
HIROSHIMA MATH. J.
14 (1984), 571-574

On the elliptic equation Δu=φ(x)eu in the plane
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1. Introduction

Recently Ni [4] has considered the elliptic equation

(1) Au = φ(x)eu, xeR2,

where x = (xl9 x2), A=d2ldxl + d2/dx2

ι, and φ: i?2-»(0, oo) is locally Holder

continuous, and presented conditions under which (1) has entire solutions with

various orders of growth at infinity. By an entire solution of (1) [or another

equation] we mean a function ueC2(R2) which satisfies (1) [or that equation]

at every point of R2.

The purpose of this paper is to obtain conditions guaranteeing the existence

of entire solutions which are eventually positive and have logarithmic growth as

|x| = (χ2_j_x2^i/2_^00 Q U Γ method is different from that of Ni [4].; we heavily

rely on the results and techniques developed by Kawano, Kusano and Naito [2]

in the study of the equation

Au = φ{x)u\ xeR2,

where y is a positive constant.

We note that the equation (1) in higher dimensions has been studied by

Kawano [1] and Ni [4].

2. Main result

In what follows we assume that φ: R2-+(0, oo) is locally Holder continuous

with exponent #e(0, 1), and define the functions φ*, φ%: [0, oo)-»(0, oo) by

φ*(t) = max φ(x), Φ*(t) = m m Φ(χ) -
|x| = ί |jc| = r

The main result of this paper is the following theorem.

THEOREM 1. Suppose that there, exists a positive constant c such that

(2) (* tc+ιφ*(t)dt < co.
Jo

Then, equation (1) has an eventually positive entire solution u such that
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(3) ki log |x| < u(x) < k2 log |x|, |x| > R,

for some positive constants ku k2 and R.

The proof of this theorem is done via the following result which asserts that

equation (1) has a positive entire solution provided the value of the integral in

(2) is small enough.

THEOREM 2. Consider the equation

(4) Δu = λφ(x)eu, xeR2

where λ is a positive constant. If (2) holds for some c>0 and if λ is sufficiently

small, then (4) has an entire solution u which is positive throughout R2 and

satisfies (3) for some positive constants kί9 k2 and R.

PROOF OF THEOREM 2. We show that there exists a constant λ>0 and

positive functions v, w e C2+C

Θ(R2) such that

(5) Δv < λφ{x)e\ Δw < λφ(x)ew,

and w<v in R2, with the additional requirement that v and w have logarithmic

growth as |;c|-*oo. Then, the existence of an entire solution u lying between v

and vv follows from Theorem 2.10 of Ni [3].

We wish to construct v and vv as solutions of the equations

(6) Δu = λφ*{\x\)vχi2, xeR2,

and

(7) Δw = λφ*{\x\)e»\ xeR2,

respectively. It is easy to see that such v and vv satisfy (5) in R2. Furthermore

we require that v and vv depend only on |x|: v(x) = y(\x\), w(x) = z(|x|). We then

have the following one-dimensional initial value problems for y(t) and z(t):

(8) { '
y(0) = η, /(0) = 0,

z" + f z ' =λφ*(t)ez, ί >0,
(9) \

(O) = ζ, z'(0) = 0,

where '=d/άt, and η and ζ are positive constants.

Tn order to solve (9) we transform it into the equivalent integral equation
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(10) z(t) = C + λ [' s log (ί/s) φ*(s)ez^ds, t > 0.
Jo

Define the functions /c, ̂ : [0, αo)-»(0, oo) by

k(t) = 1 for 0 < t < 1, fc(ί) = t for ί > 1,

£(t) = 1 for 0 < ί < £, ^(0 = log ί for ί > e.

Choose Ce(0, c/2], define the set Z by

Z = {ze C[0, oo); C < z(ί) < 2ζ^(ί) for ί > 0},

and consider the mapping F: Z-*C[Q, oo) defined by

Fz(t) = ζ + λ Γ 5 log (ί/s) φ*(s)ez^ds, t > 0.
Jo

Finally let λ be small enough so that

k(t)φ*(t)e2^dt < ζ/2.
o

Then proceeding as in the proof of Theorem 1 of [2], it is shown that F is con-

tinuous and maps Z into a compact subset of Z, so that the Schauder-Tychonoff

fixed point theorem implies that F has a fixed point z in Z. This fixed point z is a

solution of (10) [hence of (9)], and so the function w(x) = z(\x\) satisfies (7) in R2.

It is clear that w(x) has logarithmic growth as |x|—>oo.

We now turn to equation (8) with λ chosen as above. Since condition (2)

implies that \ t(\ogtYl2φ*(t)dt<co, from the proof of Theorem 1 of [2] we

see that (8) has a positive solution y(t) with logarithmic growth provided η is suffi-

ciently large. The function v(x) — y(\x\) then gives a solution of (6) in R2. We

require additionally that η be so large that

tφ*(t)dt > 2ζ.

Then, it follows that with this choice of λ, η and ζ the functions υ and w satisfy

w< υ in R2 (see the proof of Theorem 1 of [2] again), and so the functions v and w

have all the required properties. This completes the proof.

We note that Theorem 2 allows a slight extension as follows.

THEOREM 3. Consider the equation

(11) Δu = λφ(x)eu + μφ(x), x e R2,

where φ, φ: R2->(0, oo) are locally Holder continuous (with exponent Θe(0, 1))
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and λ, μ are positive constants. Suppose that (2) holds for some c > 0 and

tψ*(t)dt < oo,

where ψ*(t) = m?Lxψ(x). Then equation (11) has a positive entire solution with
\x\ = t

logarithmic growth as |x|->oo provided λ and μ are sufficiently small.

PROOF OF THEOREM 1. Choose a constant λ>0 so that equation (4) has a

positive entire solution ύ satisfying (3) for some ku k2 and R. For this λ>0

there exist positive constants Cλ and C2 large enough so that λe~Cί < 1 and λeCz> 1.

Define the functions V, WE C^C

Θ(R2) by

V(x) = u(x) + Cu W{x) = u(x) - C2.

Then we have

AV = λe~c^φ(x)ev < φ(x)ev,

AW= λeC2φ(x)ew > φ(x)ew

in /?2. Since W< Kin R2, from Theorem 2.10 of [3] we conclude that there exists

an entire solution u of (1) squeezed between W and V. It is obvious that this

solution has the required asymptotic property. This completes the proof.
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