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Introduction

We consider SO0(p, q) (or O(p, ^-invariant solutions u of the differential

equation (p + v)u = 0, where P = Σι<i<P(
S/Sx^ ~ Σι<j<q(δ/dyj)2 and v is a

complex number. There have appeared several papers dealing with the above

solutions in the sense of distributions ([4], [9], [10], [14]). On the other hand,
we find as a corollary of the result of A. Cerezo [2]: the dimension of the space

of 0(p, g)-invariant hyperfunctions u on Rp+q which are solutions of the

equation (P + v)u = 0 is 2 and only SO0(p, ^-invariant is 2 if p > 1 and q = 1,
or p = 1 and g > l , 4 i f p = l , respectively.

In this paper, we call such hyperfunctions "spherical hyperfunctions" and

will give integral representations of "spherical hyperfunctions". In the paper
[3], Ehrenpreis' principle says that any solution u of a differential equation Pu

= 0 with constant coefficients has an integral representation by a suitable

measure on the variety defined by the polynomial στ(P)(ίξ\ where στ(P) is the

total symbol of P. Thus spherical hyperfunctions may be represented through

integrals with respect to SO0(p, q) (or 0(p, g))-invariant measures on the variety

{(ξ, η)eCp+q; Σξf - YY\] - v = 0}. But these integrals are not convergent at

any point of Rp+q. However, in his paper [11], Sato's idea enables us to justify

these integrals. Thus we can construct spherical hyperfunctions explicitly. In

this paper, when v is not 0, we give integral representations of spherical
hyperfunctions except for p > 1 and q = 1. But when p > 1 and q = 1 we can

construct spherical hyperfunctions in the same way as in the case of p = 1 and

q>l.
I would like to express hearty thanks to Professor K. Okamoto who taught

me Sato's idea.

§0. Notations

Let G = 0(p, q) and G0 = SO0(p, q) for p > 1 and q > 1. Then both G

and GO are acting on Rp+q naturally. Let v be a non-zero arbitrary complex

number and put μ = (l/2)Arg(v) (Arg is the principal value) and λ = |v|1 / 2e ι μ,

where i = (— 1)1/2. Then — π/2 < μ < π/2 and v = λ2. Let Q = so0(p, q) that

is the Lie algebra of both G and G0. Let @G(Rp+q) (@G°(Rp+q)) be the space of
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all G (Go)-invariant hyperfunctions on Rp+q, respectively. From Lemma 1 in

[2], @Go(Rp+q) = @Q(Rp+q). Here @Q(Rp+q) is the space of all g-invariant
hyperfunctios on Rp+q. We denote by <%°(Rp+q)(@°°(Rp+q)) the space of all

G (G0)-invariant hyperfunctions / such that Pvf= 0, where Pv = Σι<i<p(^/^xί)2

- Σι*j*q(d/dyj)2 + v *n ti"8 PaPer> we denote by ch(ί) (and sh(f)) the real
analytic function (<? 4- e~l)/2 (and (<εf — e~*)/2) on /?, respectively.

§ 1. p = I and q = I

In this section, we give spherical hyperfunctions using an integral
representation for the case in which p = q = 1. That is G = 0(1,1), G0

= SO0(1,1). For each ε = (εls ε2), where 8^(1, - 1} (i = 1, 2), we denote by
Uε the set of all (zl9 z2)eC2 such that Im(s1z1 + ε2z2) > 0, where Im z is the
imaginary part of z ( G C). Let

1T' = {UE; s = (sl9 ε2), e |e{ ± l}(i = 1, 2)} and 1T = {C

Then it is easily seen that (if, W ') is a relative Stein covering of (C2, C2\/?2)
(see [7] for the relative Stein covering).

LEMMA 1. 1. For each ε = (εl9 ε2)>

{I/
Γ^

Z ) = I Qi^ίzιch(t-iμ) + ε2z2

Jo

converges absolutely and uniformly on every compact subset of Uε and
holomorphic on Uε. Moreover, ψε satisfies the following differential equations on

2) (z2d/dz1 + zid/dz2)ιl/ε = -

PROOF. It is seen that the above integral converges absolutely and
uniformly on every compact subset of Uε and holomorphic on t/e, because

Repλ(ε1z1ch(ί - iμ) + ε2z2sh(£ - i

= - μiCeΊmίεiZi + ε2z2) 4- Imet+2t"(εlzl - ε2z2)]/2.

It is easily seen that ψε satisfies the differential equations I) and 2), because

(z2d/dZl + z1d/dz2 - ειε2d/dt)eiλ(είZlch(t-iμ)+E2Z2Sh(t-iμ» = 0.

Therefore the lemma is proved.

For each ε = (εl9 ε2), we denote by VE the set of all (zl9 z2)eC2 such that
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Z! + ε2z2) > 0. Here Re z is the real part of z.

LEMMA 1.2. ι/^ε w analytically continued from Uε to Vε\jV_ε but is not

holomorphic on any neighborhood of the point (z1? z2)eC2 such that ε^ 4- ε2z2

= 0.

PROOF. Applying Cauchy's integral formula, for R > 0, we have

Ϊλ[εiZι ch(ί - iμ) + ε2z2sh(t - iμ)] ̂

0

/2
iμ) + ε2z2sh(iβ - iμ)] fiQ

f* A
+ J^ , .-,. ,-* *

ί
π/2

λ[ειzιch(R - iμ + iθ) + ε2z2sh(R - iμ + iθ)] fiQ

One can easily see that for each (z1? z2)e l/ εn Vε the last integral converges to 0

when R-+OO. Therefore for each (zl5 z2)e l/ εn Vε we have

ί
oo

^iλ[ειzιch(ί - iμ) + ε2z2sh(ί - iμ)] ̂

3

ί
π/2

g«A[eι

3

zi cos(0 - μ) + iε2z2sin(θ - μ

Since the right-hand side of the above equality is holomorphic on V& ψε is

analytically continued from l/ε to Vε. On the other hand, from Cauchy's

integral formula along another Jordan curve, we have for each

ί
oo

,,iA[ειzic

/

Λ-π/2
= i eiλ[ειzιc<

Jo

+ ΓV'
Jo

:h(ί - iμ) + ε2z2sh(ί - iμ)] ̂

:os(θ - μ) + iε2z2sin(β - μ)] £Q

Hence φε is analytically continued from l/ε to K_ε in the same way as
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Vε. Therefore the first assertion of the lemma is proved. But the above

integral is not convergent at the point (zl5 z2)eC2 such that είz1 + ε2z2

= 0. Indeed, for fixed real numbers α l 5 a2 and δ, we put z^δ) = ε^a^ + ia2

+ iδ) and z2(δ) = ε2( - a: - ιβ2 + ί<5). If δ > 0, then (z^δ), z2(δ))eUε. It is

easily seen that there are positive real numbers M1? M2 and ί0 such that if
t > ί0 then Af i < cos(ce't(aicos2μ - a2sm2μ)) and M2 < β-"χp(-f)(flisin2μ+α2cos2μ)

, where c = \λ\ (> 0). Hence

), z2(δ)) > MiM2 e~cδexptdt + Re °
Jίo J O

where H(δ, t) = ε^z^chψ - iμ) + s2z2(δ)sh(t — iμ}. The last term of the

above inequality is convergent when (5 -> + 0. But

lim e~cδexptdt = + oo .

Therefore ψε is not holomorphic on any neighborhood of the point (z1? z2)eC2

such that ε1zί + ε2z2 = 0. This implies the second assertion of the lemma.

For the purpose of the construction of g-invariant hyperfunctions, we

consider the following integral;

χ(zl9 z2; β, b) = i

Then χ ( z ί 9 z 2 ;α, b) is an entire holomorphic function on C2 for any fixed

(α, b)eR2 and ((d/dz^)2 — S/dz2)
2)χ = — λ2χ. Moreover, since

(z2δ/3z1 + Zld/z2 + iS/dtyeW*1*0**1*2**** = 0,

we have

(z.δ/az! + Zld/dz2)χ(zl9 z2; α, ft) = [e^ztco^ + ̂ .inηg^^

Now we give spherical hyperfunctions by means of elements of the Ceck

cohomology Hl(W\ 0) as follows. Set A = {ε = (el5 ε2); β f e{± 1} (ι = 1, 2)}

and ΛQ = {(ε, η); εeΛ, ηeΛ, είε2ηίη2 = — 1}. For each (ε, η)eAθ9 we define

Φε,π(^ι, ^2) = Ψε(zι, z2) + ^(z^ z2) + ηίη2χ(zί9 z2', c(ε), c(η))9

where c(ε) = c(ε9 μ) = — ε^2μ + (1 — εJπ/2. Then φε,η(zi9 z2) is a holom-
orphic function on UEΓ\Uη by Lemma 1.1. For given l/, (/ = 1, 2) in W and a

holomorphic function φ on U1nU2, we denote by [(C/1nί72; φ)] the element

in Hl(W',&) which is given by the following 1-cocycle ', {(UlnU2; φ)9

(U2 Π t/j - φ\ (otherwise; 0)}.

