On the construction of spherical hyperfunctions on \boldsymbol{R}^{p+q}

Atsutaka Kowata

(Received March 16, 1990)

Introduction

We consider $S O_{0}(p, q)$ (or $O(p, q)$-invariant solutions u of the differential equation $(p+v) u=0$, where $P=\sum_{1 \leq i \leq p}\left(\partial / \partial x_{i}\right)^{2}-\sum_{1 \leq j \leq q}\left(\partial / \partial y_{j}\right)^{2}$ and v is a complex number. There have appeared several papers dealing with the above solutions in the sense of distributions ([4], [9], [10], [14]). On the other hand, we find as a corollary of the result of A. Cerezo [2]: the dimension of the space of $O(p, q)$-invariant hyperfunctions u on \boldsymbol{R}^{p+q} which are solutions of the equation $(P+v) u=0$ is 2 and only $S O_{0}(p, q)$-invariant is 2 if $p>1$ and $q=1$, or $p=1$ and $q>1,4$ if $p=1$, respectively.

In this paper, we call such hyperfunctions "spherical hyperfunctions" and will give integral representations of "spherical hyperfunctions". In the paper [3], Ehrenpreis' principle says that any solution u of a differential equation $P u$ $=0$ with constant coefficients has an integral representation by a suitable measure on the variety defined by the polynomial $\sigma_{T}(P)(i \xi)$, where $\sigma_{T}(P)$ is the total symbol of P. Thus spherical hyperfunctions may be represented through integrals with respect to $S O_{0}(p, q)$ (or $O(p, q)$)-invariant measures on the variety $\left\{(\xi, \eta) \in \boldsymbol{C}^{p+q} ; \sum \xi_{i}^{2}-\sum \eta_{j}^{2}-v=0\right\}$. But these integrals are not convergent at any point of \boldsymbol{R}^{p+q}. However, in his paper [11], Sato's idea enables us to justify these integrals. Thus we can construct spherical hyperfunctions explicitly. In this paper, when v is not 0 , we give integral representations of spherical hyperfunctions except for $p>1$ and $q=1$. But when $p>1$ and $q=1$ we can construct spherical hyperfunctions in the same way as in the case of $p=1$ and $q>1$.

I would like to express hearty thanks to Professor K. Okamoto who taught me Sato's idea.

§0. Notations

Let $G=O(p, q)$ and $G_{0}=S O_{0}(p, q)$ for $p \geq 1$ and $q \geq 1$. Then both G and G_{0} are acting on \boldsymbol{R}^{p+q} naturally. Let v be a non-zero arbitrary complex number and put $\mu=(1 / 2) \operatorname{Arg}(v)\left(\operatorname{Arg}\right.$ is the principal value) and $\lambda=|v|^{1 / 2} e^{i \mu}$, where $i=(-1)^{1 / 2}$. Then $-\pi / 2<\mu \leq \pi / 2$ and $v=\lambda^{2}$. Let $\mathfrak{g}=\mathfrak{s o}_{0}(p, q)$ that is the Lie algebra of both G and G_{0}. Let $\mathscr{B}^{G}\left(\boldsymbol{R}^{p+q}\right)\left(\mathscr{B}^{G_{0}}\left(\boldsymbol{R}^{p+q}\right)\right)$ be the space of
all $G\left(G_{0}\right)$-invariant hyperfunctions on \boldsymbol{R}^{p+q}, respectively. From Lemma 1 in [2], $\mathscr{B}^{G_{0}}\left(\boldsymbol{R}^{p+q}\right)=\mathscr{B}^{\mathfrak{g}}\left(\boldsymbol{R}^{p+q}\right)$. Here $\mathscr{B}^{\mathfrak{g}}\left(\boldsymbol{R}^{p+q}\right)$ is the space of all \mathfrak{g}-invariant hyperfunctios on \boldsymbol{R}^{p+q}. We denote by $\mathscr{B}_{v}^{G}\left(\boldsymbol{R}^{p+q}\right)\left(\mathscr{B}_{v}^{G_{o}}\left(\boldsymbol{R}^{p+q}\right)\right.$) the space of all $G\left(G_{0}\right)$-invariant hyperfunctions f such that $P_{v} f=0$, where $P_{v}=\sum_{1 \leq i \leq p}\left(\partial / \partial x_{i}\right)^{2}$ $-\sum_{1 \leq j \leq q}\left(\partial / \partial y_{j}\right)^{2}+v$. In this paper, we denote by $\operatorname{ch}(t)$ (and $\operatorname{sh}(t)$) the real analytic function $\left(e^{t}+e^{-t}\right) / 2$ (and $\left(e^{t}-e^{-t}\right) / 2$) on \boldsymbol{R}, respectively.

§1. $p=1$ and $q=1$

In this section, we give spherical hyperfunctions using an integral representation for the case in which $p=q=1$. That is $G=O(1,1), G_{0}$ $=S O_{0}(1,1)$. For each $\varepsilon=\left(\varepsilon_{1}, \varepsilon_{2}\right)$, where $\varepsilon_{i} \in\{1,-1\}(i=1,2)$, we denote by U_{ε} the set of all $\left(z_{1}, z_{2}\right) \in C^{2}$ such that $\operatorname{Im}\left(\varepsilon_{1} z_{1}+\varepsilon_{2} z_{2}\right)>0$, where $\operatorname{Im} z$ is the imaginary part of $z(\in \boldsymbol{C})$. Let

$$
\mathscr{W}^{\prime}=\left\{U_{\varepsilon} ; \varepsilon=\left(\varepsilon_{1}, \varepsilon_{2}\right), \varepsilon_{i} \in\{ \pm 1\}(i=1,2)\right\} \text { and } \mathscr{W}=\left\{\boldsymbol{C}^{2}\right\} \cup \mathscr{W}^{\prime} .
$$

Then it is easily seen that ($\mathscr{W}, \mathscr{W}^{\prime}$) is a relative Stein covering of $\left(\boldsymbol{C}^{2}, \boldsymbol{C}^{2} \backslash \boldsymbol{R}^{2}\right)$ (see [7] for the relative Stein covering).

Lemma 1.1. For each $\varepsilon=\left(\varepsilon_{1}, \varepsilon_{2}\right)$,

$$
\psi_{\varepsilon}\left(z_{1}, z_{2}\right)=\int_{0}^{\infty} \mathrm{e}^{i \lambda\left[\varepsilon_{1} z_{1} \operatorname{ch}(t-i \mu)+\varepsilon_{2} z_{2} \operatorname{sh}(t-i \mu)\right]} d t
$$

converges absolutely and uniformly on every compact subset of U_{ε} and holomorphic on U_{ε}. Moreover, ψ_{ε} satisfies the following differential equations on U_{ε};

1) $\left(\left(\partial / \partial z_{1}\right)^{2}-\left(\partial / \partial z_{2}\right)^{2}\right) \psi_{\varepsilon}=-\lambda^{2} \psi_{\varepsilon}$,
2) $\left(z_{2} \partial / \partial z_{1}+z_{1} \partial / \partial z_{2}\right) \psi_{\varepsilon}=-\varepsilon_{1} \varepsilon_{2} \mathrm{e}^{i \lambda\left(\varepsilon_{1} z_{1} \cos \mu-i \varepsilon_{2} z_{2} \sin \mu\right)}$.

Proof. It is seen that the above integral converges absolutely and uniformly on every compact subset of U_{ε} and holomorphic on U_{ε}, because

$$
\begin{aligned}
\operatorname{Re} & {\left[i \lambda\left(\varepsilon_{1} z_{1} \operatorname{ch}(t-i \mu)+\varepsilon_{2} z_{2} \operatorname{sh}(t-i \mu)\right)\right] } \\
& =-|\lambda|\left[\mathrm{e}^{t} \operatorname{Im}\left(\varepsilon_{1} z_{1}+\varepsilon_{2} z_{2}\right)+\operatorname{Im}^{\bar{t}+2 i \mu}\left(\varepsilon_{1} z_{1}-\varepsilon_{2} z_{2}\right)\right] / 2 .
\end{aligned}
$$

It is easily seen that ψ_{ε} satisfies the differential equations 1) and 2), because

$$
\left(z_{2} \partial / \partial z_{1}+z_{1} \partial / \partial z_{2}-\varepsilon_{1} \varepsilon_{2} \partial / \partial t\right) \mathrm{e}^{i \lambda\left(\varepsilon_{1} z_{1} \operatorname{ch}(t-i \mu)+\varepsilon_{2} z_{2} \operatorname{sh}(t-i \mu)\right)}=0 .
$$

Therefore the lemma is proved.
For each $\varepsilon=\left(\varepsilon_{1}, \varepsilon_{2}\right)$, we denote by V_{ε} the set of all $\left(z_{1}, z_{2}\right) \in C^{2}$ such that
$\operatorname{Re}\left(\varepsilon_{1} z_{1}+\varepsilon_{2} z_{2}\right)>0$. Here $\operatorname{Re} z$ is the real part of z.
Lemma 1.2. $\quad \psi_{\varepsilon}$ is analytically continued from U_{ε} to $V_{\varepsilon} \cup V_{-\varepsilon}$ but is not holomorphic on any neighborhood of the point $\left(z_{1}, z_{2}\right) \in C^{2}$ such that $\varepsilon_{1} z_{1}+\varepsilon_{2} z_{2}$ $=0$.

Proof. Applying Cauchy's integral formula, for $R>0$, we have

$$
\begin{aligned}
& \int_{0}^{R} e^{i \lambda\left[\varepsilon_{1} z_{1} \operatorname{ch}(t-i \mu)+\varepsilon_{2} z_{2} \operatorname{sh}(t-i \mu)\right]} d t \\
= & i \int_{0}^{\pi / 2} e^{i \lambda\left[\varepsilon_{1} z_{1} \operatorname{ch}(i \theta-i \mu)+\varepsilon_{2} z_{2} \operatorname{sh}(i \theta-i \mu)\right]} d \theta \\
+ & \int_{0}^{R} e^{i \lambda\left[\varepsilon_{1} z_{1} \operatorname{ch}(t-i \mu+i \pi / 2)+\varepsilon_{2} z_{2} \operatorname{sh}(t-i \mu+i \pi / 2)\right]} d t \\
- & i \int_{0}^{\pi / 2} e^{i \lambda\left[\varepsilon_{1} z_{1} \operatorname{ch}(R-i \mu+i \theta)+\varepsilon_{2} z_{2} \operatorname{sh}(R-i \mu+i \theta)\right]} d \theta
\end{aligned}
$$

One can easily see that for each $\left(z_{1}, z_{2}\right) \in U_{\varepsilon} \cap V_{\varepsilon}$ the last integral converges to 0 when $R \rightarrow \infty$. Therefore for each $\left(z_{1}, z_{2}\right) \in U_{\varepsilon} \cap V_{\varepsilon}$ we have

$$
\begin{aligned}
& \int_{0}^{\infty} e^{i \lambda\left[\varepsilon_{1} z_{1} \operatorname{ch}(t-i \mu)+\varepsilon_{2} z_{2} \operatorname{sh}(t-i \mu)\right]} d t \\
= & i \int_{0}^{\pi / 2} e^{i \lambda\left[\varepsilon_{1} z_{1} \cos (\theta-\mu)+i \varepsilon_{2} z_{2} \sin (\theta-\mu)\right]} d \theta \\
+ & \int_{0}^{\infty} e^{-\lambda\left[\varepsilon_{1} z_{1} \operatorname{sh}(t-i \mu)+\varepsilon_{2} z_{2} \operatorname{ch}(t-i \mu)\right]} d t
\end{aligned}
$$

