Vanishing of Im J classes in the stunted quaternionic projective spaces

Mitsunori Imaoka
(Received March 26, 1990)

§1. Introduction

Let $H P^{n}$ be the quaternionic projective space, and

$$
i: S^{4 m} \rightarrow H P_{m}^{l}=H P^{l} / H P^{m-1}=S^{4 m} \cup e^{4 m+4} \cup \cdots \cup e^{4 l}
$$

be the inclusion to the bottom sphere in the stunted space. Then the purpose of this paper is to investigate the induced homomorphism

$$
\begin{equation*}
i_{*}: \pi_{4 n-1}^{s}\left(S^{4(n-r)}\right) \longrightarrow \pi_{4 n-1}^{s}\left(H P_{n-r}^{l}\right) \quad(n-r=m \leqq l) \tag{1.1}
\end{equation*}
$$

of i between the stable homotopy groups on $(\operatorname{Im} J)_{2}$, where
(1.2) $(\operatorname{Im} J)_{2}$ is the 2-primary component of the image of the stable J homomorphism $J: \pi_{4 r-1}(S O) \rightarrow \pi_{4 r-1}\left(\Omega^{\infty} S^{\infty}\right)=\pi_{4 n-1}^{s}\left(S^{4(n-r)}\right)(r \geqq 1)$, and is the cyclic group of order $2^{3+v(r)}$ by Adams [1] and Quillen [7].

Here and throughout this paper $v(r)=v_{2}(r)$ denotes the exponent of 2 in the prime power decomposition of a positive integer r. Also, we put

$$
\begin{equation*}
a(n, r)=\binom{n+r}{r}, \quad b(n, r)=\binom{n+r-1}{r-1} . \tag{1.3}
\end{equation*}
$$

The main result is stated as follows:
Theorem A. The induced homomorphism i_{*} in (1.1) satisfies the following properties on $(\operatorname{Im} J)_{2}$ in (1.2).
(i) If $l<n$, then i_{*} is injective on $(\operatorname{Im} J)_{2}$.
(ii) Let $l=n$ and r be odd $\geqq 1$. Then $i_{*}\left((\operatorname{Im} J)_{2}\right)$ is 0 if $a(n, r)$ is odd, $Z / 2$ if $b(r, r)$ is odd and $r+n \equiv 0 \bmod 4$, $Z / 4$ if $r>1, b(n, r)$ is odd and $n \equiv r \equiv 1 \bmod 8$, $Z / 8$ if $r=1$ and $n \equiv 1 \bmod 8$.
(iii) Let $l=n$ and r be even $\geqq 2$, and assume that $b(n, r)$ is odd. Then $\operatorname{Ker}\left(i_{*}\right) \cap(\operatorname{Im} J)_{2}$ is

$$
0 \text { if } v(n)=v(r), \quad Z / 2 \text { if } v(n)>v(r) .
$$

The connecting homomorphism $\partial_{*}: \pi_{i}^{s}\left(H P_{m+1}^{l}\right) \rightarrow \pi_{i-1}^{s}\left(S^{4 m}\right)$ associated with the cofibering $S^{4 m} \rightarrow H P_{m}^{l} \rightarrow H P_{m+1}^{l}$ often plays an important role in the study of the stunted projective spaces; and Theorem A yields a partial result on ∂_{*}.

Moreover, we have a similar result for the quaternionic quasi-projective space Q_{n} (cf. [5]) instead of $H P^{n}$. In this case, we have the inclusion

$$
i: S^{4 m+3} \rightarrow Q_{m}^{l}=Q_{l+1} / Q_{m}=S^{4 m+3} \cup e^{4 m+7} \cup \cdots \cup e^{4 l+3}
$$

to the bottom sphere and the induced homomorphism

$$
\begin{equation*}
i_{*}: \pi_{4 n+2}^{s}\left(S^{4(n-r)+3}\right) \longrightarrow \pi_{4 n+2}^{s}\left(Q_{n-r}^{l}\right) \quad(r \geqq 1, l \geqq n-r) \tag{1.4}
\end{equation*}
$$