We define
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/o = [(tf(-ι.i)n l/ (ι f l ); χ(zl9 z2; - π, π))]
and

/M = KU.n I/, Φ..,)] for fixed (ε, //)eΛ 0 .

PROPOSITION 1.3. For α«y (ε, η)eΛQ, fEtη is ^-invariant and fε,η =

-fηtε. Moreover, S.S fε,η = {(xl9 x2; ί ε / 2 1 / 2 c c ) : ε^ + ε2x2 = 0}u{(x l 9 x2; in
/21/2oo): η1x1 + η2x2 = 0}, where S.S f is the singular spectrum of f (see [12],

for the singular spectrum).

PROOF. From Lemma 1.1, we have

(z2d/dZl + z2d/dz2)(ψΛ + ψη)

Since

cos(c(ε, μ)) = ε^cosμ and sin(c(ε, μ)) = — ε2sinμ,

we have

(z2d/dzι + zld/dz2)χ(zl9 z2; c(ε, f/), c(r/, μ))

__ _ g/A(ειZιcosμ — ίε2Z2sinμ) _ι giλ(ηιzιcosμ — iη2Z2sinμ)

Hence (z2d/dz1 + zίd/dz2)φetη = 0 for any (ε, f/)eΛ 0 . Therefore the first
assertion of the proposition is proved. Im view of the definition of χ, we

see that nrf2x(zl9 z2; c(ε), φ)) = - η1η2χ(zι, z2; φ), c(ε)) = ε1ε2χ(z1, z2; φ),

c(ε)). Hence φε,η(zί9 z2) = φηtε(zί9 z2) on I/ εnl/ r Therefore the second asser-

tion of the proposition is proved. The third assertion of the proposition is

clear from Lemma 1.2 and the definition of the singular spectrum.

Let fci = and fe2 = _ . Then /c^eG^ = 1, 2) and G = G0

Ufe 1 G 0 U/c 2 G 0 U/c 1 /c 2 G 0 . For any hyperfunction / on /?2, we denote by/k ί the

pull-back of / by the transformation x -> /qx (i = 1, 2).

PROPOSITION 1.4. For e#c/z (ε, f f ) e Λ 0 , we have

1 \ fki _ f
L) J ε,η J k\η,k\ε '

2) /ϊi=/M.*2. + ((fiι-flι)/2)/o.

PROOF. By virtue of the definition of /ε>^ and the fact that fc^1 = kl9 we

have

Since c(kίε) = π — c(ε), it is easily seen that
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χ(-zl9 z2; c(ε)9 φ)) = χ(zl9 z2; c(k^\ c(k^)}.

On the other hand, ψε(- z l 5 z2) = ψkιε(zl9 z2). Hence,

<Pε,η(-zί9

 zι) = <Afc ι ε(
zι> Z

2) + i/^^, z2) + η1η2χ(zl9 z2; c(

Therefore φε,^(- z l 9 z2) = φkιηtkιε(zl9 z2), since j/^ = - εxε2. Hence 1) of the

proposition is proved. Next we show 2) of the proposition. Since, for any ε
and μ,

χ(z1? z2; - c(ε, μ), c(/c2ε, μ)) = (1 - εj)χ(zl9 z2; - π, π)/2,

we have

χ(zί9 - z2; c(ε), c(ιy)) - χ(z1? z2; c(k2η)9 c(k2ε))

= χ(zl9 z2; - c(η)9 - c(ε)) + χ(zl9 z2; c(/c2ε), c(fc2ι/))

= X(zl9 z2; - c(η\ c(k2η)) - χ(zί9 z2; - c(ε), c(/c2ε))

= (βι -^1)7(^1^2; -π, π)/2.

Hence, we have

<Pε,η(Zl> Z2) = Ψk2ε(Zl, Z

2) + 2̂,(^1, Z2) + l/i^X^H Z2 ί C(fc2f/), c(/C2β))

ι, Z2ί - π, π)/2.

Therefore ^(z^ - z2) = φk2ηtk2S(zί9 z2) + (βi - ηι)ηιη2χ(zι, z2; - π, π)/2. On
the other hand, it is easily seen that

n £/k2β; (fi! - η1)η,η2X(z^ z2; - π, π)/2)] = (6l - ih)/0/2

for any (ε, ̂ )eyi0. Indeed, we define a 0-cochain ψ (eC°(W; (9)) such that ψ

= {(^(i,i)' ^(zi' Z2'> ~ π> π)X (^(-ι,i)' °)> (^d,-!)' ^(zi' Z2ί - π> π)X (^(-I,-D;
0)}. Then we have δψ =

{(l/ί-i.-DΠl/d.-D χίz!, z2; - π, π)), (C/(1,υn C/ ( ι f -i) ; 0),

(l/ (_ 1 > 1 )Πί/ ( 1 > 1 );χ(z 1,z 2; - π, π)), ( l / ( _ l f _ υ n l/ (-ι f i); °)}>

where ^ is the coboundary operator. Hence

ί- i .-DΠl/d.-D; -χ(z1? z2; - π, π))]

= [(^(-ι,i)Π l/d.i); χ(zl9 z2; - π, π))] =/0.

This implies that the above equality (#) is true for the case ε^ = ε2 = η2 = 1 and
ηl = — I. For the other cases, one can easily prove the equality (#) similarly.

Therefore 2) of the proposition is proved.
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Now, we can give a basis of ^°(R2) and ^(R2\ applying Cerezo's result
([2]): dim @°°(R2) = 4 and dim &°(R2) = 2. We define hyperfunctions qj

(1 < j < 4) as follows;

01 =/(l, !),(!, -1)' 02 = 7(1, !),(-!, 1)'

03 = /(-!, -!),(-!, 1)' 04 = /(-!, -!),(!, -1)

Then it is obvious that g^M^R2) for 1 <j < 4.

LEMMA 1.5. 0ι + 02 + 03 + 04 = 0.

PROOF. We can define a 0-cochain ψ (eC°(W',(9)) such that ψ

(-1,1)5 <A(-ι,i)(zι> zι) ~ X(zι5 ^2; - μ, μ -h π))

iz!, z2) - χ(z l9 z2: - μ, π - μ)),

Then it is easily seen that 0ι + 02 + 03 + 04 = CW)] = 0. Therefore the
lemma is proved.

PROPOSITION 1.6. Any triple of g^ (1 < j < 4) is linearly independent.

PROOF. We prove the proposition for the case g^ g2, g$ Let clgl

+ C202 + C303 = ° (CjCQ' Then cι = cι = °> because S.S g1 = {(xl9 x2\ i(2~1/2

, 2-^)00); Xl + x2 = 0}u{(x1? x2; i(2^>\ - 2-^)00); x, - x2 = 0} and 5.5

03 = {(^ι5 x2;ί(2-1/2, 2- 1 / 2 )oo);x 1 +x 2 = 0}u{(x1, x 2;i(-2- 1 / 2, 2-1/2)oo);
— xl + x2 = 0}, by Proposition 1.3. Hence c202 = 0. Since g2 is not 0, c2

= 0. Thus c1 = c2 = c3 = 0. In the same way, the linear independence is
showed for the other cases. Hence the proposition is proved.

PROPOSITION 1.7.

01 1 = 03> 012 = 01>

02 1 = 02> 022 = 04+/0>

03 1 = 01> 032 = 03>

0 4 = 0 4 , 012 = 02-/0

PROOF. From Proposition 1.4, the proposition is clear.

Finally we define spherical hyperfunction /,(!<;< 3) by

/i = 0ι + 03, /2 = 0ι - 03 and /3 = /0 - gl - 2g2 - g3.

THEOREM 1.8.
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1) {/,•; 0 < j < 3} is a basis of ^°(R2).

2) {/,-; 0 < < 1} is a basis of <%°(R2).

PROOF. It is easily seen that /0 and gj (1 < j < 3) is linearly independent

by the same proof as in Proposition 1.6, since S.S /0 = φ. Hence it is clear

that/,- (0 < 7 < 3) is linearly independent. Therefore, since dim Λf ° (R2) = 4, 1)

of the theorem is proved (see [2]). From Proposition 1.7, f1 is G-

invariant. Moreover, it is obvious that /0 is also G-invariant. Conversely,
from Proposition 1.7, one can easily see that for any fe^(R2\ there exist

complex numbers c0 and cl such that /= c0/0 + clf1. Therefore 2) of the
theorem is proved.

REMARK. Since one can easily show that/21 = -/2>/22 ^/^/a1 =Λ and
/32 = —/3 from Proposition 1.7, we have that

#?°(*2) = ̂ (R2) Θ </2> Θ </3>

is the irreducible decomposition of the representation over ^°(R2) with respect

to the finite group {e, kί9 /c2, klk2}.

§ 2. p = 1 and g > 1

In this section, we give spherical hyperfunctions using integral represent-

ation for the case in which p = 1, q > 1. That is G = 0(1, q) and G0

= SO0(1, fl). For each ε in {!,-!}, we denote by l/(ε) the set of all
(z, w)eC1+q (here zeC and wεCq) such that εlmz > | |Imw||, where | | ;y | |

for y = (yi>->yP)
eR* and Imw = (Imw1,...,Imw ί) for w

Put

= {(z, w)eC1 +^; ± Imw,. > 0}.

