On the construction of spherical hyperfunctions on R^{p+q}

Atsutaka KOWATA (Received March 16, 1990)

,

Introduction

We consider $SO_0(p, q)$ (or O(p, q)-invariant solutions u of the differential equation (p + v)u = 0, where $P = \sum_{1 \le i \le p} (\partial/\partial x_i)^2 - \sum_{1 \le j \le q} (\partial/\partial y_j)^2$ and v is a complex number. There have appeared several papers dealing with the above solutions in the sense of distributions ([4], [9], [10], [14]). On the other hand, we find as a corollary of the result of A. Cerezo [2]: the dimension of the space of O(p, q)-invariant hyperfunctions u on \mathbb{R}^{p+q} which are solutions of the equation (P + v)u = 0 is 2 and only $SO_0(p, q)$ -invariant is 2 if p > 1 and q = 1, or p = 1 and q > 1, 4 if p = 1, respectively.

In this paper, we call such hyperfunctions "spherical hyperfunctions" and will give integral representations of "spherical hyperfunctions". In the paper [3], Ehrenpreis' principle says that any solution u of a differential equation Pu = 0 with constant coefficients has an integral representation by a suitable measure on the variety defined by the polynomial $\sigma_T(P)(i\xi)$, where $\sigma_T(P)$ is the total symbol of P. Thus spherical hyperfunctions may be represented through integrals with respect to $SO_0(p, q)$ (or O(p, q))-invariant measures on the variety $\{(\xi, \eta) \in \mathbb{C}^{p+q}; \sum \xi_i^2 - \sum \eta_j^2 - v = 0\}$. But these integrals are not convergent at any point of \mathbb{R}^{p+q} . However, in his paper [11], Sato's idea enables us to justify these integrals. Thus we can construct spherical hyperfunctions except for p > 1 and q = 1. But when p > 1 and q = 1 we can construct spherical hyperfunctions in the same way as in the case of p = 1 and q > 1.

I would like to express hearty thanks to Professor K. Okamoto who taught me Sato's idea.

§0. Notations

Let G = O(p, q) and $G_0 = SO_0(p, q)$ for $p \ge 1$ and $q \ge 1$. Then both G and G_0 are acting on \mathbb{R}^{p+q} naturally. Let v be a non-zero arbitrary complex number and put $\mu = (1/2)\operatorname{Arg}(v)$ (Arg is the principal value) and $\lambda = |v|^{1/2}e^{i\mu}$, where $i = (-1)^{1/2}$. Then $-\pi/2 < \mu \le \pi/2$ and $v = \lambda^2$. Let $g = \mathfrak{so}_0(p, q)$ that is the Lie algebra of both G and G_0 . Let $\mathscr{B}^G(\mathbb{R}^{p+q})(\mathscr{B}^{G_0}(\mathbb{R}^{p+q}))$ be the space of all $G(G_0)$ -invariant hyperfunctions on \mathbb{R}^{p+q} , respectively. From Lemma 1 in [2], $\mathscr{B}^{G_0}(\mathbb{R}^{p+q}) = \mathscr{B}^{\mathfrak{g}}(\mathbb{R}^{p+q})$. Here $\mathscr{B}^{\mathfrak{g}}(\mathbb{R}^{p+q})$ is the space of all g-invariant hyperfunctions on \mathbb{R}^{p+q} . We denote by $\mathscr{B}^G_{\nu}(\mathbb{R}^{p+q})(\mathscr{B}^{G_0}(\mathbb{R}^{p+q}))$ the space of all $G(G_0)$ -invariant hyperfunctions f such that $P_{\nu}f = 0$, where $P_{\nu} = \sum_{1 \le i \le p} (\partial/\partial x_i)^2 - \sum_{1 \le j \le q} (\partial/\partial y_j)^2 + \nu$. In this paper, we denote by ch(t) (and sh(t)) the real analytic function $(e^t + e^{-t})/2$ (and $(e^t - e^{-t})/2$) on \mathbb{R} , respectively.

§1. p = 1 and q = 1

In this section, we give spherical hyperfunctions using an integral representation for the case in which p = q = 1. That is G = O(1,1), $G_0 = SO_0(1,1)$. For each $\varepsilon = (\varepsilon_1, \varepsilon_2)$, where $\varepsilon_i \in \{1, -1\}$ (i = 1, 2), we denote by U_{ε} the set of all $(z_1, z_2) \in \mathbb{C}^2$ such that $\operatorname{Im}(\varepsilon_1 z_1 + \varepsilon_2 z_2) > 0$, where Im z is the imaginary part of $z \in \mathbb{C}$. Let

$$\mathscr{W}' = \{U_{\varepsilon}; \varepsilon = (\varepsilon_1, \varepsilon_2), \varepsilon_i \in \{\pm 1\} (i = 1, 2)\} \text{ and } \mathscr{W} = \{C^2\} \cup \mathscr{W}'$$

Then it is easily seen that $(\mathcal{W}, \mathcal{W}')$ is a relative Stein covering of $(\mathbb{C}^2, \mathbb{C}^2 \setminus \mathbb{R}^2)$ (see [7] for the relative Stein covering).

LEMMA 1.1. For each $\varepsilon = (\varepsilon_1, \varepsilon_2)$,

$$\psi_{\varepsilon}(z_1, z_2) = \int_0^\infty e^{i\lambda[\varepsilon_1 z_1 \operatorname{ch}(t - i\mu) + \varepsilon_2 z_2 \operatorname{sh}(t - i\mu)]} dt$$

converges absolutely and uniformly on every compact subset of U_{ε} and holomorphic on U_{ε} . Moreover, ψ_{ε} satisfies the following differential equations on U_{ε} ;

1)
$$((\partial/\partial z_1)^2 - (\partial/\partial z_2)^2)\psi_{\varepsilon} = -\lambda^2 \psi_{\varepsilon},$$

2) $(z_2 \partial/\partial z_1 + z_1 \partial/\partial z_2)\psi_{\varepsilon} = -\varepsilon_1 \varepsilon_2 e^{i\lambda(\varepsilon_1 z_1 \cos\mu - i\varepsilon_2 z_2 \sin\mu)}.$

PROOF. It is seen that the above integral converges absolutely and uniformly on every compact subset of U_{ε} and holomorphic on U_{ε} , because

$$\operatorname{Re}\left[i\lambda(\varepsilon_{1}z_{1}\operatorname{ch}(t-i\mu)+\varepsilon_{2}z_{2}\operatorname{sh}(t-i\mu))\right]$$

= $-|\lambda|\left[\operatorname{e}^{t}\operatorname{Im}(\varepsilon_{1}z_{1}+\varepsilon_{2}z_{2})+\operatorname{Im}\overline{\operatorname{e}}^{t+2i\mu}(\varepsilon_{1}z_{1}-\varepsilon_{2}z_{2})\right]/2.$

It is easily seen that ψ_{ε} satisfies the differential equations 1) and 2), because

$$(z_2\partial/\partial z_1 + z_1\partial/\partial z_2 - \varepsilon_1\varepsilon_2\partial/\partial t)e^{i\lambda(\varepsilon_1z_1\operatorname{ch}(t-i\mu) + \varepsilon_2z_2\operatorname{sh}(t-i\mu))} = 0.$$

Therefore the lemma is proved.

For each $\varepsilon = (\varepsilon_1, \varepsilon_2)$, we denote by V_{ε} the set of all $(z_1, z_2) \in \mathbb{C}^2$ such that

 $\operatorname{Re}(\varepsilon_1 z_1 + \varepsilon_2 z_2) > 0$. Here Re z is the real part of z.

LEMMA 1.2. ψ_{ε} is analytically continued from U_{ε} to $V_{\varepsilon} \cup V_{-\varepsilon}$ but is not holomorphic on any neighborhood of the point $(z_1, z_2) \in \mathbb{C}^2$ such that $\varepsilon_1 z_1 + \varepsilon_2 z_2 = 0$.

PROOF. Applying Cauchy's integral formula, for R > 0, we have

$$\int_{0}^{R} e^{i\lambda[\varepsilon_{1}z_{1}\operatorname{ch}(t-i\mu)+\varepsilon_{2}z_{2}\operatorname{sh}(t-i\mu)]} dt$$

$$= i \int_{0}^{\pi/2} e^{i\lambda[\varepsilon_{1}z_{1}\operatorname{ch}(i\theta-i\mu)+\varepsilon_{2}z_{2}\operatorname{sh}(i\theta-i\mu)]} d\theta$$

$$+ \int_{0}^{R} e^{i\lambda[\varepsilon_{1}z_{1}\operatorname{ch}(t-i\mu+i\pi/2)+\varepsilon_{2}z_{2}\operatorname{sh}(t-i\mu+i\pi/2)]} dt$$

$$- i \int_{0}^{\pi/2} e^{i\lambda[\varepsilon_{1}z_{1}\operatorname{ch}(R-i\mu+i\theta)+\varepsilon_{2}z_{2}\operatorname{sh}(R-i\mu+i\theta)]} d\theta.$$

One can easily see that for each $(z_1, z_2) \in U_{\varepsilon} \cap V_{\varepsilon}$ the last integral converges to 0 when $R \to \infty$. Therefore for each $(z_1, z_2) \in U_{\varepsilon} \cap V_{\varepsilon}$ we have

$$\int_0^\infty e^{i\lambda[\varepsilon_1 z_1 \operatorname{ch}(t-i\mu)+\varepsilon_2 z_2 \operatorname{sh}(t-i\mu)]} dt$$
$$= i \int_0^{\pi/2} e^{i\lambda[\varepsilon_1 z_1 \cos(\theta-\mu)+i\varepsilon_2 z_2 \sin(\theta-\mu)]} d\theta$$
$$+ \int_0^\infty e^{-\lambda[\varepsilon_1 z_1 \operatorname{sh}(t-i\mu)+\varepsilon_2 z_2 \operatorname{ch}(t-i\mu)]} dt.$$

Since the right-hand side of the above equality is holomorphic on V_{ε} , ψ_{ε} is analytically continued from U_{ε} to V_{ε} . On the other hand, from Cauchy's integral formula along another Jordan curve, we have for each $(z_1, z_2) \in U_{\varepsilon} \cap V_{-\varepsilon}$,

$$\int_{0}^{\infty} e^{i\lambda[\varepsilon_{1}z_{1}\operatorname{ch}(t-i\mu)+\varepsilon_{2}z_{2}\operatorname{sh}(t-i\mu)]} dt$$
$$= i\int_{0}^{-\pi/2} e^{i\lambda[\varepsilon_{1}z_{1}\cos(\theta-\mu)+i\varepsilon_{2}z_{2}\sin(\theta-\mu)]} d\theta$$
$$+ \int_{0}^{\infty} e^{\lambda[\varepsilon_{1}z_{1}\operatorname{sh}(t-i\mu)+\varepsilon_{2}z_{2}\operatorname{ch}(t-i\mu)]} dt.$$

Hence ψ_{ε} is analytically continued from U_{ε} to $V_{-\varepsilon}$ in the same way as

 V_{ε} . Therefore the first assertion of the lemma is proved. But the above integral is not convergent at the point $(z_1, z_2) \in C^2$ such that $\varepsilon_1 z_1 + \varepsilon_2 z_2 = 0$. Indeed, for fixed real numbers a_1 , a_2 and δ , we put $z_1(\delta) = \varepsilon_1(a_1 + ia_2 + i\delta)$ and $z_2(\delta) = \varepsilon_2(-a_1 - ia_2 + i\delta)$. If $\delta > 0$, then $(z_1(\delta), z_2(\delta)) \in U_{\varepsilon}$. It is easily seen that there are positive real numbers M_1 , M_2 and t_0 such that if $t \ge t_0$ then $M_1 \le \cos(ce^{-t}(a_1\cos 2\mu - a_2\sin 2\mu))$ and $M_2 \le e^{-c\exp(-t)(a_1\sin 2\mu + a_2\cos 2\mu)}$, where $c = |\lambda|$ (> 0). Hence

$$\operatorname{Re}\psi_{\varepsilon}(z_{1}(\delta), z_{2}(\delta)) \geq M_{1}M_{2}\int_{t_{0}}^{\infty} e^{-c\delta\exp t} dt + \operatorname{Re}\int_{0}^{t_{0}} e^{i\lambda H(\delta,t)} dt,$$

where $H(\delta, t) = \varepsilon_1 z_1(\delta) \operatorname{ch}(t - i\mu) + \varepsilon_2 z_2(\delta) \operatorname{sh}(t - i\mu)$. The last term of the above inequality is convergent when $\delta \to +0$. But

$$\lim_{\delta \to +0} \int_{t_0}^{\infty} e^{-c\delta \exp t} dt = +\infty.$$

Therefore ψ_{ε} is not holomorphic on any neighborhood of the point $(z_1, z_2) \in \mathbb{C}^2$ such that $\varepsilon_1 z_1 + \varepsilon_2 z_2 = 0$. This implies the second assertion of the lemma.

For the purpose of the construction of g-invariant hyperfunctions, we consider the following integral;

$$\chi(z_1, z_2; a, b) = i \int_a^b e^{i\lambda[z_1\cos\theta + iz_2\sin\theta]} d\theta.$$

Then $\chi(z_1, z_2; a, b)$ is an entire holomorphic function on C^2 for any fixed $(a, b) \in \mathbf{R}^2$ and $((\partial/\partial z_1)^2 - \partial/\partial z_2)^2)\chi = -\lambda^2 \chi$. Moreover, since

$$(z_2\partial/\partial z_1 + z_1\partial/z_2 + i\partial/\partial\theta)e^{i\lambda[z_1\cos\theta + iz_2\sin\theta]} = 0,$$

we have

$$(z_2\partial/\partial z_1 + z_1\partial/\partial z_2)\chi(z_1, z_2; a, b) = [e^{i\lambda(z_1\cos\theta + iz_2\sin\theta)}]_{\theta=a}^{\theta=b}$$

Now we give spherical hyperfunctions by means of elements of the Čeck cohomology $H^1(\mathcal{W}'; \mathcal{O})$ as follows. Set $\Lambda = \{\varepsilon = (\varepsilon_1, \varepsilon_2); \varepsilon_i \in \{\pm 1\} \ (i = 1, 2)\}$ and $\Lambda_0 = \{(\varepsilon, \eta); \varepsilon \in \Lambda, \eta \in \Lambda, \varepsilon_1 \varepsilon_2 \eta_1 \eta_2 = -1\}$. For each $(\varepsilon, \eta) \in \Lambda_0$, we define

$$\varphi_{\varepsilon,\eta}(z_1, z_2) = \psi_{\varepsilon}(z_1, z_2) + \psi_{\eta}(z_1, z_2) + \eta_1 \eta_2 \chi(z_1, z_2; c(\varepsilon), c(\eta)),$$

where $c(\varepsilon) = c(\varepsilon, \mu) = -\varepsilon_1 \varepsilon_2 \mu + (1 - \varepsilon_1)\pi/2$. Then $\varphi_{\varepsilon,\eta}(z_1, z_2)$ is a holomorphic function on $U_{\varepsilon} \cap U_{\eta}$ by Lemma 1.1. For given U_i (i = 1, 2) in \mathscr{W}' and a holomorphic function φ on $U_1 \cap U_2$, we denote by $[(U_1 \cap U_2; \varphi)]$ the element in $H^1(\mathscr{W}'; \mathscr{O})$ which is given by the following 1-cocycle ; $\{(U_1 \cap U_2; \varphi), (U_2 \cap U_1; -\varphi), (\text{otherwise}; 0)\}$.

We define

On the construction of spherical hyperfunctions on \mathbb{R}^{p+q}

$$f_0 = [(U_{(-1,1)} \cap U_{(1,1)}; \chi(z_1, z_2; -\pi, \pi))]$$

and

$$f_{\varepsilon,\eta} = [(U_{\varepsilon} \cap U_{\eta}; \varphi_{\varepsilon,\eta})] \quad \text{for fixed } (\varepsilon, \eta) \in \Lambda_0.$$

PROPOSITION 1.3. For any $(\varepsilon, \eta) \in \Lambda_0$, $f_{\varepsilon,\eta}$ is g-invariant and $f_{\varepsilon,\eta} = -f_{\eta,\varepsilon}$. Moreover, S.S $f_{\varepsilon,\eta} = \{(x_1, x_2; i\varepsilon/2^{1/2}\infty) : \varepsilon_1 x_1 + \varepsilon_2 x_2 = 0\} \cup \{(x_1, x_2; i\eta) \in \mathbb{C}\}$ $(2^{1/2}\infty)$: $\eta_1 x_1 + \eta_2 x_2 = 0$, where S.S f is the singular spectrum of f (see [12], for the singular spectrum).