Since the right-hand side of the above equality is holomorphic on $V_{\varepsilon}, \psi_{\varepsilon}$ is analytically continued from U_{ε} to V_{ε}. On the other hand, from Cauchy's integral formula along another Jordan curve, we have for each $\left(z_{1}, z_{2}\right) \in U_{\varepsilon} \cap V_{-\varepsilon}$,

$$
\begin{aligned}
& \int_{0}^{\infty} e^{i \lambda\left[\varepsilon_{1} z_{1} \operatorname{ch}(t-i \mu)+\varepsilon_{2} z_{2} \operatorname{sh}(t-i \mu)\right.} d t \\
= & i \int_{0}^{-\pi / 2} e^{i \lambda\left[\varepsilon_{1} z_{1} \cos (\theta-\mu)+i i_{2} z_{2} \sin (\theta-\mu)\right]} d \theta \\
+ & \int_{0}^{\infty} e^{\lambda\left[\varepsilon_{1} z_{1} \operatorname{sh}(t-i \mu)+\varepsilon_{2} z_{2} \operatorname{ch}(t-i \mu)\right]} d t .
\end{aligned}
$$

Hence ψ_{ε} is analytically continued from U_{ε} to $V_{-\varepsilon}$ in the same way as
V_{ε}. Therefore the first assertion of the lemma is proved. But the above integral is not convergent at the point $\left(z_{1}, z_{2}\right) \in C^{2}$ such that $\varepsilon_{1} z_{1}+\varepsilon_{2} z_{2}$ $=0$. Indeed, for fixed real numbers a_{1}, a_{2} and δ, we put $z_{1}(\delta)=\varepsilon_{1}\left(a_{1}+i a_{2}\right.$
$+i \delta)$ and $z_{2}(\delta)=\varepsilon_{2}\left(-a_{1}-i a_{2}+i \delta\right)$. If $\delta>0$, then $\left(z_{1}(\delta), z_{2}(\delta)\right) \in U_{\varepsilon}$. It is easily seen that there are positive real numbers M_{1}, M_{2} and t_{0} such that if $t \geq t_{0}$ then $M_{1} \leq \cos \left(c e^{-t}\left(a_{1} \cos 2 \mu-a_{2} \sin 2 \mu\right)\right)$ and $M_{2} \leq e^{-c \operatorname{cexp}(-t)\left(a_{1} \sin 2 \mu+a_{2} \cos 2 \mu\right)}$, where $c=|\lambda|(>0)$. Hence

$$
\operatorname{Re} \psi_{\varepsilon}\left(z_{1}(\delta), z_{2}(\delta)\right) \geq M_{1} M_{2} \int_{t_{0}}^{\infty} e^{-c \delta \operatorname{expt}} d t+\operatorname{Re} \int_{0}^{t_{0}} e^{i \lambda H(\delta, t)} d t
$$

where $H(\delta, t)=\varepsilon_{1} z_{1}(\delta) \operatorname{ch}(t-i \mu)+\varepsilon_{2} z_{2}(\delta) \operatorname{sh}(t-i \mu)$. The last term of the above inequality is convergent when $\delta \rightarrow+0$. But

$$
\lim _{\delta \rightarrow+0} \int_{t_{0}}^{\infty} e^{-c \delta \mathrm{expt}} d t=+\infty
$$

Therefore ψ_{ε} is not holomorphic on any neighborhood of the point $\left(z_{1}, z_{2}\right) \in C^{2}$ such that $\varepsilon_{1} z_{1}+\varepsilon_{2} z_{2}=0$. This implies the second assertion of the lemma.

For the purpose of the construction of \mathfrak{g}-invariant hyperfunctions, we consider the following integral;

$$
\chi\left(z_{1}, z_{2} ; a, b\right)=i \int_{a}^{b} e^{i \lambda\left[z_{1} \cos \theta+i z_{2} \sin \theta\right]} d \theta
$$

Then $\chi\left(z_{1}, z_{2} ; a, b\right)$ is an entire holomorphic function on C^{2} for any fixed $(a, b) \in \boldsymbol{R}^{2}$ and $\left.\left(\left(\partial / \partial z_{1}\right)^{2}-\partial / \partial z_{2}\right)^{2}\right) \chi=-\lambda^{2} \chi$. Moreover, since

$$
\left(z_{2} \partial / \partial z_{1}+z_{1} \partial / z_{2}+i \partial / \partial \theta\right) e^{i \lambda\left[z_{1} \cos \theta+i z_{2} \sin \theta\right]}=0
$$

we have

$$
\left(z_{2} \partial / \partial z_{1}+z_{1} \partial / \partial z_{2}\right) \chi\left(z_{1}, z_{2} ; a, b\right)=\left[e^{i \lambda\left(z_{1} \cos \theta+i z_{2} \sin \theta\right)}\right]_{\theta=a .}^{\theta=b} .
$$

Now we give spherical hyperfunctions by means of elements of the Ceck cohomology $H^{1}\left(\mathscr{W}^{\prime} ; \mathcal{O}\right)$ as follows. Set $\Lambda=\left\{\varepsilon=\left(\varepsilon_{1}, \varepsilon_{2}\right) ; \varepsilon_{i} \in\{ \pm 1\}(i=1,2)\right\}$ and $\Lambda_{0}=\left\{(\varepsilon, \eta) ; \varepsilon \in \Lambda, \eta \in \Lambda, \varepsilon_{1} \varepsilon_{2} \eta_{1} \eta_{2}=-1\right\}$. For each $(\varepsilon, \eta) \in \Lambda_{0}$, we define

$$
\varphi_{\varepsilon, \eta}\left(z_{1}, z_{2}\right)=\psi_{\varepsilon}\left(z_{1}, z_{2}\right)+\psi_{\eta}\left(z_{1}, z_{2}\right)+\eta_{1} \eta_{2} \chi\left(z_{1}, z_{2} ; c(\varepsilon), c(\eta)\right),
$$

where $c(\varepsilon)=c(\varepsilon, \mu)=-\varepsilon_{1} \varepsilon_{2} \mu+\left(1-\varepsilon_{1}\right) \pi / 2$. Then $\varphi_{\varepsilon, \eta}\left(z_{1}, z_{2}\right)$ is a holomorphic function on $U_{\varepsilon} \cap U_{\eta}$ by Lemma 1.1. For given $U_{i}(i=1,2)$ in \mathscr{W}^{\prime} and a holomorphic function φ on $U_{1} \cap U_{2}$, we denote by $\left[\left(U_{1} \cap U_{2} ; \varphi\right)\right]$ the element in $H^{1}\left(\mathscr{W}^{\prime} ; \mathcal{O}\right)$ which is given by the following 1 -cocycle $;\left\{\left(U_{1} \cap U_{2} ; \varphi\right)\right.$, $\left(U_{2} \cap U_{1} ;-\varphi\right)$, (otherwise; 0$\left.)\right\}$.

We define

$$
f_{0}=\left[\left(U_{(-1,1)} \cap U_{(1,1)} ; \chi\left(z_{1}, z_{2} ;-\pi, \pi\right)\right)\right]
$$

and

$$
f_{\varepsilon, \eta}=\left[\left(U_{\varepsilon} \cap U_{\eta} ; \varphi_{\varepsilon, \eta}\right)\right] \quad \text { for fixed }(\varepsilon, \eta) \in \Lambda_{0}
$$

Proposition 1.3. For any $(\varepsilon, \eta) \in \Lambda_{0}, f_{\varepsilon, \eta}$ is \mathfrak{g}-invariant and $f_{\varepsilon, \eta}=$ $-f_{\eta, \varepsilon}$. Moreover, $S . S f_{\varepsilon, \eta}=\left\{\left(x_{1}, x_{2} ; i \varepsilon / 2^{1 / 2} \infty\right): \varepsilon_{1} x_{1}+\varepsilon_{2} x_{2}=0\right\} \cup\left\{\left(x_{1}, x_{2} ;\right.\right.$ i η $\left.\left./ 2^{1 / 2} \infty\right): \eta_{1} x_{1}+\eta_{2} x_{2}=0\right\}$, where $S . S f$ is the singular spectrum of f (see [12], for the singular spectrum).

Proof. From Lemma 1.1, we have

$$
\begin{aligned}
& \left(z_{2} \partial / \partial z_{1}+z_{2} \partial / \partial z_{2}\right)\left(\psi_{\varepsilon}+\psi_{\eta}\right) \\
& \quad=-\varepsilon_{1} \varepsilon_{2} \mathrm{e}^{i \lambda\left(\varepsilon_{1} z_{2} \cos \mu-i \varepsilon_{2} z_{2} \sin \mu\right)}-\eta_{1} \eta_{2} \mathrm{e}^{i \lambda\left(\eta_{1} z_{1} \cos \mu-i \eta_{2} z_{2} \sin \mu\right)}
\end{aligned}
$$

Since

$$
\cos (c(\varepsilon, \mu))=\varepsilon_{1} \cos \mu \quad \text { and } \quad \sin (c(\varepsilon, \mu))=-\varepsilon_{2} \sin \mu
$$

we have

$$
\begin{aligned}
& \left(z_{2} \partial / \partial z_{1}+z_{1} \partial / \partial z_{2}\right) \chi\left(z_{1}, z_{2} ; c(\varepsilon, \eta), c(\eta, \mu)\right) \\
& \quad=-\mathrm{e}^{i \lambda\left(\varepsilon_{1} z_{1} \cos \mu-i \varepsilon_{2} z_{2} \sin \mu\right)}+\mathrm{e}^{i \lambda\left(\eta_{1} z_{1} \cos \mu-i \eta_{2} z_{2} \sin \mu\right)}
\end{aligned}
$$

Hence $\left(z_{2} \partial / \partial z_{1}+z_{1} \partial / \partial z_{2}\right) \varphi_{\varepsilon, \eta}=0$ for any $(\varepsilon, \eta) \in \Lambda_{0}$. Therefore the first assertion of the proposition is proved. Im view of the definition of χ, we see that $\eta_{1} \eta_{2} \chi\left(z_{1}, z_{2} ; c(\varepsilon), c(\eta)\right)=-\eta_{1} \eta_{2} \chi\left(z_{1}, z_{2} ; c(\eta), c(\varepsilon)\right)=\varepsilon_{1} \varepsilon_{2} \chi\left(z_{1}, z_{2} ; c(\eta)\right.$, $c(\varepsilon))$. Hence $\varphi_{\varepsilon, \eta}\left(z_{1}, z_{2}\right)=\varphi_{\eta, \varepsilon}\left(z_{1}, z_{2}\right)$ on $U_{\varepsilon} \cap U_{\eta}$. Therefore the second assertion of the proposition is proved. The third assertion of the proposition is clear from Lemma 1.2 and the definition of the singular spectrum.

Let $k_{1}=\left[\begin{array}{rr}1 & 0 \\ 0 & 1\end{array}\right]$ and $k_{2}=\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right] . \quad$ Then $k_{i} \in G(i=1,2)$ and $G=G_{0}$ $\cup k_{1} G_{0} \cup k_{2} G_{0} \cup k_{1} k_{2} G_{0}$. For any hyperfunction f on \boldsymbol{R}^{2}, we denote by $f^{k_{i}}$ the pull-back of f by the transformation ; $x \rightarrow k_{i} x(i=1,2)$.

Proposition 1.4. For each $(\varepsilon, \eta) \in \Lambda_{0}$, we have

1) $f_{\varepsilon, \eta}^{k_{1}}=f_{k_{1} \eta, k_{1} \varepsilon}$,
2) $f_{\varepsilon, \eta}^{k_{2}}=f_{k_{2 \eta} \eta k_{2} \varepsilon}+\left(\left(\varepsilon_{1}-\eta_{1}\right) / 2\right) f_{0}$.

