. E(<])3 ) if and only if there exist an ordinal

(resp. a finite ordinal) α and a family (Lβ)β^Λ of ideals of L such that

(1) Lo = 0, Lα = L,

(2) Lλ = \Jβ<λ Lβ if λ is a limit ordinal,

(3) Lβ<}Lβ + ι i f j 8 < α ,

(4) Lβ + 1/LβeX if β<oc.

In particular E ^ ) ^ is the class of supersoluble Lie algebras (or hyper-gi Lie

algebras) and E ( < ) 5 I is the class of finite-dimensional supersoluble Lie algebras.

The next lemma characterizes

LEMMA 1.1. Let X be a Q-closed class of Lie algebras. Then Lei(<l)X

if and only if every non-zero homomorphic image of L has a non-zero X-ideal.

PROOF. Let Let(<\)X. Take an ascending X-series {Lβ)β^Λ of ideals of L

and let / be a proper ideal of L. Then there exists an ordinal β minimal with re-

spect to Lβ^I. Clearly β is neither zero nor a limit ordinal. By the minimality

of β we have Lβ_ι<I. Hence (Lβ + /)// ̂  Lβ/(Lβ Π /) is a homomorphic image of

an £-algebra Lβ/Lβ.ί. Thus (Lβ + l)jl is a non-zero £-ideal of L/I.

Conversely suppose that every non-zero homomorphic image of L has a

non-zero X-ideal. Put L o = 0. Now suppose that for a non-zero ordinal α we

have constructed a well-ordered ascending sequence (Lβ)β<Λ of ideals of L such

that Lβ + ί/LβeX for β + l<oc. If α is a limit ordinal, then put LΛ — \Jβ<ΛLβ.
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Suppose that α is not a limit ordinal. If L^^^L, then L/La^i has a non-zero

3Mdeal LJLa-t. Thus we can construct an ascending iE-series of ideals of L.

This completes the proof.

COROLLARY 1.2. // X is a Q-closed class of Lie algebras, then έ(<l)X is

Q-closed.

PROOF. Let Leέ(<\)X and let M be a homomorphic image of L. Then a

homomorphic image of M is also that of L. The statement follows from Lemma

1.1,

It is easy to show the following

LEMMA 1.3. IfX is an s-closed class of Lie algebras, then E(<])X is s-closed.

LEMMA 1.4. Let X be an i-closed class of Lie algebras and let I be a non-

zero ideal of an E(<\)X-algebra L. Then I contains a non-zero X-ideal of L.

PROOF. Let (Lβ)β<a be an ascending ̂ -series of ideals of L. Then there exists

an ordinal β minimal with respect to Lβ n / φ θ . Clearly β is neither zero nor a

limit ordinal. By the minimality of β we have Lβ.ί Π 7 = 0. Hence we obtain

Lβ n I £ {Lβ Π 7)/(Lj8_1 n 7) s ((Lβ n 7) + L ^ ) / V i < LβjLβ.,.

Since iX = X, we have Lβ(\IeX. Hence Lβ Π 7 is a non-zero £-ideal which is

contained in 7.

A class X of Lie algebras is called D-closed if Lλ e X (λ e A) implies © λeΛ Lλ e X.

LEMMA 1.5. For any class X of Lie algebras t(<\)X is Ό-closed.

PROOF. Let (Lβ)β<a be a well-ordered family of E(<)£-algebras and let

L=@β<(XLβ. For β<oc let (Mβy)γ^δiβ) be an ascending S-series of ideals of Lβ.

For β < α and y < δ(β) put

Nβ,y = (ΘM<^ Lμ) 0 M^ y and iVα)0 = L.

It is easy to see that (Nβ y) is an ascending X-series of ideals of L.

By the preceding results we have

PROPOSITION 1.6. (1) Let L be a Lie algebra. Then L is supersoluble if

and only if every non-zero homomorphic image has a 1-dimensional ideal.

(2) έ C O δ i is {Q, s}-closed.

(3) Let L be a supersoluble Lie algebra and let I be a non-zero ideal of L.

Then I contains a 1-dimensional ideal of L.

(4) E ί O g i is Ό-closed.
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REMARK : A class X of Lie algebras is called c-closed if Lλ eX(λeA) implies

CrλeΛ Lλ e X, where CrAe/1 Lλ is the Cartesian sum of Lλ. By [1, p. 21] a {Q, S, C}-

closed class is L-closed. We shall show later (Proposition 3.1) that έ ( < ) δ i is

not L-closed. Therefore έ(<])δi is not c-closed.

2.

In this section we shall show that the derived algebra of a supersoluble Lie

algebra is hypercentral and investigate the Hirsch-Plotkin radical of a supersoluble

Lie algebra.

A chief factor of L is a pair (//, K) of ideals of L such that K^H and such

that H/K is a minimal ideal of L/K. We denote a chief factor ( # , K) by H/K.

LEMMA 2.1. If H/K is a chief factor of a supersoluble Lie algebra L, then

dim H/K= I.

PROOF. By Proposition 1.6 (2) we have L / K e ^ O g j . By Proposition

1.6 (3) H/K contains a 1-dimensional ideal I/K of L/K. Since H/K is a minimal

ideal of L/K, we have HjK = I/K. Therefore dim H/K = 1.

As in [1, p. 244] let

Ψ(L) = n CL(H/K)

where the intersection is taken over all chief factors H/K of L and CL(H/K) is the

centralizer of H/K in L, that is, CL(H/K) = {x e L: [tf, x] <= X}. Clearly ^(L) < L.

LEMMA 2.2. 7/L is supersoluble, then L2<Ψ(L).

PROOF. Let H/K be a chief factor of L. By Lemma 2.1 dimH/K=l.

Hence the derivation algebra of H/K is abelian. Therefore L2 acts trivially on

H/K. Thus L2<Ψ(L).

LEMMA 2.3. If L is supersoluble, then Ψ(L) is hypercentral.

PROOF. Let (Lβ)β<igί be a strictly ascending g^-series of ideals of L. Put

I = Ψ(L) and Iβ = I Π L .̂ We shall prove by transfinite induction that Iβ<ζβ(I).