Let

Kr' = {t7 ( β ) ;ε6{±l}}u{Fj β ) ; εe{±l}, 1<7<^} and -r = {C1+

Then it is easily seen that (1f, W) is a relative Stein covering of

(C1+q, Ci+q\R1+q) (see [7] for the relative Stein covering).

LEMMA 2.1. For e#c/z εe{l, — 1},

= j °
Jθ

converges absolutely and uniformly on every compact subset of U(ε) and is

holomorphic on U(ε\ Here <w, ι;> = XM^- (/or u = (w1? ..., uq)eCq and v
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= (ι>ι,..., vq)eCq) and dη is the normalized SO(q)-invariant measure such that

dη = 1. (See §0 for the notations λ, μ, ch, sh.)
JSQ-1

PROOF. Since

Re[i/ί(εzch(ί - iμ) + <w, ^>sh(ί - iμ))]

= - μ|[eΊm(εz + <w, >/»

it is clear that the above integral converges absolutely on every compact subset

of U(ε} and is holomorphic on t/(ε).

REMARK. It is easily seen that ψε satisfies the following differential

equations in a way similar to Lemma 1.1;

(Wjd/dwk - wkδ/3w^e = 0 (1 < j < q, 1 < k < q),

(w^d/dz + zd/dwjψ,, = - ε( - isinμ)^1

 eiλ[εzcos
JS9-1

Here η{ is the first coordinate of η (eS"*"1). Indeed,

{v^δ/δz + zd/d\v1 - ε^osτ^/dt - sintiCOth^ - iμ)d/dτl}}eiλH(t^) = 0,

where

H(t, z, w) = εzch(ί - iμ) + <w, ι/(τ)>sh(ί - iμ),

η(τ)j = COST,- Π sinτk (1 < k < q - 1) and η(τ\ = Π sinτk.

Hence, we have

(sh(ί - ijψt = ε \ \
JO JSς-l

where D = cosτίd/dt - sim^cothψ - iμ)d/dτl. By integration by parts in the
above integral, we have the third equation of the Remark.

For the purpose of the construction of g-invariant hyperfunctions, we
consider the following integral;

Γb Γ
χ(z, w α, b) = - i\ ewzco*e-i<»,q>sine) ( _ ίsing)«- 1 dθdη.

Ja J 5.3-1

It is easily seen that χ(z, w; α, b) is an entrire holomorphic function on C1+q for
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any fixed (α, £?)e/?2. Moreover one can see that χ satisfies the following

differential equations;

= 0,

jχ = \ [( - isinβ)β-1

Jsβ-1

Here we obtain the third equality by the same calculation as in Remark on

Lemma 2.1.

Put χ^z, w) = χ(z, w; 0, μ\ χ.^z, w) = χ(z, w; π - μ, π) and φe(z, w)
= ι^ε(z, w) 4- χe(z, w) for each ε. Then φε is a holomorphic function on ί/(ε) by

Lemma 2.1. Moreover, from the definition of φε, it is clear that φε satisfies the

following differential equations;

- wkd/dWj)φε = 0 (1 < j < q, 1 < k < q)9

Now we discuss the representation of φε in terms of special functions. Let

Kv(z) be the modified Bessel function of order v.

LEMMA 2.2. For any (z, w) e l/(ε), we have

Γί "Jθ Js^-i

= cq(- z2 + <w, w»-^-1)/4X( ίZ_1)/2((- z2 + (w^))1/2),

= π~1/22(9~1)/2Γ(^/2) (Γ(z) w /Λe gamma function).

PROOF. The right-hand side of the above equality is an infinitely multi-

valued holomorphic function. But it is easily seen that one can choose a single

valued branch of the function on U(ε\ because {Im( - z2 + <w, w» = 0, Re

( — z2 + <w, w» < 0} n U(ε) = φ. Since both sides of the equlity are holom-

orphic on U(ε\ it is sufficient to prove that the above equality is true over the

following real locus z = z(r, u) = ΐεrcosw, w = w(r, u, α) = rαsinw, where r > 0,

|u I < π/2 and αeS*"1. By easy calculation,

,u)cht + < w(r,u,α),»/>shί] /s[jΛ«
Γ* Γ

eiλ[εz(r,

J O J 59 - i

o Jo
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where c'q = n~1/2Γ(q/2)/Γ((q - l)/2). But one can easily see that the above

integral is independent of the value u. Indeed, since

(d/du + icosτd/dt - ismτcothtd/dτ)e-rcosucht + ircosτsinusht = 0

and

ΓΓJo Jo
(cosτd/dt - smτcothtd/dτ)eHo(t'τ;r'u)(smτ)q~2(sht)q~1dτdt = 0,

I

where HQ(t, τ; r, w) = — rcoswchί 4- ircosτsinwshί, we have

α°° Γ \
βί[«(r.«)βlιl + <w(r.«.τ).,>.hfl(sht)g- 1 fyft = Q

3 Js*-1 /

On the other hand, it is well known that for any r > 0,

fJo

Thus the equality of Lemma 2.2 is true over the above real locus. This
completes the proof of the lemma.

PROPOSITION 2.3. For each (z, w)el/(ε), we have

φε(z, w) = cq(λ2(- z2 + <w, ^)Γ(q-l)/4K(q.1)/2((λ2(-z2 + <w, w)))1/2).

PROOF. Let U(? = {(z, w) e C1 +q (λz, Aw) e l/(ε)}. Then it is clear that if λ

is not zero, (7(

λ

ε) is holomorphically isomorphic to U(ε) and (7(

Λ

ε) n U(ε} is not

φ. By Cauchy's integral formula, for each (z, w) e t/(

A

ε) n U(ε\ we have

eiλ[ε

JO Jsβ-ι'S'

-'ΓίJθJ S q-l

+
Γ00 Γ eW[«chr

JO Js«-ι

Thus from the definition of φε,

φε(z9 W) = Γ Γ
Jθ Jsί-1

for each (z, w)6ί/ (/ }n U(ε). This implies that φε is analytically continued from
ί/(ε) to l/(

λ

ε). Hence from Lemma 2.2,

φt(z, w) = c,μ2(- z2 + <w, w»Γ«-WK(q-l}l2((λ2(-z2 + <w, w)))1/2).
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Therefore the proposition is proved,

COROLLARY 2.4. φε can be analytically continued over {(z, w); — z2

+ <w, w> = 0} but is not holomorphίc on any neighborhood of the point

(z, w)eC1 + < z scuh that - z2 + <w, w> = 0.

PROOF. From the definition of the modified Bessel function, the corollary

is clear.

Now, we give spherical hyperfunctions by means of the elements of the

Ceck cohomology Hq(W \ (9\ For given Wj (l<j<q+l) in τT ; and a

holomorphic function φ on W1n-"Γ\Wq + l9 we denote by [_(W± n •••Π Wq + 1 φ)]

the element in Hq(W\ 0) which is defined by the following g-cocycle;

wh n ••' n wjq + ι> sβn ' "" <P (otherwise; 0 ) ,

where sgn σ is the signum of a permutation σ.

Let/o = [(l/(1)Π K^n ••• Π V™\ χ(z, w; - π, π))]. Then it is clear that/0 is
a real analytic function on R1+q andf0e^°(Rl+q). For each εe{l, - 1}, we

define gε = [(L/(ε) Π V{1} n Π Vγ> εφε)] .

REMARK. The hyperfunction gε may be defined by the element; [(l/(ε)n

n ΓlK^; ε( Π ^ )Φε)] for fixed η = (ηj) fa,ε{l, - 1}), because

for any holomorphic function φ on U(ε\ Indeed, let ψηj be a q — ί cochain

defined as follows;

n K^^Π - n Vγlι*n ^ί^n - n F^; ( - 1)>), (otherwise 0)}

for >/ = ( f / l 9 . . . , ^_!, f/ j + i,..., )̂ (̂  e{l, - 1}) and 1 <; <^. Then

n 7(ϋι) η . . . n V(ηj) n . . . η J/W φ)]

+ [(i/(ε)n K^n ••• n Kj-^n ••• n κ^}; φ)]

Here δ is the coboundary operator.

PROPOSITION 2.5. For eαc/z εe{l, - 1}, gεe^°(R1+q). Moreover, S.S gε

= {(*, y; /(ε/21/2, 17)00); x2 = \\y\\, ^η\\ = 1/2, xη/2^2 4- εy = 0 (1 < 7' < g)}.

PROOF. It is clear that gεe^°(R1+q) from the definition of gε. From

Sato's fundamental theorem (see [12]), we have that
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S.S gε ci {(x, y; i(a, 6)00); a2 - \\b\\2 = 0, ayj + fyx = 0,

But, as seen from the definition of gε, if (x, y; i(α, fr)oo)eiS.S gε then α2 = 1/2,

= 1/2 and a = ε/21/2. Thus

S.S gε c {(x, y; ΐ(ε/2^2, ι/)oo); x2 = || j||2, N i l 2 = 1/2,

xηj/2ί/2 + ,yj = 0(l<j<q)}.