PROOF. From Lemma 1.1, we have

$$\begin{aligned} (z_2\partial/\partial z_1 + z_2\partial/\partial z_2)(\psi_{\varepsilon} + \psi_{\eta}) \\ &= -\varepsilon_1\varepsilon_2 e^{i\lambda(\varepsilon_1 z_2 \cos\mu - i\varepsilon_2 z_2 \sin\mu)} - \eta_1\eta_2 e^{i\lambda(\eta_1 z_1 \cos\mu - i\eta_2 z_2 \sin\mu)}. \end{aligned}$$

Since

 $\cos(c(\varepsilon, \mu)) = \varepsilon_1 \cos \mu$ and $\sin(c(\varepsilon, \mu)) = -\varepsilon_2 \sin \mu$,

we have

U

$$(z_2\partial/\partial z_1 + z_1\partial/\partial z_2)\chi(z_1, z_2; c(\varepsilon, \eta), c(\eta, \mu))$$

= $-e^{i\lambda(\varepsilon_1 z_1 \cos\mu - i\varepsilon_2 z_2 \sin\mu)} + e^{i\lambda(\eta_1 z_1 \cos\mu - i\eta_2 z_2 \sin\mu)}$

Hence $(z_2\partial/\partial z_1 + z_1\partial/\partial z_2)\varphi_{\varepsilon,\eta} = 0$ for any $(\varepsilon, \eta) \in \Lambda_0$. Therefore the first assertion of the proposition is proved. Im view of the definition of χ , we see that $\eta_1\eta_2\chi(z_1, z_2; c(\varepsilon), c(\eta)) = -\eta_1\eta_2\chi(z_1, z_2; c(\eta), c(\varepsilon)) = \varepsilon_1\varepsilon_2\chi(z_1, z_2; c(\eta), c(\varepsilon))$ $c(\varepsilon)$). Hence $\varphi_{\varepsilon,n}(z_1, z_2) = \varphi_{n,\varepsilon}(z_1, z_2)$ on $U_{\varepsilon} \cap U_n$. Therefore the second assertion of the proposition is proved. The third assertion of the proposition is clear from Lemma 1.2 and the definition of the singular spectrum.

Let
$$k_1 = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$
 and $k_2 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$. Then $k_i \in G$ $(i = 1, 2)$ and $G = G_0$
 $\cup k_1 G_0 \cup k_2 G_0 \cup k_1 k_2 G_0$. For any hyperfunction f on \mathbb{R}^2 , we denote by f^{k_i} the pull-back of f by the transformation $; x \to k_i x$ $(i = 1, 2)$.

PROPOSITION 1.4. For each $(\varepsilon, \eta) \in \Lambda_0$, we have

- 1) $f_{\varepsilon,\eta}^{k_1} = f_{k_1\eta,k_1\varepsilon}$,
- 2) $f_{\varepsilon,\eta}^{k_2} = f_{k_2\eta,k_2\varepsilon} + ((\varepsilon_1 \eta_1)/2)f_0$.

PROOF. By virtue of the definition of $f_{\varepsilon,n}$ and the fact that $k_1^{-1} = k_1$, we have

$$f_{\varepsilon,\eta}^{k_1} = -\left[\left(U_{k_1\varepsilon} \cap U_{k_1\eta}; \varphi_{\varepsilon,\eta}(-z_1, z_2)\right)\right].$$

Since $c(k_1\varepsilon) = \pi - c(\varepsilon)$, it is easily seen that

$$\chi(-z_1, z_2; c(\varepsilon), c(\eta)) = \chi(z_1, z_2; c(k_1\eta), c(k_1\varepsilon)).$$

On the other hand, $\psi_{\varepsilon}(-z_1, z_2) = \psi_{k_1\varepsilon}(z_1, z_2)$. Hence,

$$\varphi_{\varepsilon,\eta}(-z_1, z_2) = \psi_{k_1\varepsilon}(z_1, z_2) + \psi_{k_1\eta}(z_1, z_2) + \eta_1\eta_2\chi(z_1, z_2; c(k_1\eta), c(k_1\varepsilon)).$$

Therefore $\varphi_{\varepsilon,\eta}(-z_1, z_2) = \varphi_{k_1\eta,k_1\varepsilon}(z_1, z_2)$, since $\eta_1\eta_2 = -\varepsilon_1\varepsilon_2$. Hence 1) of the proposition is proved. Next we show 2) of the proposition. Since, for any ε and μ ,

$$\chi(z_1, z_2; -c(\varepsilon, \mu), c(k_2\varepsilon, \mu)) = (1 - \varepsilon_1)\chi(z_1, z_2; -\pi, \pi)/2,$$

we have

$$\begin{aligned} \chi(z_1, -z_2; c(\varepsilon), c(\eta)) &- \chi(z_1, z_2; c(k_2\eta), c(k_2\varepsilon)) \\ &= \chi(z_1, z_2; -c(\eta), -c(\varepsilon)) + \chi(z_1, z_2; c(k_2\varepsilon), c(k_2\eta)) \\ &= \chi(z_1, z_2; -c(\eta), c(k_2\eta)) - \chi(z_1, z_2; -c(\varepsilon), c(k_2\varepsilon)) \\ &= (\varepsilon_1 - \eta_1)\chi(z_1, z_2; -\pi, \pi)/2. \end{aligned}$$

Hence, we have

$$\begin{split} \varphi_{\varepsilon,\eta}(z_1,\,z_2) &= \psi_{k_2\varepsilon}(z_1,\,z_2) + \psi_{k_2\eta}(z_1,\,z_2) + \eta_1\eta_2\chi(z_1,\,z_2\,;\,c(k_2\eta),\,c(k_2\varepsilon)) \\ &+ \eta_1\eta_2(\varepsilon_1 - \eta_1)\chi(z_1,\,z_2\,;\,-\pi,\,\pi)/2. \end{split}$$

Therefore $\varphi_{\varepsilon,\eta}(z_1, -z_2) = \varphi_{k_2\eta,k_2\varepsilon}(z_1, z_2) + (\varepsilon_1 - \eta_1)\eta_1\eta_2\chi(z_1, z_2; -\pi, \pi)/2$. On the other hand, it is easily seen that

(#)
$$[(U_{k_2\eta} \cap U_{k_2\varepsilon}; (\varepsilon_1 - \eta_1)\eta_1\eta_2\chi(z_1, z_2; -\pi, \pi)/2)] = (\varepsilon_1 - \eta_1)f_0/2$$

for any $(\varepsilon, \eta) \in \Lambda_0$. Indeed, we define a 0-cochain ψ $(\in C^0(\mathscr{W}'; \mathcal{O}))$ such that $\psi = \{(U_{(1,1)}; \chi(z_1, z_2; -\pi, \pi)), (U_{(-1,1)}; 0), (U_{(1,-1)}; \chi(z_1, z_2; -\pi, \pi)), (U_{(-1,-1)}; 0)\}$. Then we have $\delta \psi =$

$$\{(U_{(-1,-1)}\cap U_{(1,-1)}; \chi(z_1, z_2; -\pi, \pi)), (U_{(1,1)}\cap U_{(1,-1)}; 0), \\ (U_{(-1,1)}\cap U_{(1,1)}; \chi(z_1, z_2; -\pi, \pi)), (U_{(-1,-1)}\cap U_{(-1,1)}; 0)\},\$$

where δ is the coboundary operator. Hence

$$\begin{bmatrix} (U_{(-1,-1)} \cap U_{(1,-1)}; -\chi(z_1, z_2; -\pi, \pi)) \end{bmatrix}$$

=
$$\begin{bmatrix} (U_{(-1,1)} \cap U_{(1,1)}; \chi(z_1, z_2; -\pi, \pi)) \end{bmatrix} = f_0$$

This implies that the above equality (#) is true for the case $\varepsilon_1 = \varepsilon_2 = \eta_2 = 1$ and $\eta_1 = -1$. For the other cases, one can easily prove the equality (#) similarly. Therefore 2) of the proposition is proved.

Now, we can give a basis of $\mathscr{B}_{\nu}^{G_0}(\mathbb{R}^2)$ and $\mathscr{B}_{\nu}^G(\mathbb{R}^2)$, applying Cerezo's result ([2]): dim $\mathscr{B}_{\nu}^{G_0}(\mathbb{R}^2) = 4$ and dim $\mathscr{B}_{\nu}^G(\mathbb{R}^2) = 2$. We define hyperfunctions g_j $(1 \le j \le 4)$ as follows;

$$g_1 = f_{(1,1),(1,-1)}, \qquad g_2 = f_{(1,1),(-1,1)},$$

$$g_3 = f_{(-1,-1),(-1,1)}, \qquad g_4 = f_{(-1,-1),(1,-1)}.$$

Then it is obvious that $g_j \in \mathscr{B}^{G_0}_{\nu}(\mathbb{R}^2)$ for $1 \le j \le 4$.

Lemma 1.5. $g_1 + g_2 + g_3 + g_4 = 0.$

PROOF. We can define a 0-cochain $\psi \ (\in C^0(\mathscr{W}'; \mathscr{O}))$ such that $\psi = \{(U_{(1,1)}; -\psi_{(1,1)}(z_1, z_2)), (U_{(-1,1)}; \psi_{(-1,1)}(z_1, z_2) - \chi(z_1, z_2; -\mu, \mu + \pi))\}$

$$(U_{(1,-1)}; -\psi_{(-1,-1)}(z_1, z_2) - \chi(z_1, z_2; -\mu, \pi - \mu)),$$

$$(U_{(1,-1)}; \psi_{(1,-1)}(z_1, z_2) - \chi(z_1, z_2; -\mu, \mu))\}.$$

Then it is easily seen that $g_1 + g_2 + g_3 + g_4 = [(\delta \psi)] = 0$. Therefore the lemma is proved.

PROPOSITION 1.6. Any triple of g_i $(1 \le j \le 4)$ is linearly independent.

PROOF. We prove the proposition for the case g_1 , g_2 , g_3 . Let $c_1g_1 + c_2g_2 + c_3g_3 = 0$ ($c_j \in C$). Then $c_1 = c_3 = 0$, because $S.S g_1 = \{(x_1, x_2; i(2^{-1/2}, 2^{-1/2})\infty); x_1 + x_2 = 0\} \cup \{(x_1, x_2; i(2^{-1/2}, -2^{-1/2})\infty); x_1 - x_2 = 0\}$ and $S.S g_3 = \{(x_1, x_2; i(2^{-1/2}, 2^{-1/2})\infty); x_1 + x_2 = 0\} \cup \{(x_1, x_2; i(-2^{-1/2}, 2^{-1/2})\infty); -x_1 + x_2 = 0\}$, by Proposition 1.3. Hence $c_2g_2 = 0$. Since g_2 is not 0, $c_2 = 0$. Thus $c_1 = c_2 = c_3 = 0$. In the same way, the linear independence is showed for the other cases. Hence the proposition is proved.

Proposition 1.7.

$$g_1^{k_1} = g_3, \qquad g_1^{k_2} = g_1,$$

$$g_2^{k_1} = g_2, \qquad g_2^{k_2} = g_4 + f_0,$$

$$g_3^{k_1} = g_1, \qquad g_3^{k_2} = g_3,$$

$$g_4^{k_1} = g_4, \qquad g_4^{k_2} = g_2 - f_0.$$

PROOF. From Proposition 1.4, the proposition is clear.

Finally we define spherical hyperfunction f_i $(1 \le j \le 3)$ by

$$f_1 = g_1 + g_3, f_2 = g_1 - g_3$$
 and $f_3 = f_0 - g_1 - 2g_2 - g_3$.

THEOREM 1.8.

1)
$$\{f_j; 0 \le j \le 3\}$$
 is a basis of $\mathscr{B}_{\nu}^{G_0}(\mathbb{R}^2)$.
2) $\{f_i; 0 \le j \le 1\}$ is a basis of $\mathscr{B}_{\nu}^{G}(\mathbb{R}^2)$.

PROOF. It is easily seen that f_0 and g_j $(1 \le j \le 3)$ is linearly independent by the same proof as in Proposition 1.6, since $S.S f_0 = \phi$. Hence it is clear that f_j $(0 \le j \le 3)$ is linearly independent. Therefore, since dim $\mathscr{B}_v^{G_0}(\mathbb{R}^2) = 4, 1)$ of the theorem is proved (see [2]). From Proposition 1.7, f_1 is Ginvariant. Moreover, it is obvious that f_0 is also G-invariant. Conversely, from Proposition 1.7, one can easily see that for any $f \in \mathscr{B}_v^G(\mathbb{R}^2)$, there exist complex numbers c_0 and c_1 such that $f = c_0 f_0 + c_1 f_1$. Therefore 2) of the theorem is proved.

REMARK. Since one can easily show that $f_2^{k_1} = -f_2$, $f_2^{k_2} = f_2$, $f_3^{k_1} = f_3$ and $f_3^{k_2} = -f_3$ from Proposition 1.7, we have that

$$\mathscr{B}^{G_0}_{\mathfrak{v}}(\mathbb{R}^2) = \mathscr{B}^G_{\mathfrak{v}}(\mathbb{R}^2) \oplus \langle f_2 \rangle \oplus \langle f_3 \rangle$$

is the irreducible decomposition of the representation over $\mathscr{B}_{\nu}^{G_0}(\mathbb{R}^2)$ with respect to the finite group $\{e, k_1, k_2, k_1k_2\}$.

§ 2. p = 1 and q > 1

In this section, we give spherical hyperfunctions using integral representation for the case in which p = 1, q > 1. That is G = O(1, q) and G_0 $= SO_0(1, q)$. For each ε in $\{1, -1\}$, we denote by $U^{(\varepsilon)}$ the set of all $(z, w) \in C^{1+q}$ (here $z \in C$ and $w \in C^q$) such that $\varepsilon \operatorname{Im} z > ||\operatorname{Im} w||$, where ||y|| $= (\sum_{1 \le j \le q} y_j^2)^{1/2}$ for $y = (y_1, \ldots, y_p) \in \mathbb{R}^q$ and $\operatorname{Im} w = (\operatorname{Im} w_1, \ldots, \operatorname{Im} w_q)$ for w $= (w_1, \ldots, w_q) \in \mathbb{C}^q$. Put

$$V_j^{(\pm)} = \{(z, w) \in C^{1+q}; \pm \operatorname{Im} w_j > 0\}.$$

Let

$$\mathscr{W}' = \{U^{(\varepsilon)}; \, \varepsilon \in \{\pm 1\}\} \cup \{V_j^{(\varepsilon)}; \, \varepsilon \in \{\pm 1\}, \, 1 \le j \le q\} \text{ and } \mathscr{W} = \{C^{1+q}\} \cup \mathscr{W}'.$$

Then it is easily seen that $(\mathcal{W}, \mathcal{W}')$ is a relative Stein covering of $(C^{1+q}, C^{1+q} \setminus R^{1+q})$ (see [7] for the relative Stein covering).

LEMMA 2.1. For each $\varepsilon \in \{1, -1\}$,

$$\psi_{\varepsilon}(z, w) = \int_0^\infty \int_{S^{q-1}} e^{i\lambda[\varepsilon z \operatorname{ch}(t-i\mu) + \langle w,\eta \rangle \operatorname{sh}(t-i\mu)]} (\operatorname{sh}(t-i\mu))^{q-1} d\eta dt$$

converges absolutely and uniformly on every compact subset of $U^{(\varepsilon)}$ and is holomorphic on $U^{(\varepsilon)}$. Here $\langle u, v \rangle = \sum u_j v_j$ (for $u = (u_1, \dots, u_q) \in \mathbb{C}^q$ and v

 $= (v_1, \dots, v_q) \in \mathbb{C}^q) \text{ and } d\eta \text{ is the normalized } SO(q) \text{-invariant measure such that}$ $\int_{S^{q-1}} d\eta = 1. \quad (See \ \S 0 \text{ for the notations } \lambda, \ \mu, \ ch, \ sh.)$

PROOF. Since

$$\operatorname{Re}[i\lambda(\varepsilon z \operatorname{ch}(t-i\mu)+\langle w,\eta\rangle \operatorname{sh}(t-i\mu))]$$

= - |\lambda|[e'Im(\varepsilon z+\langle w,\eta\rangle)+Ime^{-t+2i\mu}(\varepsilon z-\langle w,\eta\rangle)]/2,

it is clear that the above integral converges absolutely on every compact subset of $U^{(\varepsilon)}$ and is holomorphic on $U^{(\varepsilon)}$.

REMARK. It is easily seen that ψ_{ε} satisfies the following differential equations in a way similar to Lemma 1.1;

$$\begin{split} &((\partial/\partial z)^2 - \sum (\partial/\partial w_j)^2)\psi_{\varepsilon} = -\lambda^2)\psi_{\varepsilon},\\ &(w_j\partial/\partial w_k - w_k\partial/\partial w_j)\psi_{\varepsilon} = 0 \quad (1 \le j \le q, \ 1 \le k \le q),\\ &(w_1\partial/\partial z + z\partial/\partial w_1)\psi_{\varepsilon} = -\varepsilon(-i\sin\mu)^{q-1}\int_{S^{q-1}} e^{i\lambda[\varepsilon z\cos\mu - i\langle w,\eta\rangle\sin\mu]}\eta_1d\eta. \end{split}$$

Here η_1 is the first coordinate of $\eta \ (\in S^{q-1})$. Indeed,

$$\{w_1\partial/\partial z + z\partial/\partial w_1 - \varepsilon(\cos\tau_1\partial/\partial t - \sin\tau_1\coth(t - i\mu)\partial/\partial\tau_1)\}e^{i\lambda H(t,z,w)} = 0,$$

where

$$H(t, z, w) = \varepsilon z \operatorname{ch}(t - i\mu) + \langle w, \eta(\tau) \rangle \operatorname{sh}(t - i\mu),$$

$$\eta(\tau)_j = \cos\tau_j \prod_{1 \le k \le j-1} \sin\tau_k \ (1 \le k \le q-1) \ \text{and} \ \eta(\tau)_q = \prod_{1 \le k \le q-1} \sin\tau_k.$$

Hence, we have

$$(w_1\partial/\partial z + z\partial/\partial w_1)\psi_{\varepsilon} = \varepsilon \int_0^\infty \int_{S^{q-1}} (\operatorname{sh}(t - i\mu)^{q-1} (De^{i\lambda H(t,z,w)}) dt d\eta,$$

where $D = \cos \tau_1 \partial / \partial t - \sin \tau_1 \coth(t - i\mu) \partial / \partial \tau_1$. By integration by parts in the above integral, we have the third equation of the Remark.