Let β>0 and assume that Iγ<ζγ(I) for γ<β. If /? is a limit ordinal, then Iβ<

ζβ(I). If β is not a limit ordinal, then [L^, / ] ^ L ^ _ l 9 since Lβ/Lβ^ί is a chief

factor of L. Hence /^ < ^(7). Thus Ψ(L) e 3 .

THEOREM 2.4.

PROOF. By Lemmas 2.2 and 2.3 we have έ ( < ) g 1 < 3 ^ ί . Since the central

series of a hypercentral Lie algebra can be refined to a series of ideals with 1-
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dimensional factors, we have 3^έ(<05i The 2-dimensional non-abelian Lie
algebra belongs to έCOSt, but it is not nilpotent. Therefore 3 ^ ^ « ) 5 i -
Finally let Fbe an abelian Lie algebra with basis {eί9 el9...}. Let σ be a derivation,
called the upward shift on V, such that enσ = en+ x (n > 1). Form the split extension
L= F + <σ>. Then Le5I2<391. It is easy to see that L has no 1-dimensional
ideals. Thus L e 3 « \ έ « ) S i .

REMARK: From [6, Lemma 2.4] it follows that E(<)g1 = 5 Π 9191 over an
algebraically closed field. If Φ is not algebraically closed, then it follows from
Proposition 3.7 and its remark that ECOSr^g n

It follows from [1, Lemma 8.1.1] that the derived algebra of a non-zero
3$ϊ-algebra is a proper subalgebra. Hence we have the following

COROLLARY 2.5. If L is a non-zero supersoluble Lie algebra, then L2^L.

LEMMA 2.6 ([8, Theorem 8]). (£ n έ(<)5 = (S n £«)<5i = L31 n έ « 0 5 i = 3 ,
where <& is the class of Engel algebras.

The Hirsch-Plotkin radical p(L) of L is the unique maximal L9i-ideal of L
(cf. [1, p. 113]).

THEOREM 2.7. If L is a supersoluble Lie algebra, then L2<Ψ(L) = ρ(L)
and ρ(L) is the unique maximal hypercentral ideal of L.

PROOF. By Proposition 1.6 (2) and Lemma 2.6 we have p(L)e3> Since
3 < L 9 1 , we have that p(L) is the unique maximal hypercentral ideal of L. By
Lemmas 2.2 and 2.3 it is sufficient to prove that p(L)^ Ψ(L). Let HjK be a chief
factor of L. We show that [//, ρ(Ly]<K. By Lemma 2.1 it is sufficient to see
that if / is a 1-dimensional ideal of a Lie algebra M and J is a locally nilpotent
ideal of M, then [I, J] = 0. Let / = <x>. Then for any y e J there exists α = <x(y) e
Φ such that [x, y~] = ax. Since J is a locally nilpotent ideal of M, there exists a
positive integer n such that [x, ny] = 0. Hence α = 0. Thus [/, J] = 0.

3.

The simplest example which is supersoluble but non-nilpotent is the 2-
dimensional non-abelian Lie algebra. By using this we shall give criteria for a
supersoluble Lie algebra to be hypercentral and for a locally supersoluble Lie
algebra to be locally nilpotent. First we investigate the class of locally super-
soluble Lie algebras.

PROPOSITION 3.1. K<)%i£^<)%ι = ̂ K<)%i£US n E91).
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PROOF. By [10, Corollary 3.3] we easily obtain

Assume that έ(<)J51=Lέ(<)51. Let M be a McLain algebra ^Φ(Q), where
() is the field of rational numbers. Then

M<ΞL91\0 and M = M2

[11, p. 96]. By LSH^LECOS! and the assumption we have Met(<\)'ft1. By
Corollary 2.5 M2^M. This is a contradiction. Thus we have

In the rest of this paper we mostly use the notation LB(<])5I for the class

Let H be a subalgebra of L and let I1 be a totally ordered set. Then H is
called serial in L and denoted by H ser L if there exists a family {Λσ, Vσ: σ e Z1}
of subalgebras of L such that

(1) H < Λσ and H < Vσ for all σ,
(2) L\tf=VΛeI(Λff\Fff),
(3) Λτ < Vσ if τ < σ,
(4) Vσ<Λr

LEMMA 3.2. Let L be locally finite. Then the following are equivalent:
(1) L is locally nilpotent.
(2) Every subalgebra of L is serial.
(3) Every 1-dimensional subalgebra of L is serial.

PROOF. Let LEL$1 and let if be a subalgebra of L. If F is a finite-dimen-
sional subalgebra of L, then we have H Π F si F, since L 6 L91. By [1, Proposition
13.2.4] we have H ser L. Thus (1) implies (2). It is trivial that (2) implies (3).
Finally assume (3). Let H be a finitely generated subalgebra of L. Since L G L ^ ,
we have H e g. By the assumption every 1-dimensional subalgebra of H is a
subideal. Let x e ί ί and let (x}<]nH. Then it is easy to see that [//, w + ί x] = 0.
Hence adH Λ: is nilpotent for any x e H. By EngeΓs theorem we have H e 91.
Hence LEL91. Thus conditions (1), (2) and (3) are equivalent.

Now we can give criteria for a supersoluble Lie algebra to be hypercentral.

THEOREM 3.3. Let L be a supersoluble Lie algebra. Then the following
are equivalent:

(1) L is hypercentral.
(2) Every subalgebra of L is ascendant.
(3) Every subalgebra of L is serial.
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(4) Every l-dimensional subalgebra of L is ascendant.

(5) Every l-dimensional subalgebra of L is serial.

(6) Every 2-dimensional subalgebra of L is abelian.

PROOF. It is well known that (2) is a consequence of (1). Evidently we

have the following implications:

(2)c=*(3)c=>(5), (2)=>(4)c=»(5).

Since every 2-dimensional non-abelian Lie algebra has a l-dimensional subalgebra

which is not a subideal, (5) implies (6). Finally assume (6). Suppose that L ^ 3

and so ζ#(L)£L. Put I = L/ζ*(L). In the rest of the proof we denote a + (*(L)

in L by a. By Proposition 1.6 (1) L has a l-dimensional ideal <3c>(xeL\C#(L)).