Proof. By virtue of the definition of $f_{\varepsilon, \eta}$ and the fact that $k_{1}^{-1}=k_{1}$, we have

$$
f_{\varepsilon, \eta}^{k_{1}}=-\left[\left(U_{k_{1} \varepsilon} \cap U_{k_{1} \eta} ; \varphi_{\varepsilon, \eta}\left(-z_{1}, z_{2}\right)\right)\right] .
$$

Since $c\left(k_{1} \varepsilon\right)=\pi-c(\varepsilon)$, it is easily seen that

$$
\chi\left(-z_{1}, z_{2} ; c(\varepsilon), c(\eta)\right)=\chi\left(z_{1}, z_{2} ; c\left(k_{1} \eta\right), c\left(k_{1} \varepsilon\right)\right) .
$$

On the other hand, $\psi_{\varepsilon}\left(-z_{1}, z_{2}\right)=\psi_{k_{1 \varepsilon}}\left(z_{1}, z_{2}\right)$. Hence,

$$
\varphi_{\varepsilon, \eta}\left(-z_{1}, z_{2}\right)=\psi_{k_{1} \varepsilon}\left(z_{1}, z_{2}\right)+\psi_{k_{1} \eta}\left(z_{1}, z_{2}\right)+\eta_{1} \eta_{2} \chi\left(z_{1}, z_{2} ; c\left(k_{1} \eta\right), c\left(k_{1} \varepsilon\right)\right)
$$

Therefore $\varphi_{\varepsilon, \eta}\left(-z_{1}, z_{2}\right)=\varphi_{k_{1} \eta, k_{1} \varepsilon}\left(z_{1}, z_{2}\right)$, since $\eta_{1} \eta_{2}=-\varepsilon_{1} \varepsilon_{2}$. Hence 1) of the proposition is proved. Next we show 2) of the proposition. Since, for any ε and μ,

$$
\chi\left(z_{1}, z_{2} ;-c(\varepsilon, \mu), c\left(k_{2} \varepsilon, \mu\right)\right)=\left(1-\varepsilon_{1}\right) \chi\left(z_{1}, z_{2} ;-\pi, \pi\right) / 2,
$$

we have

$$
\begin{aligned}
& \chi\left(z_{1},-z_{2} ; c(\varepsilon), c(\eta)\right)-\chi\left(z_{1}, z_{2} ; c\left(k_{2} \eta\right), c\left(k_{2} \varepsilon\right)\right) \\
& \quad=\chi\left(z_{1}, z_{2} ;-c(\eta),-c(\varepsilon)\right)+\chi\left(z_{1}, z_{2} ; c\left(k_{2} \varepsilon\right), c\left(k_{2} \eta\right)\right) \\
& \quad=\chi\left(z_{1}, z_{2} ;-c(\eta), c\left(k_{2} \eta\right)\right)-\chi\left(z_{1}, z_{2} ;-c(\varepsilon), c\left(k_{2} \varepsilon\right)\right) \\
& \quad=\left(\varepsilon_{1}-\eta_{1}\right) \chi\left(z_{1}, z_{2} ;-\pi, \pi\right) / 2 .
\end{aligned}
$$

Hence, we have

$$
\begin{aligned}
\varphi_{\varepsilon, \eta}\left(z_{1}, z_{2}\right)= & \psi_{k_{2} \varepsilon}\left(z_{1}, z_{2}\right)+\psi_{k_{2} \eta}\left(z_{1}, z_{2}\right)+\eta_{1} \eta_{2} \chi\left(z_{1}, z_{2} ; c\left(k_{2} \eta\right), c\left(k_{2} \varepsilon\right)\right) \\
& +\eta_{1} \eta_{2}\left(\varepsilon_{1}-\eta_{1}\right) \chi\left(z_{1}, z_{2} ;-\pi, \pi\right) / 2
\end{aligned}
$$

Therefore $\varphi_{\varepsilon, \eta}\left(z_{1},-z_{2}\right)=\varphi_{k_{2} \eta, k_{2} \varepsilon}\left(z_{1}, z_{2}\right)+\left(\varepsilon_{1}-\eta_{1}\right) \eta_{1} \eta_{2} \chi\left(z_{1}, z_{2} ;-\pi, \pi\right) / 2$. On the other hand, it is easily seen that
(\#) $\left[\left(U_{k_{2} \eta} \cap U_{k_{2} \varepsilon} ;\left(\varepsilon_{1}-\eta_{1}\right) \eta_{1} \eta_{2} \chi\left(z_{1}, z_{2} ;-\pi, \pi\right) / 2\right)\right]=\left(\varepsilon_{1}-\eta_{1}\right) f_{0} / 2$
for any $(\varepsilon, \eta) \in \Lambda_{0}$. Indeed, we define a 0 -cochain $\psi\left(\in C^{0}\left(\mathscr{W}^{\prime} ; \mathcal{O}\right)\right)$ such that ψ $=\left\{\left(U_{(1,1)} ; \chi\left(z_{1}, z_{2} ;-\pi, \pi\right)\right),\left(U_{(-1,1)} ; 0\right),\left(U_{(1,-1)} ; \chi\left(z_{1}, z_{2} ;-\pi, \pi\right)\right),\left(U_{(-1,-1)} ;\right.\right.$ $0)\}$. Then we have $\delta \psi=$

$$
\begin{aligned}
& \left\{\left(U_{(-1,-1)} \cap U_{(1,-1)} ; \chi\left(z_{1}, z_{2} ;-\pi, \pi\right)\right),\left(U_{(1,1)} \cap U_{(1,-1)} ; 0\right),\right. \\
& \left.\quad\left(U_{(-1,1)} \cap U_{(1,1)} ; \chi\left(z_{1}, z_{2} ;-\pi, \pi\right)\right),\left(U_{(-1,-1)} \cap U_{(-1,1)} ; 0\right)\right\},
\end{aligned}
$$

where δ is the coboundary operator. Hence

$$
\begin{aligned}
& {\left[\left(U_{(-1,-1)} \cap U_{(1,-1)} ;-\chi\left(z_{1}, z_{2} ;-\pi, \pi\right)\right)\right]} \\
& \quad=\left[\left(U_{(-1,1)} \cap U_{(1,1)} ; \chi\left(z_{1}, z_{2} ;-\pi, \pi\right)\right)\right]=f_{0} .
\end{aligned}
$$

This implies that the above equality (\#) is true for the case $\varepsilon_{1}=\varepsilon_{2}=\eta_{2}=1$ and $\eta_{1}=-1$. For the other cases, one can easily prove the equality (\#) similarly. Therefore 2) of the proposition is proved.

Now, we can give a basis of $\mathscr{B}_{v}^{G_{0}}\left(\boldsymbol{R}^{2}\right)$ and $\mathscr{B}_{v}^{G}\left(\boldsymbol{R}^{2}\right)$, applying Cerezo's result ([2]): $\operatorname{dim} \mathscr{B}_{v}^{G_{0}}\left(\boldsymbol{R}^{2}\right)=4$ and $\operatorname{dim} \mathscr{B}_{v}^{G}\left(\boldsymbol{R}^{2}\right)=2$. We define hyperfunctions g_{j} ($1 \leq j \leq 4$) as follows;

$$
\begin{array}{ll}
g_{1}=f_{(1,1),(1,-1)}, & g_{2}=f_{(1,1),(-1,1)}, \\
g_{3}=f_{(-1,-1),(-1,1)}, & g_{4}=f_{(-1,-1),(1,-1)}
\end{array}
$$

Then it is obvious that $g_{j} \in \mathscr{B}_{v}^{G_{0}}\left(\boldsymbol{R}^{2}\right)$ for $1 \leq j \leq 4$.
Lemma 1.5. $g_{1}+g_{2}+g_{3}+g_{4}=0$.
Proof. We can define a 0 -cochain $\psi\left(\in C^{0}\left(\mathscr{W}^{\prime} ; \mathcal{O}\right)\right)$ such that ψ $=\left\{\left(U_{(1,1)} ;-\psi_{(1,1)}\left(z_{1}, z_{2}\right)\right),\left(U_{(-1,1)} ; \psi_{(-1,1)}\left(z_{1}, z_{2}\right)-\chi\left(z_{1}, z_{2} ;-\mu, \mu+\pi\right)\right)\right.$

$$
\begin{gathered}
\left(U_{(-1,-1)} ;-\psi_{(-1,-1)}\left(z_{1}, z_{2}\right)-\chi\left(z_{1}, z_{2}:-\mu, \pi-\mu\right)\right) \\
\left.\left(U_{(1,-1)} ; \psi_{(1,-1)}\left(z_{1}, z_{2}\right)-\chi\left(z_{1}, z_{2} ;-\mu, \mu\right)\right)\right\}
\end{gathered}
$$

Then it is easily seen that $g_{1}+g_{2}+g_{3}+g_{4}=[(\delta \psi)]=0$. Therefore the lemma is proved.

Proposition 1.6. Any triple of $g_{j}(1 \leq j \leq 4)$ is linearly independent.
Proof. We prove the proposition for the case g_{1}, g_{2}, g_{3}. Let $c_{1} g_{1}$ $+c_{2} g_{2}+c_{3} g_{3}=0\left(c_{j} \in \boldsymbol{C}\right)$. Then $c_{1}=c_{3}=0$, because $S . S g_{1}=\left\{\left(x_{1}, x_{2} ; i\left(2^{-1 / 2}\right.\right.\right.$, $\left.\left.\left.2^{-1 / 2}\right) \infty\right) ; x_{1}+x_{2}=0\right\} \cup\left\{\left(x_{1}, x_{2} ; i\left(2^{-1 / 2},-2^{-1 / 2}\right) \infty\right) ; x_{1}-x_{2}=0\right\}$ and $S . S$ $g_{3}=\left\{\left(x_{1}, x_{2} ; i\left(2^{-1 / 2}, 2^{-1 / 2}\right) \infty\right) ; x_{1}+x_{2}=0\right\} \cup\left\{\left(x_{1}, x_{2} ; i\left(-2^{-1 / 2}, 2^{-1 / 2}\right) \infty\right) ;\right.$ $\left.-x_{1}+x_{2}=0\right\}$, by Proposition 1.3. Hence $c_{2} g_{2}=0$. Since g_{2} is not $0, c_{2}$ $=0$. Thus $c_{1}=c_{2}=c_{3}=0$. In the same way, the linear independence is showed for the other cases. Hence the proposition is proved.

Proposition 1.7.

$$
\begin{array}{ll}
g_{1}^{k_{1}}=g_{3}, & g_{1}^{k_{2}}=g_{1}, \\
g_{2}^{k_{1}}=g_{2}, & g_{2}^{k_{2}}=g_{4}+f_{0}, \\
g_{3}^{k_{1}}=g_{1}, & g_{3}^{k_{2}}=g_{3}, \\
g_{4}^{k_{1}}=g_{4}, & g_{4}^{k_{2}}=g_{2}-f_{0} .
\end{array}
$$

Proof. From Proposition 1.4, the proposition is clear.
Finally we define spherical hyperfunction $f_{j}(1 \leq j \leq 3)$ by

$$
f_{1}=g_{1}+g_{3}, f_{2}=g_{1}-g_{3} \text { and } f_{3}=f_{0}-g_{1}-2 g_{2}-g_{3}
$$

Theorem 1.8.

1) $\left\{f_{j} ; 0 \leq j \leq 3\right\}$ is a basis of $\mathscr{B}_{v}^{G_{0}}\left(\boldsymbol{R}^{2}\right)$.
2) $\left\{f_{j} ; 0 \leq j \leq 1\right\}$ is a basis of $\mathscr{B}_{v}^{G}\left(\boldsymbol{R}^{2}\right)$.