For the purpose of the construction of g-invariant hyperfunctions, we consider the following integral;

$$\chi(z, w; a, b) = -i \int_a^b \int_{S^{q-1}} e^{i\lambda[z\cos\theta - i\langle w, \eta \rangle \sin\theta]} (-i\sin\theta)^{q-1} d\theta d\eta.$$

It is easily seen that $\chi(z, w; a, b)$ is an entrire holomorphic function on C^{1+q} for

any fixed $(a, b) \in \mathbb{R}^2$. Moreover one can see that χ satisfies the following differential equations;

$$((\partial/\partial z)^2 - \sum_{1 \le j \le q} (\partial/\partial w_j)^2)\chi = -\lambda^2 \chi,$$
$$(w_j \partial/\partial w_k - w_k \partial/\partial w_j)\chi = 0,$$
$$(w_1 \partial/\partial z + z \partial/\partial w_1)\chi = \int_{S^{q-1}} [(-i\sin\theta)^{q-1} e^{i\lambda[z\cos\theta - i\langle w,\eta\rangle\sin\theta]}]_{\theta=a}^{\theta=b} \eta_1 d\eta$$

Here we obtain the third equality by the same calculation as in Remark on Lemma 2.1.

Put $\chi_1(z, w) = \chi(z, w; 0, \mu)$, $\chi_{-1}(z, w) = \chi(z, w; \pi - \mu, \pi)$ and $\varphi_{\varepsilon}(z, w) = \psi_{\varepsilon}(z, w) + \chi_{\varepsilon}(z, w)$ for each ε . Then φ_{ε} is a holomorphic function on $U^{(\varepsilon)}$ by Lemma 2.1. Moreover, from the definition of φ_{ε} , it is clear that φ_{ε} satisfies the following differential equations;

$$\begin{aligned} &((\partial/\partial z)^2 - \sum_{1 \le j \le q} (\partial/\partial w_j)^2)\varphi_{\varepsilon} = -\lambda^2 \varphi_{\varepsilon}, \\ &(w_j \partial/\partial w_k - w_k \partial/\partial w_j)\varphi_{\varepsilon} = 0 \quad (1 \le j \le q, \ 1 \le k \le q), \\ &(w_1 \partial/\partial z + z \partial/\partial w_1)\varphi_{\varepsilon} = 0. \end{aligned}$$

Now we discuss the representation of φ_{ε} in terms of special functions. Let $K_{\nu}(z)$ be the modified Bessel function of order ν .

LEMMA 2.2. For any $(z, w) \in U^{(\varepsilon)}$, we have

-

$$\int_0^\infty \int_{S^{q-1}} e^{i[\varepsilon z \operatorname{cht} + \langle w, \eta \rangle \operatorname{sht}]} (\operatorname{sht})^{q-1} d\eta dt$$

= $c_q (-z^2 + \langle w, w \rangle)^{-(q-1)/4} K_{(q-1)/2} ((-z^2 + \langle w, w \rangle)^{1/2}),$

where $c_q = \pi^{-1/2} 2^{(q-1)/2} \Gamma(q/2)$ ($\Gamma(z)$ is the gamma function).

PROOF. The right-hand side of the above equality is an infinitely multivalued holomorphic function. But it is easily seen that one can choose a single valued branch of the function on $U^{(e)}$, because $\{\text{Im}(-z^2 + \langle w, w \rangle) = 0, \text{Re}(-z^2 + \langle w, w \rangle) \le 0\} \cap U^{(e)} = \phi$. Since both sides of the equility are holomorphic on $U^{(e)}$, it is sufficient to prove that the above equality is true over the following real locus; $z = z(r, u) = i\epsilon r \cos u$, $w = w(r, u, \alpha) = r\alpha \sin u$, where r > 0, $|u| < \pi/2$ and $\alpha \in S^{q-1}$. By easy calculation,

$$\int_0^\infty \int_{S^{q-1}} e^{i\lambda[\epsilon z(r,u)\operatorname{cht} + \langle w(r,u,\alpha),\eta\rangle\operatorname{sht}]} (\operatorname{sh} t)^{q-1} d\eta dt$$
$$= c'_q \int_0^\infty \int_0^\pi e^{-r\operatorname{cosucht} + ir\operatorname{costsinusht}} (\sin\tau)^{q-2} (\operatorname{sh} t)^{q-1} d\tau dt,$$

where $c'_q = \pi^{-1/2} \Gamma(q/2) / \Gamma((q-1)/2)$. But one can easily see that the above integral is independent of the value u. Indeed, since

$$(\partial/\partial u + i\cos\tau\partial/\partial t - i\sin\tau\coth t\partial/\partial \tau)e^{-r\cos u cht + ircostsinusht} = 0$$

and

$$\int_0^\infty \int_0^\pi (\cos\tau\partial/\partial t - \sin\tau \coth t\partial/\partial\tau) e^{H_0(t,\tau;r,u)} (\sin\tau)^{q-2} (\operatorname{sh} t)^{q-1} d\tau dt = 0,$$

where $H_0(t, \tau; r, u) = -r \cos u \cosh t + i r \cos \tau \sin u \sinh t$, we have

$$\partial/\partial u \left(\int_0^\infty \int_{S^{q-1}} e^{i[\varepsilon z(r,u) \operatorname{ch} t + \langle w(r,u,\tau),\eta \rangle \operatorname{sh} t]} (\operatorname{sh} t)^{q-1} d\eta dt \right) = 0.$$

On the other hand, it is well known that for any r > 0,

$$\int_0^\infty e^{-r \operatorname{cht}} (\operatorname{sht})^{q-1} dt = \pi^{-1/2} \, \Gamma(q/2) (r/2)^{-(q-1)/2} \, K_{(q-1)/2}(r).$$

Thus the equality of Lemma 2.2 is true over the above real locus. This completes the proof of the lemma.

PROPOSITION 2.3. For each
$$(z, w) \in U^{(\varepsilon)}$$
, we have
 $\varphi_{\varepsilon}(z, w) = c_q (\lambda^2 (-z^2 + \langle w, w \rangle))^{-(q-1)/4} K_{(q-1)/2} ((\lambda^2 (-z^2 + \langle w, w \rangle))^{1/2}).$

PROOF. Let $U_{\lambda}^{(e)} = \{(z, w) \in \mathbb{C}^{1+q}; (\lambda z, \lambda w) \in U^{(e)}\}$. Then it is clear that if λ is not zero, $U_{\lambda}^{(e)}$ is holomorphically isomorphic to $U^{(e)}$ and $U_{\lambda}^{(e)} \cap U^{(e)}$ is not ϕ . By Cauchy's integral formula, for each $(z, w) \in U_{\lambda}^{(e)} \cap U^{(e)}$, we have

$$\int_{0}^{\infty} \int_{S^{q-1}} e^{i\lambda[\epsilon z \operatorname{ch}(t-i\mu)+\langle w,\eta\rangle \operatorname{sh}(t-i\mu)]} (\operatorname{sh}(t-i\mu))^{q-1} d\eta dt$$
$$= i \int_{0}^{\mu} \int_{S^{q-1}} e^{i\lambda[\epsilon z \operatorname{ch}(-i\theta)+\langle w,\eta\rangle \operatorname{sh}(-i\theta)]} (\operatorname{sh}(-i\theta))^{q-1} d\eta d\theta$$
$$+ \int_{0}^{\infty} \int_{S^{q-1}} e^{i\lambda[\epsilon z \operatorname{ch}(t+\langle w,\eta\rangle \operatorname{sh}(t)]} (\operatorname{sh}(t))^{q-1} d\eta dt.$$

Thus from the definition of φ_{ε} ,

$$\varphi_{\varepsilon}(z, w) = \int_0^\infty \int_{S^{q-1}} e^{i\lambda[\varepsilon z \operatorname{ch} t + \langle w, \eta \rangle \operatorname{sh} t]} (\operatorname{sh} t)^{q-1} d\eta dt$$

for each $(z, w) \in U_{\lambda}^{(e)} \cap U^{(e)}$. This implies that φ_{ε} is analytically continued from $U^{(e)}$ to $U_{\lambda}^{(e)}$. Hence from Lemma 2.2,

$$\varphi_{\varepsilon}(z, w) = c_q(\lambda^2(-z^2 + \langle w, w \rangle))^{-(q-1)/4} K_{(q-1)/2}((\lambda^2(-z^2 + \langle w, w \rangle))^{1/2}).$$

Therefore the proposition is proved,

COROLLARY 2.4. φ_{ε} can be analytically continued over $\{(z, w); -z^2 + \langle w, w \rangle = 0\}$ but is not holomorphic on any neighborhood of the point $(z, w) \in C^{1+q}$ scuh that $-z^2 + \langle w, w \rangle = 0$.

PROOF. From the definition of the modified Bessel function, the corollary is clear.

Now, we give spherical hyperfunctions by means of the elements of the Čeck cohomology $H^{q}(\mathcal{W}'; \mathcal{O})$. For given W_{j} $(1 \le j \le q+1)$ in \mathcal{W}' and a holomorphic function φ on $W_{1} \cap \cdots \cap W_{q+1}$, we denote by $[(W_{1} \cap \cdots \cap W_{q+1}; \varphi)]$ the element in $H^{q}(\mathcal{W}'; \mathcal{O})$ which is defined by the following *q*-cocycle;

$$\left\{ \left(W_{j_1} \cap \dots \cap W_{j_{q+1}}; \operatorname{sgn} \left(\begin{array}{c} 1, \dots, q+1 \\ j_1, \dots, j_{q+1} \end{array} \right) \varphi \right), \text{ (otherwise; 0)} \right\},\$$

where sgn σ is the signum of a permutation σ .

Let $f_0 = [(U^{(1)} \cap V_1^{(1)} \cap \cdots \cap V_q^{(1)}; \chi(z, w; -\pi, \pi))]$. Then it is clear that f_0 is a real analytic function on \mathbb{R}^{1+q} and $f_0 \in \mathscr{B}_v^{G_0}(\mathbb{R}^{1+q})$. For each $\varepsilon \in \{1, -1\}$, we define $g_{\varepsilon} = [(U^{(\varepsilon)} \cap V_1^{(1)} \cap \cdots \cap V_1^{(1)}; \varepsilon \varphi_{\varepsilon})]$.

REMARK. The hyperfunction g_{ε} may be defined by the element; $[(U^{(\varepsilon)} \cap V_1^{(\eta_1)} \cap \cdots \cap V_q^{(\eta_q)}; \varepsilon(\prod_{1 \le j \le q} \eta_j) \varphi_{\varepsilon})]$ for fixed $\eta = (\eta_j) \ (\eta_j \in \{1, -1\})$, because

$$\left[\left(U^{(\varepsilon)} \cap V_1^{(1)} \cap \dots \cap V_q^{(1)}; \varphi \right) \right] = \left[\left(U^{(\varepsilon)} \cap V_1^{(\eta_1)} \cap \dots \cap V_q^{(\eta_q)}; \prod_{1 \le j \le q} \eta_j \varphi \right) \right]$$

for any holomorphic function φ on $U^{(\varepsilon)}$. Indeed, let $\psi_{\eta,j}$ be a q-1 cochain defined as follows;

$$\psi_{\eta,j} = \{ (U^{(\varepsilon)} \cap V_1^{(\eta_1)} \cap \dots \cap V_{j-1}^{(\eta_{j-1})} \cap V_{j+1}^{(\eta_{j+1})} \cap \dots \cap V_q^{(\eta_q)}; (-1)^j \varphi), \text{ (otherwise }; 0) \}$$

for $\eta = (\eta_1, \dots, \eta_{j-1}, \eta_{j+1}, \dots, \eta_q)$ $(\eta_j \in \{1, -1\})$ and $1 \le j \le q$. Then

$$\begin{bmatrix} (U^{(\varepsilon)} \cap V^{(\eta_1)} \cap \dots \cap V^{(\eta_j)}_j \cap \dots \cap V^{(\eta_q)}_q; \varphi) \end{bmatrix}$$

+
$$\begin{bmatrix} (U^{(\varepsilon)} \cap V^{(\eta_1)}_1 \cap \dots \cap V^{(-\eta_j)}_j \cap \dots \cap V^{(\eta_q)}_q; \varphi) \end{bmatrix}$$

=
$$\begin{bmatrix} (\delta \psi_{\eta,j}) \end{bmatrix} = 0.$$

Here δ is the coboundary operator.

PROPOSITION 2.5. For each $\varepsilon \in \{1, -1\}$, $g_{\varepsilon} \in \mathscr{B}_{v}^{G_{0}}(\mathbb{R}^{1+q})$. Moreover, S.S $g_{\varepsilon} = \{(x, y; i(\varepsilon/2^{1/2}, \eta)\infty); x^{2} = ||y||, ||\eta|| = 1/2, x\eta/2^{1/2} + \varepsilon y = 0 \ (1 \le j \le q)\}.$

PROOF. It is clear that $g_{\varepsilon} \in \mathscr{B}_{\nu}^{G_0}(\mathbb{R}^{1+q})$ from the definition of g_{ε} . From Sato's fundamental theorem (see [12]), we have that

On the construction of spherical hyperfunctions on R^{p+q}

S.S
$$g_{\varepsilon} \subset \{(x, y; i(a, b)\infty); a^2 - \|b\|^2 = 0, ay_j + b_j x = 0,$$

 $y_j \eta_k = y_k \eta_j \ (1 \le j, k \le q)\}$

But, as seen from the definition of g_{ε} , if $(x, y; i(a, b)\infty) \in S.S$ g_{ε} then $a^2 = 1/2$, ||b|| = 1/2 and $a = \varepsilon/2^{1/2}$. Thus

S.S
$$g_{\varepsilon} \subset \{(x, y; i(\varepsilon/2^{1/2}, \eta)\infty); x^2 = ||y||^2, ||\eta||^2 = 1/2,$$

 $x\eta_j/2^{1/2} + \varepsilon y_j = 0 \ (1 \le j \le q)\}.$

Conversely, it is easily seen that g_{ε} is not microlocally analytic at the point $(x, y; i(\varepsilon/2^{1/2}, \eta)\infty)$ in $\sqrt{-1}S^*R^{1+q}$ such that $x^2 = ||y||^2$, $x\eta_j/2^{1/2} + \varepsilon y_j = 0$ $(1 \le j \le q)$ and $||\eta||^2 = 1/2$ from Corollary 2.4. Therefore the proposition is proved.

Let
$$k_1 = \begin{bmatrix} -1 & 0 \\ 1 & 0 \\ 0 & -1 \end{bmatrix}$$
, $k_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix}$. Then $k_j \in G$ and $G = G_0$

 $\cup k_1 G_0 \cup k_2 G_0 \cup k_1 k_2 G_0$. For any hyperfunction f on \mathbb{R}^{1+q} , we denote by f^{k_j} the pull back of f by the transformation $x \to k_j x$.

Proposition 2.6.

1)
$$f_0^{k_1} = f_0$$
 and $g_{\varepsilon}^{k_1} = g_{-\varepsilon}$ (for any ε),
2) $f_0^{k_2} = f_0$ and $g_{\varepsilon}^{k_2} = g_{\varepsilon}$ (for any ε).

PROOF. Since $\chi(-z, w; -\pi, \pi) = \chi(z, w; -\pi, \pi)$.

$$f_0^{k_1} = - \left[(U^{(-1)} \cap V_1^{(1)} \cap \cdots \cap V_q^{(1)}; \chi(z, w; -\pi, \pi)) \right].$$

Let ψ be a q-1 cochain defined as follows;

$$\psi = \{ (V_1^{(1)} \cap V_2^{(1)} \cap \dots \cap V_q^{(1)}; \chi(z, w; -\pi, \pi)), \text{ (otherwise; 0)} \}.$$

Then it is easily seen that $f_0 - f_0^{k_1} = [(\delta \psi)] = 0$. Hence $f_0^{k_1} = f_0$. Since ψ_{ε} $(-z, w) = \psi_{-\varepsilon}(z, w)$ and $\chi_{\varepsilon}(-z, w) = \chi_{-\varepsilon}(z, w)$, we have

$$g_{\varepsilon} = -\left[(U^{(-\varepsilon)} \cap V_1^{(1)} \cap \cdots \cap V_q^{(1)}; \varepsilon \varphi_{-\varepsilon}) \right] = g_{-\varepsilon}.$$

Therefore 1) of the proposition is proved. Since

$$\begin{split} \chi(z, w_1, \cdots, -w_q; -\pi, \pi) &= \chi(z, w_1, \cdots, w_q; -\pi, \pi), \\ f_0^{k_2} &= -\left[(U^{(1)} \cap (\bigcap_{1 \le j \le q - 1} V_j^{(1)}) \cap V_q^{(-1)}; \, \chi(z, w_1, \cdots, -w_q; -\pi, \pi)) \right] \\ &= -\left[(U^{(1)} \cap (\bigcap_{1 \le j \le q - 1} V_j^{(1)}) \cap V_q^{(-1)}; \, \chi(z, w_1, \cdots, w_q; -\pi, \pi)) \right]. \end{split}$$

Let ψ' be a q-1 cochain defined as follows;

$$\psi' = \{ (U^{(1)} \cap (\bigcap_{1 \le j \le q^{-1}} V_j^{(1)}); \, \chi(z, \, w; \, -\pi, \, \pi)), \, (\text{otherwise }; 0) \}.$$

Then it is easily seen that $f_0 - f_0^{k_2} = [(\delta \psi')] = 0$. Hence $f_0 = f_0^{k_2}$. Since $\varphi_{\varepsilon}(z, -w) = \varphi_{\varepsilon}(z, w)$, we obtain $g_{\varepsilon}^{k_2} = g_{\varepsilon}$ by the same proof as $f_0^{k_2} = f_0$. Therefore 2) of the proposition is proved.