Theorem B. i_{*} in (1.4) satisfies (i) and (iii) in Theorem A and the following (ii)' :
(ii)' Let $l=n$ and r be odd $\geqq 1$. Then $i_{*}\left((\operatorname{Im} J)_{2}\right)$ is 0 if $a(n, r)$ is odd, 0 if $a(n, r)$ is odd,
$Z / 2$ if $b(n, r)$ is odd and $n \equiv r \equiv 1 \bmod 4$,
$Z / 4$ if $b(n, r)$ is odd, $n+r \equiv 4 \bmod 8$ and $r \equiv 1$ or $3 \bmod 8$.
These theorems are proved by applying the recent results given in [4].
To prove these theorems, we consider a finite $C W$-spectrum

$$
\begin{equation*}
X=S^{0} \cup e^{4 a_{1}} \cup \cdots \cup e^{4 a_{t}} \cup e^{4 r} \quad\left(1 \leqq a_{1} \leqq \cdots \leqq a_{t}<r\right) \tag{1.5}
\end{equation*}
$$

in general, by noticing that $\Sigma^{-4(n-r)} H P_{n-r}^{n}$ and $\Sigma^{-4(n-r)-3} Q_{n-r}^{n}$ are such ones. We define $d(X)$ by

$$
\begin{equation*}
\left.d(X)=v \text { (the order of Coker }\left[h: \pi_{4 r}(X) \longrightarrow H_{4 r}(X ; Z)\right]\right), \tag{1.6}
\end{equation*}
$$

where h is the Hurewicz homomorphism. Then, by the theorem of Crabb and Knapp [2] on the maximal codegree, we have the inequality
(1.7) $\quad d(X) \leqq m(r)$, where $m(r)$ is $2 r$ if r is even and $2 r+1$ if r is odd.

Now, consider the inclusion $i: S^{0} \rightarrow X$ and the induced homomorphism

$$
\begin{equation*}
i_{*}: \pi_{4 r-1}\left(S^{0}\right) \longrightarrow \pi_{4 r-1}(X) \quad \text { for } X \text { in (1.5) } \tag{1.8}
\end{equation*}
$$

Then we have the following results which yield Theorems A and B of above as special cases, where

$$
\begin{equation*}
j_{r} \text { denotes the generator of }(\operatorname{Im} J)_{2}=Z / 2^{3+v(r)} \text { in (1.2). } \tag{1.9}
\end{equation*}
$$

Theorem C. i_{*} in (1.8) satisfies the following properties:
(i) If r is odd and $d(X)=m(r)-\varepsilon$ for $0 \leqq \varepsilon \leqq 2$, then $2^{\varepsilon} i_{*}\left(j_{r}\right)=0$.
(ii) If r is even and $d(X)=m(r)$, then $2^{2+v(r)} i_{*}\left(j_{r}\right)=0$.
(iii) Put $d=d(X)-d\left(X / S^{0}\right)$, where $d\left(X / S^{0}\right)$ is defined similarly to $d(X)$ in (1.6). If $d \leqq 2+v(r)$, then $2^{2+v(r)-d} i_{*}\left(j_{r}\right) \neq 0$.

We prepare in $\S 2$ some necessary properties for the proof of the theorems, and prove Theorem C in $\S 3$ and Theorems A and B in $\S 4$.

