Boundedness of singular integral operators of Calderón type (IV)

Takafumi Murai

(Received October 24, 1983)
(Revised February 6, 1984)

1. Introduction

We denote by $L^{p}(1 \leqq p \leqq \infty)$ the L^{p}-space on the real line \boldsymbol{R} with norm $\|\cdot\|_{p}$ with respect to the 1 -dimensional Lebesgue measure $|\cdot|$. We denote by S^{∞} the totality of rapidly decreasing functions on \boldsymbol{R}. We say that a locally integrable function $f(x)$ is of bounded mean oscillation if $\|f\|_{B M O}=$ $\sup (1 /|I|) \int_{I}\left|f(x)-m_{I} f\right| d x<\infty$, where $m_{I} f=(1 /|I|) \int_{I} f(x) d x$ and the supremum is taken over all finite intervals I. The space BMO of functions of bounded mean oscillation, modulo constants, is a Banach space with norm $\|\cdot\|_{B M O}$. For $0<\delta \leqq 1$ and a complex-valued kernel $K(x, y)(x, y \in \boldsymbol{R})$, we define $\omega_{\delta}(K)$ by the infimum over all A 's with the following three inequalities:

$$
\begin{aligned}
& |K(x, y)| \leqq A /|x-y| \quad(x \neq y) \\
& \left|K(x, y)-K\left(x^{\prime}, y\right)\right| \leqq A\left|x-x^{\prime}\right|^{\delta} /|x-y|^{1+\delta} \quad\left(\left|x-x^{\prime}\right| \leqq|x-y| / 2, x \neq y\right) \\
& \left|K(x, y)-K\left(x, y^{\prime}\right)\right| \leqq A\left|y-y^{\prime}\right|^{\delta} /|x-y|^{1+\delta} \quad\left(\left|y-y^{\prime}\right| \leqq|x-y| / 2, x \neq y\right) .
\end{aligned}
$$

(If such an A does not exist, we put $\omega_{\delta}(K)=\infty$.) We say that $K(x, y)$ is a Calderón-Zygmund kernel (CZ-kernel), if $\omega_{\delta}(K)<\infty$ for some $0<\delta \leqq 1$,

$$
K f(x)=\int_{-\infty}^{\infty} K(x, y) f(y) d y=\lim _{\varepsilon \rightarrow 0} \int_{|x-y|>\varepsilon} K(x, y) f(y) d y
$$

exists almost everywhere (a.e.) for any $f \in L^{2}$ and $\|K\|=\sup \left\{\|K f\|_{2} /\|f\|_{2} ; f \in L^{2}\right\}$ $<\infty$. For a CZ-kernel $K(x, y)$, a complex-valued function $h(x)$ and a real-valued function $\phi(x)$, we put

$$
K[h, \phi](x, y)=K(x, y) h\left\{\frac{\phi(x)-\phi(y)}{x-y}\right\} .
$$

Calderón [1] showed that $K[h, \phi]$ is a CZ-kernel if $K(x, y)=1 /(x-y)$, $\phi^{\prime} \in L^{\infty}$ and $h(x)$ is extended as an entire function, where " $\phi^{\prime} \in L^{\infty}$ ", implies that $\phi(x)$ is differentiable a.e. and its derivative is essentially bounded. Coifman-David-Meyer [4] showed that Calderón's theorem is valid with the above condition on $h(x)$ replaced by " $h \in S^{\infty \infty}$ ". The author [7] showed that their theorem
is valid with " $\phi^{\prime} \in L^{\infty}$ " replaced by " $\phi^{\prime} \in B M O$ ". The purpose of this paper is to show an analogous property for CZ-kernels $K(x, y)$ defined by pseudo-differential operators of classic order 0 .

Given a non-negative integer n, we say that an infinitely differentiable function $\tau(x, \xi)$ in $\boldsymbol{R} \times \boldsymbol{R}$ is a symbol of (classic) order n if, to any pair (p, q) of nonnegative integers, there corresponds a constant $C(p, q)$ such that

$$
\begin{equation*}
\left|\partial_{x}^{p} \partial \partial_{\xi}^{q} \tau(x, \xi)\right| \leqq C(p, q)(1+|\xi|)^{n-q} \quad(x, \xi \in \boldsymbol{R}) \tag{1}
\end{equation*}
$$

We denote by $C(p, q ; \tau)$ the infimum of $C(p, q)$'s satisfying (1) and put $\mathfrak{C}(\tau)=$ $\{C(p, q ; \tau)\}_{(p, q)}$. We write $\mathfrak{C}(\tau) \leqq \mathfrak{C}_{0}=\left\{C_{0}(p, q)\right\}_{(p, q)}$ if $C(p, q ; \tau) \leqq C_{0}(p, q)$ for any pair (p, q). The pseudo-differential operator $\tau(x, D)$ from S^{∞} to C^{∞} associated with $\tau(x, \xi)$ is defined by

$$
\tau(x, D) f(x)=\int_{-\infty}^{\infty} e^{i x \xi} \tau(x, \xi) \hat{f}(\xi) d \xi \quad\left(f \in S^{\infty}\right),
$$

where $\hat{f}(\xi)$ denotes the Fourier transform of $f(x)$ and C^{∞} the totality of infinitely differentiable functions on \boldsymbol{R}. We say that $K(x, y)$ is defined by $\tau(x, D)$ if

$$
\begin{equation*}
K f(x)=\tau(x, D) f(x) \quad \text { a.e. } \quad\left(f \in S^{\infty}\right) \tag{2}
\end{equation*}
$$

Let us note that, for $K(x, y)$ defined by a pseudo-differential operator of order 0 , there exists a sequence $\left(K_{m}\right)_{m=1}^{\infty}$ of CZ-kernels such that $\lim _{m \rightarrow \infty} K_{m}(x, y)=$ $K(x, y)$ a.e. in $\boldsymbol{R} \times \boldsymbol{R}$ and $\sup _{m}\left\|K_{m}\right\|<\infty([3, \mathrm{p} .83])$. We show

Theorem 1. For any $0<\delta \leqq 1$, there exists a positive integer n_{δ} depending only on δ with the following property: If $K(x, y)$ is a CZ-kernel with $\omega_{\delta}(K)<\infty$ and $\rho_{K}\left(n_{\delta}\right)<\infty$, then $K[h, \phi]$ is also a CZ-kernel as long as $\phi^{\prime} \in B M O$ and $h \in S^{\infty}$, where

$$
\rho_{K}\left(n_{\delta}\right)=\sup \left\{\left\|K\left[t^{n}, \psi\right]\right\| ; n=0,1, \ldots, n_{\delta},\left\|\psi^{\prime}\right\|_{\infty} \leqq 1\left(\psi^{\prime} \in L^{\infty}\right)\right\} .
$$

As an application of this theorem, we show
Theorem 2. Let $K(x, y)$ be a CZ-kernel defined by a pseudo-differential operator of order 0 . Then $K[h, \phi]$ is also a CZ-kernel as long as $\phi^{\prime} \in B M O$ and $h \in S^{\infty}$.

2. Known facts

We use C for absolute constants. Throughout the paper, we fix $0<\delta \leqq 1$ and use C_{δ} for constants depending only on δ. The values of C, C_{δ} differ in general from one occasion to another. We write by $L_{R}^{\prime \infty}$ the totality of real-valued functions $f(x)$ with $f^{\prime} \in L^{\infty}$. For a kernel $K(x, y)$ with $\omega_{\delta}(K)<\infty$, we define an operator K^{*} by

$$
K^{*} f(x)=\sup \left\{\left|\int_{\varepsilon<|x-y|<\eta} K(x, y) f(y) d y\right| ; 0<\varepsilon<\eta\right\} \quad\left(f \in L^{2}\right)
$$

The norm $\left\|K^{*}\right\|$ is analogously defined to $\|K\|$. We say that $K(x, y)$ is a $\delta-C Z-$ kernel if it is a $C Z$-kernel with $\omega_{\delta}(K)<\infty$. For $\phi \in S^{\infty}$ and a pseudo-differential operator $\tau(x, D)$, we inductively define operators $[\phi, \tau(\cdot, D)]_{n}(n \geqq 1)$ from S^{∞} to C^{∞} by:

$$
\begin{aligned}
{[\phi, \tau(\cdot, D)]_{1} f(x)=} & \phi(x) \tau(x, D) f(x)-\tau(x, D)(\phi f)(x) \quad\left(f \in S^{\infty}\right), \\
{[\phi, \tau(\cdot, D)]_{n} f(x)=} & \phi(x)[\phi, \tau(\cdot, D)]_{n-1} f(x) \\
& -[\phi, \tau(\cdot, D)]_{n-1}(\phi f)(x) \quad\left(n \geqq 2, f \in S^{\infty}\right) .
\end{aligned}
$$

Here are some known facts necessary for the proof of our theorems.
Lemma 3 (The Calderón-Zygmund decomposition: Journé [6, p. 12]). Let $f \in L^{1}$ and $\lambda>0$. Then there exists a sequence $\left\{J_{k}\right\}_{k=1}^{\infty}$ of mutually disjoint finite intervals such that, with $J=\cup_{k=1}^{\infty} J_{k}$,

$$
|J| \leqq\|f\|_{1}\left|\lambda, m_{J_{k}}\right| f\left|\leqq 2 \lambda(k \geqq 1),|f(x)| \leqq \lambda \text { a.e. in } J^{c} .\right.
$$

Lemma 4 (cf. Journé [6, Chap. 4]). For a kernel $K(x, y),\left\|K^{*}\right\| \leqq$ $C_{\delta}\left\{\|K\|+\omega_{\delta}(K)\right\}$.