PROPOSITION 2.7. f_0 , g_1 and g_{-1} are linearly independent.

PROOF. From Proposition 2.5 and S.S $f = \phi$, the assertion is clear.

Now, we give a basis of $\mathscr{B}_{\nu}^{G_0}(\mathbb{R}^{1+q})$ and $\mathscr{B}_{\nu}^G(\mathbb{R}^{1+q})$, since Cerezo proved in [2] that dim $\mathscr{B}_{\nu}^{G_0}(\mathbb{R}^{1+q}) = 3$ and dim $\mathscr{B}_{\nu}^G(\mathbb{R}^{1+q}) = 2$. We define hyperfunctions f_j $(1 \le j \le 2)$ as follows;

$$f_1 = (g_1 + g_{-1})/2$$
 and $f_2 = (g_1 - g_{-1})/2$.

Theorem 2.8. 1) $\{f_j; 0 \le j \le 2\}$ is a basis of $\mathscr{B}_{\nu}^{G_0}(\mathbb{R}^{1+q})$.

2) $\{f_j; 0 \le j \le 1\}$ is a basis of $\mathscr{B}^G_{\mathcal{V}}(\mathbb{R}^{1+q})$.

PROOF. From Proposition 2.7 and the fact that dim $\mathscr{B}_{\nu}^{G_0}(\mathbb{R}^{1+q}) = 3$, 1) is clear. By Proposition 2.6, f_0 and f_1 are both G-invariant. Conversely, from Proposition 2.6 and 2.7, one can easily see that for any $f \in \mathscr{B}_{\nu}^{G}(\mathbb{R}^{1+q})$ there exist complex numbers α_0 , α_1 such that $f = \alpha_0 f_0 + \alpha_1 f_1$. Therefore 2) of the theorem is proved.

REMARK 1. Let $G_1 = G_0 \cup k_2 G_0$ and $G_2 = G_0 \cup k_1 k_2 G_0$. Then G_j is Lie subgroups of O(1, q) and $G_2 = SO(1, q)$. Let $\mathscr{B}_{\nu}^{G_j}(\mathbb{R}^{1+q})$ be the vector subspace $(\subset \mathscr{B}_{\nu}^{G_0}(\mathbb{R}^{1+q}))$ of all G_j -invariants in $\mathscr{B}_{\nu}(\mathbb{R}^{1+q})$, for j = 1, 2. Then it is clear that $\mathscr{B}_{\nu}^G(\mathbb{R}^{1+q}) \subset \mathscr{B}_{\nu}^{G_2}(\mathbb{R}^{1+q})$ and $\mathscr{B}_{\nu}^{G_1}(\mathbb{R}^{1+q}) \subset \mathscr{B}_{\nu}^{G_0}(\mathbb{R}^{1+q})$. But from Proposition 2.6 and Theorem 2.8, we have

$$\mathscr{B}_{\nu}^{G}(\boldsymbol{R}^{1+q}) = \mathscr{B}_{\nu}^{G_{2}}(\boldsymbol{R}^{1+q}) \subset \mathscr{B}_{\nu}^{G_{1}}(\boldsymbol{R}^{1+q}) = \mathscr{B}_{\nu}^{G_{0}}(\boldsymbol{R}^{1+q}).$$

REMARK 2. Since $f_2^{k_1} = -f_2$ from Proposition 2.6,

$$\mathscr{B}^{G_0}_{\nu}(\mathbf{R}^{1+q}) = \langle f_0 \rangle \oplus \langle f_1 \rangle \oplus \langle f_2 \rangle$$

is the irreducible decomposition of the respresentation over $\mathscr{B}_{v}^{G_{0}}(\mathbb{R}^{1+q})$ with respect to the finite group $\{e, k_{1}\}$.

§3. p > 1 and q > 1

In this section, we give spherical hyperfunctions using integral repesent-

ation for the case p > 1, q > 1. That is G = O(p, q) and $G_0 = SO(p, q)$. For each $\varepsilon \in \{1, -1\}$ and j $(1 \le j \le p)$, we denote by $U_j^{(\varepsilon)}$ the set of all $(z, w) \in \mathbb{C}^{p+q}$ (here $z \in \mathbb{C}^p$ and $w \in \mathbb{C}^q$) such that $\varepsilon \operatorname{Im} z_j > \|\operatorname{Im} z\|$, where $z = (z_1, \ldots, z_p)$ and see §2 for the notation $\| \|$ and Im. Put $V_j^{(\varepsilon)} = \{(z, w) \in \mathbb{C}^{p+q}; \pm \operatorname{Im} w_j > 0\}$, for $1 \le j \le q$. Then $U_j^{(\varepsilon)}$ and $V_j^{(\varepsilon)}$ are both convex in \mathbb{C}^{p+q} . Let

$$\mathscr{W}' = \{ U_j^{(\varepsilon)}; \, \varepsilon \in \{1, -1\}, \ 1 \le j \le p \} \cup \{ V_j^{(\varepsilon)}; \, \varepsilon \in \{1, -1\}, \ 1 \le j \le q \}$$

and $\mathscr{W} = \mathscr{W}' \cup \{C^{p+q}\}$. Then it is easily seen that $(\mathscr{W}, \mathscr{W}')$ is relative Stein covering of $(C^{p+q}, C^{p+q} \setminus \mathbb{R}^{p+q})$. (For the relative Stein covering, see [7]). Indeed, from the definition of $V_j^{(e)}$,

$$(\cup \{V_j^{(\varepsilon)}; \, \varepsilon \in \{\pm 1\}, \, 1 \le j \le q\})^c \subset \{(z, w) \in \mathbb{C}^{p+q}; \, \mathrm{Im}\, w_j = 0 \, (1 \le j \le q)\},\$$

where A^c is the complement of a set A. But since

$$\{(z, w) \in \mathbb{C}^{p+q}; \operatorname{Im} z_j \neq 0, \operatorname{Im} w_k = 0 \ (1 \le k \le q)\} \subset U_j^{(1)} \cup U_j^{(-1)} \text{ for each } j,$$

we have $\mathbb{C}^{p+q} \setminus \mathbb{R}^{p+q} \subset \cup \{W; W \in \mathcal{W}'\}.$

Let $e_j = (0, \dots, 1, \dots, 0) \in \mathbb{R}^p$. For each $\varepsilon = (\varepsilon_1, \dots, \varepsilon_p)$ such that $\varepsilon_j \in \{-1, 1\}$ for $1 \le j \le p$, we denote by S_{ε} the set of all ξ in S^{p-1} such that $\langle \xi, \varepsilon_j e_j \rangle \ge 0$ for any j $(1 \le j \le p)$ (for the notation $\langle \rangle$, see §2). For each $\varepsilon = (\varepsilon_1, \dots, \varepsilon_p)$ let D_{ε} be the set of all $(z, w) \in \mathbb{C}^{p+q}$ such that $\langle \operatorname{Im} z, \xi \rangle + \langle \operatorname{Im} w, \eta \rangle > 0$ for any ξ in S_{ε} and η in S^{q-1} , where $\operatorname{Im} z = (\operatorname{Im} z_1, \dots, \operatorname{Im} z_n)$ for each z in \mathbb{C}^n .

Lemma 3.1.
$$D_{\varepsilon} = \bigcap_{1 \le j \le p} U_j^{(\varepsilon_j)}$$
 for any $\varepsilon = (\varepsilon_1, \cdots, \varepsilon_p)$.

PROOF. Since $\varepsilon_j e_j \in S_{\varepsilon}$ for any j $(1 \le j \le p)$ and the minimum value of $\langle \operatorname{Im} w, \eta \rangle$ $(\eta \in S^{q-1})$ is $- \|\operatorname{Im} w\|$, if $(z, w) \in D_{\varepsilon}$ then $\langle \operatorname{Im} z, \varepsilon_j e_j \rangle > \|\operatorname{Im} w\|$. Hence $(z, w) \in U_j^{(\varepsilon_j)}$ for any j $(1 \le j \le p)$. Therefore $D_{\varepsilon} \subset \bigcap_{1 \le j \le p} U_j^{(\varepsilon_j)}$. Conversely, if $(z,w) \in \bigcap_{1 \le j \le p} U_j^{(\varepsilon_j)}$ then $\varepsilon_j \operatorname{Im} z_j > \|\operatorname{Im} w\|$ for any j $(1 \le j \le p)$. It is easily seen that $\langle \operatorname{Im} z, \xi \rangle > \|\operatorname{Im} w\|$ for any $\xi \in S_{\varepsilon}$ and $(z, w) \in \bigcap_{1 \le j \le p} U_j^{(\varepsilon_j)}$. Indeed, since $\varepsilon_1 \xi_1 + \cdots + \varepsilon_p \xi_p \ge 1$ for any $\xi \in S_{\varepsilon}$,

$$\langle \operatorname{Im} z, \xi \rangle > (\varepsilon_1 \xi_1 + \dots + \varepsilon_p \xi_p) \| \operatorname{Im} w \| \ge \| \operatorname{Im} w \|$$

for any $\xi \in S_{\varepsilon}$ and $(z, w) \in \bigcap_{1 \le j \le p} U_j^{(\varepsilon_j)}$. Hence $(z, w) \in D_{\varepsilon}$, because the minumum of $\langle \operatorname{Im} w, \eta \rangle$ $(\eta \in S^{q-1})$ is $- \|\operatorname{Im} w\|$. Therefore $D_{\varepsilon} \supset \bigcap_{1 \le j \le p} U_j^{(\varepsilon_j)}$. This completes the proof of the lemma.

Put
$$\Delta(z) = \Delta(z; p, q) = (chz)^{p-1} (shz)^{q-1}$$
 and $\pi_{\varepsilon} = \varepsilon_1 \varepsilon_2 \cdots \varepsilon_p$. (See §0 for

the notation; ch, sh.)

LEMMA 3.2. For each $\varepsilon = (\varepsilon_1, \dots, \varepsilon_p)$ $(\varepsilon_j \in \{1, -1\})$, the integral

$$\psi_{\varepsilon}(z, w) = \pi_{\varepsilon} \int_{0}^{\infty} \int_{S_{\varepsilon}} \int_{S^{q-1}} e^{i\lambda[\langle z, \xi \rangle \operatorname{ch}(t-i\mu) + \langle w, \eta \rangle \operatorname{sh}(t-i\mu)]} \Delta(t-i\mu) d\xi d\eta dt$$

converges absolutely and uniformly on every compact subset of D_{ε} and is holomorphic on D_{ε} . Here $d\xi$ ($d\eta$) is the normalized SO(p)-invariant (SO(q)-invariant) measure on $S^{p-1}(S^{q-1})$ such that $\int_{S^{p-1}} d\xi = 1 \left(\int_{S^{q-1}} d\eta = 1 \right)$, respectively.

PROOF. Since

$$\operatorname{Re}\left\{i\lambda[\langle z, \xi\rangle \operatorname{ch}(t-i\mu) + \langle w, \eta\rangle \operatorname{sh}(t-i\mu)]\right\}$$
$$= -|\lambda|[e^{t}\operatorname{Im}(\langle z, \xi\rangle + \langle w, \eta\rangle) + \operatorname{Im}e^{-t+2i\mu}(\langle z, \xi\rangle - \langle w, \eta\rangle)]/2,$$

the lemma is clear.

For each $(a, b) \in \mathbb{R}^2$ and $\varepsilon = (\varepsilon_1, \dots, \varepsilon_p)$ $(\varepsilon_j \in \{\pm 1\})$, we denote by $\chi_{\varepsilon}(z, w; a, b)$ an entire holomorphic function on \mathbb{C}^{p+q} defined by the following integral;

$$i\pi_{\varepsilon}\int_{a}^{b}\int_{S_{\varepsilon}}\int_{S^{q-1}}e^{i\lambda[\langle z,\xi\rangle\cos\zeta-i\langle w,\eta\rangle\sin\zeta]}\Delta(-i\zeta;\,p,\,q)d\xi d\eta d\zeta.$$

Put $\varphi_{\varepsilon}(z, w) = \psi_{\varepsilon}(z, w) - \chi_{\varepsilon}(z, w; 0, \mu)$. Then, by Lemma 3.2, φ_{ε} is holomorphic on D_{ε} for any ε . Moreover, from the definition of φ_{ε} , it is easily seen that φ_{ε} satisfies the following differential equations

$$\begin{split} & [(\partial/\partial z_1)^2 + \dots + (\partial/\partial z_p)^2 - (\partial/\partial w_1)^2 - \dots - (\partial/\partial w_q)^2]\varphi_{\varepsilon} = -\lambda^2 \varphi_{\varepsilon}, \\ & (w_j \partial/\partial w_k - w_k \partial/\partial w_j)\varphi_{\varepsilon} = 0 \quad \text{for any } 1 \le j, \ k \le q. \end{split}$$

Put $H(z, w; \xi, \eta, t) = \langle z, \xi \rangle cht + \langle w, \eta \rangle sht$ for $(z, w, \xi, \eta, t) \in \mathbb{C}^p \times \mathbb{C}^q \times S^{p-1} \times S^{q-1} \times \mathbb{C}$. Then H is holomorphic with respect to the variables (z, w, t) and real analytic with respect to the variables (ξ, η) . For fixed ξ in S_{ε} , we denote by $h(z, w; \xi)$ a holomorphic function on D_{ε} defined by the following integral:

$$h(z, w; \xi) = \int_0^\infty \int_{S^{q-1}} e^{i\lambda H(z,w;\xi,\eta,t-i\mu)} \Delta(t-i\mu; p, q) d\eta dt$$
$$-i \int_0^\mu \int_{S^{q-1}} e^{i\lambda H(z,w;\xi,\eta,-i\zeta)} \Delta(-i\theta; p, q) d\eta d\zeta.$$

Then h is real analytic with respect to ξ in S_{ε} and we have

$$\varphi_{\varepsilon}(z, w) = \pi_{\varepsilon} \int_{S_{\varepsilon}} h(z, w; \zeta) d\zeta$$

for any $(z, w) \in D_{\varepsilon}$.