Since C1(L) = 0, there exists yeL\ζ*(L) such that [3c, j ] # 0 . Since <3c><L,

we can find a non-zero scalar α such that [x, j/]=αx. Replacing (l/cήy by y,

we obtain

Hence [x, y~\-xeζ*(L). By [8, Proposition 5] there exists a positive integer n

such that [[x, y ] - x , Mj>]=0. Put z = [x, „>>]. Then [z, j;] = z. By (•) z =

[3c, πj;] = jc#O. Thus <y, z> is a 2-dimensional non-abelian subalgebra of L.

This is a contradiction. Therefore LeS- This completes the proof.

REMARK: By Proposition 3.1 and [7, Theorem 2.7] we can add the follow-

ing conditions to those in Theorem 3.3:

(7) Every subalgebra of L is weakly serial.

(8) Every l-dimensional subalgebra of L is weakly serial.

COROLLARY 3.4. Let L be locally supersoluble. Then the following are

equivalent:

(1) L is locally nilpotent.

(2) Every subalgebra of L is serial.

(3) Every l-dimensional subalgebra of L is serial.

(4) Every 2-dimensional subalgebra of L is abelian.

PROOF. By Proposition 3.1 and Lemma 3.2 we have the equivalence of (1),

(2) and (3). Evidently (1) implies (4). Assume (4). Let H be a finitely generated

subalgebra of L. Since L e L E « ) 5 I , we have HeE(<\)(Sί. Hence by Theorem

3.3 He91. ThusLeLflt.

REMARK: By [7, Theorem 2.7] we can add the following conditions to those

in Corollary 3.4:

(5) Every subalgebra of L is weakly serial.

(6) Every l-dimensional subalgebra of L is weakly serial.
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Over an algebraically closed field we can generalize Corollary 3.4.

LEMMA 3.5. Let L be finite-dimensional over an algebraically closed field.

Then L is nilpotent if and only if every 2-dίmensional subalgebra of L is abelian.

PROOF. The implication in one direction is evident. Assume that every

2-dimensional subalgebra of L is abelian. Let xeL and let α be an eigenvalue of

adLx. Let yeL\0 such that [y, x] = αy. It follows that α = 0. Hence ad L x

is a nilpotent endomorphism of L. By EngeΓs theorem we obtain Left.

By Lemmas 3.2 and 3.5 we have

THEOREM 3.6. Let L be a locally finite Lie algebra over an algebraically

closed field. Then the following are equivalent:

(1) L is locally nilpotent.

(2) Every subalgebra of L is serial.

(3) Every 1-dimensional subalgebra of L is serial.

(4) Every 2-dimensional subalgebra of L is abelian.

The following example shows that we cannot remove the restriction on the

base field in Theorem 3.6.

PROPOSITION 3.7. If the base field Φ is not algebraically closed, then there

exists L e ( 5 Π 9I2)\9t in which every 2-dimensional subalgebra is abelian.

PROOF. Since Φ is not algebraically closed, there exists a monic irreducible

polynomial f(t) of degree n > 1. Put

f(t) = tn + ant
n~ι +•••+ ax 0,-eΦ).

Let Vbe an abelian Lie algebra with basis {eί9...9 en} and let x be a derivation

such that

etx = ei+1 (Ϊ = 1,..., n - 1 ) and enx = - Σ?=i Wi-

Then it is not so difficult to see that the characteristic polynomial of Λ: is f{t).

Let L=V + (x} be the split extension of V by <x>. Clearly L e 5 Π 9l2. Since

f(t) is irreducible, we have / ( 0 ) ^ 0 . Hence 0 is not an eigenvalue of a d κ x .

Thus L&91. Now suppose that there exists a 2-dimensional non-abelian sub-

algebra. Then there exist u, v e L\0 such that [M, V] = u. Clearly L2 < V. Hence

ueV. Put v = w + (xx with we Fand cceΦ. Then

[w, αx] = [w, w + αx] = [M, t;] = u.

Since w^O, we have α # 0 . Now put w = Σ f = i f e with jS feΦ ( ί = l , . . . , n ) .

Then
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U = [M, CLX] = α ( Σ i = l βifii+l - βn Σ " = l ^ i ) '

Hence we have

(*) j8i = - a * A and ft = αft_ t - aa,fin (i = 2,..., n).

If we add βj multiplied by an~j (7 = 1,..., n), we obtain

βH(l + *aH + Λ2an-1 + -+a*a1) = 0.

Dividing by αM, we obtain βnf(l/(x) = 0. Since f(t) is irreducible, we have

/ ( l / α ) / 0 . Hence ft, = 0. By (*) we have

This is a contradiction. Thus every 2-dimensional subalgebra of L is abelian.

This completes the proof.

REMARKS: (1) By Theorem 3.3 the Lie algebra in Proposition 3.7 is not

supersoluble.

(2) Let Lehft over an algebraically closed field or L G L E ( < ] ) 5 I over any

field. If dim L > 2, then L has a 2-dimensional subalgebra.

4.

A class X of Lie algebras is called N0-closed if whenever / and J are ϊ-ideals

of L then I+J eX. In this section we shall show the N0-closedness of E ( < ) 5 I

and L E ( < ) 5 I o v e r a fie'd of characteristic zero. First we give an example [1,

Lemma 3.1.1] which suggests that we must restrict ourselves to fields of char-

acteristic zero.

LEMMA 4.1. Over a field of characteristic p>0 there exists a non-supersol-

uble Lie algebra which is a sum of two finite-dimensional supersoluble ideals.

PROOF. Let V be an abelian Lie algebra with basis {e0, eu...,ep-x}. Let

x and y be derivations of V such that

eix = ei+ί and exy = iei.i (i = 0,..., p - 1)

where e-ί=ep = 0. Put z = [x, y\. Then z is the identity map of V. Let L =

, y} be the split extension of Kby <x, y}. Put L t = F + <x, z> and L 2 =

>, z>. Then L l 9 L2<L. Lγ has the following series of ideals of Lt:

<ep-t> < <ep^> + <^p-2> <•••< V< V+ <z> < L t .

Hence Lt Θ E « ) 9 I - Similarly we have L 2 G E ( < 1 ) 5 X , since it has the following

series:
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<eί> <•••< V< F + <z> < L 2.

Clearly L=Lί+L2. Now L 2 = K+<z><£9t. Hence by Theorem 2.4 we have

The following lemma, which is a Lie analogue of [4, Lemma J. 2], gives a

criterion for a sum of two supersoluble ideals of a Lie algebra to be supersoluble.