§ 2. Preliminaries

To treat the spectrum X in (1.5) and its $4(r-1)$-dimensional skeleton X^{\prime} in the next section, we consider the following $4 m$-dimensional finite $C W$-spectrum in this section:

$$
\begin{equation*}
Y=S^{0} \cup e^{4 a_{1}} \cup \cdots \cup e^{4 a_{k}} \quad \text { with } 1 \leqq a_{1} \leqq \cdots \leqq a_{k}=m . \tag{2.1}
\end{equation*}
$$

For the spectrum $V=Y$ or S^{0}, we will consider the mod 2 Adams spectral sequence which has the E_{2}-term

$$
E_{2}^{s, t}(V)=\operatorname{Exx}_{A}^{s, t}\left(H^{*}(V ; Z / 2), Z / 2\right)
$$

and converges to $\pi_{*}(V)$, where A is the mod 2 Steenrod algebra. For $2 \leqq u$ $\leqq \infty$, we denote by $E_{u}^{s, t}(V)$ the E_{u}-term of the spectral sequence. For the generator $j_{r} \in(\operatorname{Im} J)_{2}=Z / 2^{3+v(r)}$ in (1.9), $2^{3+v(r)-i} j_{r}$ represents a unique element

$$
\begin{equation*}
\alpha_{2 r / i} \in E_{2}^{q-i, q-i+4 r-1}\left(S^{0}\right) \text { for } 1 \leqq i \leqq 3 \tag{2.2}
\end{equation*}
$$

(cf. [6], [8]), where $q=2 r+2$ or $2 r+1$ if r is odd or even respectively. Furthermore, for the homomorphism $i_{*}: E_{2}^{s, t}\left(S^{0}\right) \rightarrow E_{2}^{s, t}(V)$ induced from the inclusion $i: S^{0} \rightarrow V$ to the bottom sphere, we put ${ }_{0} \alpha_{2 r / i}$ $=i_{*}\left(\alpha_{2 r / i}\right)$. Then, by the similar way as in [3; Lemmas 3.6,3.9], we have the following lemma for the spectrum Y in (2.1).

Lemma 2.3. Assume that $r>m$.
(i) When r is odd, $E_{2}^{s, s+4 r-1}(Y)=0$ if $s \geqq 2 r+2$, and $=Z / 2\left\{{ }_{0} \alpha_{2 r / i}\right\}$ if s $=2 r+2-i$ and $1 \leqq i \leqq 3$.
(ii) When r is even, $E_{2}^{s, s+4 r-1}(Y)=0$ if $s \geqq 2 r+1$, and $=Z / 2\left\{{ }_{0} \alpha_{2 r / 1}\right\}$ if s $=2 r$.

In fact, the elements ${ }_{0} \alpha_{2 r / i}$ in Lemma 2.3 are non zero permanent cycles, that is ${ }_{0} \alpha_{2 r / i} \neq 0$ in $E_{\infty}(Y)$, by the following lemma.

Lemma 2.4. If $r>m$, then $i_{*}: \pi_{4 r-1}\left(S^{0}\right) \rightarrow \pi_{4 r-1}(Y)$ is injective on $(\operatorname{Im} J)_{2}$.
Proof. Let $W=Y^{*}$ be the S-dual of Y with $\operatorname{dim} W=4 m$, and $p: W$ $\rightarrow S^{4 m}$ the collapsing map to the top cell. Then by the same reason as in the proof of [3; Prop.2.1], it suffices to show the following:

$$
\begin{equation*}
v\left(\left|p^{*}(l)\right|\right)=3+v(r) \quad \text { for } p^{*}(l) \in K O^{4(m-r)}(W)_{(2)} / \operatorname{Im}\left(\psi^{3}-1\right) \tag{*}
\end{equation*}
$$

Here, $t \in K O^{4(m-r)}\left(S^{4 m}\right)=Z$ is the generator, and $\psi^{3}: K O^{i}(W)_{(2)} \rightarrow K O^{i}(W)_{(2)}$ is
the stable Adams operation on the $K O$-cohomology groups localized at 2. But, by the cell structure of W, we have an isomorphism

$$
K O^{4(m-r)}(W) \cong \sum_{i=0}^{m} H^{4 i}(W ; Z) \otimes K O^{4(m-r-i)}\left(S^{0}\right)
$$

and we can take $p^{*}(l) \in K O^{4(m-r)}(W)$ as one element in a basis of the free part. Then we see that, for an integer $c, c p^{*}(l) \in \operatorname{Im}\left(\psi^{3}-1\right)$ if and only if c is divisible by $9^{r}-1$. This implies (*), and we have the desired result. Q.E.D.