For the purpose of the proof of the rotation invariance with respect to the variables (x_1, \dots, x_p) , we use the following coordinate system on the sphere S^{p-1} ;

$$\begin{cases} \xi_1(\theta) = \cos \theta_1, \\ \xi_2(\theta) = \sin \theta_1 \cos \theta_2 \\ \vdots \\ \xi_{p-1}(\theta) = \sin \theta_1 \sin \theta_2 \cdots \sin \theta_{p-2} \cos \theta_{p-1}, \\ \xi_p(\theta) = \sin \theta_1 \sin \theta_2 \cdots \sin \theta_{p-2} \sin \theta_{p-1}, \end{cases}$$

where $0 \le \theta_j < \pi$ $(1 \le j \le p - 2)$ and $0 \le \theta_{p-1} < 2\pi$. It is well known that the normalized SO(p)-invariant measure $d\xi$ is represented with respect to this coordinate as follows;

$$d\xi = \frac{\Gamma(p/2)}{2\pi^{p/2}} (\sin\theta_1)^{p-2} (\sin\theta_2)^{p-3} \cdots \sin\theta_{p-2} d\theta_1 d\theta_2 \cdots d\theta_{p-1}.$$

Set $I^{(1)} = I^{(1,1)} = \{\theta; 0 \le \theta \le \pi/2\}, I^{(-1)} = I^{(-1,1)} = \{\theta; \pi/2 \le \theta \le \pi\}, I^{(1,-1)} = \{\theta; 3\pi/2 \le \theta \le 2\pi\}$ and $I^{(-1,-1)} = \{\theta; \pi \le \theta \le 3\pi/2\}.$ Then it is easily seen that for any $\varepsilon = (\varepsilon_1, \dots, \varepsilon_p)$ we have

$$S_{\varepsilon} = \{ (\xi_1(\theta), \cdots, \xi_p(\theta)); \theta_j \in I^{(\varepsilon_j)} (1 \le j \le p-2), \theta_{p-1} \in I^{(\varepsilon_{p-1}, \varepsilon_p)} \}.$$

Indeed, since if $(\xi_1(\theta), \dots, \xi_p(\theta)) \in S_{\varepsilon}$ then $\varepsilon_j \xi_j(\theta) \ge 0$ $(1 \le j \le p)$, we have $\varepsilon_j \cos \theta_j \ge 0$ $(1 \le j \le p - 1)$ and $\varepsilon_p \sin \theta_{p-1} \ge 0$. Hence $\theta_j \in I^{(\varepsilon_j)}$ $(1 \le j \le p - 2)$ and $\theta_{p-1} \in I^{(\varepsilon_{p-1},\varepsilon_p)}$ if and only if $(\xi_1(\theta), \dots, \xi_p(\theta)) \in S_{\varepsilon}$. Put

$$\begin{split} S_{\varepsilon}^{(k)} &= \{\xi(\theta) \in S_{\varepsilon}; \, \theta_{k} = \pi/2\} \quad \text{for each } k \in \{1, \cdots, p-2\} \\ S_{\varepsilon}^{(p-1)} &= \{\xi(\theta) \in S_{\varepsilon}; \, \theta_{p-1} = \pi(2-\varepsilon_{p})/2\}, \\ S_{\varepsilon}^{(p)} &= \{\xi(\theta) \in S_{\varepsilon}; \, \theta_{p-1} = a_{\varepsilon}\}, \end{split}$$

where $\xi(\theta) = (\xi_1(\theta), \dots, \xi_p(\theta)), a_{\varepsilon} = 0$ if $\varepsilon_{p-1} = \varepsilon_p = 1, a_{\varepsilon} = 2\pi$ if $\varepsilon_{p-1} = -\varepsilon_p = 1$ and $a_{\varepsilon} = \pi$ if $\varepsilon_{p-1} = -\varepsilon_p = -1$ or $\varepsilon_{p-1} = \varepsilon_p = -1$. Then one can easily see that $\partial S_{\varepsilon} = \bigcup_{\substack{1 \le k \le p}} S_{\varepsilon}^{(k)}$ for each ε , where ∂S_{ε} is the boundary of S_{ε} . Indeed, by virtue of the definition of $S_{\varepsilon}^{(k)}$, we have $S_{\varepsilon}^{(k)} = S_{\varepsilon} \cap \{\xi_k(\theta) = 0\}$ for any ε and k $(1 \le k \le p)$. We equip the sphere S^{p-1} with the orientation which is induced by the canonical orientation of $\{\theta; 0 \le \theta \le \pi\}^{p-2} \times \{\theta; 0 \le \theta < 2\pi\}$ and the

map

$$(\theta_1, \cdots, \theta_{p-1}) \longmapsto (\xi_1(\theta), \cdots, \xi_p(\theta)).$$

Moreover, for any ε and k $(1 \le k \le p)$, $S_{\varepsilon}^{(k)}$ can be equiped with the orientation which is compatible with the above orientation of S^{p-1} .

THEOREM 3.3 (Stokes). Let ω be a differential form of the degree p - 2 on S^{p-1} , then for any $\varepsilon = (\varepsilon_1, \dots, \varepsilon_p)$,

$$\int_{S_{\varepsilon}} d\omega = \sum_{1 \le j \le p-2} (-1)^{j+1} \varepsilon_j \int_{S_{\varepsilon}^{(j)}} \iota_{\varepsilon,j}^*(\omega) + (-1)^p \varepsilon_{p-1} \varepsilon_p \int_{S_{\varepsilon}^{(p-1)}} \iota_{\varepsilon,p-1}^*(\omega)$$
$$+ (-1)^{p+1} \varepsilon_{p-1} \varepsilon_p \int_{S_{\varepsilon}^{(p)}} \iota_{\varepsilon,p}^*(\omega),$$

where $\iota_{\varepsilon,j}$ is the inclusion map from $S_{\varepsilon}^{(j)}$ to S^{p-1} for each ε and j and $\iota_{\varepsilon,j}^*(\omega)$ is the pull-back of ω by the map $\iota_{\varepsilon,j}$.

Now, we consider the natural action of SO(p) on \mathbb{R}^{p} . Then the sphere S^{p-1} is stable under this action. Let $\mathfrak{k} = \mathfrak{so}(p)$ be the Lie algebra of the Lie group SO(p). For each j $(1 \le j \le p-1)$, set

$$E_j = (a_{ik})$$
 and $K_j(\theta_j) = \exp \theta_j E_j$,

where

$$a_{ik} = \begin{cases} 0 & \text{if } (i, k) \neq (j, j + 1), \ (j + 1, j) \\ 1 & \text{if } (i, k) = (j + 1, j) \\ -1 & \text{if } (i, k) = (j, j + 1) \end{cases}$$

and exp is the exponential map of \mathfrak{k} into SO(p) and $\theta_j \in \mathbf{R}$. Then one can easily see that

$$\xi(\theta) = {}^{t}(K_{p-1}(\theta_{p-1})\cdots K_{1}(\theta_{1}){}^{t}e_{1}),$$

where ^tA is the transpose of a matrix A and $e_1 = (1, 0, \dots, 0)$.

For each k $(1 \le k \le p - 1)$, we define the vector field $X_k(X'_k)$ on $\mathbb{R}^p(S^{p-1})$ such that

$$(X_k f)(x) = -\frac{d}{dt}\Big|_{t=0} f(\exp(tE_k)x) \quad \text{for any } f \in C^{\infty}(\mathbb{R}^p)$$
$$((X'_k f)(\xi) = \frac{d}{dt}\Big|_{t=0} f(\exp(tE_k)\xi) \quad \text{for any } f \in C^{\infty}(S^{p-1})$$

for any $x \in \mathbb{R}^p$ ($\xi \in S^{p-1}$), respectively. Then

On the construction of spherical hyperfunctions on \mathbb{R}^{p+q}

$$X_k = x_{k+1} \frac{\partial}{\partial x_k} - x_k \frac{\partial}{\partial x_{k+1}}$$
 for any $k \ (1 \le k \le p-1)$

and

$$X'_{k} = \cos \theta_{k+1} \frac{\partial}{\partial \theta_{k}} - \cot \theta_{k} \sin \theta_{k+1} \frac{\partial}{\partial x_{k+1}} \quad (1 \le k \le p-2), \ X'_{p-1} = \frac{\partial}{\partial x_{p-1}}.$$

Indeed, the first and second assertion for k = p - 1 are simply seen. For the second assertion except for k = p - 1, we need some calculations. Since $K_k(t)K_j(\theta_j) = K_j(\theta_j)K_k(t)$ for $j \ge k + 2$, we have

$$K_{k}(t)K_{p-1}(\theta_{p-1})\cdots K_{1}(\theta_{1})$$

= $K_{p-1}(\theta_{p-1})\cdots K_{k+2}(\theta_{k+2})K_{k}(t)K_{k+1}(\theta_{k+1})K_{k}(\theta_{k})\cdots K_{1}(\theta_{1}).$

On the other hand, we can choose $\tilde{\theta}_k = \tilde{\theta}_k(t, \theta_k, \theta_{k+1})$, $\tilde{\theta}_{k+1} = \tilde{\theta}_{k+1}(t, \theta_k, \theta_{k+1})$ and $\varphi = \varphi(t, \theta_k, \theta_{k+1})$ such that

$$K_k(t)K_{k+1}(\theta_{k+1})K_k(\theta_k) = K_{k+1}(\theta_{k+1})K_k(\theta_k)K_{k+1}(\varphi).$$

In fact, such $\tilde{\theta}_k$, $\tilde{\theta}_{k+1}$ are given as follows;

$$\cos \tilde{\theta}_{k} = \cos t \cos \theta_{k} - \sin t \sin \theta_{k} \cos \theta_{k+1},$$

$$\sin \tilde{\theta}_{k} \cos \tilde{\theta}_{k+1} = \sin t \cos \theta_{k} + \cos t \sin \theta_{k} \cos \theta_{k+1},$$

$$\sin \tilde{\theta}_{k} \sin \tilde{\theta}_{k+1} = \sin \theta_{k} \sin \theta_{k+1}.$$

Hence $\partial \tilde{\theta}_k / \partial t|_{t=0} = \cos \theta_{k+1}$ and $\partial \tilde{\theta}_{k+1} / \partial t|_{t=0} = -\cot \theta_k \sin \theta_{k+1}$. Since $K_{k+1}(\varphi) K_j(\theta_j) = K_j(\theta_j) K_{k+1}(\varphi)$ for $j \le k-1$ and $K_{k+1}(\varphi) te_1 = te_1$ for $1 \le k \le p-2$, we have the second assertion.

Since X_k is a real analytic vector field on \mathbb{R}^p , we can extend it on the holomorphic vector field on \mathbb{C}^p , uniquely. In this section, we use the same notation X_k for such a vector field. Let F be a \mathbb{C}^∞ -function on \mathbb{C} . Set $G(z, \xi) = F(\langle z, \xi \rangle)$ for $z \in \mathbb{C}^p$ and $\xi \in S^{p-1}$. Then we have $X_k G(z, \xi) = X'_k G(z, \xi)$. Indeed, snce $\langle \rangle$ is SO(p)-invariant,

$$\left. \frac{d}{dt} \right|_{t=0} G(exp(tX)z, exp(tX)\xi) = 0 \quad \text{for any } X \in \mathfrak{k}.$$

Here we extend the action of SO(p) on \mathbb{R}^p to \mathbb{C}^p , naturally. Hence we have the assertion from the definition of X_k and X'_k .

Put $\omega(\theta) = \Gamma(p/2)/(2\pi^{p/2})$ $(\sin\theta_1)^{p-2}(\sin\theta_2)^{p-3}\cdots(\sin\theta_{p-2})$. Then $d\xi = \omega(\theta)d\theta_1 \wedge \cdots \wedge d\theta_{p-1}$. We denote by $\iota(X)(\omega)$ the interior product of X and ω .

LEMMA 3.4. We have

1)
$$\iota(X'_{k})(d\xi) = (-1)^{k-1}\omega(\theta) [d\theta_{k}(X'_{k})d\theta_{1} \wedge \cdots \wedge d\theta_{p-1}]$$

 $- d\theta_{k+1}(X'_{k})d\theta_{1} \wedge \cdots \wedge d\theta_{p-1}] \quad (for any \ k(1 \le k \le p-2))$
and $\iota(X'_{p-1})(d\xi) = (-1)^{p}\omega(\theta)d\theta_{1} \wedge \cdots \wedge d\theta_{p-2},$
2) for any ε and j $(1 \le j \le p)$
 $\iota^{*}_{\varepsilon,j}(\iota(X'_{k})(d\xi)) = \delta_{k,j}(-1)^{k-1} [\omega(\theta)d\theta_{k}(X'_{k})]_{\theta_{k}=\pi/2} d\theta_{1} \wedge \cdots \wedge d\theta_{p-1}$
 $+ \delta_{k+1,j}(-1)^{k} [\omega(\theta)d\theta_{k+1}(X'_{k})]_{\theta_{k+1}=\pi/2} d\theta_{1} \wedge \cdots \wedge d\theta_{p-1}$
(for any k $(1 \le k \le p-3)),$
 $\iota^{*}_{\varepsilon,j}(\iota(X'_{p-2})(d\xi))$

$$= \delta_{p-2,j}(-1)^{p-3} [\omega(\theta)d\theta_{k-2}(X'_{p-2})]_{\theta_{p-2}=\pi/2} d\theta_1 \wedge \cdots \wedge d\theta_{p-3} \wedge d\theta_{p-1} \\ + \delta_{p-1,j}(-1)^{p-2} [\omega(\theta)d\theta_{p-1}(X'_{p-2})]_{\theta_{p-1}=\pi(2-\varepsilon_p)/2} d\theta_1 \wedge \cdots \wedge d\theta_{p-2}, \\ l^*_{\varepsilon,j}(\iota(X'_{p-1})(d\xi)) = \delta_{p-1,j}(-1)^p [\omega(\theta)]_{\theta_{p-1}=\pi(2-\varepsilon_p)/2} d\theta_1 \wedge \cdots \wedge d\theta_{p-2} \\ + \delta_{p,j}(-1)^p [\omega(\theta)]_{\theta_{p-1}=a_\varepsilon} d\theta_1 \wedge \cdots \wedge d\theta_{p-2},$$

where $d\theta_1 \wedge \cdots \wedge d\theta_{p-1} = d\theta_1 \wedge \cdots \wedge d\theta_{k-1} \wedge d\theta_{k+1} \wedge \cdots \wedge d\theta_{p-1}$ and $\delta_{k,j}$ is the Kronecker's δ .

PROOF. 1) Put $\iota(X'_k)(d\xi) = \sum_{1 \le j \le p-1} a_j(\theta) d\theta_1 \wedge \cdots \wedge d\theta_{p-1}$. Then we see from the definiton of the interior product that for any j $(1 \le j \le p-1)$,

where $c_{i,j} = d\theta_i(\partial/\partial\theta_j)$ and det A is the determinant of a matrix A. Since $c_{i,j} = d\theta_i(\partial/\partial\theta_j) = \delta_{i,j}$ $(1 \le i, j \le p - 1)$, if $1 \le k \le p - 2$ then $a_k(\theta) = (-1)^{k-1}\omega(\theta)$ $d\theta_k(X'_k), a_{k+1}(\theta) = (-1)^k \omega(\theta) d\theta_{k+1}(X'_k)$ and $a_j(\theta) = 0$ for $1 \le j \le k - 1$, $k + 2 \le j \le p - 1$. If k = p - 1 then $a_{p-1}(\theta) = (-1)^p \omega(\theta)$ and $a_j(\theta) = 0$ for $1 \le j \le p - 2$. Thus 1) of the lemma is proved.

2) From the definition of $t_{\varepsilon,j}^*$ and 1), 2) is easily obtained.

Now we recall the functions φ_{e} , h and the vector field X_k on \mathbb{R}^p or \mathbb{C}^p . In view of the remark on the vector fields X_k and X'_k , we have

$$X_k \varphi_{\varepsilon}(z, w) = \pi_{\varepsilon} \int_{S_{\varepsilon}} (X'_k h)(z, w; \xi) d\xi$$
 for any ε and k .

Let $L_{X'_k}$ be the Lie derivative over S^{p-1} with respect to X'_k . Then $L_{X'_k}(d\xi) = 0$, because $d\xi$ is an invariant measure. Hence we have for any ε and k,

$$\int_{S_{\varepsilon}} (X'_k h)(z, w; \xi) d\xi = \int_{S_{\varepsilon}} L_{X'_k}(h(z, w; \xi) d\xi) \quad \text{for } (z, w) \in D_{\varepsilon}.$$

Let d be the exterior derivative over S^{p-1} . Since

$$L_{X'_k} = d \circ \iota(X'_k) + \iota(X'_k) \circ d \quad \text{and} \quad d(hd\xi) = 0,$$

we have for any ε and k.

$$\int_{S_{\varepsilon}} L_{X'_{k}}(h(z, w; \xi)d\xi) = \int_{S_{\varepsilon}} d(\iota(X'_{k})(h(z, w; \xi)d\xi)) \quad \text{for } (z, w) \in D_{\varepsilon}.$$

Thanks to Stokes' Theorem 3.3 and from Lemma 3.4, we have LEMMA 3.5. For any ε and $(z, w) \in D_{\varepsilon}$,

$$(X_{k}\varphi_{\varepsilon})(z, w) = \varepsilon_{k}\pi_{\varepsilon} \int_{S_{\varepsilon}^{(k)}} [h(z, w; \xi(\theta))\omega(\theta)\cos\theta_{k+1}]_{\theta_{k}=\pi/2} d\theta_{1} \cdots d\theta_{p-1}$$
$$-\varepsilon_{k+1}\pi_{\varepsilon} \int_{S_{\varepsilon}^{(k+1)}} [h(z, w; \xi(\theta))\omega(\theta)\cot\theta_{k}]_{\theta_{k+1}=\pi/2} d\theta_{1} \cdots d\theta_{p-1}$$

(for any $k \ (1 \le k \le p - 3)$),

$$(X_{p-2}\varphi_{\varepsilon})(z, w) =$$

$$\varepsilon_{p-2} \pi_{\varepsilon} \int_{S_{\varepsilon}^{(p-2)}} [h(z, w; \zeta(\theta))\omega(\theta)\cos\theta_{p-1}]_{\theta_{p-2}=\pi/2} d\theta_{1} \cdots d\theta_{p-3} d\theta_{p-1}$$

$$-\varepsilon_{p-1} \pi_{\varepsilon} \int_{S_{\varepsilon}^{(p-1)}} [h(z, w; \zeta(\theta))\omega(\theta)\cot\theta_{p-2}]_{\theta_{p-1}=\pi(2-\varepsilon_{p})/2} d\theta_{1} \cdots d\theta_{p-2},$$

$$(X_{p-2})(z_{p-1})(z$$

$$(X_{p-1}\varphi_{\varepsilon})(z, w) =$$

$$\varepsilon_{p-1}\varepsilon_{p}\pi_{\varepsilon}\int_{S_{\varepsilon}^{(p-1)}} \left[h(z, w; \xi(\theta))\omega(\theta)\right]_{\theta_{p-1}=\pi(2-\varepsilon_{p})/2} d\theta_{1}\cdots d\theta_{p-2}$$
$$-\varepsilon_{p-1}\varepsilon_{p}\pi_{\varepsilon}\int_{S_{\varepsilon}^{(p)}} \left[h(z, w; \xi(\theta))\omega(\theta)\right]_{\theta_{p-1}=a_{\varepsilon}} d\theta_{1}\cdots d\theta_{p-2}.$$

0,

Set
$$Y = w_1 \partial/\partial z_1 + z_1 \partial/\partial w_1$$
. Then it is easily seen that
 $\{Y - D(t, \theta_1, \tau_1; \partial/\partial t, \partial/\partial \theta_1, \partial/\partial \tau_1)\} e^{i\lambda H(z,w;\xi(\theta),\eta(t),t-i\mu)} =$

where $D(t, \xi, \eta) = D(t, \theta_1, \tau_1; \partial/\partial t, \partial/\partial \theta_1, \partial/\partial \tau_1) = \cos\theta_1 \cos\tau_1 \partial/\partial t - \sin\tau_1 \cos\theta_1 \cot(t - i\mu)\partial/\partial \tau_1 - \sin\theta_1 \cos\tau_1 \tanh(t - i\mu)\partial/\partial \theta_1$ and $\eta(\tau) = (\eta_1(\tau), \cdots, \eta_q(\tau)) \in S^{q-1}$ is defined in a way similar to $\xi(\theta)$.