The following lemma is a version of David's theorem [6, p. 110]. Since the proof is analogous, we omit the proof.

Lemma 5. Let $B \geqq 0$ and let $L(x, y)$ be a kernel with the following property: To every finite open interval I, there corresponds a pair $\left(E_{I}, L_{I}\right)$ of a Borel set E_{I} in I with $\left|E_{I}\right| \leqq 2|I| / 3$ and a kernel $L_{I}=L_{I}(x, y)$ such that

$$
\left\|L_{I}^{*}\right\| \leqq B, \omega_{\delta}\left(L_{I}\right) \leqq B
$$

and

$$
L_{I}(x, y)=L(x, y) \quad\left(x, y \in I-E_{I}\right)
$$

Then $\left\|L^{*}\right\| \leqq C_{\delta}\left\{B+\omega_{\delta}(L)\right\}$.
Lemma 6 (Coifman-Meyer [2]). Let $\phi \in S^{\infty}$ and let $\tau(x, D)$ be a pseudodifferential operator of order $n \geqq 1$. Then $[\phi, \tau(\cdot, D)]_{n}$ is uniquely extended as a bounded operator from L^{2} to itself and the norm is dominated by $D_{n}(\tau)\left\|\phi^{\prime}\right\|_{\infty}^{n}$, where $D_{n}(\tau)$ is a constant depending only on n and $\mathfrak{C}(\tau)$.

Lemma 7 (Coifman-Meyer [2]). Let $H(x, y)=1 /(x-y)$. Then

$$
\left\|H\left[t^{n}, \phi\right]\right\| \leqq D_{n}\left\|\phi^{\prime}\right\|_{\infty}^{n} \quad\left(n \geqq 0, \phi \in L_{R}^{\prime \infty}\right),
$$

where D_{n} is a constant depending only on n.

3. Proof of Theorem 1

In this section, we prove Theorem 1. We begin by showing some lemmas.
Lemma 8. Let $K(x, y)$ be an η-CZ-kernel $(0<\eta \leqq 1), h(t)$ a function in L^{∞} with $h^{\prime} \in L^{\infty}$ and let $\phi \in I_{-}^{\prime \infty}$. Then $\omega_{\eta}(K[h, \phi]) \leqq C \omega_{\eta}(K)\left\{\|h\|_{\infty}+\left\|h^{\prime}\right\|_{\infty}\left\|\phi^{\prime}\right\|_{\infty}\right\}$. If $0<\eta<1$ and $\phi(x)$ is a real-valued function with $\phi^{\prime} \in B M O$, then the above inequality is valid with $\left\|\phi^{\prime}\right\|_{\infty}$ and C replaced by $\left\|\phi^{\prime}\right\|_{B M O}$ and a constant depending only on η, respectively.

Proof. Since the first assertion is easily shown, we give only the proof of the second assertion. We have $|K[h, \phi](x, y)| \leqq \omega_{\eta}(K)\|h\|_{\infty} /|x-y|(x \neq y)$. Let $\left(x, x^{\prime}, y\right)$ be a triple of real numbers with $0<\left|x-x^{\prime}\right| \leqq|x-y| / 2$. Then

$$
\begin{aligned}
Q= & \left|K[h, \phi](x, y)-K[h, \phi]\left(x^{\prime}, y\right)\right| \\
& \leqq\left|K(x, y)-K\left(x^{\prime}, y\right)\right|\left|h\left\{\frac{\phi(x)-\phi(y)}{x-y}\right\}\right| \\
& +\left|K\left(x^{\prime}, y\right)\right|\left|h\left\{\frac{\phi(x)-\phi(y)}{x-y}\right\}-h\left\{\frac{\phi\left(x^{\prime}\right)-\phi(y)}{x^{\prime}-y}\right\}\right| \\
\leqq & \omega_{\eta}(K)\|h\|_{\infty}\left|x-x^{\prime}\right|^{\eta} /|x-y|^{1+\eta} \\
& +\left\{\omega_{\eta}(K)\left\|h^{\prime}\right\|_{\infty} /\left|x^{\prime}-y\right|\right\}\left|\frac{\phi(x)-\phi(y)}{x-y}-\frac{\phi\left(x^{\prime}\right)-\phi(y)}{x^{\prime}-y}\right| .
\end{aligned}
$$

To estimate $Q^{\prime}=\left|(\phi(x)-\phi(y)) /(x-y)-\left(\phi\left(x^{\prime}\right)-\phi(y)\right) /\left(x^{\prime}-y\right)\right|$, we consider the interval Y with endpoints x, x^{\prime} and put $\tilde{\phi}(s)=\phi(s)-\left(m_{Y} \phi^{\prime}\right) s$. Let v be the smallest integer such that $2^{m}|Y| \geqq 2|x-y|(m \geqq 1)$ and let \tilde{Y} be the interval with midpoint x and of length $2^{v}|Y|$. Then we have $v \leqq C \log \left(|x-y| /\left|x-x^{\prime}\right|\right)$ and $\mid m_{Y} \phi^{\prime}-$ $m_{P} \phi^{\prime} \mid \leqq C v\left\|\phi^{\prime}\right\|_{B M O}$ (cf. [5, p. 142]). Thus

$$
\begin{aligned}
Q^{\prime} & =\left|\frac{\tilde{\phi}(x)-\tilde{\phi}(y)}{x-y}-\frac{\tilde{\phi}\left(x^{\prime}\right)-\tilde{\phi}(y)}{x^{\prime}-y}\right| \\
& =\left|\frac{\left(x^{\prime}-x\right)}{(x-y)\left(x^{\prime}-y\right)}(\tilde{\phi}(x)-\tilde{\phi}(y))+\frac{\tilde{\phi}(x)-\tilde{\phi}\left(x^{\prime}\right)}{x^{\prime}-y}\right| \\
& \leqq C\left|x-x^{\prime}\right| /(x-y)^{2} \cdot \int_{\tilde{Y}}\left|\phi^{\prime}(s)-m_{Y} \phi^{\prime}\right| d s+C /|x-y| \cdot \int_{Y}\left|\phi^{\prime}(s)-m_{Y} \phi^{\prime}\right| d s \\
& \leqq C v\left\|\phi^{\prime}\right\|_{B M O}\left|x-x^{\prime}\right| /|x-y| .
\end{aligned}
$$

Consequently we have, with a constant C_{η}^{\prime} depending only on η,

$$
\begin{aligned}
Q & \leqq \omega_{\eta}(K)\|h\|_{\infty}\left|x-x^{\prime}\right| \eta /|x-y|^{1+\eta}+C \omega_{\eta}(K)\left\|h^{\prime}\right\|_{\infty}\left\|\phi^{\prime}\right\|_{B M O} v\left|x-x^{\prime}\right| /(x-y)^{2} \\
& \leqq C_{\eta}^{\prime} \omega_{\eta}(K)\left\{\|h\|_{\infty}+\left\|h^{\prime}\right\|_{\infty}\left\|\phi^{\prime}\right\|_{B M O}\right\}\left|x-x^{\prime}\right|^{\eta} /|x-y|^{1+\eta} .
\end{aligned}
$$

In the same manner, we have, for any triple $\left(x, y, y^{\prime}\right)$ with $0<\left|y-y^{\prime}\right| \leqq|x-y| / 2$,

$$
\begin{aligned}
& \left|K[h, \phi](x, y)-K[h, \phi]\left(x, y^{\prime}\right)\right| \\
& \quad \leqq C_{\eta}^{\prime} \omega_{\eta}(K)\left\{\|h\|_{\infty}+\left\|h^{\prime}\right\|_{\infty}\left\|\phi^{\prime}\right\|_{B M O}\right\}\left|y-y^{\prime}\right|^{\eta} /|x-y|^{1+\eta} .
\end{aligned}
$$

Hence the required inequality holds.
Q.E.D.