Assume that a map $f: S^{k-1} \rightarrow Y$ with $k>4 \mathrm{~m}$ is given for the spectrum Y in (2.1). We denote the cofiber of f by $C(f)$ and the inclusion $S^{0} \rightarrow C(f)$ by i, and we put $e=d(C(f))-d\left(C(f) / S^{0}\right)$, where each $d(\quad)$ is defined similarly as in (1.6). Then we have the following lemma, in which all homotopy groups are assumed to be cocalized at 2 .

Lemma 2.5. If $i_{*}\left(2^{e} \gamma\right) \neq 0$ in $\pi_{k-1}(Y)$ for some $\gamma \in \pi_{k-1}\left(S^{0}\right)$, then $i_{*}(\gamma) \neq 0$ in $\pi_{k-1}(C(f))$.

Proof. Consider the following commutative diagram:

Here the homotopy groups are all assumed to be localized at 2, the horizontal two sequences are the exact sequences associated with the respective cofiberings and each j_{*} is the homomorphism induced from the canonical inclusion. By the definition of e, we can take the generators x and y of the respective free parts of $\pi_{k}(C(f))$ and $\pi_{k}\left(C(f) / S^{0}\right)$ to satisfy

$$
q_{*}(x)=2^{e} y+v \text { for some torsion element } v
$$

Assume that $i_{*}(\gamma)=0$ in $\pi_{k-1}(C(f))$. Then $\gamma=\partial(t y+w)$ for some integer t and some torsion element w, and thus $2^{e} \gamma=\partial\left(2^{e} w-t v\right)$. Since any torsion element of $\pi_{k}\left(C(f) / S^{0}\right)$ is in $\operatorname{Im}\left(j_{*}\right), i_{*}\left(2^{e} \gamma\right)=0$ in $\pi_{k-1}(Y)$, and thus we have the desired result.
Q.E.D.

§3. Proof of Theorem \mathbf{C}

Let X be a $C W$-spectrum in (1.5). For a non zero element $y \in \pi_{t-s}(X)$, we put $F(y)=s$ if y represents a non zero element of $E_{\infty}^{s, t}(X)$. That is, $F(y)$ denotes the mod 2 Adams filtration of y. Consider the S-dual of X, and apply

Theorem 1 and Proposition 3.2 in [4] to it. Then we have the following proposition, where $h: \pi_{4 r}(X) \rightarrow H_{4 r}(X ; Z)$ is the Hurewicz homomorphism and the image $h(x)$ of an element $x \in \pi_{4 r}(X)$ is regarded as an integer through the isomorphism $H_{4 r}(X ; Z) \cong Z$.

Proposition 3.1. Let $\varepsilon(r)=2$ or 4 for even or odd $r \geqq 1$ respectively. If $d(X) \geqq 2 r-\varepsilon(r)$, then there is an element $x \in \pi_{4 r}(X)$ satisfying $v(h(x))=F(x)$ $=d(X)$.

Let X^{\prime} be the $4(r-1)$-skeleton of X. Then we have the exct sequence

$$
\begin{equation*}
E_{2}^{s-1, t}(X) \xrightarrow{p_{*}} E_{2}^{s-1, t}\left(S^{4 r}\right) \xrightarrow{\partial} E_{2}^{s, t}\left(X^{\prime}\right) \xrightarrow{i_{*}} E_{2}^{s, t}(X) \longrightarrow 0 \tag{3.2}
\end{equation*}
$$

for $t-s=4 r-1$, where each $E_{2}^{s, t}(\quad)$ is the E_{2}-term of the spectral sequence as in $\S 2$. Let $h_{0} \in E_{2}^{1,1}\left(S^{0}\right)=Z / 2$ be the generator. Then $E_{2}^{s-1, t}\left(S^{4 r}\right)$ $=E_{2}^{s-1, s-1}\left(S^{0}\right)=Z / 2\left\{h_{0}^{s-1}\right\}$, and we have the following proposition, where $m(r)$ is te integer in (1.7).