LEMMA 4.2. Let L be a sum of two supersoluble ideals. Then L is super-

soluble if and only if L2 is hyper central.

PROOF. By Theorem 2.4 we have one implication. Let / and J be super-

soluble ideals of L such that L = / + J and assume that L2 e 3 We may suppose

that LΦO. Every homomorphic image of L is a sum of two supersoluble ideals

and its derived algebra is hypercentral. Hence by Proposition 1.6 (1) it is sufficient

to prove that L has a 1-dimensional ideal. Now we consider two cases.

C a s e l : L 2 n / f l J = 0. Clearly L/L2, L/I and L/J are supersoluble.

Hence by Proposition 1.6 (4) LjL2@Ljl®LjJ is supersoluble. Since L is iso-

morphic to a subalgebra of L/L 2 φL//0L/J, we have Lei(<])eSi.

Case 2: L2 Π / Π J.#0, Since L2 n / Π J<L2 and L2e3, we have d(L 2 ) Π

/ n Jτ*0 (e.g., see [9, Lemma 3.1]). Put K = ζί(L2) Π / Π J. By Proposition 1.6

(3) K contains a 1-dimensional ideal of /. Hence there exists x e K\0 such that

[x, y]e<x> for any ye I. Put F=<x L >. Then §ΦV<K. Let yel. Then

[x, y] = αx for some α e Φ . Let n be a non-negative integer and let xteL

(Ϊ = 1,..., n). Then [[x, .xl9..., x j , 3;] = [[x, y], x 1 , . . . ,xj + Σ?=i IX ^ I ^ ^

^i-i» CλΊ» j]^ ̂ i+u !. ̂ «] Since x e K ^ C ^ X L , we obtain

[[x, x 1 ? . . . ,x j , y'] = α[x, x l v . . , x j .

Hence we have [υ, y] = <xv for any veV. Therefore

(*) [v, /] c <ϋ) for any 1? e V.

Since 0 ^ K < L and V<K<J, Fis a non-zero ideal of J. Hence by Proposition

1.6 (3) V contains a 1-dimensional ideal U of /. By (*) U is /-invariant. Since

L = I + J9 U is a 1-dimensional ideal of L. This completes the proof.

THEOREM 4.3. Let L be a Lie algebra and let Iί9...9In be finitely many

supersoluble ideals of L such that L = Σ ? = i h- Then the following are

equivalent:

(1) L is supersoluble.

(2) L2 is hyper central.

(3) L 2 is locally nilpotent.

(4) For ί<i<j<n [Ih Ij] is locally nilpotent.

(5) For l<i<j<n [/ί} Ij] is hypercentral.
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PROOF. By Theorem 2.4 we see that (1) implies (2).A Since 3<L% (2)
implies (3). It is clear that (3) implies (4). Since /f is a stipersoluble ideal of L,
we have [/f, ίj] eέ(<)5χ. Hence by Lemma 2.6 we see that (4) implies (5).
We use induction on n to show that (5) implies (1). Let n > l and assume that
Σ " « i / ι e έ « ) 5 i . Then L is the sum of two supersoluble ideals Σi=i^i a n d
/„. By the N0-closedness of 3 and L2 = ΣUi Ii+Σ,i<j Uu J/L w e obtain L2 e 3.
By Lemma 4.2 we have

REMARK: By Lemma 2.6 we may replace 'locally nilpotent' by 'an Engel
algebra' in (3) and (4).

Modifying the proof of [8, Proposition 3] slightly, we have

PROPOSITION 4.4. If I is a hypercentral ideal of a Lie algebra L and H is
an ascendant supersoluble subalgebra of L, then I + H is an ascendant super-
soluble subalgebra of L.

PROOF. Put J = I + H. We may assume that J^O. As in the proof of
Lemma 4.2 it is sufficient to show that J has a 1-dimensional ideal. If / = 0,
then J = //GE(<)g'1. So we suppose that7^0. Since 7 e 3 , we have ζt(Γ)Φ0.
Let (Hβ)βζa be an ascending series from H to L. Then there exists an ordinal β
minimal with respect to Hβ n ζx(I)ΦQ. Clearly β is riot a limit ordinal. If β==0,
then OΦH Γ\ζι(l)<\H and hence by Proposition 1.6(3) H (Vίi(I) contains a 1-
dimensional ideal K of H. Since K<ζt(I) and J=Ή + I9 we have K<\J. If
βΦO, then Hβ.x Π ζ1(/) = 0. It follows that [Hβ nζx(T)9 / + fl]sf/^.1 n Ci(/) = 0.
Hence 0^Hβ(] CiW<Ci(«/). Thus J has a 1-dimensional ideal.

The next corollary is a Lie analogue of [4, Lemma J.I].

COROLLARY 4.5. A sum of a supersoluble ideal and a hypercentral ideal
of L is supersoluble.

In the rest of this section we assume that the base field Φ is of characteristic
zero. It is known that the derived algebra of an (g n E9X)-algebra is nilpotent.
Hence it is easy to see that the derived algebra of an L(g.n E$ϊ)-algebra is locally
nilpotent.

THEOREM 4.6. Over a field of characteristic zero £ ( 0 3 ^ is 'No-closed.

PROOF. Let L be a Lie algebra and let / and J be έίOgi-ideals of L such
= I + J. By Proposition 3.1 /, J e ^ g n E ^ ί ) . By [1, Corollary 6.1.2] Le

. By the remark above L 2 GL91. Hence by Theorem 4.3 we have

COROLLARY 4.7. Over a field of characteristic zero E(<3)5I
 ι s N0-cZosed.
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A class X of Lfii|$gebras is called coalescent (resp. ascendantly coalescent)

if in any Lie algebri wfe join of two £-subideals (resp. ascendant 3£-subalgebras)

is always an X-subideal (reap, ascendant £-subalgebra). It is known that over a

field of characteristic zero every {N 0, i}-closed subclass of g is coalescent and

ascendantly coalescent [1, Corollary 13.3.5]. By Proposition 1.6 (2) and Co-

rollary 4.7 E ( < ) δ t is {N 0, i}-closed. Hence we obtain

COROLLARY 4.8. Over a field of characteristic zero E ί O S ^ is coalescent

and ascendantly coalescent.