Proof. It is easily seen that f_{0} and $g_{j}(1 \leq j \leq 3)$ is linearly independent by the same proof as in Proposition 1.6, since $S . S f_{0}=\phi$. Hence it is clear that $f_{j}(0 \leq j \leq 3)$ is linearly independent. Therefore, since $\left.\operatorname{dim} \mathscr{B}_{v}^{G_{0}}\left(\boldsymbol{R}^{2}\right)=4,1\right)$ of the theorem is proved (see [2]). From Proposition 1.7, f_{1} is G invariant. Moreover, it is obvious that f_{0} is also G-invariant. Conversely, from Proposition 1.7, one can easily see that for any $f \in \mathscr{B}_{v}^{G}\left(\boldsymbol{R}^{2}\right)$, there exist complex numbers c_{0} and c_{1} such that $f=c_{0} f_{0}+c_{1} f_{1}$. Therefore 2) of the theorem is proved.

Remark. Since one can easily show that $f_{2}^{k_{1}}=-f_{2}, f_{2}^{k_{2}}=f_{2}, f_{3}^{k_{1}}=f_{3}$ and $f_{3}^{k_{2}}=-f_{3}$ from Proposition 1.7, we have that

$$
\mathscr{B}_{v}^{G_{0}}\left(\boldsymbol{R}^{2}\right)=\mathscr{B}_{v}^{G}\left(\boldsymbol{R}^{2}\right) \oplus\left\langle f_{2}\right\rangle \oplus\left\langle f_{3}\right\rangle
$$

is the irreducible decomposition of the representation over $\mathscr{B}_{v}^{G_{0}}\left(\boldsymbol{R}^{2}\right)$ with respect to the finite group $\left\{e, k_{1}, k_{2}, k_{1} k_{2}\right\}$.

§2. $p=1$ and $q>1$

In this section, we give spherical hyperfunctions using integral representation for the case in which $p=1, q>1$. That is $G=O(1, q)$ and G_{0} $=S O_{0}(1, q)$. For each ε in $\{1,-1\}$, we denote by $U^{(\varepsilon)}$ the set of all $(z, w) \in C^{1+q}$ (here $z \in \boldsymbol{C}$ and $w \in \boldsymbol{C}^{q}$) such that $\varepsilon \operatorname{Im} z>\|\operatorname{Im} w\|$, where $\|y\|$ $=\left(\sum_{1 \leq j \leq q} y_{j}^{2}\right)^{1 / 2}$ for $y=\left(y_{1}, \ldots, y_{p}\right) \in \boldsymbol{R}^{q}$ and $\operatorname{Im} w=\left(\operatorname{Im} w_{1}, \ldots, \operatorname{Im} w_{q}\right)$ for w $=\left(w_{1}, \ldots, w_{q}\right) \in \boldsymbol{C}^{q}$. Put

$$
V_{j}^{(\pm)}=\left\{(z, w) \in C^{1+q} ; \pm \operatorname{Im} w_{j}>0\right\} .
$$

Let

$$
\mathscr{W}^{\prime}=\left\{U^{(\varepsilon)} ; \varepsilon \in\{ \pm 1\}\right\} \cup\left\{V_{j}^{(\varepsilon)} ; \varepsilon \in\{ \pm 1\}, 1 \leq j \leq q\right\} \text { and } \mathscr{W}=\left\{\boldsymbol{C}^{1+q}\right\} \cup \mathscr{W}^{\prime}
$$

Then it is easily seen that $\left(\mathscr{W}, \mathscr{W}^{\prime}\right)$ is a relative Stein covering of ($\boldsymbol{C}^{1+q}, \boldsymbol{C}^{1+q} \backslash \boldsymbol{R}^{1+q}$) (see [7] for the relative Stein covering).

Lemma 2.1. For each $\varepsilon \in\{1,-1\}$,

$$
\psi_{\varepsilon}(z, w)=\int_{0}^{\infty} \int_{S^{q-1}} \mathrm{e}^{i \lambda[\varepsilon z \operatorname{ch}(t-i \mu)+\langle w, \eta\rangle \operatorname{sh}(t-i \mu)]}(\operatorname{sh}(t-i \mu))^{q-1} d \eta d t
$$

converges absolutely and uniformly on every compact subset of $U^{(\varepsilon)}$ and is holomorphic on $U^{(\varepsilon)}$. Here $\langle u, v\rangle=\sum u_{j} v_{j}\left(\right.$ for $u=\left(u_{1}, \ldots, u_{q}\right) \in C^{q}$ and v
$\left.=\left(v_{1}, \ldots, v_{q}\right) \in \boldsymbol{C}^{q}\right)$ and $d \eta$ is the normalized $S O(q)$-invariant measure such that $\int_{S^{q-1}} d \eta=1$. (See §0 for the notations λ, μ, ch, sh.)

Proof. Since

$$
\begin{aligned}
\operatorname{Re} & {[i \lambda(\varepsilon z \operatorname{ch}(t-i \mu)+\langle w, \eta\rangle \operatorname{sh}(t-i \mu))] } \\
& =-|\lambda|\left[\mathrm{e}^{t} \operatorname{Im}(\varepsilon z+\langle w, \eta\rangle)+\operatorname{Ime}^{-t+2 i \mu}(\varepsilon z-\langle w, \eta\rangle)\right] / 2,
\end{aligned}
$$

it is clear that the above integral converges absolutely on every compact subset of $U^{(\varepsilon)}$ and is holomorphic on $U^{(\varepsilon)}$.

Remark. It is easily seen that ψ_{ε} satisfies the following differential equations in a way similar to Lemma 1.1;

$$
\begin{aligned}
& \left.\left((\partial / \partial z)^{2}-\sum\left(\partial / \partial w_{j}\right)^{2}\right) \psi_{\varepsilon}=-\lambda^{2}\right) \psi_{\varepsilon} \\
& \left(w_{j} \partial / \partial w_{k}-w_{k} \partial / \partial w_{j}\right) \psi_{\varepsilon}=0 \quad(1 \leq j \leq q, 1 \leq k \leq q) \\
& \left(w_{1} \partial / \partial z+z \partial / \partial w_{1}\right) \psi_{\varepsilon}=-\varepsilon(-i \sin \mu)^{q-1} \int_{S^{q-1}} e^{i \lambda[\varepsilon z \cos \mu-i\langle w, \eta\rangle \sin \mu]} \eta_{1} d \eta
\end{aligned}
$$

Here η_{1} is the first coordinate of $\eta\left(\in S^{q-1}\right)$. Indeed,

$$
\left\{w_{1} \partial / \partial z+z \partial / \partial w_{1}-\varepsilon\left(\cos \tau_{1} \partial / \partial t-\sin \tau_{1} \operatorname{coth}(t-i \mu) \partial / \partial \tau_{1}\right)\right\} e^{i \lambda H(t, z, w)}=0
$$

where

$$
\begin{gathered}
H(t, z, w)=\varepsilon z \operatorname{ch}(t-i \mu)+\langle w, \eta(\tau)\rangle \operatorname{sh}(t-i \mu) \\
\eta(\tau)_{j}=\cos \tau_{j} \prod_{1 \leq k \leq j-1} \sin \tau_{k}(1 \leq k \leq q-1) \text { and } \eta(\tau)_{q}=\prod_{1 \leq k \leq q-1} \sin \tau_{k} .
\end{gathered}
$$

Hence, we have

$$
\left(w_{1} \partial / \partial z+z \partial / \partial w_{1}\right) \psi_{\varepsilon}=\varepsilon \int_{0}^{\infty} \int_{S^{q-1}}\left(\operatorname{sh}(t-i \mu)^{q-1}\left(D e^{i \lambda H(t, z, w)}\right) d t d \eta,\right.
$$

where $D=\cos \tau_{1} \partial / \partial t-\sin \tau_{1} \operatorname{coth}(t-i \mu) \partial / \partial \tau_{1}$. By integration by parts in the above integral, we have the third equation of the Remark.

For the purpose of the construction of \mathfrak{g}-invariant hyperfunctions, we consider the following integral;

$$
\chi(z, w ; a, b)=-i \int_{a}^{b} \int_{S^{q-1}} e^{i \lambda[[\cos \theta-i\langle w, \eta\rangle \sin \theta]}(-i \sin \theta)^{q-1} d \theta d \eta .
$$

It is easily seen that $\chi(z, w ; a, b)$ is an entrire holomorphic function on C^{1+q} for
any fixed $(a, b) \in \boldsymbol{R}^{2}$. Moreover one can see that χ satisfies the following differential equations;

$$
\begin{gathered}
\left((\partial / \partial z)^{2}-\sum_{1 \leq j \leq q}\left(\partial / \partial w_{j}\right)^{2}\right) \chi=-\lambda^{2} \chi, \\
\left(w_{j} \partial / \partial w_{k}-w_{k} \partial / \partial w_{j}\right) \chi=0, \\
\left(w_{1} \partial / \partial z+z \partial / \partial w_{1}\right) \chi=\int_{S^{q-1}}\left[(-i \sin \theta)^{q-1} e^{i \lambda[z \cos \theta-i\langle w, \eta\rangle \sin \theta]}\right]_{\theta=a}^{\theta=b} \eta_{1} d \eta
\end{gathered}
$$

Here we obtain the third equality by the same calculation as in Remark on Lemma 2.1.

Put $\quad \chi_{1}(z, w)=\chi(z, w ; 0, \mu), \quad \chi_{-1}(z, w)=\chi(z, w ; \pi-\mu, \pi) \quad$ and $\quad \varphi_{\varepsilon}(z, w)$ $=\psi_{\varepsilon}(z, w)+\chi_{\varepsilon}(z, w)$ for each ε. Then φ_{ε} is a holomorphic function on $U^{(\varepsilon)}$ by Lemma 2.1. Moreover, from the definition of φ_{ε}, it is clear that φ_{ε} satisfies the following differential equations;

$$
\begin{aligned}
& \left((\partial / \partial z)^{2}-\sum_{1 \leq j \leq q}\left(\partial / \partial w_{j}\right)^{2}\right) \varphi_{\varepsilon}=-\lambda^{2} \varphi_{\varepsilon} \\
& \left(w_{j} \partial / \partial w_{k}-w_{k} \partial / \partial w_{j}\right) \varphi_{\varepsilon}=0 \quad(1 \leq j \leq q, 1 \leq k \leq q) \\
& \left(w_{1} \partial / \partial z+z \partial / \partial w_{1}\right) \varphi_{\varepsilon}=0
\end{aligned}
$$

Now we discuss the representation of φ_{ε} in terms of special functions. Let $K_{v}(z)$ be the modified Bessel function of order v.