Proposition 3.3. (i) If $d(X)=m(r)$, then

$$
\partial\left(h_{0}^{i}\right) \neq 0 \text { for } 1 \leqq i \leqq m(r)-1
$$

(ii) If r is odd and $d(X)=m(r)-\varepsilon$ for $1 \leqq \varepsilon \leqq 2$, then

$$
\begin{aligned}
& { }_{0} \alpha_{2 r / t}=0 \in E_{3}^{2 r-t+2,6 r-t+1}(X) \text { for } \varepsilon=1 \text { and } 1 \leqq t \leqq 2 \text {, and } \\
& { }_{0} \alpha_{2 r / 1}=0 \in E_{4}^{2 r+1,6 r}(X) \text { for } \varepsilon=2 .
\end{aligned}
$$

Proof. (i) We put $M=m(r)-1$. Suppose that $\partial\left(h_{0}^{i}\right)=0$ for some 1 $\leqq i \leqq M$. Then there is an element $z \in E_{2}^{i, i+4 r}(X)$ satisfying $p_{*}(z)=h_{0}^{i}$ by the exactness of (3.2), and we have $p_{*}\left(h_{0}^{M-i} z\right)=h_{0}^{M}$. We use Lemma 2.3 to the case of $Y=X^{\prime}$. Then $E_{2}^{s, t}\left(X^{\prime}\right)=0$ for $s \geqq M+2$ and $t-s=4 r-1$, and we have $E_{2}^{s, t}(X)=0$ for the same s and t by (3.2). Therefore we have $h_{0}^{M-i} z \neq 0 \in$ $E_{\infty}(X)$, and $v(h(\gamma))=M$ for an element $\gamma \in \pi_{4 r}(X)$ which represents $h_{0}^{M-i_{z}}$, where h is the Hurewicz homomorphism and we regard $h(\gamma)$ as an integer as in Proposition 3.1. But this contradicts the assumption $d(X)=M+1$, and thus we have $\partial\left(h_{0}^{i}\right) \neq 0$ for any $1 \leqq i \leqq M$.
(ii) Since $d(X)=2 r-\varepsilon+1$ for some $1 \leqq \varepsilon \leqq 2$ by the assumption, we have $h_{0}^{2 r-\varepsilon+1} \in \operatorname{Im}\left(p_{*}\right)$ by Proposition 3.1. Then, using (3.2), we have ${ }_{0} \alpha_{2 r / i} \neq 0$ in $E_{2}^{2 r-i+2,6 r-i+1}(X)$ for $1 \leqq i \leqq \varepsilon$. Suppose that $\partial\left(h_{0}^{2 r-2}\right) \neq 0$. Then we have $\partial\left(h_{0}^{2 r-2}\right)={ }_{0} \alpha_{2 r / 3}$ by Lemma 2.3. But it contradicts the above, since then ${ }_{0} \alpha_{2 r / 1}$ $=0$ in $E_{2}^{2 r+1,6 r}(X)$. Hence we have $\partial\left(h_{0}^{2 r-2}\right)=0$, and so there is an element $y \in E_{2}^{2 r-2,6 r-2}(X)$ satisfying $p_{*}(y)=h_{0}^{2 r-2}$ by (3.2).