Lemma 9. There exist two constants n_{δ} and M_{δ} depending only on δ such that, for any δ-CZ-kernel $K(x, y)$,

$$
\begin{equation*}
\left\|K\left[t^{n}, \phi\right]^{*}\right\| \leqq\left\{\rho_{K}\left(n_{\delta}\right)+\omega_{\delta}(K)\right\} M_{\delta}^{n}\left\|\phi^{\prime}\right\|_{\infty}^{n} \quad\left(n \geqq n_{\delta}, \phi \in L_{R}^{\prime \infty}\right) . \tag{3}
\end{equation*}
$$

Proof. We choose $n_{\delta} \geqq 1$ and M_{δ} later. Put

$$
\rho_{K}^{*}(n)=\sup \left\{\left\|K\left[t^{j}, \psi\right]^{*}\right\| ; j=0,1, \ldots, n,\left\|\psi^{\prime}\right\|_{\infty} \leqq 1\left(\psi \in L_{R}^{\prime \infty}\right)\right\} \quad(n \geqq 0) .
$$

Then we have

$$
\begin{equation*}
\rho_{\mathrm{K}}^{*}(n)=\sup \left\{\left\|K\left[t^{j}, \psi\right]^{*}\right\| ; j=0,1, \ldots, n,\left\|\psi^{\prime}\right\|_{\infty} \leqq 1 \quad\left(\psi \in S^{\infty}\right)\right\} . \tag{4}
\end{equation*}
$$

To see this, for $\psi \in L_{R}^{\prime \infty}$, we choose a sequence $\left(\psi_{l}\right)_{l=1}^{\infty}$ in S^{∞} so that $\lim _{l \rightarrow \infty} \psi_{l}(x)=$ $\psi(x)(x \in \boldsymbol{R})$ and $\left\|\psi_{i}^{\prime}\right\|_{\infty} \leqq\left\|\psi^{\prime}\right\|_{\infty}(l \geqq 1)$. Then, for any $f \in L^{2}, 0 \leqq j \leqq n$ and $x \in \boldsymbol{R}, K\left[t^{j}, \psi\right]^{*} f(x) \leqq \lim _{\inf _{l \rightarrow \infty}} K\left[t^{j}, \psi_{l}\right]^{*} f(x)$. Hence Fatou's lemma shows that $\left\|K\left[t^{j}, \psi\right]^{*}\right\| \leqq \sup \left\{\left\|K\left[t^{j}, \lambda\right]^{*}\right\| ;\left\|\lambda^{\prime}\right\|_{\infty} \leqq\left\|\psi^{\prime}\right\|_{\infty}\left(\lambda \in S^{\infty}\right)\right\}(0 \leqq j \leqq n)$, which gives that $\rho_{K}^{*}(n)$ is dominated by the quantity in the right-hand side of (4). Since the inverse inequality evidently holds, we have (4).

Now let $n \geqq n_{\delta}$. For a while we assume that $\rho_{K}^{*}(m)<\infty$ for all $m \geqq 0$ and estimate $\rho_{K}^{*}(n)$. To do this, we choose $\psi \in S^{\infty}$ so that $\left\|\psi^{\prime}\right\|_{\infty} \leqq 1$. With $L=$ $K\left[t^{n}, \psi\right]$, we shall associate pairs $\left\{\left(E_{I}, L_{I}\right)\right\}_{I}$ as in Lemma 5. Given a finite open interval $I=(a, b)$, we may assume that $\psi(a) \leqq \psi(b)$; otherwise we deal with $-\psi(x)$. We define $\theta(x)$ by

$$
\theta(x)= \begin{cases}\psi(a) & (x \leqq a) \tag{5}\\ \inf \left\{\lambda(x) ; \lambda \geqq \psi \text { on } 1, \lambda^{\prime} \geqq-v / 2, \lambda \in S^{\infty}\right\} & (a<x \leqq b) \\ \theta(b) & (x>b),\end{cases}
$$

where $v=\left\|\psi^{\prime}\right\|_{\infty}$. Let

$$
\begin{equation*}
E_{I}=\{x \in I ; \theta(x) \neq \psi(x)\} \tag{6}
\end{equation*}
$$

Since $-v / 2 \leqq \theta^{\prime}(x) \leqq v$ everywhere and $E_{I} \subset\left\{x \in I ; \theta^{\prime}(x)=-v / 2\right\}$, we have

$$
\begin{aligned}
0 & \leqq \theta(b)-\theta(a)=\int_{I} \theta^{\prime}(x) d x=\int_{E_{I}}+\int_{I-E_{I}} \\
& \leqq-v\left|E_{I}\right| / 2+v\left|I-E_{I}\right|=v\left(|I|-3\left|E_{I}\right| / 2\right)
\end{aligned}
$$

and hence $\left|E_{I}\right| \leqq 2|I| / 3$. We put $L_{I}=K\left[t^{n}, \theta\right]$. Using Lemma 8 with $h(t)=$ $\{(\operatorname{sign} t) \min (|t|, 1)\}^{n}$, we have $\omega_{\delta}\left(L_{I}\right)=\omega_{\delta}(K[h, \theta]) \leqq C n \omega_{\delta}(K)$. To estimate $\left\|L_{I}^{*}\right\|$, we put

$$
\begin{equation*}
\tilde{\theta}(x)=\theta(x)-\sigma v(x-a) \quad(\sigma=1 / 4) . \tag{7}
\end{equation*}
$$

Then $\left\|\tilde{\theta}^{\prime}\right\|_{\infty} \leqq 1-\sigma$ and

$$
L_{I}=\sum_{j=0}^{n}\binom{n}{j}(\sigma v)^{n-j}(1-\sigma)^{j} K\left[t^{j}, \tilde{\theta} /(1-\sigma)\right] .
$$

Hence we have

$$
\begin{aligned}
\left\|L_{I}^{*}\right\| & \leqq \sum_{j=0}^{n}\binom{n}{j}(\sigma v)^{n-j}(1-\sigma)^{j}\left\|K\left[t^{j}, \tilde{\theta} /(1-\sigma)\right]^{*}\right\| \\
& \leqq \sum_{j=0}^{n}\binom{n}{j} \sigma^{n-j}(1-\sigma)^{j} \rho_{K}^{*}(j) \leqq(1-\sigma)^{n} \rho_{K}^{*}(n)+\rho_{K}^{*}(n-1) .
\end{aligned}
$$

Thus the pair $\left(E_{I}, L_{I}\right)$ satisfies the conditions in Lemma 5 with $B=(1-\sigma)^{n} \rho_{K}^{*}(n)+$ $\rho_{\mathrm{R}}^{*}(n-1)+C n \omega_{\delta}(K) . \quad$ By Lemma 5 , we have, with a constant M_{δ}^{*},
(8) $\left\|K\left[t^{n}, \psi\right]^{*}\right\| \leqq C_{\delta}\left\{B+\omega_{\delta}(L)\right\} \leqq M_{\delta}^{*}\left\{(1-\sigma)^{n} \rho_{K}^{*}(n)+\rho_{K}^{*}(n-1)+n \omega_{\delta}(K)\right\}$.

Since $\psi \in S^{\infty}$ is arbitrary as long as $\left\|\psi^{\prime}\right\|_{\infty} \leqq 1$, (4) shows that $\rho_{\mathrm{K}}^{*}(n)$ is dominated by the last quantity in (8). Now we choose $n_{\delta} \geqq 1$ so that $M_{\delta}^{*}(1-\sigma)^{n_{\delta}} \leqq 1 / 2$. Then we have
(9) $\rho_{K}^{*}(n) \leqq\left(2 M_{\delta}^{*}\right)\left\{\rho_{K}^{*}(n-1)+n \omega_{\delta}(K)\right\} \leqq \cdots$

$$
\begin{aligned}
& \leqq\left(2 M_{\delta}^{*}\right)^{n-n_{\delta}} \rho_{K}^{*}\left(n_{\delta}\right)+\left\{\left(2 M_{\delta}^{*}\right) n+\left(2 M_{\delta}^{*}\right)^{2}(n-1)+\cdots+\left(2 M_{\delta}^{*}\right)^{n-n_{\delta}} n_{\delta}\right\} \omega_{\delta}(K) \\
& \leqq\left\{\rho_{K}^{*}\left(n_{\delta}\right)+\omega_{\delta}(K)\right\} C_{\delta}^{n} .
\end{aligned}
$$

To remove the assumption that $\rho_{K}^{*}(m)<\infty$ for all $m \geqq 0$, we consider $K_{\varepsilon}(x, y)=$ $K(x, y) \mu_{\varepsilon}(x-y)(0<\varepsilon \leqq 1 / 2)$, where $\mu_{\varepsilon}(s)$ is the even function on \boldsymbol{R} defined by

$$
\mu_{\varepsilon}(s)= \begin{cases}0 & (0 \leqq s \leqq \varepsilon) \\ (1 / \varepsilon)(s-\varepsilon) & (\varepsilon<s \leqq 2 \varepsilon) \\ 1 & (2 \varepsilon<s \leqq 1 / \varepsilon) \\ \varepsilon(2 / \varepsilon-s) & (1 / \varepsilon<s \leqq 2 / \varepsilon) \\ 0 & (s>2 / \varepsilon)\end{cases}
$$

Then elementary calculus yields that $\omega_{\delta}\left(K_{\varepsilon}\right) \leqq C \omega_{\delta}(K), \rho_{R_{\varepsilon}}^{*}(m)<\infty \quad(0<\varepsilon \leqq 1 / 2$, $m \geqq 0)$. We put $\tilde{\rho}(l)=\sup _{0<\varepsilon \leqq 1 / 2} \rho_{K_{\varepsilon}}^{*}(l)(l \geqq 0)$ and show that

$$
\begin{equation*}
\rho_{\mathbf{K}}^{*}(l) \leqq \tilde{\rho}(l) \leqq \rho_{\mathbf{K}}^{*}(l)+C \omega_{\delta}(K) \tag{10}
\end{equation*}
$$