Lemma 2.2. For any $(z, w) \in U^{(z)}$, we have

$$
\begin{aligned}
& \int_{0}^{\infty} \int_{S^{q-1}} e^{i[\varepsilon z \mathrm{ch} t+\langle w, \eta\rangle \operatorname{sht}]}(\mathrm{sh} t)^{q-1} d \eta d t \\
& \quad=c_{q}\left(-z^{2}+\langle w, w\rangle\right)^{-(q-1) / 4} K_{(q-1) / 2}\left(\left(-z^{2}+\langle w, w\rangle\right)^{1 / 2}\right),
\end{aligned}
$$

where $c_{q}=\pi^{-1 / 2} 2^{(q-1) / 2} \Gamma(q / 2)(\Gamma(z)$ is the gamma function $)$.
Proof. The right-hand side of the above equality is an infinitely multivalued holomorphic function. But it is easily seen that one can choose a single valued branch of the function on $U^{(\varepsilon)}$, because $\left\{\operatorname{Im}\left(-z^{2}+\langle w, w\rangle\right)=0, \operatorname{Re}\right.$ $\left.\left(-z^{2}+\langle w, w\rangle\right) \leq 0\right\} \cap U^{(\varepsilon)}=\phi$. Since both sides of the equlity are holomorphic on $U^{(\varepsilon)}$, it is sufficient to prove that the above equality is true over the following real locus; $z=z(r, u)=i \varepsilon r \cos u, w=w(r, u, \alpha)=r \alpha \sin u$, where $r>0$, $|u|<\pi / 2$ and $\alpha \in S^{q-1}$. By easy calculation,

$$
\begin{aligned}
& \int_{0}^{\infty} \int_{S^{q-1}} e^{i \lambda[\varepsilon z(r, u) \operatorname{cht} t+\langle w(r, u, \alpha), \eta\rangle \operatorname{sht}]}(\operatorname{sh} t)^{q-1} d \eta d t \\
& \quad=c_{q}^{\prime} \int_{0}^{\infty} \int_{0}^{\pi} e^{-r \cos u c h t+i \cos \sin u \operatorname{sht} t}(\sin \tau)^{q-2}(\operatorname{sh} t)^{q-1} d \tau d t
\end{aligned}
$$

where $c_{q}^{\prime}=\pi^{-1 / 2} \Gamma(q / 2) / \Gamma((q-1) / 2)$. But one can easily see that the above integral is independent of the value u. Indeed, since

$$
(\partial / \partial u+i \cos \tau \partial / \partial t-i \sin \tau \operatorname{coth} t \partial / \partial \tau) e^{-r \cos u c h t+i \operatorname{cosstsin} u s h t}=0
$$

and

$$
\int_{0}^{\infty} \int_{0}^{\pi}(\cos \tau \partial / \partial t-\sin \tau \operatorname{coth} t \partial / \partial \tau) e^{H_{0}(t, r ; r, u)}(\sin \tau)^{q-2}(\operatorname{sh} t)^{q-1} d \tau d t=0,
$$

where $H_{0}(t, \tau ; r, u)=-r \cos u \operatorname{ch} t+i r \cos \tau \sin u \operatorname{sh} t$, we have

$$
\partial / \partial u\left(\int_{0}^{\infty} \int_{S^{q-1}} e^{i[\varepsilon z(r, u) \operatorname{ch} t+\langle w(r, u, \tau), \eta\rangle \operatorname{sht}]}(\operatorname{sh} t)^{q-1} d \eta d t\right)=0 .
$$

On the other hand, it is well known that for any $r>0$,

$$
\int_{0}^{\infty} e^{-r \operatorname{ch} t}(\operatorname{sh} t)^{q-1} d t=\pi^{-1 / 2} \Gamma(q / 2)(r / 2)^{-(q-1) / 2} K_{(q-1) / 2}(r) .
$$

Thus the equality of Lemma 2.2 is true over the above real locus. This completes the proof of the lemma.

Proposition 2.3. For each $(z, w) \in U^{(z)}$, we have

$$
\varphi_{\varepsilon}(z, w)=c_{q}\left(\lambda^{2}\left(-z^{2}+\langle w, w\rangle\right)\right)^{-(q-1) / 4} K_{(q-1) / 2}\left(\left(\lambda^{2}\left(-z^{2}+\langle w, w\rangle\right)\right)^{1 / 2}\right) .
$$

Proof. Let $U_{\lambda}^{(\varepsilon)}=\left\{(z, w) \in C^{1+q} ;(\lambda z, \lambda w) \in U^{(\varepsilon)}\right\}$. Then it is clear that if λ is not zero, $U_{\lambda}^{(\varepsilon)}$ is holomorphically isomorphic to $U^{(\varepsilon)}$ and $U_{\lambda}^{(\varepsilon)} \cap U^{(\varepsilon)}$ is not ϕ. By Cauchy's integral formula, for each $(z, w) \in U_{\lambda}^{(\varepsilon)} \cap U^{(\varepsilon)}$, we have

$$
\begin{aligned}
& \int_{0}^{\infty} \int_{S^{q-1}} e^{i \lambda[\varepsilon z \mathrm{ch}(t-i \mu)+\langle w, \eta\rangle \operatorname{sh}(t-i \mu)]}(\operatorname{sh}(t-i \mu))^{q-1} d \eta d t \\
= & \int_{0}^{\mu} \int_{S^{q-1}} e^{i \lambda[\varepsilon z \mathrm{ch}(-i \theta)+\langle w, \eta\rangle \operatorname{sh}(-i \theta]]}(\operatorname{sh}(-i \theta))^{q-1} d \eta d \theta \\
+ & \int_{0}^{\infty} \int_{S^{q-1}} e^{i \lambda[\varepsilon z \mathrm{ch} t+\langle w, \eta\rangle \operatorname{sht}]}(\operatorname{sh} t)^{q-1} d \eta d t .
\end{aligned}
$$

Thus from the definition of φ_{ε},

$$
\varphi_{\varepsilon}(z, w)=\int_{0}^{\infty} \int_{S^{q-1}} e^{i \lambda[\varepsilon z \mathrm{ch} t+\langle w, \eta\rangle \operatorname{sht}]}(\mathrm{sh} t)^{q-1} d \eta d t
$$

for each $(z, w) \in U_{\lambda}^{(\varepsilon)} \cap U^{(\varepsilon)}$. This implies that φ_{ε} is analytically continued from $U^{(\varepsilon)}$ to $U_{\lambda}^{(\varepsilon)}$. Hence from Lemma 2.2,

$$
\varphi_{\varepsilon}(z, w)=c_{q}\left(\lambda^{2}\left(-z^{2}+\langle w, w\rangle\right)\right)^{-(q-1) / 4} K_{(q-1) / 2}\left(\left(\lambda^{2}\left(-z^{2}+\langle w, w\rangle\right)\right)^{1 / 2}\right) .
$$

Therefore the proposition is proved,
Corollary 2.4. φ_{ε} can be analytically continued over $\left\{(z, w) ;-z^{2}\right.$ $+\langle w, w\rangle=0\}$ but is not holomorphic on any neighborhood of the point $(z, w) \in C^{1+q}$ scuh that $-z^{2}+\langle w, w\rangle=0$.

Proof. From the definition of the modified Bessel function, the corollary is clear.

Now, we give spherical hyperfunctions by means of the elements of the Čeck cohomology $H^{q}\left(\mathscr{W}^{\prime} ; \mathcal{O}\right)$. For given $W_{j}(1 \leq j \leq q+1)$ in \mathscr{W}^{\prime} and a holomorphic function φ on $W_{1} \cap \cdots \cap W_{q+1}$, we denote by $\left[\left(W_{1} \cap \cdots \cap W_{q+1} ; \varphi\right)\right.$] the element in $H^{q}\left(\mathscr{W}^{\prime} ; \mathcal{O}\right)$ which is defined by the following q-cocycle;

$$
\left\{\left(W_{j_{1}} \cap \cdots \cap W_{j_{q+1}} ; \operatorname{sgn}\binom{1, \ldots, q+1}{j_{1}, \ldots, j_{q+1}} \varphi\right),(\text { otherwise } ; 0)\right\}
$$

where $\operatorname{sgn} \sigma$ is the signum of a permutation σ.
Let $f_{0}=\left[\left(U^{(1)} \cap V_{1}^{(1)} \cap \cdots \cap V_{q}^{(1)} ; \chi(z, w ;-\pi, \pi)\right)\right]$. Then it is clear that f_{0} is a real analytic function on \boldsymbol{R}^{1+q} and $f_{0} \in \mathscr{B}_{v}^{G_{0}}\left(\boldsymbol{R}^{1+q}\right)$. For each $\varepsilon \in\{1,-1\}$, we define $g_{\varepsilon}=\left[\left(U^{(\varepsilon)} \cap V_{1}^{(1)} \cap \cdots \cap V_{1}^{(1)} ; \varepsilon \varphi_{\varepsilon}\right)\right]$.

Remark. The hyperfunction g_{ε} may be defined by the element; $\left[\left(U^{(\varepsilon)} \cap\right.\right.$ $\left.\left.V_{1}^{\left(\eta_{1}\right)} \cap \cdots \cap V_{q}^{\left(\eta_{q}\right)} ; \varepsilon\left(\prod_{1 \leq j \leq q} \eta_{j}\right) \varphi_{\varepsilon}\right)\right]$ for fixed $\eta=\left(\eta_{j}\right)\left(\eta_{j} \in\{1,-1\}\right)$, because

$$
\left[\left(U^{(\varepsilon)} \cap V_{1}^{(1)} \cap \cdots \cap V_{q}^{(1)} ; \varphi\right)\right]=\left[\left(U^{(\varepsilon)} \cap V_{1}^{\left(\eta_{1}\right)} \cap \cdots \cap V_{q}^{\left(\eta_{q}\right)} ; \prod_{1 \leq j \leq q} \eta_{j} \varphi\right)\right]
$$

for any holomorphic function φ on $U^{(\varepsilon)}$. Indeed, let $\psi_{\eta, j}$ be a $q-1$ cochain defined as follows;

$$
\left.\left.\psi_{\eta, j}=\left\{\left(U^{(\varepsilon)} \cap V_{1}^{\left(\eta_{1}\right)} \cap \cdots \cap V_{j-1}^{\left(\eta_{j-1}-1\right)} \cap V_{j}^{\left(\eta_{j}+1\right.}\right) \cap \cdots \cap V_{q}^{\left(\eta_{q}\right)} ;(-1)^{j} \varphi\right) \text {, (otherwise } ; 0\right)\right\}
$$

for $\eta=\left(\eta_{1}, \ldots, \eta_{j-1}, \eta_{j+1}, \ldots, \eta_{q}\right)\left(\eta_{j} \in\{1,-1\}\right)$ and $1 \leq j \leq q$. Then

$$
\begin{aligned}
& {\left[\left(U^{(\varepsilon)} \cap V^{\left(\eta_{1}\right)} \cap \cdots \cap V_{j}^{\left(\eta_{j}\right)} \cap \cdots \cap V_{q}^{\left(\eta_{q}\right)} ; \varphi\right)\right]} \\
& \quad+\left[\left(U^{(\varepsilon)} \cap V_{1}^{\left(\eta_{1}\right)} \cap \cdots \cap V_{j}^{\left(-\eta_{j}\right)} \cap \cdots \cap V_{q}^{\left(\eta_{q}\right)} ; \varphi\right)\right] \\
& \quad=\left[\left(\delta \psi_{\eta, j}\right)\right]=0 .
\end{aligned}
$$

Here δ is the coboundary operator.
Proposition 2.5. For each $\varepsilon \in\{1,-1\}, g_{\varepsilon} \in \mathscr{B}_{v}^{G_{0}}\left(\boldsymbol{R}^{1+q}\right)$. Moreover, S.S g_{ε} $=\left\{\left(x, y ; i\left(\varepsilon / 2^{1 / 2}, \eta\right) \infty\right) ; x^{2}=\|y\|,\|\eta\|=1 / 2, x \eta / 2^{1 / 2}+\varepsilon y=0(1 \leq j \leq q)\right\}$.