Now consider the case of $\varepsilon=1$. We get the first required equality if we show $d_{2}(y) \neq 0$, because $d_{2}(y) \in E_{2}^{2 r, 6 r-1}(X) \cong Z / 2\left\{{ }_{0} \alpha_{2 r / 2}\right\}$ and then $d_{2}\left(h_{0} y\right)$
$={ }_{0} \alpha_{2 r / 1}$. Suppose that $d_{2}(y)=0$. Then we have $d_{2}\left(h_{0} y\right)=0$ also, and $d_{u}\left(h_{0} y\right)$ $=0$ for any $u \geqq 3$ since it is an element of 0 -group by Lemma 2.3 and (3.2). Since $p_{*}\left(h_{0} y\right)=h_{0}^{2 r-1}, h_{0} y$ cannot be the image of d_{u} for ay $u \geqq 2$. Thus $h_{0} y$ is represented by an element $\beta \in \pi_{4 r}(X)$ with $v(h(\beta))=2 r-1$, and this contradicts the assumption $d(X)=2 r$. Hence we have $d_{2}(y) \neq 0$, and the desired result. For the case of $\varepsilon=2$, we have $d_{2}(y)=0$ and $d_{3}(y)={ }_{0} \alpha_{2 r / 1}$ by the similar argument to $\varepsilon=1$, and the second required equality. Q.E.D.

Proof of Theorem C. (i) and (ii). Let $1 \leqq i \leqq 3$. Then the element $2^{3+v(r)-i} i_{*}\left(j_{r}\right) \in \pi_{4 n-1}(X)$ represents the element ${ }_{0} \alpha_{2 r / i} \in E_{2}^{q-i, q-i+4 r-1}(X)$, and $E_{2}^{s, s+4 r-1}(X)=0$ for any $s \geqq q$, by Lemma 2.3 and (3.2), where $q=2 r+2$ or $2 r$ +1 for odd or even r respectively. Thus to prove $2^{3+v(r)-i} i_{*}\left(j_{r}\right)=0$ we may show that ${ }_{0} \alpha_{2 r / t}=0$ for $1 \leqq t \leqq i$.

When $d(X)=m(r)-\varepsilon$ for odd r and $1 \leqq \varepsilon \leqq 2$, the assertion follows from Proposition 3.3 (ii). Now assume that $d(X)=m(r)$. By Proposition 3.3 (i) and Lemma 2.3, we have

$$
\begin{aligned}
\partial\left(h_{0}^{2 r-i+1}\right) & ={ }_{0} \alpha_{2 r / i} \\
\partial\left(h_{0}^{2 r-1}\right) & \text { for odd } r \text { and } 1 \leqq i \leqq 3, \text { and } \\
\alpha_{2 r / 1} & \text { for even } r,
\end{aligned}
$$

where ∂ is the homomorphism in (3.2). Therefore, ${ }_{0} \alpha_{2 r / i}=0 \in E_{2}^{2 r-i+2,6 r-i+1}(X)$ for odd r and $1 \leqq i \leqq 3$, and ${ }_{0} \alpha_{2 r / 1}=0 \in E_{2}^{2 r, 6 r-1}(X)$ for even r. Thus we have (i) and (ii).
(iii) We apply Lemmas 2.4 and 2.5 to the case of $(C(f), Y, e)=\left(X, X^{\prime}, d\right)$, where $d=d(X)-d\left(X / S^{0}\right)$. Lemma 2.4 implies that $2^{2+v(r)} i_{*}\left(j_{r}\right) \neq 0$ in $\pi_{4 r-1}\left(X^{\prime}\right)$, and thus we have the desired result by Lemma 2.5 .

§4. Proof of Theorems A and B

We will apply Theorem C to the spectra $\Sigma^{-4(n-r)} H P_{n-r}^{n}$ and $\Sigma^{-4(n-r)-3} Q_{n-r}^{n}$. Recall the integers $a(n, r)$ and $b(n, r)$ defined for given integers n and $r \geqq 1$ in (1.3). Also, we put $c(n, r)=\binom{n+r-2}{r-1}$. Then by $[4 ;$ Th. 2,3$]$ we have the following:

