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1. Introduction

In this paper we consider the semilinear ellitpic equation

(1) Au + a(x)uσ = 0 in R",

where n ^ 3 , x = (x l 5..., xn), ^ = Σ"=i ^2/dxf, 0 < σ < l , and a(x) is a positive

locally Holder continuous function (with exponent αe(0, 1)) in Rn.

We are interested in the existence of positive entire solutions of equation (1).

By an entire solution of (1) we mean a function u e Cf+?(Rn) which satisfies (1) at

every point of Rn. The problem of existence of such solutions has been studied

by several authors including [1-5]. Most of them have dealt with bounded

positive entire solutions which are bounded away from zero. However, equation

(1) may also have positive entire solutions which approach zero as |x|'-»oo.

The main objective of this paper is to prove the existence of positive entire

solutions of (1) decaying to zero at infinity. Our procedure is to construct solu-

tions of (1) which are squeezed between supersolutions and subsolutions tending

to zero as |x|->oo. The latter are obtained as spherically symmetric solutions of

elliptic equations with a(x)uσ in (1) replaced by radial majorants and minorants.

For this purpose we need a global existence theory of a certain singular boundary

value problem for nonlinear ordinary differential equations. We also attempt to

extend the main result for (1.) to semilinear elliptic systems of the form

f Au + a(x)uσvτ = 0
(2)

[ Δυ + b(x)uλvμ = 0,

where σ, τ, λ and μ are nonnegative constants and a(x) and b(x) are positive

locally Holder continuous functions in R".

2. Main results

We employ the notation:

(3) α*(r) = max α(x), aJr) = min a(x).
\x\=r }x\=r
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It is easy to see that a*(r) and α*(r) are locally Holder continuous (with the same

exponent α as a(x)) on the interval R+ = [0, oo).

THEOREM 1. Suppose that

(4) Γ ti+εa*(t)dt <

for some positive constant ε. Let p = min {ε/(l — σ), n — 2}. Then equation (1)

has an entire solution u(x) such that

(5) C1\X\2-"^U(X)^C2\X\-P9 | x | £ l ,

for some positive constants cx and c2.

PROOF. Our proof is based on Theorem 2.10 of Ni [5]: If there exist

positive functions v and w in C^c

α(i?M) which satisfy the inequalities

(6) Aϋ + a(x)vσ ^ 0 , Aw + a(x)wσ^ 0, w g υ.

in JRn, then equation (1) has an entire solution u satisfying

w S u = v in ΛM

We construct such v and w as spherically symmetric solutions of the equations

Aυ + a*(\x\)vσ = 0 and Jvv + α*(|x|)w* = 0,

respectively, by requiring that t>(x)—>0 and w(x)-»0 as |x|—•oo. If we let φc) =

jμ(|x|) and w(x) = z(|x|), then we are led to the following one-dimensional singular

boundary value problems for y(r) and z(r):

( f + ?LΣλy' + a*(r) r = o, r > 0,
(7)

( /(0) = 0, y(r) -^0 as r -• oo,

( z" + ̂ Zi' Z' + ̂ ( φ * = 0, r > 0,
(8)

( z'(0) = 0, z(r) -> 0 as r -> oo.

As easily verified, (7) and (8) are equivalent to the integral equations

(9) y(r) = j±2 ̂ ( f y2ta*(t)y*(t)dt + -^JJta*(t)χ*(t)dt

and

(10)
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respectively. In order to solve (9) and (10), put

{ If1- I f 0 0 1 l/(l-σ)
5% \ tn~ aΛt)dt -f - — o \ ^-σ(«-2)β /^WA

(11)
I l/(l"«τ)

and define

(12) X = {C, z)eC(R + )xC(J? + ) : ζ(r) ^ z(r) ^ y(r) <Ξ η(r)},

where

Ί r 2 " " , 1 ̂  r < oo,

(13)

' ' c2 • , 0 ^ r <; 1

c2^"p, 1 ̂  r < oo.

Clearly, X is a closed convex subset of the Frechet space C(R+)x C(R+) of con-

tinuous vector functions with the topology of uniform convergence on every

compact subinterval of R +. Consider now the operator F: X -+ C(R+) x C(R+)

defined by

(14)

where

^ \"()n~2 L £ ta*(t)y*(t)dt9

ta*(t)z*(t)dt

for r^O. We show that F is continuous and maps X into a compact subset of .X".