By Corollary 4.7 and [1, Theorem 6.1.1] we have

THEOREM 4.9. Over afield of characteristic zero LE(<3)5I / S N0-closed.

A class X of Lie algebras is called locally coalescent if whenever H and K

are ϊ-subideals of L, to every finitely generated subalgebra C of <//, K} there

corresponds an 3E-subideal X of L such that C<X<(H, X>. By [1, Theorem

4.2.4] any complete (for the definition see [1, p. 85]) and {N 0 , i}-closed subclass

of Lg is locally coalescent. As in [1, p. 85] it is seen that E ( < D 5 X and

are complete. Therefore we obtain

THEOREM 4.10. Over a field of characteristic zero έ(<])5i and

are locally coalescent.

5.

In this section we shall show the existence of an infinite-dimensional abelian

ideal (resp. subalgebra) in any infinite-dimensional supersoluble (resp. locally

supersoluble) Lie algebra.

Let S be a subset of L. The centralizer CL(S) of S in L is the set {xeL:

[S, JC] = 0}. If S < L, then CL(S) < L.

LEMMA 5.1. If A is a maximal abelian ideal of a supersoluble Lie algebra,

then CL(A) = A.

PROOF. Put C = CL(A). Assume that A^C. Let (Lβ)β^a be an ascending

gi-series of ideals of L. There exists an ordinal β minimal with respect to Cn

Lβ^A. Clearly β is neither 0 nor a limit ordinal. Hence C (]Lβ^ί<A. We

have

0 Φ (C D Lβ)/(C n V 0 s ((C n Lβ) + Lβ.ί)/Lβ.ί <Lβ\Lβ-v

Hence dim (C D Lβ)/(C n Lβ_ x) = 1. Let x e (C n Lβ)\A. It follows that x&Cn

Lβ-X. Therefore Cn L^ = <x> + (Cn Lβ.γ). Put β = <x> + X. Since x e C =
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CL(A), we obtain B e 21. We have B = (x} +A = <x> + (C n Ljϊ_1)H-i4 = (C fl

y4<L. Thus we obtained an abelian ideal B such that Λ^B. This is a con-

tradiction.

By using the class Max-<$I of Lie algebras which satisfy the maximal

condition for abelian ideals, we have

THEOREM 5.2. έ ( < ) g 1 n

PROOF. Evidently E ί O g ^ ί ί O ^ n Max-<91. Conversely let L e

I Π Max-<]91 and let A be a maximal abelian ideal of L. Since we may

regard L/CL(A) as a subalgebra of Der A and CL(A) = A by Lemma 5.1, it is

sufficient to prove that A e g. Now let (Lβ)β^Λ be an ascending 3^-series of

ideals of L. Clearly dim (A n Lβ+ί)/(A (]Lβ)<l. Since L e Max-<21, we can

find finitely many ordinals γ(i) such that

μ n Lβ: o < /? < α} = {A n Ly ( 0 ),..., Λ π Ly(n)}

and

o = A n L y ( 0 ) S A n L y ( 1 ) S ^ ^ n Ly(n) = A.

For / = 0, 1,,.., n let β(i) be an ordinal minimal with respect to A Π Lβ(i) — A n L y ( 0 .

Clearly y( i - l)^j3(0 Let y( i - 1 ) < ^ < J 5 ( 0 . By the minimality of β(i) we have

that X Π Ly(i-X)<A Π L^Λl n Lβ(i) = A n Ly ( i ). Therefore ^ n Lδ = A n ^ y(i-i) It

follows that β(ί) is not a limit ordinal and that A Π Lβ(i)_ί —A Π ̂ V(i-i) Hence

dim(^ Π Ly(i))/(A n L y ( i_1 )) = dim(y4 Π Lβ(i))/(A Π L^(i)_1) = l. Thus / l = A n Ly(M)e

5 This completes the proof.

COROLLARY 5.3. Every infinite-dimensional supersoluble Lie algebra has

an infinite-dimensional abelian ideal.

PROOF. Let L e έ(<])5i\δ By Theorem 5.2 there exists a strictly increasing

chain (An)™= ι of abelian ideals of L. Then W*=1 /4M is an infinite-dimensional

abelian ideal of L.

THEOREM 5.4. Every infinite-dimensional ELE(<)5γ-algebra has an infinite-

dimensional abelian subalgebra, where ELE(<])(5I ί 5 the class of Lie algebras

which have an ascending LE(<)5^-series.

PROOF. Let L e έ L E « ) 5 i \ 5 and let (Lβ)β<x be an ascending LEίOgi-series

of L. There exists an ordinal β minimal with respect to Lβ&%. Clearly βΦO.

Put M = Lβ. Suppose that β is not a limit ordinal. Then Lβ\.ίe% and so

Lβ-1ef$Γ\E9l. By Theorem 2.4 it is easy to see that LE«)gi^(L9l)8I. Put

1 . Then- ATeLECOδΛδ Hence M 2 G L 9 1 . If M 2 G 5 , then
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By [1, Theorem 10.1.l(b)] M has an infinite-dimensional abelian

subalgebra. If M2<£g, then by [1, Theorem 10.1.3] M 2 has an infinite-dimen-

sional abelian subalgebra H/Lβ_ί. Since Lβ_x GE$Ϊ, H is an infinite-dimensional

soluble subalgebra. By [1, Theorem lθ.l.l(b)] H has an infinite-dimensional

abelian subalgebra. Now suppose that β is a limit ordinal. Then by the mini-

mality of β Lye 5 for any y<β and so Ly+1/LyeE(<i)<S1. Hence we can refine

(Ly)y^β to an ascending 9ί-series of M and so MeE2ί\3r. [1, Theorem 10.1.l(e)]

completes the proof.

6.

A group G satisfies the weak normalizer condition if for any H^G there

exists xeG\H such that (xH}<H<H>JC><x>, where H<Hx> is the core of H in

<i/, x>. Baer [4] investigated the role of the weak normalizer condition in

supersoluble groups and locally supersoluble groups. We shall consider its Lie

analogue in this and the next sections. We say that a Lie algebra L satisfies the

weak idealizer condition if for any H^LL there exists xeL\H such that <x H ><

H<Hx> + (x}. Here XY for a subalgebra X of a Lie algebra Y signifies the core

of X in Y, that is, the largest ideal of Y which is contained in X. Equivalently

L satisfies the weak idealizer condition if for any H^L there exists x e L\H such

that [x, Ή~]^H<HfX> + <x>. It is easy to see that the idealizer condition implies

the weak idealizer condition. We denote by WIC the class of Lie algebras which

satisfy the weak idealizer condition. It is not so difficult to see the following

LEMMA 6.1. WIC is Q-closed.