Lemma 4.1. (i) $d\left(\Sigma^{-4(n-r)} H P_{n-r}^{n}\right)=m(r)$ if and only if $a(n, r)$ is odd.
(ii) Assume that $r \geqq 3$ is odd. Then, $d\left(\Sigma^{-4(n-r)} H P_{n-r}^{n}\right)=m(r)-1$ or $m(r)$ -2 if the following (1) or (2) holds respectively:
(1) $a(n, r)+1 \equiv(a(n, r) / 2)+b(n, r) \equiv 1 \bmod 2$;
(2) $a(n, r) \equiv 2 \bmod 4, b(n, r) \equiv 1 \bmod 2$ and $(a(n, r) / 2)+b(n, r)+2 c(n, r) \equiv 2 \bmod 4$.

Lemma 4.2. (i) $d\left(\Sigma^{-4(n-r)-3} Q_{n-r}^{n}\right)=m(r)$ if and only if $a(n, r)$ is odd.
(ii) Assume that $r \geqq 1$ is odd. Then, $d\left(\Sigma^{-4(n-r)-3} Q_{n-r}^{n}\right)=m(r)-1$ or $m(r)$ -2 if the following (1)' or (2)' holds respectively:
(1) $\quad a(n, r) \equiv 2 \bmod 4$;
(2) $\quad a(n, r) \equiv 4(1+(n+1) c(n, r)) \bmod 8$.

Let $\quad i_{*}: \pi_{4 n-1}^{s}\left(S^{4(n-r)}\right) \rightarrow \pi_{4 n-1}^{s}\left(H P_{n-r}^{n}\right) \quad$ be the homomorphism in (1.1). Then, by Theorem C and Lemma 4.1, we have the following theorem.

Theorem 4.3. (i) If $a(n, r)$ is odd, then $i_{*}\left((\operatorname{Im} J)_{2}\right)=0$ for odd $r \geqq 1$, and $2^{2+v(r)} i_{*}\left(j_{r}\right)=0$ for even $r \geqq 2$.
(ii) For odd $r \geqq 3,2 i_{*}\left(j_{r}\right)=0$ or $4 i_{*}\left(j_{r}\right)=0$ if (1) or (2) in Lemma 4.1 holds respectively.

Similarly, for the homomorphism $i_{*}: \pi_{4 n+2}^{s}\left(S^{4(n-r)+3}\right) \rightarrow \pi_{4 n+2}^{s}\left(Q_{n-r}^{n}\right)$ in (1.4), we have the following theorem by Theorem C and Lemma 4.2.

Theorem 4.4. i_{*} satisfies (i) in Theorem 4.3 and the following (ii)':
(ii)' For odd $r \geqq 1,2 i_{*}\left(j_{r}\right)=0$ or $4 i_{*}\left(j_{r}\right)=0$ if $(1)^{\prime}$ or $(2)^{\prime}$ in Lemma 4.2 holds respectively.

Proof of Theorem A. (i) follows from Lemma 2.4 by applying it to the case of $Y=\Sigma^{-4(n-r)} H P_{n-r}^{l}$ and $m=l-n+r$ for $l<n$.
(ii) Let $i_{*}: \pi_{4 n-1}^{s}\left(S^{4(n-r)}\right) \rightarrow \pi_{4 n-1}^{s}\left(H P_{n-r}^{n}\right)$ be the homomorphism in (1.1) for $l=n$, and $(\operatorname{Im} J)_{2} \subset \pi_{4 n-1}^{s}\left(S^{4(n-r)}\right)$ as in (1.2). We put $P=\Sigma^{-4(n-r)} H P_{n-r}^{n}$ and $d=d(P)-d\left(P / S^{0}\right)$. Then, by the same reason to Lemma 4.1 (i), we have

$$
\begin{equation*}
d\left(P / S^{0}\right)=m(r-1) \text { if and only if } b(n, r) \text { is odd. } \tag{4.5}
\end{equation*}
$$