Conversely, it is easily seen that gε is not microlocally analytic at the point

(x, y; ί(ε/21/2, η)oo) in ^/~^lS*Ri+q such that x2 = \\y\\2, xηj/21'2 + εyj = Q

(1 <j<q) and ||?;||2 = 1/2 from Corollary 2.4. Therefore the proposition is

proved.

r -1 0-. r l . Oi
Let Λ! = 1 . , k2 =\ ' i . Then /c, eG and G = G0

L 0 ' 1 J L O _ j j

U ki GO U fe2^o U fc1k2G0. For any hyperfunction / on Λ1 +4, we denote by /kj the
pull back of / by the transformation x -> /c^ x.

PROPOSITION 2.6.

1) /O1 =/0

2) /k

0

2-/o

PROOF. Since χ( — z, w — π, π) = χ(z, w — π, π).

/o1 = - [(^-^ΠF^n-nK^; χ(z, w; - π, π))].

Let (̂  be a g — 1 cochain defined as follows

ψ = {(ί^D n Fγ> n n K<1} χ(z, w - π, π)), (otherwise 0)} .

Then it is easily seen that /0 — /o1 = [W)] = 0. Hence /o1 =/0 Since

( - z, w) = ιA-ε(z> w) and χε( - z, w) = χ_ε(z, w), we have

Therefore 1) of the proposition is proved. Since

χ(z, w l 5 , - wg; - π, π) = χ(z, w l 9 , wq; - π, π),

-^ χfew!,-, -wβ; - π, π))]
l

Π
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Let ψ' be a q — 1 cochain defined as follows;

Π ^υ); *(*, H>; - π, π)), (otherwise O)}.
i <./<<? -i

Then it is easily seen that/0 - fk

0

2 = [W)] = 0. Hence /0 = fk

0

2. Since φe(z,
— w) = φε(z9 w), we obtain </*2 = gε by the same proof as fk

0

2 = /0. Therefore 2)

of the proposition is proved.

PROPOSITION 2.7. /0, gί and g_^ are linearly independent.

PROOF. From Proposition 2.5 and S.S f = φ, the assertion is clear.

Now, we give a basis of ^°(R1+q) and Jf (Λ1+β), since Cerezo proved in
[2] that dim @G°(R1+q) = 3 and dim @G(R1+q) = 2. We define hyperfunctions

fj (1 <7<2) as follows;

/ι=(<7ι+<7-ι)/2 and /2 = (̂  - g.J/2.

THEOREM 2.8. 1) {/,.; 0 < j < 2} is a basis of &°°(R1+q).

2) {/,.; 0 < j < 1} is a basis of <%°(R1+q).

PROOF. From Proposition 2.7 and the fact that dim @°°(R1+q) = 3, 1) is

clear. By Proposition 2.6, /0 and fί are both G-invariant. Conversely, from

Proposition 2.6 and 2.7, one can easily see that for any/e J^(/?1+ί) there exist

complex numbers α0, α t such that /=α 0/ 0 + #1/1. Therefore 2) of the
theorem is proved.

REMARK 1. Let Gl = G0U/c2G0 and G2 = G 0 ufcιfc 2 G 0 . Then G7 is Lie
subgroups of 0(1, 4) and G2 = SΌ(1, ^f). Let ^j(Rί+q) be the vector subspace

(c #?°(Λ1+«)) of all Grinvariants in Λv(Λ1+β), for j = 1, 2. Then it is clear

that @f(R1+q)^@°2(Rl+q) and J>?1(^1+4) c ̂ °(Rl+q\ But from Propo-
sition 2.6 and Theorem 2.8, we have

REMARK 2. Since /21 = - /2 from Proposition 2.6,

is the irreducible decomposition of the respresentation over &G°(Rl+q) with

respect to the finite group {e, fcj.

§ 3. p> 1 and r̂ > 1

In this section, we give spherical hyperfunctions using integral repesent-
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ation for the case p > 1, q > 1. That is G = 0(p9 q) and G0 = SO(p, q). For

each εe {1, - 1} and j (1 < j < p\ we denote by Uf the set of all (z, w)e Cp+q

(here ze Cp and we Cq) such that εlmz; > || Imz ||, where z = (z1? ... , zp) and see
§2 for the notation || || and Im. Put 7j±υ = {(z, w)eCp+q', ± Imvv,- > 0}, for
1 <j < q. Then Uf and Vf are both convex in Cp+q. Let

ιr' = {l/f;εe{l, -1}, 1 <j < p}θ{Vf εe{l, -1}, 1<7<<?}

and 7Γ = W\){Cp+q}. Then it is easily seen that (iT\ iT"') is relative Stein

covering of (Cp+q, Cp+q\Rp+q). (For the relative Stein covering, see [7]).
Indeed, from the definition of V(f\

(U{Ff εe{± 1}, 1 < j < q})c c {(z, w)eCp +«; Imw,. = 0(1 <j < q)},

where Ac is the complement of a set A. But since

{(z, w)eO>+«; Imz,. Φ 0, Imwfc = 0 (1 < k < q)} a U^U t/J'^ for each 7,

we have Cp+Λ/?p+ί c \]{W\ WeW}.

Let ^ = (0, - , 1, , 0) e Rp. For each ε = (εl9 , εp) such that ε, e

{- 1, 1} for 1 < j<p, we denote by Sε the set of all ξ in Sp~1 such that
<£, ε .̂̂  ) > 0 for any j (1 < j < p) (for the notation < >, see §2). For each ε
= (εl9 ••• , εp) let Dε be the set of all (z, w)e Cp+q such that <Imz, O + <Imw, ?/>
> 0 for any ξ in Sε and 77 in Sg-1, where Imz = (Imz1? ... , Imzπ) for each z in

C\

LEMMA 3.1. Dε = f| U(fj} for any ε = (εl9 •-• , εp).

PROOF. Since &jejeSε for any 7 (1 <j<p) and the minimum value of
<Imw, f/> (^eS9"1) is - ||Imw||, if (z, w)eDε then <Imz, ε^ ) > ||Imw||. Hence

(z, w)eU(fj} for any 7 ( !<7<p). Therefore Dε c= f| l/J5^. Conversely, if
'

(z,w)e Π U(fj) then ε^ Imz^ > ||Imw|| for any j (1 <j < p). It is easily seen
ι<;sp

that <Imz, O > | |Imw|| for any ξεSε and (z, w)e Q U(fj)- Indeed, since

+ +epξpϊ>l for any

<Imz, {>

for any ξ e Sε and (z, w) e f) U fj}. Hence (z, w) e Dε, because the minumum of
1^7<P

<Imw, ιy> (^eS^'1) is - | |Imw||. Therefore Dε ^ Π U(fj}. This completes

the proof of the lemma.

Put Δ(z) = Δ(z\ p, q) = (chz)p~1(shz)q~1 and πε = ε tε2 ••• εp. (See §0 for
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the notation; ch, sh.)

LEMMA 3.2. For each ε = (εl9 , εp) (εye{l, - 1}), the integral

ψε(z, w) = πε I °° I I ew<* t>*w-w + <»«> w-w/i(t _ ίμ)dξdηdt
J° JSeJs*-1

converges absolutely and uniformly on every compact subset of Dε and is
holomorphic on Dε. Here dξ (dή) is the normalized SO(p)-inυariant (SO(q)-

invariant) measure on Sp'1(Sq~1) such that dξ = 1 ί dη = 1 I,
JSP-I \Js9~ 1 /

respectively.

PROOF. Since

Re{α[<z, Och(ί - iμ) + <

= - μ||VIm«z, O + <

the lemma is clear.

For each (a,b)eR2 and ε = (εl5 •••, εp) (ε</e{± 1}), we denote by
χε(z, w; α, fc) an entire holomorphic functin on Cp+q defined by the following
integral

iπε

Ja J Sε J 59 - i

Put φε(z, w) = ψε(z, w) — χε(z9 w; 0, μ). Then, by Lemma 3.2, φε is holom-
orphic on Dε for any ε. Moreover, from the definition of φε, it is easily seen
that φε satisfies the following differential equations

<pε = - λ2φe,

(\Vjd/dwk — wfc5/5wj)φε = 0 for any 1 < , k < q.

Put H(z, w; ξ, η, t) = <z, ξyφt + <w, >/>shί for (z, w, ξ, η, t)εCp x Cq x Sp 1

x Sq-1 x C. Then /f is holomorphic with respect to the variables (z, w, ί) and
real analytic with respect to the variables (ξ, η). For fixed ξ in Sε9 we denote by
/ι(z, w ξ) a holomorphic function on Dε defined by the following integral:

A(z, w ; ξ ) = j I eiλH(z^ξ^t-iμ)A(t-iμ\p,q)dηdt
Jθ JSς-l

f" f .a , .
- i ^IAH(z,w;ξ,,,-lζ)z|( _ -.0 g)d|,df.