(i) F maps X into X. Let (y, z)eX, F(y, z)=(y, z) and F(η, {)=(?, D

Then, by (11), (13) and (14), we see that

ή(r) g c\ \^Zl\o ta*(t)dί

ή(r) g cfr-P j - i p , ί1 ta*(t)dt
I'Γ ^ Jo
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ζ(r) i; c\ | ^

ζ(r) £-cfr*-

and by (12) and (14), we have

ζ(r) ^ ξ(r) g z(r) ^ j (r) ^ /f(r) ^ η(r\ r ^ 0.

(ii) F is continuous. Let (y, z) and (yw, zm), m = 1, 2,... be vector functions

in X such that ( j m , zJ->0>, z) in C(Λ + )xC(R + ) as w ^ o o . Let F(^M, zw) =

(j)m, zm) and F(y, z) = (y, z). Then, from (14) we have

\ym(r) - y(r)\ g ^ JJ ta*(t)\ySHt)-y(t)\dt9 r ^ 0.

Since the integrand ta*(t)\y£(t) — yσ(t)\ is bounded from above by an integrable

function 2c%ta*(t) and converges to zero at every point t of R + , the Lebesgue

dominated convergence theorem implies that ym(r)-+y(r) uniformly on R+ as

m->oo. Likewise, zm(r)->z(r) uniformly on i?+ as m->oo. Thus, we have

κ«. zm)->FG;, z) in C(K + ) x C(R+) as m^oo.

(iii) F Z is relatively compact. This follows from the observation that if

(y, z )eX, then (3?, z) = F(y, z) satisfies

0 ^

0 ^ z'(r) = - ^(^y~l a*(t)z°{t)dt ^ -

for
Thus, we are able to apply the Schauder-Tychonoff fixed point theorem,

concluding that F has a fixed point (y, z) in X. The components y and z are

solutions of (9) and (10) (and hence solutions of (7) and (8)) such that y(r)^.z(r)

for r^O. It follows that the functions v(x) = yQx\) and w(x) = z(\x\) satisfy (6) in

Rn. Since it is obvious that v, we Cf+c

a(Rn), using the above-mentioned theorem

of Ni [5], we conclude that equation (1) has an entire solution u lying between v

and vv. The construction of v and w shows that u satisfies (5) with c1 and c2

defined by (11). This completes the proof.

THEOREM 2. Suppose that (4) holds for some positive constant ε. Let p —

min{ε/(l —σ), n — 2}. If u(x)>0 is an arbitrary solution of (1) on | x | ^ r 0 such
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that u(x)-+0 as |x|-»oo, then the spherical mean U(r) of u(x) on \x\ = r satisfies

(15) c t r 2 " B i U(r).£ c2r--p

for some positive constants cx and c2, provided r is sufficiently large.

PROOF. The first inequality in (15) follows from the Hadamard three-spheres

theorem for superharmonic functions; see Protter and Weinberger [6, p. 131].

To prove the second inequality in (15), we first note that rι~n{rn~ιΌ'{r))r

equals the spherical mean of Δu on |x| = r, so that U'(r) is eventually negative,

say, for r^rί^ma,x{r0, 1}. Integrating (1) on \x\ — r and using Holder's in-

equality, we get

-rl-n(rn-lU\r))r ^ α*{r)Ό\r\ r ^ r t .

Integrating the above inequality twice (first on [rl9 r] and second on [r, oo))

yields

(16)

for r^rί. From (16) it is not hard to see that if

(17) £/(r)£fcr-«, r ^ r u

for some constants k>0 and q e [0, n — 2], then

U(r) ^ (A + Bkσ)r2-", r ^ ru if ε + qσ ^ n - 2,
(18)

U(r) g Ar2~n + Bkσr-(ε+«σ\ r ^ ru if ε + qσ < n - 2,

where

A = - nZ_')rΓιUf(rι) and B = ^ Γ t1+εα*(t)dt.
n Δ n L jrι

Now, since U(r)<>ko= V(rx\ r^ru (17) holds with fc = k0 and g = 0 , so that (18)

implies that

U(r) ^(A + Bkζ)r2~n if ε ^ n - 2,

U(r) <; Ar2~n + Bfcgr"6 if ε < tt - 2.

Suppose ε < n — 2. Then, from the above,
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that is, U(r) satisfies (17) with k = kί and q~ε. So, (18) implies that for r^rXi

U(r)S(A + Bkl)r2-n if δ ( l + σ ) έ « - 2 ,

U(r) ^ Ar2~n + Bikfr-x-1^ if ε(l + σ) < n - 2.