Proof. It is clear that $g_{\varepsilon} \in \mathscr{B}_{v}^{G_{0}}\left(\boldsymbol{R}^{1+q}\right)$ from the definition of g_{ε}. From Sato's fundamental theorem (see [12]), we have that

$$
\begin{aligned}
& S . S g_{\varepsilon} \subset\left\{(x, y ; i(a, b) \infty) ; a^{2}-\|b\|^{2}=0, a y_{j}+b_{j} x=0,\right. \\
&\left.y_{j} \eta_{k}=y_{k} \eta_{j}(1 \leq j, k \leq q)\right\} .
\end{aligned}
$$

But, as seen from the definition of g_{ε}, if $(x, y ; i(a, b) \infty) \in S . S g_{\varepsilon}$ then $a^{2}=1 / 2$, $\|b\|=1 / 2$ and $a=\varepsilon / 2^{1 / 2}$. Thus

$$
\begin{aligned}
& S . S g_{\varepsilon} \subset\left\{\left(x, y ; i\left(\varepsilon / 2^{1 / 2}, \eta\right) \infty\right) ; x^{2}=\|y\|^{2},\|\eta\|^{2}=1 / 2\right. \\
& x \eta_{j} / 2^{1 / 2}+\varepsilon y_{j}=0(1 \leq j \leq q)\} .
\end{aligned}
$$

Conversely, it is easily seen that g_{ε} is not microlocally analytic at the point $\left(x, y ; i\left(\varepsilon / 2^{1 / 2}, \eta\right) \infty\right)$ in $\sqrt{-1} S^{*} \boldsymbol{R}^{1+q}$ such that $x^{2}=\|y\|^{2}, x \eta_{j} / 2^{1 / 2}+\varepsilon y_{j}=0$ $(1 \leq j \leq q)$ and $\|\eta\|^{2}=1 / 2$ from Corollary 2.4. Therefore the proposition is proved.

Let $k_{1}=\left[\begin{array}{ccccc}-1 & & & 0 \\ & & 1 & \ddots & \\ 0 & & & 1\end{array}\right], k_{2}=\left[\begin{array}{lllll}1 & & & 0 \\ & \ddots & & \\ 0 & & 1 & \\ 0 & & & -1\end{array}\right] . \quad$ Then $k_{j} \in G$ and $G=G_{0}$ $\cup k_{1} G_{0} \cup k_{2} G_{0} \cup k_{1} k_{2} G_{0}$. For any hyperfunction f on R^{1+q}, we denote by $f^{k_{j}}$ the pull back of f by the transformation $x \rightarrow k_{j} x$.

Proposition 2.6.

1) $f_{0}^{k_{1}}=f_{0}$ and $g_{\varepsilon}^{k_{1}}=g_{-\varepsilon} \quad($ for any $\varepsilon)$,
2) $f_{0}^{k_{2}}=f_{0}$ and $g_{\varepsilon}^{k_{2}}=g_{\varepsilon} \quad($ for any $\varepsilon)$.

Proof. Since $\chi(-z, w ;-\pi, \pi)=\chi(z, w ;-\pi, \pi)$.

$$
f_{0}^{k_{1}}=-\left[\left(U^{(-1)} \cap V_{1}^{(1)} \cap \cdots \cap V_{q}^{(1)} ; \chi(z, w ;-\pi, \pi)\right)\right] .
$$

Let ψ be a $q-1$ cochain defined as follows;

$$
\left.\psi=\left\{\left(V_{1}^{(1)} \cap V_{2}^{(1)} \cap \cdots \cap V_{q}^{(1)} ; \chi(z, w ;-\pi, \pi)\right), \quad \text { (otherwise } ; 0\right)\right\} .
$$

Then it is easily seen that $f_{0}-f_{0}^{k_{1}}=[(\delta \psi)]=0$. Hence $f_{0}^{k_{1}}=f_{0}$. Since ψ_{ε} $(-z, w)=\psi_{-\varepsilon}(z, w)$ and $\chi_{\varepsilon}(-z, w)=\chi_{-\varepsilon}(z, w)$, we have

$$
g_{\varepsilon}=-\left[\left(U^{(-\varepsilon)} \cap V_{1}^{(1)} \cap \cdots \cap V_{q}^{(1)} ; \varepsilon \varphi_{-\varepsilon}\right)\right]=g_{-\varepsilon} .
$$

Therefore 1) of the proposition is proved. Since

$$
\begin{aligned}
& \chi\left(z, w_{1}, \cdots,-w_{q} ;-\pi, \pi\right)=\chi\left(z, w_{1}, \cdots, w_{q} ;-\pi, \pi\right), \\
& f_{0}^{k_{2}}=-\left[\left(U^{(1)} \cap\left(\bigcap_{1 \leq j \leq q-1} V_{j}^{(1)}\right) \cap V_{q}^{(-1)} ; \chi\left(z, w_{1}, \cdots,-w_{q} ;-\pi, \pi\right)\right)\right] \\
&=-\left[\left(U^{(1)} \cap\left(\bigcap_{1 \leq j \leq q-1} V_{j}^{(1)}\right) \cap V_{q}^{(-1)} ; \chi\left(z, w_{1}, \cdots, w_{q} ;-\pi, \pi\right)\right)\right] .
\end{aligned}
$$

Let ψ^{\prime} be a $q-1$ cochain defined as follows;

$$
\psi^{\prime}=\left\{\left(U^{(1)} \cap\left(\bigcap_{1 \leq j \leq q-1} V_{j}^{(1)}\right) ; \chi(z, w ;-\pi, \pi)\right),(\text { otherwise } ; 0)\right\} .
$$

Then it is easily seen that $f_{0}-f_{0}^{k_{2}}=\left[\left(\delta \psi^{\prime}\right)\right]=0$. Hence $f_{0}=f_{0}^{k_{2}}$. Since $\varphi_{\varepsilon}(z$, $-w)=\varphi_{\varepsilon}(z, w)$, we obtain $g_{\varepsilon}^{k_{2}}=g_{\varepsilon}$ by the same proof as $f_{0}^{k_{2}}=f_{0}$. Therefore 2) of the proposition is proved.

Proposition 2.7. f_{0}, g_{1} and g_{-1} are linearly independent.
Proof. From Proposition 2.5 and $S . S f=\phi$, the assertion is clear.
Now, we give a basis of $\mathscr{B}_{v}^{G_{0}}\left(\boldsymbol{R}^{1+q}\right)$ and $\mathscr{B}_{v}^{G}\left(\boldsymbol{R}^{1+q}\right)$, since Cerezo proved in [2] that $\operatorname{dim} \mathscr{B}_{v}^{G_{0}}\left(\boldsymbol{R}^{1+q}\right)=3$ and $\operatorname{dim} \mathscr{B}_{v}^{G}\left(\boldsymbol{R}^{1+q}\right)=2$. We define hyperfunctions $f_{j}(1 \leq j \leq 2)$ as follows;

$$
f_{1}=\left(g_{1}+g_{-1}\right) / 2 \quad \text { and } \quad f_{2}=\left(g_{1}-g_{-1}\right) / 2
$$

Theorem 2.8. 1) $\left\{f_{j} ; 0 \leq j \leq 2\right\}$ is a basis of $\mathscr{B}_{{ }_{v}}^{G_{o}}\left(\boldsymbol{R}^{1+q}\right)$.
2) $\left\{f_{j} ; 0 \leq j \leq 1\right\}$ is a basis of $\mathscr{B}_{v}^{G}\left(\boldsymbol{R}^{1+q}\right)$.

Proof. From Proposition 2.7 and the fact that $\left.\operatorname{dim} \mathscr{B}_{v}^{G_{0}}\left(\boldsymbol{R}^{1+q}\right)=3,1\right)$ is clear. By Proposition 2.6, f_{0} and f_{1} are both G-invariant. Conversely, from Proposition 2.6 and 2.7 , one can easily see that for any $f \in \mathscr{B}_{v}^{G}\left(\boldsymbol{R}^{1+q}\right)$ there exist complex numbers α_{0}, α_{1} such that $f=\alpha_{0} f_{0}+\alpha_{1} f_{1}$. Therefore 2) of the theorem is proved.

Remark 1. Let $G_{1}=G_{0} \cup k_{2} G_{0}$ and $G_{2}=G_{0} \cup k_{1} k_{2} G_{0}$. Then G_{j} is Lie subgroups of $O(1, q)$ and $G_{2}=S O(1, q)$. Let $\mathscr{B}_{v}^{G_{j}}\left(\boldsymbol{R}^{1+q}\right)$ be the vector subspace $\left(\subset \mathscr{B}_{v}^{G_{o}}\left(\boldsymbol{R}^{1+q}\right)\right.$) of all G_{j}-invariants in $\mathscr{B}_{v}\left(\boldsymbol{R}^{1+q}\right)$, for $j=1$, 2. Then it is clear that $\mathscr{B}_{v}^{\boldsymbol{G}}\left(\boldsymbol{R}^{1+q}\right) \subset \mathscr{B}_{v}^{\boldsymbol{G}_{2}}\left(\boldsymbol{R}^{1+q}\right)$ and $\mathscr{B}_{v}^{\boldsymbol{G}_{1}}\left(\boldsymbol{R}^{1+q}\right) \subset \mathscr{B}_{v}^{G_{0}}\left(\boldsymbol{R}^{1+q}\right)$. But from Proposition 2.6 and Theorem 2.8, we have

$$
\mathscr{B}_{v}^{G}\left(\boldsymbol{R}^{1+q}\right)=\mathscr{B}_{v}^{G_{2}}\left(\boldsymbol{R}^{1+q}\right) \subset \mathscr{B}_{v}^{G_{1}}\left(\boldsymbol{R}^{1+q}\right)=\mathscr{B}_{v}^{G_{o}}\left(\boldsymbol{R}^{1+q}\right) .
$$

Remark 2. Since $f_{2}^{k_{1}}=-f_{2}$ from Proposition 2.6,

$$
\mathscr{B}_{v}^{G_{0}}\left(\boldsymbol{R}^{1+q}\right)=\left\langle f_{0}\right\rangle \oplus\left\langle f_{1}\right\rangle \oplus\left\langle f_{2}\right\rangle
$$

is the irreducible decomposition of the respresentation over $\mathscr{B}_{v}^{G_{o}}\left(\boldsymbol{R}^{1+q}\right)$ with respect to the finite group $\left\{e, k_{1}\right\}$.

§3. $p>1$ and $q>1$

In this section, we give spherical hyperfunctions using integral repesent-
ation for the case $p>1, q>1$. That is $G=O(p, q)$ and $G_{0}=S O(p, q)$. For each $\varepsilon \in\{1,-1\}$ and $j(1 \leq j \leq p)$, we denote by $U_{j}^{(\varepsilon)}$ the set of all $(z, w) \in C^{p+q}$ (here $z \in \boldsymbol{C}^{p}$ and $w \in \boldsymbol{C}^{q}$) such that $\varepsilon \operatorname{Im} z_{j}>\|\operatorname{Im} z\|$, where $z=\left(z_{1}, \ldots, z_{p}\right)$ and see $\S 2$ for the notation $\left\|\|\right.$ and Im. Put $V_{j}^{(\pm 1)}=\left\{(z, w) \in C^{p+q} ; \pm \operatorname{Im} w_{j}>0\right\}$, for $1 \leq j \leq q$. Then $U_{j}^{(\varepsilon)}$ and $V_{j}^{(\varepsilon)}$ are both convex in C^{p+q}. Let

$$
\mathscr{W}^{\prime}=\left\{U_{j}^{(\varepsilon)} ; \varepsilon \in\{1,-1\}, 1 \leq j \leq p\right\} \cup\left\{V_{j}^{(\varepsilon)} ; \varepsilon \in\{1,-1\}, 1 \leq j \leq q\right\}
$$

and $\mathscr{W}=\mathscr{W}^{\prime} \cup\left\{C^{p+q}\right\}$. Then it is easily seen that ($\mathscr{W}, \mathscr{W}^{\prime}$) is relative Stein covering of $\left(\boldsymbol{C}^{p+q}, \boldsymbol{C}^{p+q} \backslash \boldsymbol{R}^{p+q}\right.$). (For the relative Stein covering, see [7]). Indeed, from the definition of $V_{j}^{(\varepsilon)}$,