Let $\omega_p(\theta) = \omega(\theta)$ and $\omega_q(\tau)$ be defined in a way similar to $\omega_p(\theta)$. Then $d\eta = \omega_q(\tau)d\tau_1 \wedge \cdots \wedge d\tau_{q-1}$. Now, we calculate $Y\varphi_{\varepsilon}$. First we have

$$\begin{split} Y\psi_{\varepsilon}(z,\,w) &= \pi_{\varepsilon} \int_{0}^{\infty} \int_{S_{\varepsilon}} \int_{S^{q-1}} (D(t,\,\xi,\,\eta) e^{i\lambda H(z,w;\xi,\eta,t-i\mu)}) \varDelta(t-i\mu) d\eta d\xi dt \\ &= \pi_{\varepsilon} \int_{S_{\varepsilon}} \int_{S^{q-1}} [\varDelta(t-i\mu) e^{i\lambda H(\cdot,t-i\mu)}]_{t=0}^{t=\infty} \omega_{p}(\theta) \cos\theta_{1} \cos\tau_{1} d\theta_{1} \cdots d\theta_{p-1} d\eta \\ &- \pi_{\varepsilon} \int_{0}^{\infty} \int_{S_{\varepsilon}} \int_{S^{q-1}} \frac{d\varDelta(t-i\mu)}{dt} e^{i\lambda H} \omega_{p}(\theta) \cos\theta_{1} \cos\tau_{1} d\theta_{1} \cdots d\theta_{p-1} d\eta dt \\ &+ \pi_{\varepsilon} \int_{0}^{\infty} \int_{S_{\varepsilon}} \int_{S^{q-1}} e^{i\lambda H} \varDelta(t-i\mu) \coth(t-i\mu) \cos\theta_{1} \frac{\partial}{\partial\tau_{1}} (\sin\tau_{1}\omega_{q}(\tau)) d\xi d\eta dt \\ &- \varepsilon_{1} \pi_{\varepsilon} \int_{0}^{\infty} \int_{S_{\varepsilon}^{(1)}} \int_{S^{q-1}} v(\theta',\,\tau,\,t) \varDelta(t-i\mu) \th(t-i\mu) \cos\tau_{1} d\theta_{2} \cdots d\theta_{p-1} d\eta dt \\ &+ \pi_{\varepsilon} \int_{0}^{\infty} \int_{S_{\varepsilon}} \int_{S^{q-1}} e^{i\lambda H} \varDelta(t-i\mu) \th(t-i\mu) \cos\tau_{1} \frac{\partial}{\partial\theta_{1}} (\sin\theta_{1}\omega_{p}(\theta)) d\theta_{1} \cdots d\theta_{p-1} d\eta dt , \end{split}$$

where $v(\theta', \tau, t; z, w) = v(\theta', \tau, t) = [\omega_p(\theta)^{i\lambda H(\cdot, t - i\mu)}]_{\theta_1 = \pi/2}$ and th(t) = tanh(t). But

$$-\cos\theta_{1}\cos\tau_{1}\omega_{p}(\theta)\omega_{p}(\tau)\frac{d\Delta(t-i\mu)}{dt}$$
$$+\Delta(t-i\mu)\coth(t-i\mu)\cos\theta_{1}\omega_{p}(\theta)\frac{\partial}{\partial\tau_{1}}(\sin\tau_{1}\omega_{q}(\tau))$$
$$+\Delta(t-i\mu)\tanh(t-i\mu)\cos\tau_{1}\omega_{q}(\tau)\frac{\partial}{\partial\theta_{1}}(\sin\theta_{1}\omega_{p}(\theta))=0.$$

Thus we have

$$Y\psi_{\varepsilon}(z, w) = -\pi_{\varepsilon} \int_{S_{\varepsilon}} \int_{S^{q-1}} e^{i\lambda H(z, w; \xi(\theta), \eta(\tau), -i\mu)} \Delta(-i\mu; p, q) \cos\theta_{1} \cos\tau_{1} d\xi d\eta$$
$$-\varepsilon_{1} \pi_{\varepsilon} \int_{0}^{\infty} \int_{S_{\varepsilon}^{(1)}} \int_{S^{q-1}} v(\theta', \eta, t; z, w) \Delta(t - i\mu; p - 1, q + 1) \cos\tau_{1} d\theta_{2} \cdots d\theta_{p-1} dn dt.$$

By the same calculation for $Y\chi_{\varepsilon}(z, w; a, b)$, we have

$$\begin{aligned} Y\chi_{\varepsilon}(z, w; a, b) &= \\ &- \pi_{\varepsilon} \int_{S_{\varepsilon}} \int_{S^{q-1}} \left[e^{i\lambda H(\cdot, -i\zeta)} \Delta(-i\zeta; p, q) \right]_{\zeta=a}^{\zeta=b} \cos\theta_{1} \cos\tau_{1} d\zeta d\eta \\ &- i\varepsilon_{1} \pi_{\varepsilon} \int_{a}^{b} \int_{S_{\varepsilon}^{(1)}} \int_{S^{q-1}} v(\theta', \eta, -i\zeta) \Delta(-i\zeta; p-1, q+1) \cos\tau_{1} d\theta_{2} \cdots d\theta_{p-1} d\eta d\zeta. \end{aligned}$$

Therefore we have

LEMMA 3.6. For any ε and $(z, w) \in D_{\varepsilon}$,

$$\begin{split} &Y\varphi_{\varepsilon}(z, w) = \\ &-\varepsilon_{1}\pi_{\varepsilon}\int_{0}^{\infty}\int_{S_{\varepsilon}^{(1)}}\int_{S^{q-1}}v(\theta', \tau, t; z, w)\varDelta(t - i\mu; p - 1, q + 1)\mathrm{cos}\tau_{1}d\theta_{2}\cdots d\theta_{p-1}d\eta dt \\ &+i\varepsilon_{1}\pi_{\varepsilon}\int_{0}^{\mu}\int_{S_{\varepsilon}^{(1)}}\int_{S^{q-1}}v(\theta', \tau, -i\zeta)\varDelta(-i\zeta; p - 1, q + 1)\mathrm{cos}\tau_{1}d\theta_{2}\cdots d\theta_{p-1}d\eta d\zeta. \end{split}$$

Now, we give spherical hyperfunctions by the elements of the Čeck cohomology $H^{p+q-1}(\mathcal{W}'; \mathcal{O})$. Under the same notation as in §2, we put

$$f = [(U_1^{(1)} \cap \cdots \cap U_p^{(1)} \cap V_1^{(1)} \cap \cdots \cap V_q^{(1)}; \chi(z, w))],$$

where

$$\chi(z, w) = \int_{-\pi}^{\pi} \int_{S_{\varepsilon}} \int_{S^{q-1}} e^{i\lambda[\langle z, \xi \rangle \cos \zeta - i \langle w, \eta \rangle \sin \zeta]} \Delta(-i\zeta; p, q) d\xi d\eta d\zeta.$$

Then it is clear that f is a real analytic function on \mathbb{R}^{p+q} and $f \in \mathscr{B}_{\mathcal{V}}^{G_0}(\mathbb{R}^{p+q})$. Let

$$g = \left[(U_1^{(\varepsilon_1)} \cap \cdots \cap U_p^{(\varepsilon_p)} \cap V_1^{(1)} \cap \cdots \cap V_q^{(1)}; \varphi_{\varepsilon}) \right].$$

Then we have

PROPOSITION 3.7. $g \in \mathscr{B}_{v}^{G_{0}}(\mathbb{R}^{p+q}).$

PROOF. It is clear that g satisfies the following differential equations;

$$[(\partial/\partial x_1)^2 + \dots + (\partial/\partial x_p)^2 - (\partial/\partial y_1)^2 - \dots - (\partial/\partial y_q)^2]g = -\lambda^2 g,$$

$$(y_j \partial/\partial y_k - y_k \partial/\partial y_j)g = 0 \quad \text{for any } 1 \le j, \ k \le q.$$

Since the Lie algebra g is spanned by the differential operators $x_k \partial/x_{k+1} - x_{k+1} \partial/x_k$ ($1 \le k \le p-1$), $y_k \partial/y_{k+1} - y_{k+1} \partial/y_k$ ($1 \le k \le q-1$), $y_1 \partial/\partial x_1 + x_1 \partial/\partial y_1$, we must prove that

 $(x_{k}\partial/\partial x_{k+1} - x_{k+1}\partial/\partial x_{k})g = 0 \ (1 \le k \le p-1) \ \text{and} \ (y_{1}\partial/\partial x_{1} + x_{1}\partial/\partial y_{1})g = 0.$ First we prove that $(x_{k+1}\partial/\partial x_{k} - x_{k}\partial/\partial x_{k+1})g = 0.$ For each k $(1 \le k \le p), \text{ set } \varepsilon(k) = (\varepsilon_{1}, \dots, \varepsilon_{k-1}, 0, \varepsilon_{k+1}, \dots, \varepsilon_{p}), \text{ where } \varepsilon_{j} \in \{\pm 1\} \text{ for } j \ne k \text{ and}$ $U(\varepsilon(k)) = \bigcap_{\substack{1 \le j \le p \\ j \ne k}} U_{j}^{(\varepsilon_{j})} \text{ for any } 1 \le k \le p \text{ and } \varepsilon(k).$ Put $\varphi_{\varepsilon(k)}(z, w) = \varepsilon_{k} \pi_{\varepsilon} \int_{S_{\varepsilon}^{(k)}} [h(z, w; \zeta(\theta))\omega_{p}(\theta)\cos\theta_{k+1}]_{\theta_{k}=\pi/2} d\theta_{1} \cdots d\theta_{p-1}$ $(\text{if } 1 \le k \le p-2),$ $\psi_{\varepsilon(k)}(z, w) = \varepsilon_{k} \pi_{\varepsilon} \int_{S_{\varepsilon}^{(\kappa)}} [h(z, w; \zeta(\theta))\omega_{p}(\theta)\cot\theta_{k-1}]_{\theta_{k}=\pi/2} d\theta_{1} \cdots d\theta_{p-1}$ $(\text{if } 2 \le k \le p-2),$

where $d\theta_1 \cdots d\theta_{p-1} = d\theta_1 \cdots d\theta_{k-1} d\theta_{k+1} \cdots d\theta_{p-1}$ and

$$\begin{split} \varphi_{\varepsilon(p-1)}(z, w) &= \varepsilon_{p-1}\varepsilon_{p}\pi_{\varepsilon} \int_{S_{\varepsilon}^{(p-1)}} \left[h(z, w; \xi(\theta))\omega_{p}(\theta)\right]_{\theta_{p-1}=b_{\varepsilon}} d\theta_{1}\cdots d\theta_{p-2}, \\ \psi_{\varepsilon(p-1)}(z, w) &= \varepsilon_{p-1}\pi_{\varepsilon} \int_{S_{\varepsilon}^{(p-1)}} \left[h(z, w; \xi)\omega_{p}(\theta)\cot\theta_{p-2}\right]_{\theta_{p-1}=b_{\varepsilon}} d\theta_{1}\cdots d\theta_{p-2}, \\ \psi_{\varepsilon(p)}(z, w) &= \varepsilon_{p-1}\varepsilon_{p}\pi_{\varepsilon} \int_{S_{\varepsilon}^{(p)}} \left[h(z, w; \xi(\theta))\omega_{p}(\theta)\right]_{\theta_{p-1}=a_{\varepsilon}} d\theta_{1}\cdots d\theta_{p-2}, \end{split}$$

where $b_{\varepsilon} = \pi (2 - \varepsilon_p)/2$.

Then it is easily seen that $\varphi_{\varepsilon(k)}$ and $\psi_{\varepsilon(k)}$ are holomorphic on $U(\varepsilon(k))$ for $1 \le k \le p - 1$ and $2 \le k \le p$, respectively. In fact, we see from the same proof as in Lemma 3.1 that if $(z, w) \in U(\varepsilon(k))$ then $\langle \operatorname{Im} z, \zeta \rangle + \langle \operatorname{Im} w, \eta \rangle > 0$ for any $\zeta \in S_{\varepsilon}^{(k)}$ and $\eta \in S^{q-1}$, where we set $\varepsilon(k) = (\varepsilon_1, \dots, \varepsilon_{k-1}, 0, \varepsilon_{k+1}, \dots, \varepsilon_p)$ for $\varepsilon = (\varepsilon_1, \dots, \varepsilon_p)$. Thus, by the same proof as in Lemma 3.2, $\varphi_{\varepsilon(k)}$ and $\psi_{\varepsilon(k)}$ are both holomorphic on $U(\varepsilon(k))$. For each k $(1 \le k \le p - 1)$, let c_k be a p + q - 2 cochain defined as follows:

$$\{ (U(\varepsilon(k)) \cap V_1^{(1)} \cap \dots \cap V_q^{(1)}; (-1)^{k+1} \varphi_{\varepsilon(k)}) \text{ for each } \varepsilon(k), \\ (U(\varepsilon(k+1)) \cap V_1^{(1)} \cap \dots \cap V_q^{(1)}; (-1)^{k+1} \psi_{\varepsilon(k+1)}) \text{ for each } \varepsilon(k+1),$$

(otherwise; 0).

Then $\delta(c_k) = \{ (U_1^{(\varepsilon_1)} \cap \cdots \cap U_p^{(\varepsilon_p)} \cap V_1^{(1)} \cap \cdots \cap V_q^{(1)}); \varphi_{\varepsilon(k)} - \psi_{\varepsilon(k+1)} \}$, (otherwise; 0), for $\varepsilon = (\varepsilon_1, \cdots, \varepsilon_p) \}$. On the other hand, by Lemma 3.5 and the definition of

 $\varphi_{\varepsilon(k)}$ and $\psi_{\varepsilon(k)}$, we have

$$X_k \varphi_{\varepsilon} = \varphi_{\varepsilon(k)} - \psi_{\varepsilon(k+1)}$$
 for any ε and $1 \le k \le p-1$.

Thus $(x_{k+1}\partial/\partial x_k - x_k\partial/\partial x_{k+1})g = [\delta(c_k)] = 0$ for any $1 \le k \le p-1$.

Next, we prove that $(y_1\partial/\partial x_1 + x_1\partial/\partial y_1)g = 0$. For any $\varepsilon(1) = (0, \varepsilon_2, \dots, \varepsilon_p)$, let $\chi_{\varepsilon(1)}(z, w)$ be the holomorphic function on D_{ε} defined by the right-hand side of the equality of Lemma 3.6. Then in a way similar to the proof of Lemma 3.2, we see that $\chi_{\varepsilon(1)}$ is holomorphic on $U(\varepsilon(1))$. Let c be a p + q - 2 cochain defined as follows;

$$c = \{ (U(\varepsilon(1)) \cap V_1^{(1)} \cap \dots \cap V_q^{(1)}; \chi_{\varepsilon(1)}), \text{ (otherwise ; 0); for } \varepsilon(1) = (0, \varepsilon_2, \dots, \varepsilon_p) \}.$$

Then

$$\delta(c) = \{ (U_1^{(\varepsilon_1)} \cap \dots \cap U_p^{(\varepsilon_p)} \cap V_1^{(1)} \cap \dots \cap V_q^{(1)}; \chi_{\varepsilon(1)}), \text{ (otherwise; 0)};$$
for $\varepsilon = (\varepsilon_1, \dots, \varepsilon_p) \}.$

Thus $(y_1\partial/\partial x_1 + x_1\partial/\partial y_1)g = 0$, because $Y\varphi_{\varepsilon} = \chi_{\varepsilon(1)}$ for any $\varepsilon = (\varepsilon_1, \dots, \varepsilon_p)$. Therefore the proposition is proved.