LEMMA 6.2. E C O ^ < WIC.

PROOF. Let L e έ t O g ! and let H^L. Then HL<L. By Proposition

1.6(1) L/HL contains a 1-dimensional ideal, say, «x> + HL)/HL. If xeH, then

(xy+HL<HL. Therefore x^H. Furthermore we have

<*"> < <xL> < <x> + HL < <x> + H<lUx>

This completes the proof.

The following is a Lie analogue of [4, p. 112, Excursus on finite supersoluble

groups].

PROPOSITION 6.3. Let L be a finite-dimensional Lie algebra. Then the

following are equivalent:

(1) L is supersoluble.

(2) L satisfies the weak idealizer condition.

(3) // M is a maximal subalgebra of L, then there exists x eL\M such
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PROOF. By Lemma 6.2 (1) implies (2). It is evident that (2) implies (3).

Finally assume (3). Note that the property (3) is inherited by homomorphίc

images. We use induction on n = dim L. If n = 1, then there is nothing to prove.

Assume that n > 1 and that the result is true for dim L< n. If there exists a maxi-

mal subalgebra M with M L = 0, then by (3) we can find a 1-dimensional ideal /

of L. By induction hypothesis we have L//6E(<)g 1 , whence L e E ( O 5 i We

may assume that ML Φ 0 for any maximal subalgebra M of L. If Π ML = 0,

where the intersection is taken over all the maximal subalgebras of L, then there

exist finitely many maximal subalgebras M f of L such that {MX)L n ••• Π (Mn)L =

0. By induction hypothesis L/(Mi)LeΈ(<\)<Sί. By Proposition 1.6 (4) ©f=1 L/

( M ^ e E ί O S i . Since we may regard L as a subalgebra of ®?=i Lj{M^u we

obtain L G E ( < ) 5 I Finally let I— f) MLΦ0. By induction hypothesis Ljle
E (<05i [5, Theorem 6] completes the proof.

LEMMA 6.4. If the weak idealizer condition and the maximal condition on

soluble subalgebras are satisfied by L, then L is finite-dimensional supersoluble.

PROOF. Let M be a maximal soluble subalgebra of L. Suppose that M^LL.

Then by the weak idealizer condition there exists xeL\M such that <x M ><

M<MtX> + <x>. Since M e E$Γ, we have M<MjJC> + <x> e ES2I. Hence <xM> e E21

and so <M, x} = M + <xM> e E ί̂, which contradicts the maximality of M. Hence

L = MeE$l. Therefore L e M a x n E$ί = 3r n E9I, where Max is the class of Lie

algebras which satisfy the maximal condition on subalgebras. By Proposition

6.3 we have LeE(<i)<Sί.

We denote by Max-E^l the class of Lie algebras which satisfy the maximal

condition on soluble subalgebras. Then we have the following

COROLLARY 6.5. Max-E^l n WIC = Max n WIC = ft n W I C = E « ) S 1 .

PROOF. By Lemma 6.2 Ef^O^ < 5 Π WIC. It is easy to see that

8 n WIC < Max n WIC < Max-E^X n WIC.

By Lemma 6.4 Max-E$t n WIC ^

LEMMA 6.6. Siafj n WIC

PROOF. Let L e 2tf5i Π WIC and let £ be a non-zero homomόrphic image of

L. By Proposition 1.6 (1) it is sufficient to see that E has a 1-dimensiρnal ideal.

Evidently E€%%x ΓΊ WIC. Hence there exist an abelian ideal A of E a n d x e £

such that £ = ̂  + <x>. We may suppose that A, < x > ^ £ . Since E e W I C ,

there exists yeE\(x} such that [x, y~] e <x>cX}y> + <ĵ >. Hence <x, ĵ > is 2-
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dimensional. By the modular law we obtain <x, y} = « x , y} 0 A) + <x>. Henee

<x, y> Π ,4 is 1-dimensional. Put <x, j;> Π A = <α> with α e ^4\0. We have [α, 4 ]

= 0 and [α, x] eΛ n <x, y> ==<α>. Thus <α> is a 1-dimensional ideal of E.

Now we consider the following condition:

(C) Every finitely generated subalgebra of L satisfies the weak idealizer

condition.

Modifying the proof of [4, p. 115, (5)], we have the next lemma, which is a

generalization of its Lie analogue.

LEMMA 6.7. Let L e S ^ O S ^ . If L satisfies the condition (C), then L is

supersoluble.

PROOF. Let £ be a non-zero homomorphic image of L. By Proposition

1.6 (1) it is sufficient to show that E has a 1-dimensional ideal. Clearly

E e <UE(<])^1 and so there exists an abelian ideal A of E such that E/A e E(<J)g!.

We may suppose that A^O. Since E/A e E ( < ) 5 i , there exist ideals At of £ such

that

A = Aθ9 Ai+JAtefa and An = E.

We prove by induction on i that A contains a non-zero gr-ideal'of A{. This is

certainly true for j = 0, since Ao = AΦ0 is abelian. Now assume that i<n and

that / is a non-zero 3ί-ideal of At with I<A. Since Ai+ίIAie
<Sί, there exists

xeAi+1 such that , 4 i + 1 = Λ i + <x>. Put ./ = /<*>= Σm:>o [Λ m*] τ ^ e n J < / 1 .

By induction on m and

[[/, mx], Ad c [[/, m _ l J C ] , ,4,, JC] + [[/, m _ l X ] , [

we obtain J < d ^ i + 1 . Since J < ^ e ^ l , we have J e ^ I . Hence </, *> = </<*>, x>

= J-h<x> e^ίg ! . By hypothesis it is easy to see that E satisfies the condition

(C). Since / e g , we have </, x>e(5. Hence </, x> e ^ Π WIC ^ έ « ) 3 f i

by Lemma 6.6. By Proposition 3.1 </, x> e © n έ « ) S i < 5 Hence J e g.