We have, for any $f \in L^{2}, \psi \in L_{R}^{\prime \infty}, 0 \leqq j \leqq l$ and $x \in \boldsymbol{R}, K\left[t^{j}, \psi\right]^{*} f(x) \leqq$ $\lim \inf _{\varepsilon \rightarrow 0} K_{\varepsilon}\left[t^{j}, \psi\right]^{*} f(x)$. Hence Fatou's lemma shows that $\left\|K\left[t^{j}, \psi\right]^{*} f\right\| \leqq$ $\sup _{0<\varepsilon \leqq 1 / 2}\left\|K_{\varepsilon}\left[t^{j}, \psi\right]^{*} f\right\|$, which gives the first inequality in (10). For any $0<\varepsilon \leqq 1 / 2,0<\eta^{\prime}<\eta^{\prime \prime}$, we have

$$
\begin{aligned}
& \left|\int_{\eta^{\prime}<|x-y|<\eta^{\prime \prime}} K_{\varepsilon}\left[t^{j}, \psi\right](x, y) f(y) d y\right| \\
& \quad \leqq\left|\int_{\eta^{\prime}<|x-y|<\eta^{\prime \prime}, \varepsilon<|x-y|<2 \varepsilon}\right|+\left|\int_{\eta^{\prime}<|x-y|<\eta^{\prime \prime}, 2 \varepsilon<|x-y|<1 / \varepsilon}\right| \\
& \quad+\left|\int_{\eta^{\prime}<|x-y|<\eta^{\prime \prime}, 1 / \varepsilon<|x-y|<2 / \varepsilon}\right| \quad\left(=R_{1}+R_{2}+R_{3}, \text { say }\right) .
\end{aligned}
$$

We have

$$
\begin{aligned}
R_{1} & \leqq \int_{\varepsilon<|x-y|<2 \varepsilon}\left|K_{\varepsilon}\left[t^{j}, \psi\right](x, y) f(y)\right| d y \\
& \leqq \omega_{\delta}\left(K_{\varepsilon}\right)\left\|\psi^{\prime}\right\|_{\infty}^{j} \int_{\varepsilon<|x-y|<2 \varepsilon}|f(y)| /|x-y| d y \leqq C \omega_{\delta}(K)\left\|\psi^{\prime}\right\|_{\infty}^{j} \mathfrak{M} f(x),
\end{aligned}
$$

where $\mathfrak{M} f(x)$ denotes the maximal function of $f(x)$ [6, p.7]. We have analogously $R_{3} \leqq C \omega_{\delta}(K)\left\|\psi^{\prime}\right\|_{\infty}^{j} \mathfrak{M} f(x)$. We can write $R_{2}=\mid \int_{\tilde{\eta}^{\prime}<|x-y|<\tilde{\eta}^{\prime \prime}} K\left[t^{j}, \psi\right]$. $(x, y) f(y) d y \mid$ with some pair ($\left.\tilde{\eta}^{\prime}, \tilde{\eta}^{\prime \prime}\right)$, and hence $R_{2} \leqq K\left[t^{j}, \psi\right]^{*} f(x)$. Thus $K_{\varepsilon}\left[t^{j}, \psi\right]^{*} f(x) \leqq K\left[t^{j}, \psi\right]^{*} f(x)+C \omega_{\delta}(K)\left\|\psi^{\prime}\right\|_{\infty}^{j} \mathfrak{M} f(x)$, which shows $\left\|K_{\varepsilon}\left[t^{j}, \psi\right]^{*}\right\|$ $\leqq\left\|K\left[t^{j}, \psi\right]^{*}\right\|+C \omega_{\delta}(K)\left\|\psi^{\prime}\right\|_{\infty}^{j}$ (cf. [6, p. 7]). This inequality yields the second inequality in (10). Consequently (10) holds.

Since $\rho_{\boldsymbol{K}_{\varepsilon}}^{*}(m)<\infty$ for all $m \geqq 0$, (9) is valid with $K(x, y)$ replaced by $K_{\varepsilon}(x, y)$. Since $0<\varepsilon \leqq 1 / 2$ is arbitrary, we have, by (10) and $\omega_{\delta}\left(K_{\varepsilon}\right) \leqq C \omega_{\delta}(K)$,

$$
\rho_{\tilde{K}}^{*}(n) \leqq \tilde{\rho}(n) \leqq\left\{\tilde{\rho}\left(n_{\delta}\right)+C \omega_{\delta}(K)\right\} C_{\delta}^{n} \leqq\left\{\rho_{\kappa}^{*}\left(n_{\delta}\right)+C \omega_{\delta}(K)\right\} C_{\delta}^{n} .
$$

By Lemmas 4 and 8 , we have $\rho_{K}^{*}\left(n_{\delta}\right) \leqq C_{\delta}\left\{\rho_{K}\left(n_{\delta}\right)+n_{\delta} \omega_{\delta}(K)\right\}$. Hence we have, with a constant M_{δ} depending only on $\delta, \rho_{K}^{*}(n) \leqq\left\{\rho_{K}\left(n_{\delta}\right)+\omega_{\delta}(K)\right\} M_{\delta}^{n}\left(n \geqq n_{\delta}\right)$. Since $\left\|K\left[t^{n}, \phi\right]^{*}\right\|=\left\|K\left[t^{n}, \phi /\left\|\phi^{\prime}\right\|_{\infty}\right]^{*}\right\|\left\|\phi^{\prime}\right\|_{\infty}^{n}$, we have (3).
Q.E.D.

Lemma 10. There exists a constant $N_{\delta} \geqq 1$ depending only on δ such that, for any CZ-kernel $K(x, y)$,

$$
\left\|K\left[e^{i t}, \phi\right]^{*}\right\| \leqq C_{\delta}\left\{\rho_{K}\left(n_{\delta}\right)+\omega_{\delta}(K)\right\}\left(1+\left\|\phi^{\prime}\right\|_{\infty_{\infty}}^{N_{\delta}}\right\} \quad\left(\phi \in L_{R}^{\prime \infty}\right),
$$

where n_{δ} is the constant in Lemma 9.

Proof. We put

$$
\kappa(\alpha)=\sup \left\{\left\|K\left[e^{i t}, \psi\right]^{*}\right\| ;\left\|\psi^{\prime}\right\|_{\infty} \leqq \alpha\left(\psi \in L_{R}^{\prime \infty}\right)\right\} \quad(\alpha \geqq 1) .
$$

Then, in the same manner as in the proof of (4), we have $\kappa(\alpha)=\sup \left\{\left\|K\left[e^{i t}, \psi\right]^{*}\right\|\right.$;
$\left.\left\|\psi^{\prime}\right\|_{\infty} \leqq \alpha\left(\psi \in S^{\infty}\right)\right\}$. Lemma 9 shows that $\kappa(\alpha)<\infty$ for all $\alpha \geqq 1$ and $\kappa(1) \leqq$ $C_{\delta}\left\{\rho_{K}\left(n_{\delta}\right)+\omega_{\delta}(K)\right\}$. To estimate $\kappa(\alpha)(\alpha>1)$, we choose $\psi \in S^{\infty}$ so that $\left\|\psi^{\prime}\right\|_{\infty} \leqq \alpha$. With $L=K\left[e^{i t}, \psi\right]$, we shall associate pairs $\left\{\left(E_{I}, L_{I}\right)\right\}_{I}$ as in Lemma 5. Given $I=(a, b)$, we may assume that $\psi(a) \leqq \psi(b)$. We define $\theta(x), E_{I}$ and $\tilde{\theta}(x)$ by (5), (6) and (7), respectively and put $L_{I}=K\left[e^{i t}, \theta\right]$. Then $\left\|\tilde{\theta}^{\prime}\right\|_{\infty} \leqq(1-\sigma) \alpha$ and $\left\|L_{I}^{*}\right\|=\left\|K\left[e^{i t}, \overparen{\theta}\right]^{*}\right\| \leqq \kappa((1-\sigma) \alpha)$. Lemma 8 gives $\omega_{\delta}\left(L_{I}\right) \leqq C \alpha \omega_{\delta}(K)$. Thus the pair $\left(E_{I}, L_{I}\right)$ satisfies the conditions in Lemma 5 with $B=\kappa((1-\sigma) \alpha)+C \alpha \omega_{\delta}(K)$. By Lemma 5, we have

$$
\begin{equation*}
\left\|K\left[e^{i t}, \psi\right]^{*}\right\| \leqq C_{\delta}\left\{B+\omega_{\delta}\left(K\left[e^{i t}, \psi\right]\right)\right\} \leqq C_{\delta}\left\{\kappa((1-\sigma) \alpha)+\alpha \omega_{\delta}(K)\right\} \tag{11}
\end{equation*}
$$

Since $\psi \in S^{\infty}$ is arbitrary as long as $\left\|\psi^{\prime}\right\|_{\infty} \leqq \alpha, \kappa(\alpha)$ is dominated by the last quantity in (11). Consequently, we have, with a constant $N_{\delta} \geqq 1$,

$$
\kappa(\alpha) \leqq \alpha^{N_{\delta}}\left\{\kappa(1)+\omega_{\delta}(K)\right\} \leqq C_{\delta}\left\{\rho_{K}\left(n_{\delta}\right)+\omega_{\delta}(K)\right\}\left\{1+\alpha^{N_{\delta}}\right\} \quad(\alpha \geqq 1) . \quad \text { Q. E. D. }
$$

Lemma 11. Let $K(x, y)$ be a δ-CZ-kernel such that $\rho_{K}\left(n_{\delta}\right)<\infty$. Then $K\left[e^{i t}, \phi\right]$ is also a δ-CZ-kernel as long as $\phi \in L_{R}^{\prime \infty}$.