JoJs.-i
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Then h is real analytic with respect to ξ in Sε and we have

Φε(z,w) = π ε ί h(z9w9ξ)dξz9 w) = πe A(z, \v;
JSF

for any (z, w)eDε.

For the purpose of the proof of the rotation invariance with respect to the

variables (XI, ,XP), we use the following coordinate system on the sphere

ξp_ί(θ) = smθίsmθ2 •• sin0p_2cos0p_1,

£p(0) = sinθ! sin 02 •• sin0p_2sin0p_1,

where 0 < θj < π (1 < < p - 2) and 0 < 0p_ 1 < 2π. It is well known that the

normalized »SΌ(p)-invariant measure dξ is represented with respect to this

coordinate as follows;

Set /(1) = /(1 1> = {θ;0^θ^π/2}, I(~l) = I(~1Λ) = {0; π/2 < 0 < π}, H1--"

= {0; 3π/2 < 0 < 2π} and / (~ 1 '~ 1 ) - {0; π < 0 < 3π/2}. Then it is easily seen

that for any ε = (εl5 ••• , εp) we have

Sε = {(^(0), - ξp(θ)); θjEl^(l <j<p-2\ θp^el^-^}.

Indeed, since if (^(0), ••• , ξp(θ))eSe then ε^ (0) > 0 (1 < j < p\ we have

ε7 cos0; > 0 (1 < j < p - 1) and εpύnθp_^ > 0. Hence θjEl(εj) (1 < j < p - 2)

and θp_, e /< p-ι «p> if and only if (^(0), - , ξp(θ))eSε. Put

S<k> = {ξ(θ)<ESε',θk = π/2} for each fce{l, ••• , p - 2}

where ξ(0) = (^(0), - , ξp(θ))9 aε = 0 if ε^ = βp = 1, αe = 2π if ε,-! = - εp = 1

and aε = π if &p_ι = — εp = — 1 or ε p _ x = εp = — 1. Then one can easily see

that dSε = \J Sε

fc) for each ε, where dSε is the boundary of Sε. Indeed, by
l<k<p

virtue of the definition of Sε

fc), we have Sf> = Sεn{ξk(θ) = 0} for any ε and k

(1 < k < p). We equip the sphere Sp-1 with the orientation which is induced

by the canonical orientation of (0; 0 < 0 < π}p~2 x {0; 0 < 0 < 2π} and the
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map

Moreover, for any ε and k (1 < k < p\ S^ can be equiped with the orientation
which is compatible with the above orientation of Sp~1.

THEOREM 3.3 (Stokes). Let ω be a differential form of the degree p — 2 on
Sp~\ then for any ε = (εl5 ••• , ep)9

f dω = £ ( - iy+ 1 ε, f ι*» + ( - !)%_ l£, f i*,. ̂ ω)
Jsε l<j<P~2 Js<j) JS(P-D

Js<

where ιεj is the inclusion map from S(

ε

j) to Sp 1 for each ε and j and ιfj(ω) is the

pull-back of ω by the map ιεj.

Now, we consider the natural action of SO(p) on Rp. Then the sphere
Sp~1 is stable under this action. Let f = so(p) be the Lie algebra of the Lie

group SO(p). For each 7 (1 < 7 < p — 1), set

Ej = (aίk) and KJΘj) = exp θjEj9

where

0 if (i,fc)* (Λ7+1), (7+1,7)

-1 if (i,fc) = (7,7+1)

and exp is the exponential map of f into SO(p) and θ/e J?. Then one can easily

see that

where 1A is the transpose of a matrix A and eγ = (1, 0, •••, 0).
For each k (1 < k < p - 1), we define the vector field Xk (X'k) on Rp (Sp~1)

such that

(Xkf)(x) = - -

a

f(e\p(tEk)x) for any /e C°

f(cxp(tEk)ξ) f o r a n y / 6 C °
ί = 0

for any xeR" (ξeS"'1), respectively. Then
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d d
xk = *fc+ι Λ *fc Λ for any k (1 <k <p- 1)

oxk v*k + ι

and

X'k = cos0k+1 — - cotθksmθk+l — (1 </c < p - 2),->Λ K K- |- I^V v--^ v _ ^ r -,, — p-! ~

Oϋk

 oxk+l Oxp-l

Indeed, the first and second assertion for k = p — 1 are simply seen. For the
second assertion except for k = p — 1, we need some calculations. Since
Kk(t)Kj(θj) = Kj(θj)Kk(t) for j > k + 2, we have

ι(θk + ι)Kk(ΘJ-Kι(θι)

On the other hand, we can choose θk = 0k(ί, 0k, 0k+1), Sk+l = θk+ΐ(t, 0k, θk+i)
and φ = φ(t, 0k, θk+ί) such that

f /^\ ΎS ίΓ\ \ Ύf ( f\ \ JΛ (Ά \ r̂ - /5 \ If (fn\

Γ±k(l)J\.k+ ι\(/k+ ι)J^k\yk) — ^* Jlc+ 1 \"k+ l)^k\"k)^k+ 1 \Ψ)

In fact, such $k, θk + 1 are given as follows;

. = cosίcosθk — sinίsinθkcosθk+1,

= sinίcosθk -f cosίsinθ cosθk + 1,

L = sinθksinθk+1.

Hence dθk/dt\t = 0 = cos0k + 1 and dθk + 1/dt\t=0 = — cotθksinθk + 1. Since
Kk + 1(φ)Kj(θj) = Kj(θj)Kk + 1(φ) for j < k — 1 and Kk + ί ( φ ) te1 = *ev for
1 < k < p — 2, we have the second assertion.

Since Xk is a real analytic vector field on Rp, we can extend it on the
holomorphic vector field on Cp, uniquely. In this section, we use the same
notation Xk for such a vector field. Let F be a C°°-function on C. Set G(z, ξ)

= F«z, O) for zeCp and ξeSp~l. Then we have XkG(z, ξ)
= X'kG(z, ξ). Indeed, snce < > is S0(/?)-invariant,

d

dt
G(exp(tX)z, exp(tX)ξ) = 0 for any Xet.

ί = 0

Here we extend the action of SO(p) on Rp to Cp, naturally. Hence we have the
assertion from the definition of Xk and Xk.

Put ω(0) = Γ(p/2)/(2πp/2) (sinθ1)
||-2(sinβ2)

l>-3 ••• (sinθp_2). Then d{
= ω(θ)dθl Λ ••• Λ dθp_l. We denote by ί(X)(ω) the interior product of X and
ω.

LEMMA 3.4. We have



320 Atsutaka KOWATA

l(X'k)(dξ) = (- ^-

k+l
- dθk+l(X'k)dθί Λ - - v Λ dθp-J (for any k(\<k<p- 2))

and liX'p.Jidξ) = (- l)"ω(θ)dθl Λ ••• Λ dθp-2,

2) for any ε and j (!<;'< p)

ι*j(ι(X'k)(dξ)) = δkj(- ί)k-1ί

(for any k (1 < k < p - 3)),

ι*j(ι(X'p.2)(dξ))

= δp.2J(- l)p-3l Λ .- Λ Λ

Λ ... Λ

where dθ^ Λ -..v.» Λ

the Kronecker's δ.

.^ = dθ1 Λ ... Λ
k-ι Λ Λ ... Λ dθp.ί and δkj is

PROOF. 1) Put ι(Xβ(dξ)= X aj(θ)dθί Λ -. v .. Λ dθ^^ Then we
1<7<P-1

see from the definiton of the interior product that for any j (1 < j < p — 1),

aj(θ) = ω(0)det

- dθ,(

dθ.-.(

Xΰ c1

A ί) cn_

,ι •'• c

.1 •" Cn

1J-1 Cl

-1.1-1 C_

.7+1

-IJ+l -1.P-1 J

where c ί f j = dθ^d/dθj) and det ^4 is the determinant of a matrix A. Since c f j

= ^.(δ/k) = δitj (1 < i,7 < p - 1), if 1 < k < p - 2 then ak(θ) = (- l)k~^(9)
dθk(X'k\ ak+1(θ) = (- l)kω(θ)dθk+1(X'k) and 0/0) = 0 for 1 < j < k - 1, k + 2 <

j < p - 1. If k = p - 1 then a^^θ) = (- l)pω(θ) and aj(θ) = 0 for 1 < 7 < p
— 2. Thus 1) of the lemma is proved.

2) From the definition of ifj and 1), 2) is easily obtained.
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Now we recall the functions φε, h and the vector field Xk on Rp or Cp. In

view of the remark on the vector fields Xk and X'k9 we have

Xkφε(z, w) = πε (Xkh)(z, w; ξ)dξ for any ε and k.
Jsε

Let Lχf be the Lie derivative over Sp~1 with respect to Xk. Then Lx,(dξ) = 0,

because dξ is an invariant measure. Hence we have for any ε and fc,

f (*;Λ)(z,.w; £)# = f L^Wz, w;
>s Jsε

for (z, w)eZ)ε.