Now, we consider the singular spectrum of the hyperfunction g. For any $\varepsilon = (\varepsilon_1, \dots, \varepsilon_p)$ ($\varepsilon_j \in \{\pm 1\}$), let

$$g_{\varepsilon} = \left[\left(U_1^{(\varepsilon_1)} \cap \cdots \cap U_p^{(\varepsilon_p)} \cap V_1^{(1)} \cap \cdots \cap V_q^{(1)}; \varphi_{\varepsilon} \right) \right].$$

Then $g = \sum g_{\varepsilon}$. For each ε and $(x, y) \in \mathbb{R}^{p+q}$, let $\Gamma_{\varepsilon}(x, y)$ be the dual cone of $D_{\varepsilon}(x, y)$, where $D_{\varepsilon}(x, y) = \{(a, b) \in \mathbb{R}^{p+q}; (x + ia, y + ib) \in D_{\varepsilon}\}$. Here $\Gamma_{\varepsilon}(x, y)$ is regarded as the subset of $\sqrt{-1} T^{*}_{(x,y)} \mathbb{R}^{p+q}$. We put

$$\widetilde{\Gamma}_{\varepsilon}(x, y) = \{ \widetilde{p} \in \sqrt{-1} S^*_{(x,y)} \mathbf{R}^{p+q}; p \in \Gamma_{\varepsilon}(x, y) \}$$

for each ε and $(x, y) \in \mathbb{R}^{p+q}$, where \tilde{p} is the projection of $p \in \sqrt{-1} T^*_{(x,y)} \mathbb{R}^{p+q}$ to $\sqrt{-1} S^*_{(x,y)} \mathbb{R}^{p+q}$. Then one can easily see that

$$\widetilde{\Gamma}_{\varepsilon}(x, y) = \{i(a, b)\infty; \varepsilon_1 a_1 + \dots + \varepsilon_p a_p \ge \|b\| \text{ and } \varepsilon_j a_j \ge 0 \text{ for } 1 \le j \le p\}.$$

In fact, if $\varepsilon_1\xi_1 + \cdots + \varepsilon_p\xi_p \ge ||\eta||$ and $\varepsilon_j\xi_j \ge 0$ $(1 \le j \le p)$ then $\xi_1a_1 + \cdots + \xi_pa_p + \eta_1b_1 + \cdots + \eta_qb_q \ge ||b|| |(\varepsilon_1\xi_1 + \cdots + \varepsilon_p\xi_p) + \eta_1b_1 + \cdots + \eta_qb_q \ge ||b|| || \eta|| + \eta_1b_1 + \cdots + \eta_qb_q \ge 0$ for any $(a, b)\in D_{\varepsilon}(x, y)$. Conversely, if $\xi_1a_1 + \cdots + \xi_pa_p + \eta_1b_1 + \cdots + \eta_qb_q \ge 0$ for any $(a, b)\in D_{\varepsilon}(x, y)$ then $\varepsilon_1\xi_1 + \cdots + \varepsilon_p\xi_p \ge r||\eta||$ for any $0 \le r < 1$, because we can choose $(a, b)\in D_{\varepsilon}(x, y)$ such that $a_j = \varepsilon_j$ and $b_j = -\eta_j r/||\eta||$ for $0 \le r < 1$ and $1 \le j \le p$. Thus $\varepsilon_1\xi_1 + \cdots + \varepsilon_p\xi_p \ge ||\eta||$ and $\varepsilon_j\xi_j \ge 0$. In view of the definition of the singular spectrum, we have

S.S
$$g_{\varepsilon} \subset \bigcup_{(x,y)\in \mathbb{R}^{p+q}} \widetilde{\Gamma}_{\varepsilon}(x, y)$$
 for each ε .

We put $S = S_{(1,...,1)}$, $\varphi_0(z, w) = \varphi_{(1,...,1)}(z, w)$ and $g_0 = g_{(1,...,1)}$. We shall prove that $(0, 0; i(a, b)\infty) \in S.S$ g_0 for any $(a, b) \in \mathbb{R}^{p+q}$ such that ||a|| = ||b|| $= 2^{-1/2}$ and $a_j \ge 0$ for any $1 \le j \le p$. Let

$$D_0 = D_{(1,\dots,1)}$$
 and $D_1 = \{(z, w) \in C^{p+q}; \operatorname{Re} z_j > ||\operatorname{Re} w|| \text{ for any } 1 \le j \le p\}.$

Put

$$\varphi_1(z, w) = i^{p+q-2} \int_0^\infty \int_S \int_{S^{q-1}} e^{-\lambda[\langle z,\xi\rangle \operatorname{sh}(t-i\mu)+\langle w,\eta\rangle \operatorname{ch}(t-i\mu)]} \Delta(t-i\mu; q, p) d\xi d\eta dt$$

Then φ_j is a holomorphic function on D_j (j = 1, 2). Moreover, it is easily seen that

$$\varphi_0(z, w) = \varphi_1(z, w) - \chi_0(z, w; 0, \mu - \pi/2)$$
 for any $(z, w) \in D_0 \cap D_1$

by the same proof as in Proposition 2.3 (or Lemma 1.2), where $\chi_0 = \chi_{(1,\dots,1)}$. But we have

PROPOSITION 3.8. Let $(a, b) \in \mathbb{R}^{p+q}$ be such that $||a|| = ||b|| \neq 0$ and $||a||^{-1}a \in S$ or $-||a||^{-1}a \in S$. Then φ_1 is not holomorphic on any neighborhood of the point $(z, w) = (ia_1, \dots, ia_p, ib_1, \dots, ib_q)$. Hence φ_0 can't be analytically continued to the previous point.

COROLLARY 3.9. $(0, 0; i(a, b)\infty) \in S.S \ g_0 \ for \ any \ (a, b) \in \mathbb{R}^{p+q} \ such \ that \|a\| = \|b\| = 2^{-1/2} \ and \ a_j \ge 0 \ (1 \le j \le p).$

PROOF. Since S.S $g_0 \subset \bigcup \tilde{\Gamma}_{(1,\dots,1)}(x, y)$, the corollary follows from Proposition 3.8.

For the proof of Proposition 3.8, we need some lemmas. Let $N = \{1, 2, \dots\}$ and $J_{\nu}(z)$ ($\mathscr{H}_{\nu}^{(2)}$) be the Bessel function (Hankel) of order ν .

LEMMA 3.10. If $\operatorname{Re}\beta > |\operatorname{Im}\alpha|$, $v \in N$ and $2\mu \in N \cup \{0\}$ then we have

$$\int_{0}^{\infty} e^{-\beta \operatorname{sht}} (\operatorname{ch} t)^{\mu+1} (\operatorname{sh} t)^{\nu} J_{\mu}(\alpha \operatorname{ch} t) dt$$

= $c_{1}(\nu, \mu) (\partial/\partial \beta)^{\nu} \{ \alpha^{\mu} (\alpha^{2} + \beta^{2})^{-\mu/2 - 1/4} \mathscr{H}^{(2)}_{-\mu - 1/2} ((\alpha^{2} + \beta^{2})^{1/2}) \}$
 $- \int_{0}^{1} e^{-\beta (x^{2} - 1)^{1/2}} x^{\mu+1} (x^{2} - 1)^{(\nu-1)/2} J_{\mu}(\alpha x) dx,$

where $c_1(v, \mu) = (\pi/2)^{1/2} e^{i\pi(v+\mu)}$ and $\arg(x^2 - 1) = \pi/2$ if x < 1.

PROOF. We put x = cht. Then

$$\int_0^\infty e^{-\beta \operatorname{sh} t} (\operatorname{ch} t)^{\mu+1} (\operatorname{sh} t)^{\nu} J_{\mu}(\alpha \operatorname{ch} t) dt$$
$$= \int_1^\infty e^{-\beta (x^2-1)^{1/2}} x^{\mu+1} (x^2-1)^{(\nu-1)/2} J_{\mu}(\alpha x) dx.$$

On the other hand, it is well known that for $\operatorname{Re}\beta > |\operatorname{Im}\alpha|$

$$\int_{0}^{\infty} e^{-\beta(x^{2}-1)^{1/2}} x^{\mu+1} (x^{2}-1)^{-1/2} J_{\mu}(\alpha x) dx$$

= $(\pi/2)^{1/2} e^{i\pi\mu} \alpha^{\mu} (\alpha^{2}+\beta^{2})^{-\mu/2-1/4} \mathscr{H}^{(2)}_{-\mu-1/2} ((\alpha^{2}+\beta^{2})^{1/2}),$

where $\arg(x^2 - 1)^{1/2} = \pi/2$ if x < 1 (see [1]). This implies the lemma.

Let U be a relatively compact open subset of C. Then for each $\alpha \in C$ we have

LEMMA 3.11. If $v \in N$ and $2\mu \in N$ then there exists a positive number M such that for any $\beta \in U \setminus \{\pm i\alpha\}$

$$\begin{aligned} &|(\partial/\partial\beta)^{\nu}\{(\alpha^{2}+\beta^{2})^{-\mu/2} \,\mathscr{H}^{(2)}_{-\mu}((\alpha^{2}+\beta^{2})^{1/2})\} - c_{2}(\nu,\,\mu)\beta^{\nu}(\alpha^{2}+\beta^{2})^{-\nu-\mu}| \\ &\leq M|\alpha^{2}+\beta^{2}|^{-\nu-\mu+1}, \end{aligned}$$

where $c_2 = c_2(v, \mu) = (-1)^{v2^{v+\mu}} \Gamma(v+\mu) / \Gamma(\mu) \Gamma(1-\mu)$ if $v \in N$ and $\mu - 1/2 \in \mathbb{N} \cup \{0\}, (-1)^{v+\mu+1/2} \pi^{-1} 2^{v+\mu} \Gamma(v+\mu)$ if $v \in \mathbb{N}$ and $\mu \in \mathbb{N}$.

PROOF. 1) Let $\mu - 1/2 \in \mathbb{N} \cup \{0\}$. It is well known that

 $\mathscr{H}^{(2)}_{-\mu}(z) = J_{-\mu}(z) - (-1)^{\mu} J_{\mu}(z).$

Hence from the definition of $J_{\pm\mu}(z)$, we have $z^{-\mu} \mathscr{H}^{(2)}_{-\mu}(z) =$

$$2^{\mu}z^{-2\mu}\sum_{k=0}^{\infty}\frac{(-1)^{k}2^{-2k}}{\Gamma(k+1)\Gamma(-\mu+k+1)}z^{2k}$$
$$-(-1)^{\mu}2^{-\mu}\sum_{k=0}^{\infty}\frac{(-1)^{k}2^{-2k}}{\Gamma(k+1)\Gamma(\mu+k+1)}z^{2k}$$

Hence, we have

$$\begin{aligned} &(\partial/\partial\beta)^{\nu}\{(\alpha^{2}+\beta^{2})^{-\mu/2} \, \mathscr{H}^{(2)}_{-\mu}((\alpha^{2}+\beta^{2})^{1/2})\}\\ &= \frac{(-1)^{\nu}2^{\nu+\mu}\Gamma(\nu+\mu)}{\Gamma(\mu)\Gamma(1-\mu)}\beta^{\nu}(\alpha^{2}+\beta^{2})^{-\nu-\mu}+(\alpha^{2}+\beta^{2})^{-\nu-\mu+1}\sum_{k=0}^{\infty}u_{k}(\beta)(\alpha^{2}+\beta^{2})^{k},\end{aligned}$$

where $u_k(\beta)$ is a polynomial of β and the last term of the above equality is uniformly convergent on every compact subset of C with respect to the variable

β. Thus there exists a positive number M such that $|\sum_{k=0}^{\infty} u_k(\beta)(\alpha^2 + \beta^2)^k| \le M$ for any β∈U. Therefore the lemma is proved when $\mu - 1/2 \in N \cup \{0\}$.

2) Let $\mu \in N$. It is well known that

$$\mathscr{H}^{(2)}_{-\mu}(z) = (-1)^{\mu} \{ J_{\mu}(z) - (-1)^{\mu} N_{\mu}(z) \},\$$

where N_{μ} is the Neumann function of order μ . From the definition of N_{μ} and the same calculation as 1), we have the lemma.

LEMMA 3.12. Let $a \in \mathbb{R}^p$ such that $||a|| \neq 0$ and $||a||^{-1}a \in S$ or $-||a||^{-1}a \in S$, we have

1) If (1-p)/2 > v > -p - q/2 + 3/2 then

$$\lim_{\delta \to +0} \delta^{(p+q-2)/2} \int_{S} |\langle \delta e_0 + ia, \xi \rangle^2 + ||a||^2|^{\nu} d\xi = 0,$$

2)
$$\lim_{\delta \to +0} \delta^{(p+q-2)/2} \int_{S} \langle \delta e_0 + ia, \xi \rangle^{p-1} [\langle \delta e_0 + ia, \xi \rangle^2 + ||a||^2]^{-p-q/2+3/2} d\xi \neq 0,$$

where $e_0 = (1, \dots, 1) \in \mathbf{R}^p$.

PROOF. For a positive number δ , we set

$$I(\delta) = \int_{S} |\langle \delta e_{0} + ia, \xi \rangle^{2} + ||a||^{2}|^{\nu} d\xi,$$

$$J(\delta) = \int_{S} \langle \delta e_{0} + ia, \xi \rangle^{p-1} [\langle \delta e_{0} + ia, \xi \rangle^{2} + ||a||^{2}]^{-p-q/2+3/2} d\xi.$$

If $||a||^{-1} a \in S$, then there exists an element k(a) in SO(p) such that $a = ||a|| K(a)e_1$. By the simple calculation, we have

$$I(\delta) = \int_{k(a)^{-1}S} |K(\delta; \xi; a)|^{\nu} d\xi,$$
$$J(\delta) = \int_{k(a)^{-1}S} (\langle \delta e_0, k(a)\xi \rangle + i ||a|| \langle e_1, \xi \rangle)^{p-1} K(\delta; \xi; a)^{-p-q/2+3/2} d\xi,$$

where

$$K(\delta; \xi; a) = \|a\|^2 (1 - \langle e_1, \xi \rangle^2) + 2i\delta \|a\| \langle e_1, \xi \rangle \langle e_0, k(a)\xi \rangle + \langle \delta e_0, k(a)\xi \rangle^2.$$

Moreover, when $||a||^{-1}a \in S$, there exist real numbers ρ_1 ($0 \le \rho_1 \le \pi/2$), ρ_2 ($\pi/2 \le \rho_2 \le \pi$) and a compact set C ($\subset [0, \pi]^{p-3} \times [0, 2\pi]$) such that

$$k(a)^{-1}S = \{(\xi(\theta)); 0 \le \theta_1 \le \rho_1 \text{ or } \rho_2 \le \theta_1 \le \pi, \ (\theta_2, \cdots, \theta_{p-1}) \in C\}.$$

Of course, $\rho_1^2 + (\rho_2 - \pi)^2 \ne 0$. When $\rho_1 > 0$, we set

$$I'(\delta) = \int_0^{\rho_1} \int_C |K(\delta; \xi(\theta); a)|^{\nu} \omega_p(\theta) d\theta_1 \cdots d\theta_{p-1},$$
$$J'(\delta) = \int_0^{\rho_1} \int_C (\langle \delta e_0, k(a)\xi \rangle + i ||a|| \langle e_1, \xi \rangle)^{p-1} K(\delta; \xi; a)^{-p-q/2+3/2} d\xi$$

We put $x = \delta^{1/2} \cot \theta_1$. Then, by the simple calculation,

$$\begin{split} I'(\delta) &= \delta^{\nu + p/2 - 1/2} \int_{d(\delta)}^{\infty} \int_{C} |K_1(\delta; x, \xi'; a)|^{\nu} (\delta + x^2)^{-\nu - p/2} \, dx d\xi', \\ J'(\delta) &= \delta^{-d} \int_{d(\delta)}^{\infty} \int_{C} K_2(\delta; x, \xi'; a)^{p-1} K_1(\delta; x, \xi'; a)^{\kappa} (\delta + x^2)^{q/2 - 1} \, d\xi' dx, \end{split}$$

where

$$\begin{split} &K_1(\delta; x, \xi'; a) = \|a\|^2 + 2i \|a\| x(a'x + \delta^{1/2} \langle e', \xi' \rangle) + \delta(a'x + \delta^{1/2} \langle e', \xi \rangle)^2, \\ &K_2(\delta; x, \xi'; a) = a' \delta x + \delta \langle e', \xi' \rangle + i \|a\| x, \ d(\delta) = \delta^{1/2} \cot \rho_1, \\ &d = (p + q - 2)/2, \ \kappa = -p - q/2 + 3/2, \ a' = \|a\|^{-1} \sum a_j, \ e' = k(a)^{-1} e_0 - a' e_1, \\ &\xi' = \xi'(\theta') = (\xi(\theta) - \cos \theta_1 e_1)(\sin \theta_1)^{-1} \ \text{and} \\ &d\xi' = 2^{-1} \pi^{-p/2} \Gamma(p/2)(\sin \theta_2)^{p-3} \cdots \sin \theta_{p-2} d\theta_2 \cdots d\theta_{p-1}. \end{split}$$

Hence if -v - p/2 > -1/2 then

$$\lim_{\delta \to +0} \delta^{-\nu - p/2 + 1/2} I'(\delta) = \tilde{c} \|a\|^{\nu} \int_{0}^{\infty} x^{-2\nu - p} (\|a\| + 2ia'x^{2})^{\nu} dx,$$
$$\lim_{\delta \to +0} \delta^{(p+q-2)/2} J'(\delta) = i^{p-1} \tilde{c} \|a\|^{(-q+1)/2} \int_{0}^{\infty} x^{p+q-3} (\|a\| + 2ia'x^{2})^{\kappa} dx,$$

where $\tilde{c} = \int_{C} d\xi'$. When $\rho_{2} < \pi$, we set $I''(\delta) = \int_{\rho_{2}}^{\pi} \int_{C} |K(\delta; \xi(\theta); a)|^{\nu} \omega_{p}(\theta) d\theta_{1} \cdots d\theta_{p-1},$ $J''(\delta) = \int_{\rho_{2}}^{\pi} \int_{C} (\langle \delta e_{0}, k(a)\xi \rangle + i ||a|| \langle e_{1}, \xi \rangle)^{p-1} K(\delta; \xi; a)^{-p-q/2+3/2} d\xi.$

Then, by the same calculation as $I'(\delta)$ and $J'(\delta)$, if $-\nu - p/2 > -1/2$ we obtain

$$\lim_{\delta \to +0} \delta^{-\nu - p/2 + 1/2} I''(\delta) = \tilde{c} \|a\|^{\nu} \int_{-\infty}^{0} (-x)^{-2\nu - p} (\|a\| + 2ia'x^2)^{\nu} dx,$$
$$\lim_{\delta \to +0} \delta^{(p+q-2)/2} J''(\delta) = i^{p-1} \tilde{c} \|a\|^{(-q+1)/2} \int_{-\infty}^{0} (-x)^{p+q-3} (\|a\| + 2ia'x^2)^{\kappa} dx.$$

Hence if $(1-p)/2 > v > \kappa = -p - q/2 + 3/2$ then $\lim_{\delta \to +0} \delta^{(p+q-2)/2} I(\delta) = 0$. Therefore, if $||a||^{-1}a \in S$, we have 1) of the lemma. When $-||a||^{-1}a \in S$, we obtain 1) of the lemma by the same proof. Moreover, $\tilde{c} \neq 0$ and

$$\begin{split} \int_{-\infty}^{\infty} |x|^{p+q-3} (\|a\| + 2ia'x^2)^{-p-q/2+3/2} dx \\ &= \frac{\Gamma((p+q-2)/2)\Gamma((p-1)/2)}{\Gamma((2p+q-3)/2)} \left[\frac{2ia'}{\|a\|}\right]^{-(p+q-2)/2} \neq 0, \end{split}$$

since $a' = ||a||^{-1} \sum_{j=1}^{\infty} a_j > 0$. Hence we have 2) of the lemma when $||a||^{-1} a \in S$. But when $-||a||^{-1} a \in S$ we have the same. Therefore the lemma is proved.