Proof. By Lemma 8, we have $\omega_{\delta}\left(K\left[e^{i t}, \phi\right]\right) \leqq C \omega_{\delta}(K)\left\{1+\left\|\phi^{\prime}\right\|_{\infty}\right\}$. Lemma 10 shows that $\left\|K\left[e^{i t}, \phi\right]^{*}\right\|<\infty$. Hence it is sufficient to show that $K\left[e^{i t}, \phi\right] f(x)$ exists a.e. for any $f \in L^{2}$.

Let $f \in L^{2}$ and $\psi \in S^{\infty}$. Then

$$
\begin{aligned}
& \int_{|x-y|>\varepsilon} K[t, \psi](x, y) f(y) d y=\int_{\varepsilon<|x-y|<1} K(x, y)\left\{\psi^{\prime}(y)+O(x-y)\right\} f(y) d y \\
& \quad+\int_{|x-y|>1} K[t, \psi](x, y) f(y) d y \quad(0<\varepsilon<1)
\end{aligned}
$$

Since $K(x, y)$ is a CZ-kernel, this shows that $K[t, \psi] f(x)$ exists a.e. . Note that

$$
\begin{align*}
&\left|x ; K[t, \psi]^{*} g(x)>\lambda\right| \leqq C_{\delta}\left(\rho_{K}(1)+\omega_{\delta}(K)\right)\left\{\left\|\psi^{\prime}\right\|_{1}\|g\|_{1} / \lambda\right\}^{1 / 2} \tag{12}\\
&\left(\lambda>0 ; \quad \psi^{\prime}, g \in L^{1}\right) .
\end{align*}
$$

(See for example [7, Lemma 11].) Using this inequality, we show that $K[t, \phi] f(x)$ exists a.e. in a finite open interval I. Let I^{*} be an interval with the same midpoint as I and of length $3|I|$. We denote by $\chi(x), \chi^{*}(x)$ the characteristic functions of I, I^{*}, respectively. Since $K[t, \phi]\{(1-\chi) f\}(x)$ exists everywhere in I, we show that $K[t, \phi](\chi f)(x)$ exists a.e. in I. Note that, for $x \in I, K[t, \phi]$. $(\chi f)(x)$ exists if and only if $K\left[t, \chi^{*} \phi\right](\chi f)(x)$ exists. Choose a sequence $\left(\psi_{n}\right)_{n=1}^{\infty}$ in S^{∞} so that $\lim _{n \rightarrow \infty}\left\|\chi^{*} \phi-\psi_{n}\right\|_{1}=0$. Then we have $\left\{x \in I ; K\left[t, \chi^{*} \phi\right](\chi f)(x)\right.$ does not exist $\} \subset\left\{x \in I ; \lim _{\inf _{n \rightarrow \infty}} K\left[t, \chi^{*} \phi-\psi_{n}\right]^{*} f(x)>0\right\}$. Inequality (12) shows that the measure of the second set equals zero, and hence $K[t, \phi](\chi f)(x)$ exists a.e. in I. Thus $K[t, \phi] f(x)$ exists a.e. in I. Since I is arbitrary, $K[t, \phi] f(x)$ exists a.e..

Lemma 9 shows that, for any finite interval I,

$$
\begin{aligned}
& \int_{I}\left\{\sum_{n=0}^{\infty}(1 / n!) K\left[t^{n}, \phi\right]^{*} f(x)\right\} d x \leqq \sum_{n=0}^{\infty}(1 / n!) \sqrt{I I \mid}\left\|K\left[t^{n}, \phi\right]^{*} f\right\|_{2} \\
& \quad \leqq \sqrt{|I| \mid f\left\|_{2} \sum_{n=0}^{\infty}(1 / n!)\right\| K\left[t^{n}, \phi\right]^{*} \|<\infty} .
\end{aligned}
$$

and hence $\sum_{n=0}^{\infty}(1 / n!) K\left[t^{n}, \phi\right]^{*} f(x)<\infty$ a.e. in I. Thus the Lebesgue dominated convergence theorem shows that $K\left[e^{i t}, \phi\right] f(x)=\sum_{n=0}^{\infty}\left(i^{n} / n!\right) K\left[t^{n}, \phi\right] f(x)$ exists a.e. in I. Since I is arbitrary, $K\left[e^{i t}, \phi\right] f(x)$ exists a.e..
Q.E.D.

Now we give the proof of Theorem 1. Since $\omega_{11}(K)$ is increasing with respect to η, we may assume that $\delta<1$. By Lemma 8 , we have

$$
\omega_{\delta}(K[h, \phi]) \leqq C_{\delta} \omega_{\delta}(K)\left\{\|h\|_{\infty}+\left\|h^{\prime}\right\|_{\infty}\left\|\phi^{\prime}\right\|_{B M O}\right\}
$$

To estimate $\left\|K[h, \phi]^{*}\right\|$, we discuss $\left\|K\left[e^{i t}, \phi\right]^{*}\right\|$. With $L=K\left[e^{i t}, \phi\right]$, we associate pairs $\left\{\left(E_{I}, L_{I}\right)\right\}_{I}$ as in Lemma 5. Given a finite open interval I, we use the preceding notation $I^{*}, \chi^{*}(x)$. Since $K\left[e^{i t}, \phi\right]=e^{i u} K\left[e^{i t}, \phi\right]\left(u=m_{I^{*}} \phi^{\prime}, \phi(x)=\right.$ $\phi(x)-u x)$, we may assume that $m_{I^{*}} \phi^{\prime}=0$. We put $\phi_{*}(x)=\phi^{\prime}(x) \chi^{*}(x)$. Then $\left\|\phi_{*}\right\|_{1} \leqq C\left\|\phi^{\prime}\right\|_{B M O}|I|$. By Lemma $3\left(\lambda=C\left\|\phi^{\prime}\right\|_{B M O}\right)$, there exists a sequence $\left\{J_{k}\right\}_{k=1}^{\infty}$ of mutually disjoint finite intervals such that, with $J=\cup_{k=1}^{\infty} J_{k}$,

$$
\left\{\begin{array}{l}
|J| \leqq|I| / 10, \quad m_{J_{k}}\left|\phi_{*}\right| \leqq C\left\|\phi^{\prime}\right\|_{B M O}^{\prime} \quad(k \geqq 1) \\
\left|\phi_{*}(x)\right| \leqq C\left\|\phi^{\prime}\right\|_{B M O} \quad \text { a.e. in } \quad J^{c} .
\end{array}\right.
$$

We define $\theta_{*}(x)$ and $\theta(x)$ by

$$
\left\{\begin{array}{l}
\theta_{*}(x)=m_{J_{k}} \phi_{*}\left(x \in J_{k}, k \geqq 1\right), \quad \theta_{*}(x)=\phi_{*}(x) \quad\left(x \in J^{c}\right) \tag{13}\\
\theta(x)=\phi(d)+\int_{d}^{x} \theta_{*}(s) d s \quad(d: \text { a point in } I \backslash J) .
\end{array}\right.
$$

Then $\left\|\theta^{\prime}\right\|_{\omega_{\delta}}=\left\|\theta_{*}\right\|_{\infty} \leqq C\left\|\phi^{\prime}\right\|_{B M O}$. We put $E_{I}=I \cap J$ and $L_{I}=K\left[e^{i t}, \theta\right]$. Then $\omega_{\delta}\left(L_{I}\right) \leqq C \omega_{\delta}(K)\left\{1+\left\|\phi^{\prime}\right\|_{B M O}\right\}$. Lemma 10 shows that $\left\|L_{I}^{*}\right\| \leqq C_{\delta}\left\{\rho_{K}\left(n_{\delta}\right)+\omega_{\delta}(K)\right\}$ $\cdot\left\{1+\left\|\phi^{\prime}\right\|_{B M O}^{N_{j}}\right\}$. Thus the pair $\left(E_{I}, L_{I}\right)$ satisfies the conditions in Lemma 5 with $B=C_{\delta}\left\{\rho_{K}\left(n_{\delta}\right)+\omega_{\delta}(K)\right\}\left\{1+\left\|\phi^{\prime}\right\|_{\boldsymbol{B}}^{N_{\mathcal{M}}}\right\}$. We have

$$
\left\|K\left[e^{i t}, \phi\right]^{*}\right\| \leqq C_{\delta}\left\{B+\omega_{\delta}\left(K\left[e^{i t}, \phi\right]\right)\right\} \leqq C_{\delta}\left\{\rho_{K}\left(n_{\delta}\right)+\omega_{\delta}(K)\right\}\left\{1+\left\|\phi^{\prime}\right\|_{B M O}^{N_{\delta}}\right\} .
$$

Since $K[h, \phi]=C \int_{-\infty}^{\infty} \hat{h}(\xi) K\left[e^{i t}, \xi \phi\right] d \xi$, we have

$$
\begin{align*}
\left\|K[h, \phi]^{*}\right\| & \leqq C \int_{-\infty}^{\infty}|\hat{h}(\xi)|\left\|K\left[e^{i t}, \zeta \phi\right]^{*}\right\| d \xi \tag{14}\\
& \leqq C_{\delta}\left\{\rho_{K}\left(n_{\delta}\right)+\omega_{\delta}(K)\right\} \int_{-\infty}^{\infty}|\hat{h}(\xi)|\left\{1+\left(|\xi|\left\|\phi^{\prime}\right\|_{B M O}\right)^{N_{\delta}}\right\} d \xi<\infty
\end{align*}
$$