If ε(l + σ)<rc-2, then

t/(r) ^ k2r'^ι+σ\ k2 = A + Bkσ

u

so that from (18) it follows that

U(r)^(A + Bkσ

2)r2-" if ε(l + σ + σ2) ^ n - 2,

t/(r) ^ Ar2~n + 5/c5r-£(1+flr+ff2) if ε(l + σ + σ2) < n - 2.

Repeating the same argument, we conclude that either

U(r) ^ kmr2~\ r ^ r u

for some m, or else

U(r) ^ fcmΓ-β(i+ιr+".+σ--i)> r ^ Γ j j

for all m, where A:m is defined recursively by

km = A + Bk£-l9 m = 1,2,....

In the latter case we have

U(r) ^ Kr- K1''), r ^ rl9

where K is an upper bound for the sequence {km}9 the boundedness of which can

easily be checked. This establishes the second inequality in (15), and the proof

is complete.

COROLLARY. Suppose that

(i) There exists a positive solution u of {I) such that

cΛ\x\2-» S u(x) ^ c 2 |x | 2~V 1*1^1,

for some positive constants cί and c2.

(ii) For any positive solution u of (1) which decays to zero at infinity, the

spherical mean U(r) of u on |x| = r satisfies

cxr
2"n <* U(r) <; c2r

2-"
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for some positive constants cί and c2, provided r is sufficiently large.

REMARK. According to Theorem 2.6 of Kawand [1], equation (1) has a

positive entire solution which tends to a positive constant as |x|-*oo, if

(19) {* ta*(t)dt < oo.

Since (4) implies (19), under condition (4), there are two types of solutions: solu-

tions tending to positive constants as |x|-»oo, and solutions tending to zero as

|x|->oo. Furthermore, for any given constant c^O, we can construct a positive

entire solution which converges to c at infinity. The procedure is similar to the

proof of Theorem 1, but we do not develop it here. For closely related results we

refer to Naito [4].

Theorems 1 and 2 can be extended without difficulty to sublinear elliptic

equations of the form

(20) Δu + ax{x)u^ + ••• + αm(x)ttσm = 0 in Rn,

where n ^ 3 , O ^ σ ^ l , i = l,...,ra, and cφήj i = lj..., m, are positive locally

Holder continuous functions (with exponent αe(0, 1)) in Rn.

THEOREM 3. Suppose that there exist positive constants εh ΐ = l,..., m, such

that

\ tι+εiaf(t)dt < oo, ί = 1,..., m,

where

af(r) = maxa f(x), i = 1,..., m.
\x\=r

Let

p = min{ε1/(l-σ1),...,εw/(l-σj, n-2}.

Then:

(i) There exists a positive entire solution of (20) such that

Cl\x\2~n ύ u(x) S c2\x\-p9 \x\^h

for some positive constants c r and c2:

(ii) For any positive solution u of (20) which decays to zero at infinity, the

spherical mean U(r) of u on \x\ = r satisfies

for some positive constants ci and c2, provided r is sufficiently large.
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3. Elliptic systems

Let us now consider the semilinear elliptic system (2). We assume throughout

that σ + τ < 1 and λ + μ < 1, and a(x) and b(x) are positive locally Holder continuous

functions (with exponent αe(0, 1)) in Rn, n ^ 3 .

Kawano [1] has recently given sufficient conditions for (2) to possess entire

solutions (u, V) such that both u and v are positive and tend to positive constants

as |x|->oo. See also Kawano and Kusano [2]. It is the purpose of this paper to

obtain conditions under which (2) has positive entire solutions (u9 V), both com-

ponents of which decay to zero as |x|-»oo.

Below we use the functions α*(r), α*(r) defined by (3), and

b*(r) = max b(x), b*(r) = min b(x).
\x\=r \x\=r

THEOREM 4. Suppose that

(21) Γ tί+Ea*(t)dt < oo and ί°° ti+δb*(t)dt < oo

for some positive constants ε and δ. Let S denote the set of solutions (p, q)e

[0, n — 2] x [0, n — 2] of the system of inequalities

\ (l-σ)p - τq ^ ε
(22)

and let

(23) p* = max{p: (p, q)eS} and q* = max {<?: (p, q)eS} .

Then:

(i) There exists a positive entire solution (w, v) of (2) such that

(24)
c 3 | x | 2 - S v(x) ̂  ct\x\-<*i \x\ ^ 1,

for some positive constants cί9 c2, c3 and c4.