Thus y4 contains a non-zero 5-ideal of £. In particular every non-zero homomor-

phic image of L has a non-zero g-ideal. Hence by Lemma 1.1 we have Ee

έ«)3r . By [10, Corollary 3.3] EEL%. NOW let X be a non-zero g-ideal of E

with K<A. Since £/AeE(<)5i , there exist finitely many elements x l 5..., xfc of

JE such that £ = < î, xu...,xky. Since J B G L ^ , we have ( K , x l v . . , x J t ) 6 g . Put

H = <X, A; 1 V . ., jcfc>. Since £ satisfies the condition (C), we have He%0 WIC.

Hence by Corollary 6.5 fleEW)^. Since 0#K<]/f, we see by Proposition

1.6(3) that K contains a 1-dimensional ideal N of H. Hence [iV, x^^N for

1 <ϊ<Ίc. Since N<K<AeS&9 we have [AT, Λ] = 0. Thus N is a 1-dimensional

ideal of £ = <A, x l v . , ^ > . This completes the proof.



Supersoluble Lie algebras 591

THEOREM 6.8. A Lie algebra L is locally supersoluble if and only if

(1) L belongs to LE(<])21 and

(2) L satisfies the condition (C).

PROOF. The implication in one direction is clear. Assume (1) and (2).

Let H be a finitely generated sυbalgebra of L. Clearly H e E ( < ) 2 1 and H satisfies

the condition (C). Let (Hβ)β^Λ be an ascending 9l-series of ideals of H. We

can find an ordinal β minimal with respect to H/Hβe^. By Lemma 6.1 and

Corollary 6.5 H/Hβe% Π WIC = E(<)g 1. Assume βΦO. If β is not a limit

ordinal, we have H/Hβ^ί e C5 n ̂ feCO^. By Lemma 6.7 HjHβ_ιe © Π ί(<l)Si

and so H\Hβ-x G E ( < ) 5 I by Proposition 3.1. This contradicts the minimality of

/?. We may assume that β is a limit ordinal. By [10, Lemma 3.1] there exist

finitely many elements x l v . . , x,, of Hβ such that Hβ= Σ?=i <*?>• Since β is

a limit ordinal, there exists an ordinal y<β such that x,e//y for / = !,..., n and so

Hβ = Hy. This is another contradiction. Hence /? = 0 and so / / e E f O ) ^ . Thus

COROLLARY 6.9. L is finite-dimensional supersoluble if and only if

(1) L belongs ί o § n E « ) 5 ί W

(2) L satisfies the condition (C).

PROPOSITION 6.10. Lei L fee a finitely generated Lie algebra which satisfies

the condition (C). Then the following are equivalent:

(1) L is finite-dimensional supersoluble.

(2) L is supersoluble-by-supersoluble.

(3) L /s supersoluble-by-soluble.

(4) L /s hypercentral-by-soluble.

(5) L feβ/ongfs to

PROOF. Clearly (1) implies (2) and (4) implies (5). Since

Eίί, we have that (2) implies (3). By Theorem 2.4 it is easy to see that

(3) implies (4). Finally assume (5). Since every term of the upper central series

of a Lie algebra is a characteristic ideal, we have 3 E ( < 0 ^ < E ( < ] ) $ 1 . Hence by

Corollary 6.9

THEOREM 6.11. A Lie algebra L is supersoluble if and only if

(1) L satisfies the weak idealizer condition,

(2) L satisfies the condition (C) and

(3) every locally supersoluble subalgebra of L is supersoluble.

PROOF. The implication in one direction is clear. Assume (1), (2) and (3).

By Zorn's lemma there exists a maximal locally supersoluble subalgebra M of L.

By (3) M G έ(<])%1. Assume by way of contradiction that M^LL. By (1) we can
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find XGL\M such that [x, M]cM(M)X) + (x). Put # = <M, x> = M + <x> and
I = M<MfX> Since [x, M]c/-f<x>, we have «JC>+/) / /<#/ / . It follows that

#/«*>+/) = (M + <x»/«x>+7) * M/(M n«x>+/) )€««)»! .

Hence i ///eaf iέ«)Si=έ«)δi . Let K be a finitely generated subalgebra of H.

Then K/(Kn/)^(iC + /)//eE(<)51. Since / < M 6 i « ) S l 9 X Π / is a super-

soluble ideal of K. Hence Ke £(<!)% ̂ Oft^ By (2) and Proposition 6.10

XeE«)3fi. Hence H G L E ( < ) 5 I . T m s contradicts the maximality of Λf,

since M<H. Thus L =

7.

In Theorem 6.8 we have given a characterization of locally supersoluble Lie

algebras. In this section we shall give further characterizations of locally super-

soluble Lie algebras.

For a subalgebra H of L the idealizer IL(H) of H in L is the set {xeL:

[ H , x ] s H } .

LEMMA 7.1. Lei £ fre α non-trivial {s, E}-closed class of Lie algebras and

let L be a Lie algebra such that (x<y>y e (5 for any x, y e L. If H is an LX-

subalgebra of L and z e IL(H), then H 4- <z> e iX

PROOF. Let A be a finitely generated subalgebra of/J + <z>. Then there

exist finitely many elements xt of H such that y4<<xx,..., xn9 z}. Put β = <x1?...,

xfl, z> and / = <<xt >
<z>: / = 1,..., n>. Since zeIL(H), we have / < # . Evi-

dently I<\B. Hence 5 = / + <z>. By hypothesis /e(5. Since H G L Ϊ , we have

IeX. Hence BG3EJ51<E3e = 3e and so AesX = X. Thus i/ + <z> GLX.

LEMMA 7.2. Let L be a Lie algebra which has ideals A, B and a subalgebra

H with the following properties:

(1) A, H and L/B are locally finite and

(2) B<A0H and L =

Then L is locally finite.