It remains to show that $K[h, \phi] f(x)$ exists a.e. for any $f \in L^{2}$. Given $f \in S^{\infty}$, we begin by discussing $K\left[e^{i t}, \phi\right] f$. For a finite open interval I, we use the preceding notation $I^{*}, \chi(x)$ and $\chi^{*}(x)$. We show that $K\left[e^{i t}, \phi\right] f(x)$ exists a.e. in I. To do this, it is sufficient to show that $K\left[e^{i t}, \phi\right](\chi f)(x)$ exists a.e. in I. We may assume that $m_{I^{*}} \phi^{\prime}=0$. Let $0<\eta<1 / 10$. For any $\varepsilon(0<\varepsilon<\eta)$, there exists a sequence $\left\{J_{k}\right\}_{k=1}^{\infty}$ of mutually disjoint finite intervals such that, with $\phi_{*}=\phi^{\prime} \chi^{*}$ and $J^{\varepsilon}=$ $\cup_{k=1}^{\infty} J_{k}$,

$$
\left\{\begin{array}{l}
\left|J^{\varepsilon}\right| \leqq \varepsilon|I|, m_{J_{k}}\left|\phi_{*}\right| \leqq(C / \varepsilon)\left\|\phi^{\prime}\right\|_{B M O} \quad(k \leqq 1) \\
\left|\phi_{*}(x)\right| \leqq(C / \varepsilon)\left\|\phi^{\prime}\right\|_{B M O} \text { a.e. in } J^{s c} .
\end{array}\right.
$$

We define $\theta_{*}^{e}(x)$ and $\theta^{\varepsilon}(x)$ in the same manner as in (13). Then $\theta^{\varepsilon} \in L_{R}^{\prime \infty}$. Let $J^{* \varepsilon}=\cup_{k=1}^{\infty} J_{k}^{*}$, where J_{k}^{*} is an interval with the same midpoint as J_{k} and of length $2\left|J_{k}\right|$. Then, for any $x \in I \backslash J^{* \varepsilon}$,

$$
\begin{aligned}
M^{\varepsilon}(x) & =\int_{-\infty}^{\infty}\left|K\left[e^{i t}, \phi\right](x, y)-K\left[e^{i t}, \theta^{\varepsilon}\right](x, y)\right||(\chi f)(y)| d y \\
& \leqq \omega_{\delta}(K) \int_{-\infty}^{\infty}\left|\phi(y)-\theta^{\varepsilon}(y)\right| /(x-y)^{2} \cdot|(\chi f)(y)| d y \\
& =\omega_{\delta}(K) \sum_{k=1}^{\infty} \int_{J_{k}}\left|\phi(y)-\theta^{\varepsilon}(y)\right| /(x-y)^{2} \cdot|(\chi f)(y)| d y \\
& \leqq \omega_{\delta}(K)\|f\|_{\infty} \sum_{k=1}^{\infty} \int_{J_{k} \cap I}\left\{\int_{J_{k}}\left|\phi^{\prime}(s)-m_{J_{k}} \phi^{\prime}\right| d s\right\} /(x-y)^{2} d y \\
& \leqq \omega_{\delta}(K)\|f\|_{\infty}\left\|\phi^{\prime}\right\|_{B M O} \sum_{k=1}^{\infty}\left|J_{k}\right| \int_{J_{k}} 1 /(x-y)^{2} d y,
\end{aligned}
$$

and hence

$$
\begin{aligned}
& \int_{I \backslash J^{*}+} M^{\varepsilon}(x) d x \\
& \quad \leqq \omega_{\delta}(K)\|f\|_{\infty}\left\|\phi^{\prime}\right\|_{B M O} \sum_{k=1}^{\infty}\left|J_{k}\right| \int_{J_{k}^{* c}} d x \int_{J_{k}} 1 /(x-y)^{2} d y \\
& \quad \leqq 2 \omega_{\delta}(K)\|f\|_{\infty}\left\|\phi^{\prime}\right\|_{B M O} \sum_{k=1}^{\infty} \int_{J_{k}} d y \leqq 2 \varepsilon|I| \omega_{\delta}(K)\|f\|_{\infty}\left\|\phi^{\prime}\right\|_{B M O} .
\end{aligned}
$$

We have, with $I^{\varepsilon}=\left\{x \in I \backslash J^{* \varepsilon} ; M^{\varepsilon}(x) \leqq \sqrt{\varepsilon}\right\}$,

$$
\begin{aligned}
\left|I^{\varepsilon}\right| & \geqq|I|-2 \sqrt{\varepsilon}|I| \omega_{\delta}(K)\|f\|_{\infty}\left\|\phi^{\prime}\right\|_{B M O}-\left|J^{* \varepsilon}\right| \\
& \geqq|I|\left\{1-2 \sqrt{\varepsilon} \omega_{\delta}(K)\|f\|_{\infty}\left\|\phi^{\prime}\right\|_{B M O}-2 \varepsilon\right\} .
\end{aligned}
$$

Since $K\left[e^{i t}, \theta^{\varepsilon}\right](\chi f)(x)$ exists a.e. in I for any $0<\varepsilon<\eta, K\left[e^{i t}, \phi\right](\chi f)(x)$ exists a.e. in $I_{\eta}=\cap_{j=1}^{\infty} I^{\varepsilon_{j}}$, where $\varepsilon_{j}=2^{-j} \eta$. Since $\lim _{\eta \rightarrow 0}\left|I_{\eta}\right|=|I|, K\left[e^{i t}, \phi\right](\chi f)(x)$ exists a.e. in I. Consequently, $K\left[e^{i t}, \phi\right] f(x)$ exists a.e. . Since $f \in S^{\infty}$ is arbi-
trary, $K\left[e^{i t}, \phi\right] f(x)$ exists a.e. for any $f \in L^{2}$.
Let $f \in L^{2}$. By (14), we have, for any finite interval I,
$\int_{I}\left\{\int_{-\infty}^{\infty}|\hat{h}(\xi)| K\left[e^{i t}, \xi \phi\right]^{*} f(x) d \xi\right\} d x \leqq \sqrt{|I|}\|f\|_{2} \int_{-\infty}^{\infty}|\hat{h}(\xi)|\left\|K\left[e^{i t}, \xi \phi\right]^{*}\right\| d \xi<\infty$, and hence $\int_{-\infty}^{\infty}|\hat{h}(\xi)| K\left[e^{i t}, \xi \phi\right]^{*} f(x) d \xi<\infty$ a.e.. This yields that $K[h, \phi] f(x)$ exists a.e..

4. Proof of Theorem 2

Let $K(x, y)$ be a $C Z$-kernel defined by a pseudo-differential operator $\sigma(x, D)$ of order 0 . Then $K(x, y)$ is a $1-C Z$-kernel [3, p. 87]. By Theorem 1, it is sufficient to show that $\rho_{K}\left(n_{1}\right)<\infty$. We shall deduce this fact from Lemmas 6 and 7. We write simply $\mathfrak{C}(\sigma)=\mathbb{C}_{0}=\left\{C_{0}(p, q)\right\}_{(p, q)}$.

Let $\beta(s)$ be a non-negative even function in S^{∞} such that

$$
\|\beta\|_{\infty} \leqq 4, \quad\|\beta\|_{1}=2, \quad \operatorname{supp}(\beta) \subset\{1 / 2 \leqq|s| \leqq 1\}
$$

where supp (β) denotes the support of $\beta(s)$. We put $\beta_{m}(s)=(1 / m) \beta(s / m), \beta_{m, n}(s)=$ $|s|^{n+1} \beta_{m}(s)(m \geqq 1, n \geqq 0)$. We easily see that

$$
\left\|\beta_{m, n}^{(n+1)}\right\|_{1} \leqq \Lambda_{n}, \quad\left|\beta_{m, n}^{(q)}(s)\right| \leqq \Gamma_{n, q}(1+|s|)^{n-q} \quad(n, q \geqq 0)
$$

where $\quad \Lambda_{n}=2^{n+1}(n+1)!\max \left\{\left\|\beta^{(j)}\right\|_{1} ; \quad 0 \leqq j \leqq n+1\right\} \quad$ and $\quad \Gamma_{n, q}=2^{q}(n+1)!\times$ $\max \left\{\left\|\beta^{(j)}\right\|_{\infty} ; 0 \leqq j \leqq q\right\}$.

Lemma 12. Suppose that $\sigma(x, \xi)$ satisfies $\sigma(x, \xi)=0(|\xi| \geqq m)$ for some positive integer m. We inductively define two sequences $\left(\sigma_{n}^{\iota}(x, \xi)\right)_{n=1}^{\infty}(\iota= \pm)$ of symbols by

$$
\sigma_{n}^{\iota}(x, \xi)=\int_{0}^{\xi} \sigma_{n-1}^{\iota}(x, s) d s-b_{n-1}^{\iota}(x) \int_{0}^{\xi} \beta_{m, n-1}(s) d s \quad\left(\iota= \pm, n \geqq 1, \sigma_{0}^{\iota}=\sigma\right),
$$

where

$$
b_{n-1}^{\iota}(x)=\left\{\int_{0}^{\infty \infty} \sigma_{n-1}^{\iota}(x, s) d s\right\} /\left\{\int_{0}^{\infty} \beta_{m, n-1}(s) d s\right\}
$$

Then $\sigma_{n}^{\iota}(x, \xi)$ is a symbol of order n with $\mathfrak{C}\left(\sigma_{n}^{\iota}\right) \leqq \mathbb{C}_{n}=\left\{C_{n}(p, q)\right\}_{(p, q)}$ and $\sigma_{n}^{\iota}(x, \xi)=$ $0(\iota \xi \geqq m)$ for any $\iota= \pm, n \geqq 1$, where $C_{n}(p, q)$ depends only on $n, \Gamma_{n-1, q}$ and and $C_{0}(j, k)(0 \leqq j \leqq p, 0 \leqq k \leqq q)$.