(ii) For any positive solution (u, v) of (2) w/iic/i decays to zero at infinity,

the spherical means U(r) and V(r) of u and v on \x\ = r satisfy

(25)
c3r

2"n ^ V(r) £ c4r-**

for some positive constants cu c2, c3 and c4, provided r is sufficiently large.
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OUTLINE OF THE PROOF, (i) We make use of a theorem of Kawano [1,

Theorem 5.1] which asserts that if there exist positive functions (wl9 vx) and (w2,

v2) in Cffc

a(Rn) x Cffc*(Rn) satisfying the inequalities

ί Δux + a{x)u\v\ ^ 0
(26)

1 ΔΌX + b(x)u^ ^ 0,

Δu2 + a(x)u^vτ

2 g O
(27)

. Jι>2 + b(x)u^ S 0,

(28) Uχ g M2, D i ^ 2

in R", then equation (2) has an entire solution (w, ϋ) such that

(29) uί ^u ^ u2 and (̂  g ί; g v2 in i?n.

We wish to construct the desired (uί9 vt) and (u2, t?2) as spherically symmetric

vector functions. For this purpose we put

+

R =

and define

It is easy to see that c1^c2 and c 3 g c 4 . We consider the functions ^(r),

ί = l, 2, defined as follows:

g r g l , and
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for l ^ r < o o , and define I to be the subset of Y=C(R+)x C(R+)x C(R+)x
C(R+) consisting of vector functions (yί9 zί9 y2, z2) such that

z,(r) S z2(r) £ C2(r), r ^ 0.

Clearly X is a closed convex subset of the Frechet space Y. Finally, let F:
denote the operator defined by

where

J Γ ( y2 ta+{t)yl(t)z\{t)dt

j ^ £ ta*(t)yψ)zψ)dt,

jr y* tb*{t)yi(t)zξ(t)dt + ̂  ^ tb*(t)yi(t)zξ(t)dt9

for r^O. Then it can be shown that F is continuous and maps X into a compact
subset of Z, so that from the Schauder-Tychonoίf fixed point theorem it follows
that F has a fixed point (yί9 zί9 y2, z2) in X. Differentiation of the integral
equations satisfied by (yu zί9 y2, z2) shows that (u^x), ^i(x)) = (ji(|x|), Zi(|x|))
and (u2(x)9 v2(x)) = (y2(\x\), z2(|x|)) are positive entire solutions of the systems

f»ϊ = 0

= 0, .

Au2 + a*(\x\)uϊυϊ = 0

Av2 + b*(\x\)uM = 0,

respectively, and so they satisfy the inequalities (26) and (27). Since (27) holds,
the above-mentioned theorem of Kawano implies that system (2) has an entire
solution (M, i?) satisfying (29). From the construction of yt(r) and Zι(r)9 i = l, 2,
it is obvious that (M, V) has the asymptotic behavior (24).

(ii) The proof proceeds exactly as in the proof of Theorem 2. We first note
that U'(r) and V'(r) are eventually negative, say, for r^rv Integrating (2) and
using Holder's inequality, we obtain

_ ri-«(r«-i(y'(r))' ^ a*(r)Uσ(r)Vτ(r),
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We then integrate the above inequalities twice and obtain two integral inequalities
similar to (16). Finally, with the help of the last inequalities we observe that if

U(r) ^ kr~s and V(r) ^ kr\ r ^ ru

for some constants /c>0 and 5, t e [0, n — 2], then the following inequalities hold
for r^r^:

U(r) ^ (A + Bkσ+τ)r2-" if ε + σs + τt ^ n - 2,

V(r) ^(A + Bkx+*)r2-n if δ + λs + μt ^ n - 2,

U(r) ^ Ar2"" + Bkσ+τr-(ε+σs+τt) if ε + σs + τί < π - 2,

F(r) ^ /Ir2"" + £fcA+'tr-<*+λβ+'If> if 5 + As' + μί < n - 2,

where 4̂ and 5 are positive constants. This leads us to the upper bounds for U(r)
and V{r) in (25).

COROLLARY. Suppose that

(i) There exists a positive entire solution (u, v) of (2) such that

cM2-" ^ u(x) ^ c2\x\2-»,

c3\x\2-" ^ v(x) ^ c4\x\2~'\ \x\ ̂  1,

for some positive constants cγ, c2, c3 and c4.
(ii) For any positive solution (w, v) of (2) which decays to zero at infinity,

the spherical means U(r) and V(r) of u and v on \x\ = r satisfy

cxr
2~n ^ U(r) ^ c2r

2'n,

c3r
2-" ^ V(r) ̂  c4r

2~n

for some positive constants cί9 c2, c3 and c^ provided r is sufficiently large.
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