PROOF. Let K be a finitely generated subalgebra of L. Since L =

there exist finitely generated subalgebras Ax of A and HΛ of H such that X <

<i4lf H i ) . Since i ί eLg, we h a v e / ^ e ^ . Put M = <^1 ? # !>. Since L/5eL$,

we have (M + B)/£ e 5. We have

{M + B)IB n ,4/β = ((M Π A) + B)/B s (M n i4)/(M Π B),

whence (M n A)j{M 0 B)e$. Hence there exists an g-subalgebra A2 of M Π A

such that M n A = A2 + (MΓϊ B), and so by the modular law we obtain



Supersoluble Lie algebras 593

B + (M n A)=(B + M) Π A. Hence5 + ,42<lβ + M. Since At is a finitely generated

subalgebra of B + A2, there exists a finitely generated subalgebra Bί of B such that

At < (Bu A2}. Hence we have

Since A2, Hj e g , we have that \_A2,H{\ is finite-dimensional. Since Hγ<M<

B + M and £ + ,42<)β + M, we have [_A2, HJ^B + A2. Hence there exists a

finitely generated subalgebra B2 of £ such that \_A2, HJ^(B2, A2}. Put B3 =

Bf\(Bu B2, Hi}. Note that β 3 < < β 1 , £ 2 , i ί ^ e © . Since Bu B2<B<H, we

have <£1 ? B2, H{)<H. Hence J3 3 e5 and so <£3, 42>e<$. Since £ 3 < £ < , 4 ,

A2<A and ^leL^, we have <£3, ,4 2>eg. Since JB 3 <<J5 1 ? β 2, H^, we have

Also we have ίA2, H^^{B2, A2><<B3, Λ2}. Hence

i) and so <J53, ^ 2 , H1> = <β3, ̂ i i i ^ g . By (•) and

we obtain K<(B3, A2, Ht} and so /Ceg. Thus Lehfi.

REMARK: The proof of Lemma 7.2 is a modification of that of [3, p. 351,

Satz 1], in which it has been shown that if G is a group which has normal sub-

groups JV, D and a subgroup U with the properties

(1) N, U and G/D belong to LMax and

(2) D<N ΠU and G = NU,

then G belongs to LMax. In Lie algebras everything goes well if Max is replaced

byg.

THEOREM 7.3. Let L be a Lie algebra. Then L is locally supersoluble if

and only if L satisfies the condition (C) and one of the following conditions:

(1) <x<y>> is finitely generated for any x, yeL.

(2) If H is an LMax-swbalgebra of L and xeIL(H), then H + (x} belongs

to LMax.

(3) If H is a locally finite subalgebra of L and xeIL(H), then H + <x> is

locally finite.

(4) // H is a locally supersoluble subalgebra of L and xeIL(H)9 then

is locally supersoluble.

PROOF. If LeLE(<\)^i9 then by Lemma 6.2 and Proposition 3.1 we have that

L satisfies the conditions (C) and (1). By Lemma 7.1 we have that (1) implies (2).

In the rest of the proof we suppose that L satisfies the condition (C). Assume (2).

Let H be a locally finite subalgebra of L and let xeIL(H). Since Lg<LMax,

we have # + O>eLMax. Hence H + (x} eL(Max n WIC) = L E « ) g 1 < L g by

Corollary 6.5 and Proposition 3.1. Thus (2) implies (3). Similarly we have the

equivalence of (3) and (4). Finally assume (3). Let K be a finitely generated

subalgebra of L and let M be a maximal locally finite subalgebra of K. Assume

by way of contradiction that M^K. Since KeWlC, there exists xeK\M
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such that [x, M ] c M ( M , } + <x). Put # = M<M>JC>, N = <M, x> and J = /ί + <x>.

Clearly H and / are ideals of N, H < M n• / and JV = / + M. Since M e Lg, we have

H6LJ5. By (3) I eL^. Since J/H is a 1-dimensional ideal of JV/ff and N// =

(M-f/)//eLj5, we have JV/i/e ^ L g ^ L f t . Hence by Lemma 7.2 we obtain

NeLg. This contradicts the maximality of M. Therefore M = K e © n L e 5 = g.

Thus L e iXS Π W I C ) = L E ( < ) S I by Corollary 6.5. This completes the proof.

Now we consider the following condition for a Lie algebra L, which is a Lie

analogue of [4, p. 121], to characterize locally supersoluble Lie algebras:

(D) If H is a proper subalgebra of L and if I is an ideal of L such that

L = I + H, then there exists xeI\H such that (xHy<H<HfX> + (x).

With the choice / = L, we see that the condition (D) implies the weak idealizer

condition.

LEMMA 7.4. Every supersoluble Lie algebra satisfies the condition (D).

PROOF. Let Let«)%ί9 H^L and I<\L such that L = I + H. Put J =

(I Π H)L. Since H<L9 we have J<L. Clearly I£H and so J£I. Hence I/J

is a non-zero ideal of L/J. By Proposition 1.6(3) I/J contains a 1-dimensional

ideal K/J of L/J. Let x e K such that X = J + <x>. If x e H, then K < I n # and

so K = J, which is a contradiction. Hence x e 7\//. Clearly J<H<H x>. There-

fore we obtain

<xH> < <xL> < K = J + <x> < H< W 5 X > + <x>.

THEOREM 7.5. Let L be a Lie algebra. Then L is locally supersoluble if

and only if every finitely generated subalgebra of L satisfies the condition (D).

PROOF. By Lemma 7.4 we have one implication. Suppose that every finitely

generated subalgebra of L satisfies the condition (D). By Theorem 7.3 and the

argument before Lemma 7.4 it is sufficient to see that if H is a locally finite sub-

algebra of L and x e IL(H), then H + <x> e L $ . Put K = H 4- <x> and let G be a

finitely generated subalgebra of K. We may suppose x e G . Hence by the

modular law G — {G Π iί)-f <x>. Assume by way of contradiction that G ^ L g

Let M be a maximal locally finite subalgebra of G which contains x. Clearly

M£G, G = (G n //) + M and G n H<\G. Hence by (D) we can find ye(G n H)\M

such that (yMy<M<Mίy>+ <j>. Put J = (M,y}, A = M<Mty> + <y> and £ =

M<Mty> Then Λ, £<]J, £ < A n M and J = M+<>;> = A 4-M. Since M e L g ,

we have Behft. Since <y M ><A, we have A = B + (yMS>. Since j6H<\K, we

have < j M > < / / e L g . Hence by the N0-closedness of Lg [1, Corollary 6.1.2]

^ e L ^ . Clearly AfBe^^ and J / ^ 6 L g . Hence J / ^ e g i L g ^ L g . Therefore

by Lemma 7.2 we have J EL%. This contradicts the maximality of M. Hence

G e (£ Π L 5 = g. Thus X ε Lg. This completes the proof.
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