Proof. The symbol $\sigma_{0}^{+}=\sigma$ is of order 0 and satisfies $\mathfrak{C}\left(\sigma_{0}^{+}\right)=\mathfrak{C}_{0}$ and $\sigma_{0}^{+}(x, \xi)=0(\xi \geqq m)$. Suppose that $\sigma_{n-1}^{+}(x, \xi)$ satisfies the required conditions. Then we have, for any pair (p, q) with $q \geqq 1$,

$$
\begin{aligned}
& \left|\partial_{x}^{p} \partial_{\xi}^{q} \sigma_{n}^{+}(x, \xi)\right| \leqq\left|\partial_{x}^{\partial} \partial_{\xi}^{q-1} \sigma_{n-1}^{+}(x, \xi)\right|+\left|D^{p} b_{n-1}^{+}(x) D^{q-1} \beta_{m, n-1}(\xi)\right| \\
& \leqq \leqq \\
& \quad C_{n-1}(p, q-1)(1+|\xi|)^{n-1-(q-1)} \\
& \quad+\left\{\int_{0}^{m} C_{n-1}(p, 0)(1+s)^{n-1} d s \mid \int_{m / 2}^{\infty} \beta_{m, n-1}(s) d s\right\}\left|D^{q-1} \beta_{m, n-1}(\xi)\right| \\
& \leqq
\end{aligned} C_{n-1}(p, q-1)(1+|\xi|)^{n-q}+4^{n} C_{n-1}(p, 0) \Gamma_{n-1, q-1}(1+|\xi|)^{n-1-(q-1)},
$$

and hence

$$
\begin{equation*}
\left|\partial_{x}^{p} \partial_{\xi}^{q} \sigma_{n}^{+}(x, \xi)\right| \leqq C_{n}(p, q)(1+|\xi|)^{n-q} \quad(x, \xi \in \boldsymbol{R}), \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{n}(p, q)=C_{n-1}(p, \tilde{q})+4^{n} C_{n-1}(p, 0) \Gamma_{n-1, \tilde{q}} \quad(\tilde{q}=\max \{q-1,0\}) . \tag{16}
\end{equation*}
$$

Here note that (15) is valid for any pair $(p, 0)$ with $C_{n}(p, 0)$ defined by (16). Thus σ_{n}^{+}is of order n and satisfies $\mathbb{C}\left(\sigma_{n}^{+}\right) \leqq \mathbb{C}_{n}=\left\{C_{n}(p, q)\right\}_{(p, q)}$, where each $C_{n}(p, q)$ is inductively defined by (16). Since $\sigma_{n-1}^{+}(x, \xi)=\beta_{m, n-1}(\xi)=0 \quad(\xi \geqq m)$, we have $\sigma_{n}^{+}(x, \xi)=0(\xi \geqq m)$. Thus σ_{n}^{+}satisfies the required conditions. In the same manner, we see that σ_{n}^{-}satisfies the required conditions with \mathbb{C}_{n} defined by (16).
Q.E.D.

Lemma 13. Suppose that $\sigma(x, \xi)$ satisfies $\sigma(x, \xi)=0(|\xi| \geqq m)$ for some $m \geqq 1$. Then

$$
\begin{equation*}
\left\|K\left[t^{n}, \phi\right]\right\| \leqq \hat{D}_{n}\left(\mathcal{C}_{0}\right)\left\|\phi^{\prime}\right\|_{\infty}^{n} \quad\left(n \geqq 0, \phi \in S^{\infty}\right), \tag{17}
\end{equation*}
$$

where $\hat{D}_{n}\left(\mathbb{C}_{0}\right)$ is a constant depending only on n and \mathfrak{C}_{0}.
Proof. In the case $n=0$, (17) evidently holds. Let $n \geqq 1$. By (2), we have

$$
K(x, y)=\int_{-\infty}^{\infty} e^{i(x-y) \xi} \sigma(x, \xi) d \xi
$$

Repeating the integration by parts, we have

$$
\begin{aligned}
& \int_{0}^{\infty} e^{i(x-y) \xi} \sigma_{n}(x, \xi) d \xi=[-i(x-y)]^{-n} \int_{0}^{\infty \infty} e^{i(x-y) \xi} \sigma(x, \xi) d \xi \\
& \quad-\sum_{j=1}^{n}[-i(x-y)]^{-j} b_{n-j}^{l}(x) \int_{0}^{\infty \infty} e^{i(x-y) \xi} \beta_{m, n-j}(\xi) d \xi \quad(\iota= \pm),
\end{aligned}
$$

and hence

$$
\begin{gather*}
K\left[t^{n}, \phi\right](x, y)=(-i)^{n} \int_{0}^{\infty} e^{i(x-y) \xi} \sigma_{n}^{+}(x, \xi) d \xi(\phi(x)-\phi(y))^{n} \tag{18}\\
\quad+(-i)^{n} \int_{-\infty}^{0} e^{i(x-y) \xi} \sigma_{n}^{-}(x, \xi) d \xi(\phi(x)-\phi(y))^{n}
\end{gather*}
$$

$$
\begin{aligned}
& +\sum_{j=1}^{n}(-i)^{n-j} \int_{0}^{\infty} e^{i(x-y) \xi} \beta_{m, n-j}(\xi) d \xi b_{n-j}^{+}(x)(\phi(x)-\phi(y))^{n} /(x-y)^{j} \\
& +\sum_{j=1}^{n}(-i)^{n-j} \int_{-\infty}^{0} e^{i(x-y) \xi} \beta_{m, n-j}(\xi) d \xi b_{n-j}^{-}(x)(\phi(x)-\phi(y))^{n} /(x-y)^{j} \\
& =(-i)^{n} \int_{0}^{\infty} e^{i(x-y) \xi} \sigma_{n}^{+}(x, \xi) d \xi(\phi(x)-\phi(y))^{n} \\
& +(-i)^{n} \int_{-\infty}^{0} e^{i(x-y) \xi} \sigma_{n}^{-}(x, \xi) d \xi(\phi(x)-\phi(y))^{n} \\
& +i \sum_{j=1}^{n} \int_{0}^{\infty} e^{i(x-y) \xi} \beta_{m, n-j}^{(n-j+1)}(\xi) d \xi b_{n-j}^{+}(x)(\phi(x)-\phi(y))^{n} /(x-y)^{n+1} \\
& +i \sum_{j=1}^{n} \int_{-\infty}^{0} e^{i(x-y) \xi} \beta_{m, n-j}^{(n-j+1)}(\xi) d \xi b_{n-j}^{-}(x)(\phi(x)-\phi(y))^{n} /(x-y)^{n+1} \\
& \left(=L_{n}^{+}(x, y)+L_{n}^{-}(x, y)+i \sum_{j=1}^{n} L_{n-j}^{+}(x, y)+i \sum_{j=1}^{n} L_{n-j}^{-}(x, y), \text { say }\right) .
\end{aligned}
$$

Note that $\left\|b_{n-j}^{c}\right\|_{\infty} \leqq 4^{n-j} C_{n-j}(0,0)$ and recall that $\left\|\beta_{m, n-j}^{(n-j+1)}\right\|_{1} \leqq \Lambda_{n-j}(\iota= \pm$, $1 \leqq j \leqq n$). By Lemmas 7 and 12 , we have

$$
\begin{align*}
& \left\|L_{n-j}^{\iota}\right\| \leqq\left\|H\left[t^{n}, \dot{\phi}\right]\right\|\left\|b_{n-j}^{\iota}\right\|_{\infty}\left\|\beta_{m, n-j}^{(n-j+1)}\right\|_{1} \tag{19}\\
& \quad \leqq\left\{C 4^{n-j} C_{n-j}(0,0) \Lambda_{n-j}\right\}\left\|\phi^{\prime}\right\|_{\infty}^{n} \quad(\quad(= \pm, 1 \leqq j \leqq n)
\end{align*}
$$

To estimate $\left\|L_{n}^{L}\right\|(\epsilon= \pm)$, we choose a non-negative function $\gamma \in C^{\infty}$ so that $\gamma(s)=1(s \in[0, \infty)), \operatorname{supp}(\gamma) \subset[-1 / 2, \infty)$, and put

$$
L_{n, \gamma}^{\iota}(x, y)=(-i)^{n} \int_{-\infty}^{\infty} e^{i(x-y) \xi} \sigma_{n}^{\iota}(x, \xi) \gamma(\iota \xi) d \xi(\phi(x)-\phi(y))^{n} \quad(\iota= \pm)
$$