In the proof of Proposition 3.8, we use the following notation. For each $w = (w_1, \dots, w_q) \in \mathbb{C}^q$, we set $\gamma(w) = (\sum_{1 \le j \le q} w_j^2)^{1/2}$. Here $z^{1/2} = |z|^{1/2} e^{(i\operatorname{Arg} z)/2}$ for each $z \in \mathbb{C}$, where Argz is the principal value of argz. Then the notation γ is an extension of the notation || || in §2.

PROOF OF PROPOSITION 3.8. For a positive number δ , we put $z(\delta) = (\delta + ia_1, \dots, \delta + ia_p)$ and $w_0 = (ib_1, \dots, ib_q)$. Then $(z(\delta), w_0) \in D_1$. It is well known that

$$\int_{S^{q-1}} e^{i\langle w,\eta\rangle} d\eta = 2^{(q-2)/2} \Gamma(q/2) \gamma(w)^{-(q-2)/2} J_{(q-2)/2}(\gamma(w)).$$

Since $\gamma(\lambda \operatorname{ch}(t - i\mu)b) = \lambda \operatorname{ch}(t - i\mu) ||b|| = \operatorname{ch}(t - i\mu)\gamma(\lambda b)$ for any $t \ge 0$ and $b \in \mathbb{R}^{q}$, we have

$$\varphi_1(z(\delta), w_0) = c_0 \ (\lambda \| b \|)^{-(q-2)/2} \times \int_0^\infty \int_S e^{-\lambda \langle \delta e_0 + ia, \xi \rangle \operatorname{sh}(t-i\mu)} J_{(q-2)/2} (\lambda \| b \| \operatorname{ch}(t-i\mu)) \Delta(t-i\mu; q/2+1, p) d\xi dt,$$

where $c_0 = i^{p+q-2} 2^{(q-2)/2} \Gamma(q/2)$. Set

$$I_{1}(\delta) = c'_{2} \int_{S} \langle \delta e_{0} + ia, \xi \rangle^{p-1} [\langle \delta e_{0} + ia, \xi \rangle + \|b\|^{2}]^{-p-q/2+3/2} d\xi,$$

On the construction of spherical hyperfunctions on R^{p+q}

$$\begin{split} I_2(\delta) &= \int_S L(\delta; \,\xi; \,a, \,b) d\xi \text{ and} \\ I_3(\delta) &= -\int_S \int_0^1 L_1(\delta; \,\xi; \,a, \,b) dx d\xi \\ &+ i \int_S \int_0^\mu \left[e^{\beta \operatorname{shit}} \varDelta(-it; \,q/2+1, \,p) J_{(q-2)/2}(\operatorname{ach}(-it)) \right]_{\substack{\alpha = \lambda ||b|| \\ \beta = \lambda \langle \delta e_0 + ia, \xi \rangle}} dt d\xi, \end{split}$$

where $c'_2 = c_2(p-1, (q-1)/2)\lambda^{-p-q+2}$,

$$L(\delta; \xi; a, b) = \left[(\partial/\partial\beta)^{p-1} \{ (\alpha^2 + \beta^2)^{(-q+1)/4} \mathcal{H}^{(2)}_{(-q+1)/2} ((\alpha^2 + \beta^2)^{1/2}) \} - c_2(p-1, (q-1)/2) \beta^{p-1} (\alpha^2 + \beta^2)^{-p-q/2+3/2} \right]_{\substack{\alpha = \lambda ||b|| \\ \beta = \lambda \langle \delta e_0 + ia, \xi \rangle}}$$

and

$$\begin{split} L_1(\delta\,;\,\xi\,;\,a,\,b) &= \\ & \left[e^{-\beta(x^2-1)^{1/2}} x^{q/2} (x^2-1)^{(p-2)/2} \, J_{(q-2)/2}(\alpha x) \right]_{\substack{\alpha=\lambda \|b\|\\ \beta=\lambda \langle \delta e_0+ia,\xi \rangle}}. \end{split}$$

Then from Lemma 3.10, it is easily seen that

$$\varphi_1(z(\delta), w_0) = c_0 \|\lambda b\|^{(-q+2)/2} \{ c_1(I_1(\delta) + I_2(\delta)) + I_3(\delta) \}$$

Indeed, if $\operatorname{Re}\beta > |\operatorname{Im}\alpha|$, $\operatorname{Re} e^{-\mu}(-\beta \pm i\alpha) < 0$ and $|\mu| < \pi$, we have

$$I(\alpha, \beta) = \int_0^\infty e^{-\beta \operatorname{sh}(t-i\mu)} (\operatorname{ch}(t-i\mu))^{\nu+1} (\operatorname{sh}(t-i\mu))^{\nu'} J_\nu (\alpha \operatorname{ch}(t-i\mu)) dt$$
$$= \int_0^\infty e^{-\beta \operatorname{sh}t} (\operatorname{ch}(t))^{\nu+1} (\operatorname{sh}(t))^{\nu'} J_\nu (\alpha \operatorname{ch}(t)) dt$$
$$+ i \int_0^\mu e^{\beta \operatorname{sh}it} (\operatorname{ch}(-it))^{\nu+1} (\operatorname{sh}(-it))^{\nu'} J_\nu (\alpha \operatorname{ch}(-it)) dt,$$

from Cauchy's integral formula. Hence, from Lemma 3.10,

$$I(\alpha, \beta) = c_1(v', v)(\partial/\partial\beta)^{v'} \{ \alpha^v (\alpha^2 + \beta^2)^{-(2v+1)/4} \mathcal{H}^{(2)}_{-v-1/2} ((\alpha^2 + \beta^2)^{1/2}) \}$$

- $\int_0^1 e^{-\beta(x^2-1)^{1/2}} x^v (x^2 - 1)^{(v'-1)/2} J_v(\alpha x) dx$
+ $i \int_0^\mu e^{\beta \operatorname{shit}} (\operatorname{ch}(-it))^{v+1} (\operatorname{sh}(-it))^{v'} J_v(\alpha \operatorname{ch}(-it)) dt.$

First, from Lemma 3.12 2), we have $\lim_{\delta \to +0} \delta^{(p+q-2)/2} I_1(\delta) \neq 0$. Secondly, from Lemma 3.11, we have 3.11, we have

$$|\delta^{(p+q-2)/2}I_2(\delta)| \le M' \delta^{(p+q-2)/2} \int_S |\langle \delta e_0 + ia, \, \xi \rangle^2 + \|b\|^2|^{-p-q/2+5/2} d\xi,$$

where $M' = M |\lambda|^{-2p-q+5}$ (see Lemma 3.11 for *M*). Hence from Lemma 3.12 1), we have $\lim_{\delta \to +0} \delta^{(p+q-2)/2} I_2(\delta) = 0$, if $||a|| = ||b|| \neq 0$ and $||a||^{-1} a \in \pm S$. Finally, since $\lim_{\delta \to +0} I_3(\delta)$ exists, we have $\lim_{\delta \to +0} \delta^{(p+q-2)/2} I_3(\delta) = 0$. Therefore

$$\lim_{\delta\to+0} \delta^{(p+q-2)/2} \, \varphi_1(z(\delta),\,w_0) \neq 0.$$

Since $(z(\delta), w_0) \rightarrow (ia_1, \dots, ia_p, ib_1, \dots, ib_q)$ if $\delta \rightarrow +0$, Proposition 3.8 is proved.

Now, we have the following proposition from Corollary 3.9.

PROPOSITION 3.13. S.S g coincides with the following set A;

$$A = \{(x, y; i(a, b)\infty); ||a|| = ||b|| = 2^{-1/2}, a_j x_k = a_k x_j, b_m y_n = y_m b_n, b_m x_j = -a_j y_m \text{ for any } 1 \le j \le p, 1 \le k \le p, 1 \le m \le q, 1 \le n \le q\}.$$

PROOF. Thanks to Sato's theorem, we have $S.S \ g \subset A$. Put $A_0 = A \cap \{x = y = 0\}$ and $A_1 = A \cap \{x \neq 0 \text{ or } y \neq 0\}$. First we prove that $S.S \ g \cap A_0 \neq \phi$. Indeed, from the remark of the singular spectrum of g_{ε} , we have $S.S \ g_{\varepsilon} \cap \{x = y = 0\} \subset \tilde{\Gamma}_{\varepsilon}(0, 0)$ for each ε and $S.S \ g \subset S.S \ g_{\varepsilon}$. But from the definition of $\tilde{\Gamma}_{\varepsilon}$, $(0, 0; i(a, b) \infty) \notin \tilde{\Gamma}_{\varepsilon}$, if $\varepsilon \neq (1, \dots, 1)$, $||a|| = ||b|| = 2^{-1/2}$ and $a_j > 0$ (for any $1 \leq j \leq p$). Thus we have $S.S \ g \cap A_0 \neq \phi$ from Corollary 3.9. We recall the Lie group $G_0 = SO_0(p, q)$ and it's natural action on \mathbb{R}^{p+q} . This action induces the action on $\sqrt{-1} S^* \mathbb{R}^{p+q}$, naturally. It is easily seen that A_0 is G_0 -stable under this induced action of G_0 . Moreover A_0 is G_0 -transitive. Hence $S.S \ g \cap A_0 = A_0$. In fact, if $p \in A_0$ and $p \notin S.S \ g \cap A_0$, then for $p_0 \in S.S \ g \cap A_0$ ($\neq \phi$) there exists $k \in G_0$ such that $p = kp_0$, because A_0 is G_0 -transitive. But, since $S.S \ g \cap A_0 = A_0$.

On the other hand, since the differential operator $P = \sum (\partial/\partial x_j)^2 - \sum (\partial/\partial y_k)^2$ is simply characteristic, it is well known that the singular spectrum propagates along the bicharacteristic curve of the Hamiltonian vector field $H_{\sigma(P)}$, where $\sigma(P)$ is the principal symbol of the differential operator P (see [6]). Thus $S.S \ g \cap A_1 = A_1$. In fact, it is easily seen that the bicharacteristic curve through the point $(a, b; i(c, d)\infty) \in \sqrt{-1} S^* \mathbb{R}^{p+q}$ is

$$\gamma(t; a, b, c, d) = (c_1 t + a_1, \cdots, c_p t + a_p, -d_1 t + b_1, \cdots, -d_q t + b_p; i(c, d) \infty).$$

Hence $A_1 \subset S.S \ g$, since for any $(x, y; i(a, b)\infty) \in A_1 \ \gamma(t; 0, 0, a, b)$ through the point $(0, 0; i(a, b)\infty) \in A_0$. Thus S.S g = A, since $A = A_0 \cup A_1$. Therefore the proposition is proved.

We recall the Lie group G = O(p, q). Then we have

PROPOSITION 3.14. f and g are both G-invariant,

PROOF.

Let
$$k_1 = \begin{bmatrix} -1 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, $k_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix}$. Then $k_j \in G$ and $G = G_0$

 $\cup k_1 G_0 \cup k_2 G_0 \cup k_1 k_2 G_0$. Hence it is sufficient to prove that $f^{k_j} = f$ and $g^{k_j} = g$ (j = 1, 2). The proof of the k_j -invariance of f is as the same proof of f_0 in Proposition 2.6. Since

$$\psi_{\varepsilon}(-z_1, z_2, \cdots, z_p, w) = -\psi_{(-\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_p)}(z, w)$$

for any $\varepsilon = (\varepsilon_1, \dots, \varepsilon_p)$, we have $g^{k_1} = -\left[(U_1^{(-\varepsilon_1)} \cap U_2^{(\varepsilon_2)} \cap \dots \cap U_p^{(\varepsilon_p)} \cap V_1^{(1)} \cap \dots \cap V_q^{(1)}; -\varphi_{(-\varepsilon_1 \dots \varepsilon_p)})\right] = g$. Since $\varphi_{\varepsilon}(z, w)$ is k_2 -invariant, we have $g^{k_2} = g$. Therefore the proposition is proved.

Finally, we have the following theorem.

THEOREM 3.15. If $p \ge 2$ and $q \ge 2$ then

$$\mathscr{B}^{G}_{\nu}(\mathbf{R}^{p+q}) = \mathscr{B}^{G_{0}}_{\nu}(\mathbf{R}^{p+q}) = \langle f \rangle \oplus \langle g \rangle.$$

PROOF. It is clear that f and g are linearly independent from Proposition 3.13 and S.S $f = \phi$. Therefore, from the Cerezo's result; dim $\mathscr{B}_{\nu}^{G}(\mathbf{R}^{p+q}) = \dim \mathscr{B}_{\nu}^{G_0}(\mathbf{R}^{p+q}) = 2$ ($p \ge 2, q \ge 2$) and Proposition 3.7, we have the theorem.

References

- [1] A. Erdélyi, W. Magnus, F. Oberhettinger, F. Tricomi, Higher transcendental functions, vol II. 1953. McGRAW-HILL Book company, INC.
- [2] A. Cerezo, Equations with constant coefficients invariant under a group of linear transformations, Trans. Amer. Math. Soc. 204 (1975), 267-298.
- [3] L. Ehrenpreis, A fundamental principle for systems of linear differential equations with constant coefficients and some of its applications, Proc. Intern. Symp. on Linear Spaces, Jerusalem (1961), 161–174.
- [4] J. Faraut, Distributions sphériques sur les espaces hyperboliques. J. Math. Pures et Appl. 58 (1979), 369-444.
- [5] M. Hashizume, A. Kowata, K. Minemura, K. Okamoto, An integral representation of an

eigenfunction of the Laplacian on the euclidean space, Hiroshima Math. J. 2 (1972), 535-545.

- [6] T. Kawai, Construction of local elementary solutions for linear partial differential operators with real analytic coefficients (I)--The case with real principal symbols--Publ. Res. Inst. Math. 7 (1971), 363-397.
- [7] H. Komatsu, An introduction to the theory of hyperfunctions, Hyperfunctions and Pseudo-Differential Equations, Lecture Notes in Math. 287, Springer-Verlag, Berlin and New York 1973.
- [8] A. Kowata, K. Okamoto, Harmonic functions, and the Borel-Weil theorem, Math. J. 4 (1974), 89-97.
- [9] P. D. Methee, Sur les distributions invariantes dans le groupe des rotations de Lorentz, Comment. Math. Helv. 28 (1954), 225-269.
- [10] G. de Rham, Solution elementaire d'operateurs differentiels du second ordre, Ann. Inst. Fourier (Grenoble) 8 (1958), 337-366.
- [11] M. Sato, Theory of hyperfunctions, I, II, J. Fac. Sci. Univ. Tokyo 8 (1959), 139–193, 387– 437.
- [12] M. Sato, T. Kawai and M. Kasiwara, Microfunctions and pseudo-differential equations, Hyperfunctions and Pseudo-Differential Equations, Lecture Notes in Math. 287, Springer-Verlag, Berlin and New York 1973, 265-529.
- [13] P. Shapira, Theorie des hyperfonctions, Lecture Notes in Math. 126, Springer-Verlag, Berlin and New York 1970.
- [14] A. Tengstrand, Distributions invariant under an orthogonal group of arbitrary signature, Math. Scand. 8 (1960), 201-218.

Department of Mathematics, Faculty of Science, Hiroshima University