Let d be the exterior derivative over Sp~1. Since

Lx>k = d° ι(X'k) + ι(JQ o d and d(hdξ) = 0,

we have for any ε and k.

ί Lxί(h(z, w; ξ)d{) = f d(ι(X$(h(z9 w; Qdξ)) for (z, w)eDε.
Jse Jsε

Thanks to Stokes' Theorem 3.3 and from Lemma 3.4, we have

LEMMA 3.5. For any ε and (z, w)eDε,

(Xkφε)(z , w) = εtπε f [h(z, w;
Jsw

f

- εk + 1πε [h(z, w;
Js^k + 1>

t+1

ξ(θ))ω(θ)Cotθk]θk+1=π/2dθ1 ••?••

(/or any k (1 < fc < p - 3)),

z, w) =

_ 2 π ε f [Λ(z, w;
J S|.P ~ 2)

ξ(θ))ω(θ)cosθp-1]βp_2m,l2dθ1

-ιεpπε ί [Λ(z, w; {(
Js(.p-i)

-ep-ιβpπ. I [Λ(z, w;
Js^)
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Set Y = w1d/dz1 + z13/3w1. Then it is easily seen that

{Y- D(t, Θ19 τ l 9 d / d t , d/dθl9 d/dτj] e

ίλH(z^ξ(θ^(τ^-ίμ) = 0,

where D(ί, ξ, η) = D(ί, Θi9 τ1 δ/3f, d/d01? S/βτJ = cosθ^cosτ^/dt — sinτίcosθ1

coth(ί — iμ)d/dτl — sinί^cosτ^anlψ — ίμ)d/dθ1 and η(τ) = (^(τ), ••• , ^(τ)) (e
S^"1) is defined in a way similar to ξ(θ).

Let ωp(θ) = ω(θ) and ω€(τ) be defined in a way similar to ωp(θ). Then Λy
= ω^ίτjdτ! Λ ••• Λ dig-!. Now, we calculate Yφε. First we have

r^ε(z, w) = πε (D(ί, ξ, jy)ettH(z,wtf,i| ff M)A(t - iμ)dηdξdt
Jo Js εJs«-ι

= π£ f f [J(t - i(

JseJs*-'

-ΓίίJO JS JSς-l

-•Π ίJo JS εJs«-ι

— ε^g t;(0r, τ, ί)^(ί — ιμ)th(ί — ίμ)cosτ1dθ2

Jθ Js(i)Js«-ι

+,.rJo

dt

eiλH A(t — iμ)coth(ί - iμ)cosθl^—(sinτlωq(τ))dξdηdt

eiλH A(t — ΐμ)th(ί — iμ^cosτ^ -—(sin^iC

where υ(θ'9 τ, ί; z, w) = υ(θ'9 τ, ί) = [ωp(0)ίλH( 'ί~I>)]βl=π/2 and th(ί) = tanh(ί).
But

dA(t - iμ)
p p dt

+ A(t — iμ)coth(ί - iμ)cosθ1ωp(θ) ^—(smτlωq(τ))

d
+ A(t — iμ)tanh(ί — iμ)cosτ1ωq(τ)——(smθ1ωp(θ)) = 0.

Thus we have

Yψ&
, w) = - πε gίAH(z,W;ί(β),,(t).-iμ) A(_ iμ. ^

J s ε J s « - 1

- εxπ ε v(θ', η, ί; z, w)zf(ί - iμ; p - I, q + IJcosTi^ ~dθp-ldndt.
Jθ Js<i)Jsg-ι
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By the same calculation for Yχε(z, w α, b\ we have

Yχε(z9 w; a, b) =

- πε ί ί (V^< >-*)zf(- iζ; p, ^ϊicosβicosτ
JsεJs«-ι

- iβiπ. I I I 0(0', if, - if)Λ(- «C; P - 1, fl +
Ja JsίDJsί-1

Therefore we have

LEMMA 3.6. For αrcy ε α«rf (z, w)eDε,

- ^n, υ(θ'9 τ, ί; z, w)J(ί - iμ; p - 1, q + IJcosτ^ -'dθp-λdηdt
Jθ J^UjJsg-i

+ i£ιπε Γ ί ί Pίfl', τ, - iζ)Δ(- iζ; p - ί, q + I)cosτιdθ2 -dθp^dηdζ.
JO JsO) Jsβ-i

Now, we give spherical hyperfunctions by the elements of the Ceck
cohomology Hp+q~1(W', Φ\ Under the same notation as in §2, we put

/ = [(i/^n - n i/^n nυn - n v^; χ(z, w))],

where

χ(z, w) = I I f ew[<.,«>cβ<-ί<w.ι,>.inα zj( _ iζ ; p, q)dξdηdζ.
J - π J sε J 59 - i

Then it is clear that / is a real analytic function on Rp+q and
fε<%°°(Rp+q). Let

g = [(i7$">n - n ί/^

Then we have

PROPOSITION 3.7. ge@°°(Rp+q).

PROOF. It is clear that g satisfies the following differential equations;

Kd/dx,)2 + - + (d/dxj2 - (d/dyj2 ----- (d/dyq)
2lg = - λ2g,

(yjS/Syk - ykd/dyj)g = 0 for any 1 < j9 k < q.

Since the Lie algebra g is spanned by the differential operators xkd/xk+1

-xk + ld/xk (\<k<p-l\ ykSlyk+l-yk+ld/yk (\<k<q-\\ y1d/dxl

H- x1d/dy1, we must prove that
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(xkd/dxk+1 - xk+1d/dxk)g = 0 (1 < k < p - 1) and (y.d/dx, + x^/dyjg = 0.

First we prove that (xk + 1d/dxk — xkd/dxk+ί)g = 0. For each k

(1 < k < p\ set ε(fc) = (el9 9 ε f c _ 1 ? 0, εk + 1, ••-, εp), where e,je{ ± 1} for; φ k and

l/(ε(fc)) = Π t/Jej) for any 1 < /c < /? and ε(fc). Put

Γ k

φε(fc)(z, w) = εkπε [/z(z, w; ^(θ))co|7(θ)cosθk + 1]θk=π/2 rf^i •• v dθp-1

Js(.k)

(if 1 < k < p - 2),

Γ k

Ψε(k)(Z> W) = βfcπε C^(Z> W i ί(^))ωp(^)C°t^Jfe-l]θk = π/2 ̂ 1 * "V"' "^p-1
I V(K)

(if 2 < fc < p - 2),

where dθ^"-" dθp_l= dθ^-" dθk-^dθk + ̂ -" dθp-^ and

Φείp-l)^ W) = εp-lεpπε EMZ» W J ^(^))ωp(^)]0p- i =bε ^1 " m d θ p - 2 9

ε

ε

Ψε(P)(z, w) = ^p-iSpU, [/ι(z, w; ξ(0))ωp(θ)]β eeBd0! •• rf0p_2,
Js(p)

where feε = π(2 — εp)/2.

Then it is easily seen that φe(k) and ^β(k) are holomorphic on £/(ε(/c)) for

1 < k < p — 1 and 2 < fe < p, respectively. In fact, we see from the same proof

as in Lemma 3.1 that if (z, w)e U(ε(k)) then <Imz, ξ> H- <Imw, τ/> > 0 for any

ξe5ε

fc) and i eS*"1, where we set ε(fe) = (ε1? •••, ε k _ l 9 0, εk+1, •••, εp) for ε

= (ε1, , εp). Thus, by the same proof as in Lemma 3.2, φε(k) and ψB(k) are

both holomorphic on U(ε(k)). For each /c (1 < k < p — 1), let ck be a p + g — 2

cochain defined as follows:

{(I/(e(*)) Π nυ n - n ̂ > ( - l)fc + l φe(k}) for each ε(k),

(U(ε(k + l^nF^n- n^1*; (- l)*+1^(t+i>) for each ε(fc + 1),

(otherwise 0)}.

Then δ(ck) = {([/</" n - Π U<;>> n K</> n - n F*1') <pε()t) - ^ε(λ + υ), (otherwise 0),

for ε = (εl5 ••• , εp)}. On the other hand, by Lemma 3.5 and the definition of



On the construction of spherical hyperfunctions on Rp+q 325

<Pε(k) and Ψ*(k)> we have

= <Pε(k) - Ψε(k + v for any ε and 1 < fc < p - 1 .

Thus (xk+1<9/<3xk - xkd/dxk + l)g = [(5(cfe)] = 0 for any 1 < k < p — 1.

Next, we prove that (yίd/dx1 + x^d/dyjg = 0. For any ε(l) = (0, ε2, ••• ,

εp), let χε(i)(z, w) be the holomorphic function on Dε defined by the right-hand

side of the equality of Lemma 3.6. Then in a way similar to the proof of

Lemma 3.2, we see that χε(1) is holomorphic on U(ε(l)). Let c b e a p + g — 2

cochain defined as follows;

c = {(t/(ε(l))n nυn - n F<υ; χε(1)), (otherwise 0); for ε(l) = (0, ε2, - , εp)}.