$$
\left(\cup\left\{V_{j}^{(\varepsilon)} ; \varepsilon \in\{ \pm 1\}, 1 \leq j \leq q\right\}\right)^{c} \subset\left\{(z, w) \in C^{p+q} ; \operatorname{Im} w_{j}=0(1 \leq j \leq q)\right\}
$$

where A^{c} is the complement of a set A. But since

$$
\left\{(z, w) \in C^{p+q} ; \operatorname{Im} z_{j} \neq 0, \operatorname{Im} w_{k}=0(1 \leq k \leq q)\right\} \subset U_{j}^{(1)} \cup U_{j}^{(-1)} \quad \text { for each } j,
$$

we have $C^{p+q} \backslash \boldsymbol{R}^{p+q} \subset \cup\left\{W ; W \in \mathscr{W}^{\prime}\right\}$.
Let $e_{j}=(0, \cdots, 1, \cdots, 0) \in \boldsymbol{R}^{p}$. For each $\varepsilon=\left(\varepsilon_{1}, \cdots, \varepsilon_{p}\right)$ such that $\varepsilon_{j} \in$ $\{-1,1\}$ for $1 \leq j \leq p$, we denote by S_{ε} the set of all ξ in S^{p-1} such that $\left\langle\xi, \varepsilon_{j} e_{j}\right\rangle \geq 0$ for any $j(1 \leq j \leq p)$ (for the notation \rangle, see §2). For each ε $=\left(\varepsilon_{1}, \cdots, \varepsilon_{p}\right)$ let D_{ε} be the set of all $(z, w) \in C^{p+q}$ such that $\langle\operatorname{Im} z, \xi\rangle+\langle\operatorname{Im} w, \eta\rangle$ >0 for any ξ in S_{ε} and η in S^{q-1}, where $\operatorname{Im} z=\left(\operatorname{Im} z_{1}, \ldots, \operatorname{Im} z_{n}\right)$ for each z in C^{n}.

Lemma 3.1. $\quad D_{\varepsilon}=\bigcap_{1 \leq j \leq p} U_{j}^{\left(\varepsilon_{j}\right)}$ for any $\varepsilon=\left(\varepsilon_{1}, \cdots, \varepsilon_{p}\right)$.
Proof. Since $\varepsilon_{j} e_{j} \in S_{\varepsilon}$ for any $j(1 \leq j \leq p)$ and the minimum value of $\langle\operatorname{Im} w, \eta\rangle\left(\eta \in S^{q-1}\right)$ is $-\|\operatorname{Im} w\|$, if $(z, w) \in D_{\varepsilon}$ then $\left\langle\operatorname{Im} z, \varepsilon_{j} e_{j}\right\rangle>\|\operatorname{Im} w\|$. Hence $(z, w) \in U_{j}^{\left(\varepsilon_{j}\right)}$ for any $j(1 \leq j \leq p)$. Therefore $D_{\varepsilon} \subset \bigcap_{1 \leq j \leq p} U_{j}^{\left(\varepsilon_{j}\right)}$. Conversely, if $(z, w) \in \bigcap_{1 \leq j \leq p} U_{j}^{\left(\varepsilon_{j}\right)}$ then $\varepsilon_{j} \operatorname{Im} z_{j}>\|\operatorname{Im} w\|$ for any $j(1 \leq j \leq p)$. It is easily seen that $\langle\operatorname{Im} z, \xi\rangle>\|\operatorname{Im} w\|$ for any $\xi \in S_{\varepsilon}$ and $(z, w) \in \bigcap_{1 \leq j \leq p} U_{j}^{\left(\varepsilon_{j}\right)}$. Indeed, since $\varepsilon_{1} \xi_{1}$ $+\cdots+\varepsilon_{p} \xi_{p} \geq 1$ for any $\xi \in S_{\varepsilon}$,

$$
\langle\operatorname{Im} z, \xi\rangle>\left(\varepsilon_{1} \xi_{1}+\cdots+\varepsilon_{p} \xi_{p}\right)\|\operatorname{Im} w\| \geq\|\operatorname{Im} w\|
$$

for any $\xi \in S_{\varepsilon}$ and $(z, w) \in \bigcap_{1 \leq j \leq p} U_{j}^{\left(\varepsilon_{j}\right)}$. Hence $(z, w) \in D_{\varepsilon}$, because the minumum of $\langle\operatorname{Im} w, \eta\rangle\left(\eta \in S^{q-1}\right)$ is $-\|\operatorname{Im} w\|$. Therefore $D_{\varepsilon} \supset \bigcap_{1 \leq j \leq p} U_{j}^{\left(\varepsilon_{j}\right)}$. This completes the proof of the lemma.

$$
\text { Put } \Delta(z)=\Delta(z ; p, q)=(\operatorname{ch} z)^{p-1}(\operatorname{sh} z)^{q-1} \text { and } \pi_{\varepsilon}=\varepsilon_{1} \varepsilon_{2} \cdots \varepsilon_{p} . \quad \text { (See } \S 0 \text { for }
$$

the notation; ch, sh.)
Lemma 3.2. For each $\varepsilon=\left(\varepsilon_{1}, \cdots, \varepsilon_{p}\right)\left(\varepsilon_{j} \in\{1,-1\}\right)$, the integral

$$
\psi_{\varepsilon}(z, w)=\pi_{\varepsilon} \int_{0}^{\infty} \int_{S_{\varepsilon}} \int_{S^{q-1}} e^{i \lambda[\langle z, \xi\rangle \operatorname{ch}(t-i \mu)+\langle w, \eta\rangle \operatorname{sh}(t-i \mu)]} \Delta(t-i \mu) d \xi d \eta d t
$$

converges absolutely and uniformly on every compact subset of D_{ε} and is holomorphic on D_{ε}. Here $d \xi(d \eta)$ is the normalized $\operatorname{SO}(p)$-invariant $(S O(q)$ invariant) measure on $S^{p-1}\left(S^{q-1}\right)$ such that $\int_{S^{p-1}} d \xi=1 \quad\left(\int_{S^{q-1}} d \eta=1\right)$, respectively.

Proof. Since

$$
\begin{aligned}
& \operatorname{Re}\{i \lambda[\langle z, \xi\rangle \operatorname{ch}(t-i \mu)+\langle w, \eta\rangle \operatorname{sh}(t-i \mu)]\} \\
& \quad=-|\lambda|\left[e^{t} \operatorname{Im}(\langle z, \xi\rangle+\langle w, \eta\rangle)+\operatorname{Im} e^{-t+2 i \mu}(\langle z, \xi\rangle-\langle w, \eta\rangle)\right] / 2,
\end{aligned}
$$

the lemma is clear.
For each $(a, b) \in \boldsymbol{R}^{2}$ and $\varepsilon=\left(\varepsilon_{1}, \cdots, \varepsilon_{p}\right) \quad\left(\varepsilon_{j} \in\{ \pm 1\}\right)$, we denote by $\chi_{\varepsilon}(z, w ; a, b)$ an entire holomorphic functin on C^{p+q} defined by the following integral;

$$
i \pi_{\varepsilon} \int_{a}^{b} \int_{S_{\varepsilon}} \int_{S^{q-1}} e^{i \lambda[\langle z, \xi\rangle \cos \zeta-i\langle w, \eta\rangle \sin \zeta]} \Delta(-i \zeta ; p, q) d \xi d \eta d \zeta .
$$

Put $\varphi_{\varepsilon}(z, w)=\psi_{\varepsilon}(z, w)-\chi_{\varepsilon}(z, w ; 0, \mu)$. Then, by Lemma 3.2, φ_{ε} is holomorphic on D_{ε} for any ε. Moreover, from the definition of φ_{ε}, it is easily seen that φ_{ε} satisfies the following differential equations

$$
\begin{aligned}
& {\left[\left(\partial / \partial z_{1}\right)^{2}+\cdots+\left(\partial / \partial z_{p}\right)^{2}-\left(\partial / \partial w_{1}\right)^{2}-\cdots-\left(\partial / \partial w_{q}\right)^{2}\right] \varphi_{\varepsilon}=-\lambda^{2} \varphi_{\varepsilon}} \\
& \left(w_{j} \partial / \partial w_{k}-w_{k} \partial / \partial w_{j}\right) \varphi_{\varepsilon}=0 \quad \text { for any } 1 \leq j, k \leq q
\end{aligned}
$$

Put $H(z, w ; \xi, \eta, t)=\langle z, \xi\rangle$ ch $t+\langle w, \eta\rangle \operatorname{sh} t$ for $(z, w, \xi, \eta, t) \in C^{p} \times C^{q} \times S^{p-1}$ $\times S^{q-1} \times C$. Then H is holomorphic with respect to the variables (z, w, t) and real analytic with respect to the variables (ξ, η). For fixed ξ in S_{ε}, we denote by $h(z, w ; \xi)$ a holomorphic function on D_{ε} defined by the following integral:

$$
\begin{aligned}
h(z, w ; \xi) & =\int_{0}^{\infty} \int_{S^{-1}} e^{i \lambda H(z, w ; \xi, \eta, t-i \mu)} \Delta(t-i \mu ; p, q) d \eta d t \\
& -i \int_{0}^{\mu} \int_{S^{q-1}} e^{i \lambda H(z, w ; \xi, \eta,-i \zeta)} \Delta(-i \theta ; p, q) d \eta d \zeta .
\end{aligned}
$$

Then h is real analytic with respect to ξ in S_{ε} and we have

$$
\varphi_{\varepsilon}(z, w)=\pi_{\varepsilon} \int_{S_{\varepsilon}} h(z, w ; \xi) d \xi
$$

for any $(z, w) \in D_{\varepsilon}$.
For the purpose of the proof of the rotation invariance with respect to the variables (x_{1}, \cdots, x_{p}), we use the following coordinate system on the sphere S^{p-1};

$$
\left\{\begin{aligned}
\xi_{1}(\theta) & =\cos \theta_{1} \\
\xi_{2}(\theta) & =\sin \theta_{1} \cos \theta_{2} \\
& \vdots \\
\xi_{p-1}(\theta) & =\sin \theta_{1} \sin \theta_{2} \cdots \sin \theta_{p-2} \cos \theta_{p-1} \\
\xi_{p}(\theta) & =\sin \theta_{1} \sin \theta_{2} \cdots \sin \theta_{p-2} \sin \theta_{p-1}
\end{aligned}\right.
$$

where $0 \leq \theta_{j}<\pi(1 \leq j \leq p-2)$ and $0 \leq \theta_{p-1}<2 \pi$. It is well known that the normalized $S O(p)$-invariant measure $d \xi$ is represented with respect to this coordinate as follows;

$$
d \xi=\frac{\Gamma(p / 2)}{2 \pi^{p / 2}}\left(\sin \theta_{1}\right)^{p-2}\left(\sin \theta_{2}\right)^{p-3} \cdots \sin \theta_{p-2} d \theta_{1} d \theta_{2} \cdots d \theta_{p-1} .
$$

Set $\quad I^{(1)}=I^{(1,1)}=\{\theta ; 0 \leq \theta \leq \pi / 2\}, \quad I^{(-1)}=I^{(-1,1)}=\{\theta ; \pi / 2 \leq \theta \leq \pi\}, \quad I^{(1,-1)}$ $=\{\theta ; 3 \pi / 2 \leq \theta \leq 2 \pi\}$ and $I^{(-1,-1)}=\{\theta ; \pi \leq \theta \leq 3 \pi / 2\}$. Then it is easily seen that for any $\varepsilon=\left(\varepsilon_{1}, \cdots, \varepsilon_{p}\right)$ we have

$$
S_{\varepsilon}=\left\{\left(\xi_{1}(\theta), \cdots \xi_{p}(\theta)\right) ; \theta_{j} \in I^{\left(\varepsilon_{j}\right)}(1 \leq j \leq p-2), \theta_{p-1} \in I^{\left(\varepsilon_{p-1}, \varepsilon_{p}\right)}\right\} .
$$