Assume that r is odd. If $a(n, r)$ is odd, then $i_{*}\left((\operatorname{Im} J)_{2}\right)=0$ by Theorem 4.3 (i), and we have the first case of the required result. For the case of $r=1$, since $\Sigma^{-4 n+4} H P_{n-1}^{n}$ is homotopy equivalent to $S^{0} U_{(n-1) v} e^{4}$, where $v \in \pi_{3}\left(S^{0}\right)=Z / 24$ is the generator, $i_{*}\left((\operatorname{Im} J)_{2}\right)$ is a cyclic group of order g.c.m. $\{n-1,8\}$. Hence we have the desired result for $r=1$. Now we assume further that $b(n, r)$ is odd and $r \geqq 3$. Then we see that the condition (1) in Lemma 4.1 (ii) is equivalent to that $r+n \equiv 0 \bmod 4$. Thus, if $r+n \equiv 0 \bmod 4$, then $2 i_{*}\left(j_{r}\right)=0$ by Theorem 4.3 (ii), and $i_{*}\left(j_{r}\right) \neq 0$ by Theorem C (iii) since $d=2$ by Lemma 4.1 (ii) and (4.5). Hence we have the second case of the desired result. Similarly, the condition (2) in Lemma 4.1 (ii) is equivalent to that $n \equiv r \equiv 1 \bmod 8$. Then, under this condition, $d=1$ by Lemma 4.1 (ii) and (4.5), and we have $i_{*}\left((\operatorname{Im} J)_{2}\right)$ $=Z / 4$ by Theorem 4.3 (ii) and Theorem C (iii), which is the third case of the required result.
(ii) Assume that r is even. Then, $b(n, r)$ is odd if and only if $d\left(P / S^{0}\right)=2 r$ -1 by (4.5), and under this assumption we have the following:

$$
\begin{array}{ll}
v(n)>v(r) & \text { if and only if } a(n, r) \text { is odd, } \\
v(n)=v(r) & \text { if and only if } \\
d(P)=2 r-1,
\end{array}
$$

Hence, if $b(n, r)$ is odd and $v(n)=v(r)$, then $2^{2+v(r)} i_{*}\left(j_{r}\right) \neq 0$ by Theorem C (iii) since $d=0$ in this case, and thus $\operatorname{Ker}\left(i_{*}\right) \cap(\operatorname{Im} J)_{2}=0$. If both $a(n, r)$ and $b(n, r)$ are odd, then $2^{2+v(r)} i_{*}\left(j_{r}\right)=0$ by Theorem 4.3 (i), and $\operatorname{Ker}\left(i_{*}\right) \cap(\operatorname{Im} J)_{2}$ $=Z / 2$ by Theorem C (iii) since $d=1$ in this case. Thus we have completed the proof.
Q.E.D.

The proof of Theorem B is similar to that of Theorem A, by using Lemma 4.2 and Theorem 4.4 instead of Lemma 4.1 and Theorem 4.3.

References

[1] J. F. Adams, On the groups $J(X)$ - IV, Topology, 5 (1966), 21-71.
[2] M. C. Crabb and K. Knapp, Vector bundles of maximal codegree, Math. Z., 193 (1986), 285-296.
[3] M. Imaoka, On the Adams filtration of a generator of the free part of $\pi_{*}^{s}\left(Q_{n}\right), \quad$ Publ. RIMS, Kyoto Univ. 25 (1989), 647-658.
[4] M. Imaoka, The maximal codegree of the quaternionic projective spaces, Hiroshima Math. J. 20 (1990), 351-363.
[5] I. M. James, The topology of Stiefel manifolds, London Math. Soc. Lecture note series 24, 1976.
[6] M. Mahowald, The order of the image of the J-homomorphism, Bull. Amer. Math. Soc., 76 (1970), 1310-1313.
[7] D. G. Quillen, The Adams conjecture, Topology, 10 (1970), 67-80.
[8] D. C. Ravenel, Complex cobordism and stable homotopy groups of spheres, Mathematics 121, Academic Press, 1986.

> Department of Mathematics,
> Faculty of Education, Wakayama University