Then

<5(C) = {([/<«ι> n - - - n U(^ n K^ n n V(

q

1} χε(1)), (otherwise 0)

for ε = (ε1, , εp)}.

Thus (yιd/dxl + x^/dyjg = 0, because Yφε = χε(1) for any ε = (ε1? ••• , εp).

Therefore the proposition is proved.

Now, we consider the singular spectrum of the hyperfunction g. For any

ε = (εl9 -,εp) (εj e{± 1}), let

= [U/(ιει)n - n ι/^n K^n - n

Then gf = Σβε ^OΓ eac^ ε and (χ> y)e/?/7+ί, let Γε(x, y) be the dual cone of
Dε(x9 y\ where Dε(x, y) = {(α, b)eRp+q; (x + iα, y + i&)eDε}. Here Γε(x, 3;) is

regarded as the subset of ^/- 1 TfXty}R
p+q. We put

A(x, y) = {pev^Π~S(*i,)*'+«; peΓε(x, y)}

for each ε and (x, y)eRp+q, where p is the projection of p e ^/ — 1 T(* 5);)/?p+9 to

/- i s*x

RP+q' τhen °ne can easily see that

) = {i(a, b)co εlaί + ••• + εpαp > \\b\\ and ε^ > 0 for 1 < j < p}.

In fact, if ε^ + - + εp£p > | | ι/ | | and εjζj > 0 ( !<7<p) then ξ^! +

η\\ H- f/A + ••• + ι?βfcβ > 0 for any (α, b)eDε(x, y). Conversely, if ξ1al + •••

+ ξpβp + »/ιbι + - + *lqbq > 0 for any (α, b)eDε(x, y) then ε^ + ••• + εpξp >

r\\η\\ for any 0 < r < 1, because we can choose (a, f?)e/)ε(x, y) such that 0j = ε,

and bj = - ηpΊ\\ η \\ for 0 < r < 1 and 1 < j < p. Thus ε1ξi + ••• + εp£p > || η \\

and ε^j > 0. In view of the definition of the singular spectrum, we have
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S S & c U ΓB(x, y) for each ε.

We put S = S(ι, ...,D, φ0(z, w) = φ(1,...tl)(z, w) and g0 = 0(lf... f l). We shall
prove that (0, 0; ί(α, b)ao)eS.S g0 for any (a, b)eRp+q such that ||α|| = | | i> | |

= 2~1/2 and 0,- > 0 for any 1 < j < p. Let

D0 = D(lf...tl) and Z^ = {(z, w)eCp+9; Rez, > ||Rew|| for any l<j<p}.

Put

Then φ; is a holomorphic function on Dj (j = 1, 2). Moreover, it is easily seen

that

φ0(z, w) = φ^z, w) - χ0(z, w; 0, μ - π/2) for any (z, w)eD0 n/>ι

by the same proof as in Proposition 2.3 (or Lemma 1.2), where χ0

= X i - i But we

PROPOSITION 3.8. Let (a,b)eRp+q be such that \\a\\ = \\b\\ Φ 0 and

| |α | |~ 1 f lES or — | |α| |~ 1αeS. Then φ± is not holomorphic on any neighborhood

of the point (z, w) = (ial9 •••, iap, ib^ - , ibq). Hence φ0 can't be analytically

continued to the previous point.

COROLLARY 3.9. (0, 0 ι(a, ί?)oo) e S.S g0 for any (a, b)eRp+q such that \\ a \\
2-1/2 andaj>Q(l<j<p).

PROOF. Since S.S g0 a U-Γ(ι,...fi)(x, y), the corollary follows from Propo-
sition 3.8.

For the proof of Proposition 3.8, we need some lemmas. Let N
= {1, 2, } and Jv(z) (tf™) be the Bessel function (Hankel) of order v.

Γ00

e-βsto(

Jo

LEMMA 3.10. If Re/? > |Imα|, veN and 2μe7Vu{0} then we have

t(cht)μ+1(sht)vJμ(<xcht)dt

= Cl(v, μ)(d/dpr{af(a? + β2)-*"2'114 je^l/2((«2 + β2)1'2)}

- Γ e-^2-1)1/2x"+1(x2 - If-!>/2 Jμ(αx)dx,
Jo

where c^v, μ) = (π/2)1/V(v+") and arg(x2 - 1) = π/2 if x < 1.
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PROOF. We put x = chί. Then

Γ°°
e-βsht(cht)μ + 1(sht)vJμ

Jo

(*ao

*Jι e~'<*2~1>"V +

On the other hand, it is well known that for Re/? > |Imα|

ΓJo

= (π/2)ll2eiπW(Λ2 4- /f2)-*'2-1'4 jT<?μ_1/2((α2 + 02)1/2),

where arg(x2 — 1)1/2 = π/2 if x < 1 (see [1]). This implies the lemma.

Let 17 be a relatievely compact open subset of C. Then for each α e C we
have

LEMMA 3.11. IfveN and 2μ e TV then there exists a positive number M such
that for any βeU\{ ± iα}

' {(α2 + β2Γμ/2^(2-}

μ((«2 + β2)112)} ~ c2(v,

+ jβ2Γv-^1,

where c2 = c2(v, μ) = (- l)v2v+μΓ(v + μ)/Γ(μ)Γ(l - μ) if veTV and μ
+ μ) ifveNandμeN.

PROOF. 1) Let μ- l/2eWu{0}. It is well known that

Jf(_2)

μ(z)= J.μ(z)-(-\γjμ(z).

Hence from the definition of J ±μ(z\ we have z~μ tf (2}

μ(z) =

Hence, we have

(d/dβT{(*2 +
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where uk(β) is a polynomial of β and the last term of the above equality is

uniformly convergent on every compact subset of C with respect to the variable
00

β. Thus there exists a positive number M such that | £ uk(β)(a2 + β2)k\ < M
k = 0

for any βeU. Therefore the lemma is proved when μ— l/2ejYu{0}.

2) Let μeN. It is well known that

where Nμ is the Neumann function of order μ. From the definition of Nμ and
the same calculation as 1), we have the lemma.

LEMMA 3.12. Let aεRp such that | |α | | ^0 and H α l Γ ^ e S or
— || a || ~ 1 a e S, we have

1) If (1 - p)/2 > v > - p - 4/2 + 3/2 then

lim <^+*-2>/2 I K^o + ifl, O2 + l | f l | | 2 l v ^ = 0,

•ί.2) lim ^+«-2)/2 <ίgQ + ίflj ξχ-ι [< 0̂ + ία, O2 + \\a\\2Γp~q/2 + 3/2 dξ / 0,

where e0 = (l9~ 9 l)eRp.

PROOF. For a positive number δ, we set

I(δ) -ί.
-ί. ia,

If II a || ~1 a e 5, then there exists an element /c(α) in SO(p) such that α

ία)^!. By the simple calculation, we have

•ί,
Jk(a)~l

I(δ)=\ \K(δ;ξ;aWdξ,

where

K(δ; ξ' a) = | |α| |2(l - <βl9 O
2)

Moreover, when | | f l | |~ 1 α6S, there exist real numbers pl (0<pι<π/2), ρ2

(π/2 < p2 < π) and a compact set C ( a [0, π]p~3 x [0, 2π]) such that
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); 0 < θ, < Pl or p2 < θl < π, (Θ2, -, θp-J

Of course, pi + (p2 — π)2 φ 0. When PI > 0, we set

/'(5)= Γί IX^ ίW ^Γωpίθ^-dVi'
Jo Jc

J'0) = Γ ί «5έ?o, *WO + i|l*IK*ι, ξ>Y'lK(δ; ξ ; a
Jo Jc

We put x = δll2cotθί. Then, by the simple calculation,

Γ(δ) = ^v + P/2-1/2 Γ Γ |Kι((5; χ? ^. fl

Jd(δ)Jc

j'(δ) = δ~d Γ ί K2(^; x, {'; a)"-1*^; x, ξ'; a)κ(δ
JdwJc

where

K,(δ; x, ξ'; α) = ||α||2 + 2i | |α | |x(f l / x

X2(^; x, ξ'; α) - α'δx + 5<β', ξ'> + i||

d = (p + q - 2)/2, K = - p - q/2 + 3/2, a' = | |fl|Γ ̂ ^ ^ = Φ)"1

Ksinej-1 and

Hence if - v - p/2 > - 1/2 then

lim δ-v-p/2 + 1/2r(^) = c| |α| | v χ-2v-'(||α|| + 2ίa'x2)vdx,
θ

lim 5^+«-2>/2J/(5) = ip- 1c| |fl | | (-«+ 1 ) / 2 xp+ί"3(.||fl| | + 2ia'x2)κdx,
ό^+O

where c = dξr. When p2 < π, we set

Λ
v

Jθ

Γ00

Jθ

= dξr.
Jc

Γ(5)= Γ ί \K(δ'9ξ(θ)'9a)Γωp(θ)dθl'"dθp^l9

Jp2 Jc

J"(«) = Γ f «teo, Φ)O + ilNKβi, O)""1^; ξ ; aΓ"-'"2+3l2dξ.
JP2JC

Then, by the same calculation as Γ(δ) and J'(δ), if — v — p/2 > — 1/2 we obtain
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Γ°
lim <5~v~p/2 + 1/2/"(<5) = c | |α |Γ (- *Γ2v~p(IH + 2ia'x2)vdx,

S-++0 J-oo

f°lim δ(p+q-2}/2J"(δ) = ίp-lc\\a\\(-q+1)l2 (- x)p+q~3(\\a\\ +2ίa'x2)κdx.
δ^+O J-oo

Hence if (1 - p)/2 > v > K = -p - q/2 + 3/2 then lim ^+«~2>/2/(5) = 0.