Then Lemmas 6 and 12 show that

$$
\left\|L_{n, \gamma}^{\iota}\right\|=\left\|\left[\phi, \sigma_{n}^{\iota}(\cdot, D) \gamma(\epsilon D)\right]_{n}\right\| \leqq D_{n}^{\prime}\left\|\phi^{\prime}\right\|_{\infty}^{n} \quad(\iota= \pm),
$$

where D_{n}^{\prime} depends only on $n, \mathfrak{C}_{0}, \beta(s)$ and $\gamma(s)$. We have

$$
\begin{aligned}
& L_{n, \gamma}^{t}(x, y)-L_{n}^{t}(x, y) \\
& =c(-i)^{n} \int_{-\iota / 2}^{0} e^{i(x-y) \xi} \sigma_{n}^{t}(x, \xi) \gamma(\iota \xi) d \xi(\phi(x)-\phi(y))^{n} \\
& =c i \int_{-t / 2}^{0} e^{i(x-y) \xi} \partial_{\xi}^{n+1}\left\{\sigma_{n}^{\iota}(x, \xi) \gamma(c \xi)\right\} d \xi(\phi(x)-\phi(y))^{n} /(x-y)^{n+1} \\
& -\operatorname{ci\sigma }(x, 0)(\phi(x)-\phi(y))^{n} /(x-y)^{n+1},
\end{aligned}
$$

and hence

$$
\begin{aligned}
& \left\|L_{n, \gamma}^{\prime}-L_{n}^{\iota}\right\| \\
& \quad \leqq\left\{\left|\int_{-\iota / 2}^{0}\left\|\partial_{\xi}^{n+1}\left\{\sigma_{n}^{\imath}(\cdot, \xi) \gamma(\epsilon \zeta)\right\}\right\|_{\infty} d \xi\right|+\|\sigma(\cdot, 0)\|_{\infty}\right\}\left\|H\left[t^{n}, \phi\right]\right\|
\end{aligned}
$$

$$
\leqq D_{n}^{\prime \prime}\left\|\phi^{\prime}\right\|_{\infty}^{n} \quad(c= \pm)
$$

where $D_{n}^{\prime \prime}$ depends only on $n, \mathfrak{C}_{0}, \beta(s)$ and $\gamma(s)$. Thus

$$
\begin{equation*}
\left\|L_{n}^{\iota}\right\| \leqq\left\|L_{n, \gamma}^{\iota}\right\|+\left\|\dot{L}_{n, \gamma}^{c}-L_{n}^{\iota}\right\| \leqq\left(D_{n}^{\prime}+D_{n}^{\prime \prime}\right)\left\|\phi^{\prime}\right\|_{\infty}^{n} \quad(\iota= \pm) \tag{20}
\end{equation*}
$$

Consequently, (18), (19) and (20) show (17) with $D_{n}\left(\mathbb{C}_{0}\right)=C\left\{D_{n}^{\prime}+D_{n}^{\prime \prime}+\right.$ $\left.D_{n} 4^{n} C_{n}(0,0) \Lambda_{n}\right\}$.
Q.E.D.

Now we prove Theorem 2. To do this, we show that

$$
\begin{equation*}
\left\|K\left[t^{n}, \phi\right]\right\| \leqq D_{n}^{*}\left(\mathfrak{C}_{0}\right)\left\|\phi^{\prime}\right\|_{\infty}^{n} \quad\left(n \geqq 0, \phi \in L_{R}^{\prime \infty}\right), \tag{21}
\end{equation*}
$$

where $D_{n}^{*}\left(\mathfrak{C}_{0}\right)$ is a constant depending only on n and \mathfrak{C}_{0}.
We define a function $v \in S^{\infty}$ so that $v(s)=1(s \in[-1 / 2,1 / 2])$ and $\operatorname{supp}(v) \subset$ $[-1,1]$, and put

$$
K_{m}(x, y)=\int_{-\infty}^{\infty} e^{i(x-y) \xi} \sigma(x, \check{\xi}) v_{m}(\xi) d \xi \quad(m \geqq 1),
$$

where $v_{m}(\xi)=v(\xi / m)$. Note that $\sigma(x, \xi) v_{m}(\xi)$ is of order 0 and satisfies $\mathcal{C}\left(\sigma v_{m}\right) \leqq$ \mathfrak{C}_{0}^{*} for some $\mathfrak{C}_{0}^{*}=\left\{C_{0}^{*}(p, q)\right\}_{(p, q)}$, where each $C_{0}^{*}(p, q)$ is independent of m. Also note that $\omega_{1}\left(K_{m}\right) \leqq C \sum_{j=0}^{3} C_{0}^{*}(0, j)(m \geqq 1)([3, \mathrm{p} .88])$. Let $\psi \in S^{\infty}$. Then Lemma 13 shows that $\left\|K_{m}\left[t^{n}, \psi\right]\right\| \leqq \hat{D}_{n}\left(\mathbb{C}_{0}^{*}\right)\left\|\psi^{\prime}\right\|_{\infty}^{n}$. Lemma 8 yields. that $\omega_{1}\left(K_{m}\left[t^{n}, \psi\right]\right) \leqq C(n+1) \omega_{1}\left(K_{m}\right)\left\|\psi^{\prime}\right\|_{\infty}^{n}$. Hence we have, by Lemma 4,

$$
\begin{align*}
& \left\|K_{m}\left[t^{n}, \psi\right]^{*}\right\| \leqq C\left\{\hat{D}_{n}\left(\mathfrak{C}_{0}^{*}\right)\left\|\psi^{\prime}\right\|_{\infty}^{n}+\omega_{1}\left(K_{m}\left[t^{n}, \psi\right]\right)\right\} \tag{22}\\
& \quad \leqq C\left\{\hat{D}_{n}\left(\mathfrak{C}_{0}^{*}\right)+(n+1) \omega_{1}\left(K_{m}\right)\right\}\left\|\psi^{\prime}\right\|_{\infty}^{n} \\
& \quad \leqq C\left\{\hat{D}_{n}\left(\mathfrak{C}_{0}^{*}\right)+(n+1) \sum_{j=0}^{3} C_{0}^{*}(0, j)\right\}\left\|\psi^{\prime}\right\|_{\infty}^{n} \quad\left(=D_{n}^{*}\left(\mathfrak{C}_{0}\right)\left\|\psi^{\prime}\right\|_{\infty}^{n}, \text { say }\right) .
\end{align*}
$$

By (2), we have, for any $x \in \boldsymbol{R}$ and $f \in S^{\infty}$ with $x \notin \operatorname{supp}(f), \lim _{m \rightarrow \infty} K_{m} f(x)=$ $K f(x)$. Since $\sup _{m} \omega_{1}\left(K_{m}\right)<\infty$, the Ascoli-Arzelà theorem yields that $K_{m}(x, y)$ converges locally uniformly to $K(x, y)$ in $\boldsymbol{R} \times \boldsymbol{R}-\{(x, x) ; x \in \boldsymbol{R}\}$ as $m \rightarrow \infty$. By (22) and Fatou's lemma, we have $\left\|K\left[t^{n}, \psi\right]^{*}\right\| \leqq D_{n}^{*}\left(\mathfrak{C}_{0}\right)\left\|\psi^{\prime}\right\|_{\infty}^{n}$. Given $\phi \in L_{R}^{\prime \infty}$, we can choose a sequence $\left(\psi_{j}\right)_{j=1}^{\infty} \subset S^{\infty}$ so that $\lim _{j \rightarrow \infty} \psi_{j}=\phi$ and $\left\|\psi_{j}^{\prime}\right\|_{\infty} \leqq\left\|\phi^{\prime}\right\|_{\infty}$. Hence, again by Fatou's lemma, we have $\left\|K\left[t^{n}, \phi\right]^{*}\right\| \leqq D_{n}^{*}\left(\mathfrak{C}_{0}\right)\left\|\phi^{\prime}\right\|_{\infty}^{n}$, which shows (21).

By (21), we have immediately $\rho_{K}\left(n_{1}\right)<\infty$. Thus Theorem 1 yields Theorem 2.
Note. Recently, the author estimated n_{δ} and obtained that $n_{\delta}=2$ is sufficient. Perhaps the condition " $\rho_{K}\left(n_{\delta}\right)<\infty$ " is not necessary.

References

[1] A. P. Calderón, Cauchy integrals on Lipschitz curves and related operators, Proc. Nat.

Acad. Sci. USA, 74 (1977), 1324-1327.
[2] R. R. Coifman-Y. Meyer, Commutateurs d'intégrales singulières et opérateurs multilinéaires, Ann. Inst. Fourier (Grenoble), 28-3 (1978), 177-202.
[3] R. R. Coifman-Y. Meyer, Au delà des opérateurs pseudo-différentiels, Astérisque, 57 (1978).
[4] R. R. Coifman-G. David-Y. Meyer, La solution des conjectures de Calderón, Adv. Math., 48 (1983), 144-148.
[5] C. Fefferman, E. M. Stein, H^{p} spaces of several variables, Acta Math., 129 (1972), 137-193.
[6] J. L. Journé, Calderón-Zygmund operators, Pseudo-differential operators and the Cauchy integral of Calderón, L. N. in Math., 994, Springer, 1983.
[7] T. Murai, Boundedness of singular integral operators of Calderón type (III), Nagoya Math. J., to appear.

> Department of Mathematics, College of General Education, Nagoya University.