Therefore, if \\a\\~ laeS, we have 1) of the lemma. When - HαJΓ^eS, we

obtain 1) of the lemma by the same proof. Moreover, c φ 0 and

Γ°

J-

Γ((p + q- 2)/2)Γ((p - .„ -, , _ , ^ Q

Γ((2p + 9 - 3)/2)

Γ2WT

LIIΊIJ
since α' = || a \\ l ̂  α,- > 0. Hence we have 2) of the lemma when || a \\ laeS.

But when — || a \\ ~ x a 6 S we have the same. Therefore the lemma is proved.

In the proof of Proposition 3.8, we use the following notation. For each

w = (wx, ••• , w,)eC«, we set y(w) = ( X w?)1/2. Here z1/2 = (zl^V^^2 for
'

each z e C, where Argz is the principal value of argz. Then the notation γ is an

extension of the notation || || in §2.

PROOF OF PROPOSITION 3.8. For a positive number <5, we put z(<5) = (δ

+ ial9 ~,δ + ίap) and w0 = (ibl9 ••• , ibq). Then (z(δ\ \^0)eD1. It is well
known that

ί el<^
Jsβ-1

dη =

Since y(/lch(ί - φ)fc) = Ach(ί - iμ) \\b\\ = ch(ί - iμ)γ(λb ) /or Λ«y t > 0 and

beRq

9 we have

Φι(z(<5), w0) = c0

I f g-^aeo +

Jo Js

where c0 = i* + q ~ 2 2(q ~ 2)/2 Γ(q/2). Set

Λ0) = 4 I < 0̂ + iα, O'"1 [<&o + ̂  O
Js



On the construction of spherical hyperfunctions on Rp+q 331

I2(δ) = L(δ;ξ;a,b)dξ and
Is

ι = ίίtf ί
Js

= _(TL(^,
JsJo '

b)dxdξ
s

+ i f Γ le^"A( - it; q/2 + 1, p)J(4_2)/2(αch( - iί))]«-juιm dtdξ,
JsJo β = λ(Seo + ia,ξy

where c'2 = c2(p - 1, (9 - l)/2μ-p-"+2,

L(<5; ξ ; a, b) = [_(d/dβΓl{(«2 + )?2)(-"+1)/4^i2-'i+1)/2((a2 +

- c2(p -l,(q-

and

L1(δ;ξ;a,b) =

4_ α = λ | | f c | l
/? = A<5eo + ifl,ξ>

Then from Lemma 3.10, it is easily seen that

Φl(z(ό), w0) = c0 | |A&|| (-'+ 2 ) / 2{ci(/i(5) + /2(5)) + /3(5)}

Indeed, if RejS > |Imα|, Re e~μ(— β ± iα) < 0 and |μ| < π, we have

f0 0

/(α, β) = e-βsh(t-^(ch(t - iμ))v + 1(sh(ί - iμ))v' Jv (αch(ί - lμ))dt
Jo

= ί°° β-^hί(ch(ί))v+1(sh(ί))v' Jv(αch(ί))rfί
Jo

+ i Γ ^ihίf(ch(- iί))v+1(sh(- ίί))v'Λ(αch(- iί))Λ,
Jo

from Cauchy's integral formula. Hence, from Lemma 3.10,

/(α, β) = Cl(v', v)(3/3/Ov'{αV + j52)-<2v+1^^L2Uι/2((α2 + β2)112)}

_ Γ e-β(x2-i)^χV(χ2 _ 1)(V'-i)/2 jv(αx)ίίx

Jo

fμ

+ ί ^Shίί(ch( - iί))v+1(sh( - iί))v/ Jv(αch( - it))dt.
Jo

First, from Lemma 3.12 2), we have lim δ(p+q~2)l2 I^δ) φ 0. Secondly, from
<5->+0

Lemma 3.11, we have 3.11, we have



332 Atsutaka KOWATA

I
Js

eo + ίfl> ξ>2

Js

where M' = M\λ\~2p~q+5 (see Lemma 3.11 for M). Hence from Lemma 3.12

1), we have lim δ(p+q~2)l212(δ] = 0, if | |<ι|| = | | f t | | Φ 0 and U α l Γ ^ e

± S. Finally, since lim I3(δ) exists, we have lim δ(p+q~2}/2I3(δ) = 0. There-

fore

lim δ(p+q~2)/2 φι(z(δ\ w0) / 0.

Since (z(δ\ w0) -> (iaί9 •••, iap9 ibί9 , ibq) if δ -> + 0, Proposition 3.8 is proved.

Now, we have the following proposition from Corollary 3.9.

PROPOSITION 3.13. S.S g coincides with the following set A;

A = {(x, y; i(a, i)oo); | |α|| = \\b\\ = 2~1/2, ajxk = akxj9 bmyn = ymbn,

bmXj = — cijym for any 1 < 7 < A 1 < fc < p, \<m<q,\<n<q}.

PROOF. Thanks to Sato's theorem, we have S.S g c A. Put AQ = A n

{x = y = 0} and Al = A n {x Φ 0 or y / 0}. First we prove that S.S g n A0 Φ

φ. Indeed, from the remark of the singular spectrum of gε9 we have S.S gε n

{x = y = 0} ci Γε(09 0) for each ε and S.S g a S.S gε. But from the definition of

fε, (0,0; i(fl, b)oo)^fε, if ε /(!,-••, 1), | |α | | = \\b\\ =2~ 1 / 2 and ^ > 0 (for any

1 < 7 < p). Thus we have S.S g n A0 Φ φ from Corollary 3.9. We recall the

Lie group G0 = SO0(p, q) and it's natural action on Rp+q. This action induces

the action on ^/ — 1 S*Rp+q, naturally. It is easily seen that A0 is G0- stable

under this induced action of G0. Moreover A0 is G0-transitive.

Hence S.S g Γ ϊ A Q = A0. In fact, if peA0 and pφ S.S gΓ\A0, then for p0εS.S

gΓ\A0 (φ φ) there exists /ceG 0 such that p = kp0, because A0 is G0-transitive.

But, since S.S g is G0-stable, p^S.S gΓ\A0. This contradicts to pφS.S gΓ\A0.

Thus S.S g{]A0 = A0.

On the other hand, since the differential operator P = £ (d/dXj)2 — £

(d/dyk)
2 is simply characteristic, it is well known that the singular spectrum

propagates along the bicharacteristic curve of the Hamiltonian vector field

//σ(P), where σ(P) is the principal symbol of the differential operator P (see

[6]). Thus S.S gί]A1 = A±. In fact, it is easily seen that the bicharacteristic

curve through the point (α, 6; i(c, d)oo)e^/- lS*Rp+q is

γ ( t ; a, b, c, d) = (c^t + α l 9 •••, cpί + αp, - d^t + &ι, •-, - dgί + ̂  /(c, d)oo).
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Hence A1 c S.S g, since for any (x, y; i(a, b)cc)eA1 y(ί; 0, 0, α, b) through the

point (0, 0; i(a, b)co)eA0. Thus S.S g = A, since A = A0\jAί. Therefore the

proposition is proved.

We recall the Lie group G = 0(p, q). Then we have

PROPOSITION 3.14. / and g are both G-inυariant,

PROOF.

Γ -1 °1 Γ 1 •• °1
Let Λ! = 1 . , k2 = ' i . Then kjE G and G - G0

L o '' 1 -I L o - 1 J

U kί GO U k2G0 U k1k2G0. Hence it is sufficient to prove that fkj = f and gkj = g

(j = 1, 2). The proof of the /Cy-invariance o f/ is as the same proof of /0 in

Proposition 2.6. Since

ψε(-Zί9 Z29'"9Zp9 W) = - ^(-eι>e2>...,εp)(z, W)

for any ε = (ε l 9 --,βp), we have 0fcl - - [(C/ (f e ι )nl/ (

2

ε 2 )n - n t/^>n ̂ n - Π

V ( q } \ — Φ(-ει ..fip))] =^ Since φε(z, w) is /c2-invariant, we have gk2 = g. There-

fore the proposition is proved.

Finally, we have the following theorem.

THEOREM 3.15. If p > 2 and q>2 then

PROOF. It is clear that / and g are linearly independent from Proposition

3.13 and S.S f = φ. Therefore, from the Cerezo's result; dim &°(Rp+q)

= dim&°°(Rp+q) = 2 (p > 2, q > 2) and Proposition 3.7, we have the theorem.
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