Indeed, since if $\left(\xi_{1}(\theta), \cdots, \xi_{p}(\theta)\right) \in S_{\varepsilon}$ then $\varepsilon_{j} \xi_{j}(\theta) \geq 0 \quad(1 \leq j \leq p)$, we have $\varepsilon_{j} \cos \theta_{j} \geq 0(1 \leq j \leq p-1)$ and $\varepsilon_{p} \sin \theta_{p-1} \geq 0$. Hence $\theta_{j} \in I^{\left(\varepsilon_{j}\right)}(1 \leq j \leq p-2)$ and $\theta_{p-1} \in I^{\left(\varepsilon_{p-1}, \varepsilon_{p}\right)}$ if and only if $\left(\xi_{1}(\theta), \cdots, \xi_{p}(\theta)\right) \in S_{\varepsilon}$. Put

$$
\begin{aligned}
& S_{\varepsilon}^{(k)}=\left\{\xi(\theta) \in S_{\varepsilon} ; \theta_{k}=\pi / 2\right\} \quad \text { for each } k \in\{1, \cdots, p-2\} \\
& S_{\varepsilon}^{(p-1)}=\left\{\xi(\theta) \in S_{\varepsilon} ; \theta_{p-1}=\pi\left(2-\varepsilon_{p}\right) / 2\right\}, \\
& S_{\varepsilon}^{(p)}=\left\{\xi(\theta) \in S_{\varepsilon} ; \theta_{p-1}=a_{\varepsilon}\right\},
\end{aligned}
$$

where $\xi(\theta)=\left(\xi_{1}(\theta), \cdots, \xi_{p}(\theta)\right), a_{\varepsilon}=0$ if $\varepsilon_{p-1}=\varepsilon_{p}=1, a_{\varepsilon}=2 \pi$ if $\varepsilon_{p-1}=-\varepsilon_{p}=1$ and $a_{\varepsilon}=\pi$ if $\varepsilon_{p-1}=-\varepsilon_{p}=-1$ or $\varepsilon_{p-1}=\varepsilon_{p}=-1$. Then one can easily see that $\partial S_{\varepsilon}=\bigcup_{1 \leq k \leq p} S_{\varepsilon}^{(k)}$ for each ε, where ∂S_{ε} is the boundary of S_{ε}. Indeed, by virtue of the definition of $S_{\varepsilon}^{(k)}$, we have $S_{\varepsilon}^{(k)}=S_{\varepsilon} \cap\left\{\xi_{k}(\theta)=0\right\}$ for any ε and k $(1 \leq k \leq p)$. We equip the sphere S^{p-1} with the orientation which is induced by the canonical orientation of $\{\theta ; 0 \leq \theta \leq \pi\}^{p-2} \times\{\theta ; 0 \leq \theta<2 \pi\}$ and the
map

$$
\left(\theta_{1}, \cdots, \theta_{p-1}\right) \longmapsto\left(\xi_{1}(\theta), \cdots, \xi_{p}(\theta)\right)
$$

Moreover, for any ε and $k(1 \leq k \leq p), S_{\varepsilon}^{(k)}$ can be equiped with the orientation which is compatible with the above orientation of S^{p-1}.

Theorem 3.3 (Stokes). Let ω be a differential form of the degree $p-2$ on S^{p-1}, then for any $\varepsilon=\left(\varepsilon_{1}, \cdots, \varepsilon_{p}\right)$,

$$
\begin{aligned}
\int_{S_{\varepsilon}} d \omega= & \sum_{1 \leq j \leq p-2}(-1)^{j+1} \varepsilon_{j} \int_{S_{\varepsilon}^{(j)}} l_{\varepsilon, j}^{*}(\omega)+(-1)^{p} \varepsilon_{p-1} \varepsilon_{p} \int_{S_{\varepsilon}^{(p-1)}} l_{\varepsilon, p-1}^{*}(\omega) \\
& +(-1)^{p+1} \varepsilon_{p-1} \varepsilon_{p} \int_{S_{\varepsilon}^{(p)}} l_{\varepsilon, p}^{*}(\omega)
\end{aligned}
$$

where ${l_{\varepsilon, j}}$ is the inclusion map from $S_{\varepsilon}^{(j)}$ to S^{p-1} for each ε and j and $l_{\varepsilon, j}^{*}(\omega)$ is the pull-back of ω by the map $\tau_{\varepsilon, j}$.

Now, we consider the natural action of $S O(p)$ on \boldsymbol{R}^{p}. Then the sphere S^{p-1} is stable under this action. Let $\mathfrak{f}=\mathfrak{s o}(p)$ be the Lie algebra of the Lie group $S O(p)$. For each $j(1 \leq j \leq p-1)$, set

$$
E_{j}=\left(a_{i k}\right) \quad \text { and } \quad K_{j}\left(\theta_{j}\right)=\exp \theta_{j} E_{j},
$$

where

$$
a_{i k}=\left\{\begin{aligned}
0 & \text { if }(i, k) \neq(j, j+1),(j+1, j) \\
1 & \text { if }(i, k)=(j+1, j) \\
-1 & \text { if }(i, k)=(j, j+1)
\end{aligned}\right.
$$

and exp is the exponential map of \mathfrak{f} into $S O(p)$ and $\theta_{j} \in \boldsymbol{R}$. Then one can easily see that

$$
\xi(\theta)={ }^{t}\left(K_{p-1}\left(\theta_{p-1}\right) \cdots K_{1}\left(\theta_{1}\right)^{t} e_{1}\right),
$$

where ${ }^{t} A$ is the transpose of a matrix A and $e_{1}=(1,0, \cdots, 0)$.
For each $k(1 \leq k \leq p-1)$, we define the vector field $X_{k}\left(X_{k}^{\prime}\right)$ on $\boldsymbol{R}^{p}\left(S^{p-1}\right)$ such that

$$
\begin{array}{ll}
\left(X_{k} f\right)(x)=-\left.\frac{d}{d t}\right|_{t=0} f\left(\exp \left(t E_{k}\right) x\right) & \text { for any } f \in C^{\infty}\left(\boldsymbol{R}^{p}\right) \\
\left(\left(X_{k}^{\prime} f\right)(\xi)=\left.\frac{d}{d t}\right|_{t=0} f\left(\exp \left(t E_{k}\right) \xi\right)\right. & \text { for any } f \in C^{\infty}\left(S^{p-1}\right)
\end{array}
$$

for any $x \in \boldsymbol{R}^{p}\left(\xi \in S^{p-1}\right)$, respectively. Then

$$
X_{k}=x_{k+1} \frac{\partial}{\partial x_{k}}-x_{k} \frac{\partial}{\partial x_{k+1}} \quad \text { for any } k(1 \leq k \leq p-1)
$$

and

$$
X_{k}^{\prime}=\cos \theta_{k+1} \frac{\partial}{\partial \theta_{k}}-\cot \theta_{k} \sin \theta_{k+1} \frac{\partial}{\partial x_{k+1}} \quad(1 \leq k \leq p-2), X_{p-1}^{\prime}=\frac{\partial}{\partial x_{p-1}} .
$$

Indeed, the first and second assertion for $k=p-1$ are simply seen. For the second assertion except for $k=p-1$, we need some calculations. Since $K_{k}(t) K_{j}\left(\theta_{j}\right)=K_{j}\left(\theta_{j}\right) K_{k}(t)$ for $j \geq k+2$, we have

$$
\begin{aligned}
& K_{k}(t) K_{p-1}\left(\theta_{p-1}\right) \cdots K_{1}\left(\theta_{1}\right) \\
& \quad=K_{p-1}\left(\theta_{p-1}\right) \cdots K_{k+2}\left(\theta_{k+2}\right) K_{k}(t) K_{k+1}\left(\theta_{k+1}\right) K_{k}\left(\theta_{k}\right) \cdots K_{1}\left(\theta_{1}\right) .
\end{aligned}
$$

On the other hand, we can choose $\tilde{\theta}_{k}=\tilde{\theta}_{k}\left(t, \theta_{k}, \theta_{k+1}\right), \tilde{\theta}_{k+1}=\tilde{\theta}_{k+1}\left(t, \theta_{k}, \theta_{k+1}\right)$ and $\varphi=\varphi\left(t, \theta_{k}, \theta_{k+1}\right)$ such that

$$
K_{k}(t) K_{k+1}\left(\theta_{k+1}\right) K_{k}\left(\theta_{k}\right)=K_{k+1}\left(\tilde{\theta}_{k+1}\right) K_{k}\left(\tilde{\theta}_{k}\right) K_{k+1}(\varphi) .
$$

In fact, such $\tilde{\theta}_{k}, \tilde{\theta}_{k+1}$ are given as follows;

$$
\left\{\begin{aligned}
\cos \tilde{\theta}_{k} & =\cos t \cos \theta_{k}-\sin t \sin \theta_{k} \cos \theta_{k+1} \\
\sin \tilde{\theta}_{k} \cos \tilde{\theta}_{k+1} & =\sin t \cos \theta_{k}+\cos t \sin \theta_{k} \cos \theta_{k+1} \\
\sin \tilde{\theta}_{k} \sin \tilde{\theta}_{k+1} & =\sin \theta_{k} \sin \theta_{k+1}
\end{aligned}\right.
$$

Hence $\quad \partial \tilde{\theta}_{k} /\left.\partial t\right|_{t=0}=\cos \theta_{k+1} \quad$ and $\quad \partial \tilde{\theta}_{k+1} /\left.\partial t\right|_{t=0}=-\cot \theta_{k} \sin \theta_{k+1}$. Since $K_{k+1}(\varphi) K_{j}\left(\theta_{j}\right)=K_{j}\left(\theta_{j}\right) K_{k+1}(\varphi)$ for $j \leq k-1 \quad$ and $\quad K_{k+1}(\varphi)^{t} e_{1}={ }^{t} e_{1}$ for $1 \leq k \leq p-2$, we have the second assertion.

Since X_{k} is a real analytic vector field on \boldsymbol{R}^{p}, we can extend it on the holomorphic vector field on C^{p}, uniquely. In this section, we use the same notation X_{k} for such a vector field. Let F be a C^{∞}-function on C. Set $G(z, \xi)$ $=F(\langle z, \xi\rangle) \quad$ for $\quad z \in C^{p} \quad$ and $\quad \xi \in S^{p-1}$. Then we have $X_{k} G(z, \xi)$ $=X_{k}^{\prime} G(z, \xi)$. Indeed, snce $\langle>$ is $S O(p)$-invariant,

$$
\left.\frac{d}{d t}\right|_{t=0} G(\exp (t X) z, \exp (t X) \xi)=0 \quad \text { for any } X \in \mathfrak{f}
$$

Here we extend the action of $S O(p)$ on \boldsymbol{R}^{p} to \boldsymbol{C}^{p}, naturally. Hence we have the assertion from the definition of X_{k} and X_{k}^{\prime}.

Put $\quad \omega(\theta)=\Gamma(p / 2) /\left(2 \pi^{p / 2}\right) \quad\left(\sin \theta_{1}\right)^{p-2}\left(\sin \theta_{2}\right)^{p-3} \cdots\left(\sin \theta_{p-2}\right)$. Then $d \xi$ $=\omega(\theta) d \theta_{1} \wedge \cdots \wedge d \theta_{p-1}$. We denote by $l(X)(\omega)$ the interior product of X and ω.

Lemma 3.4. We have

1) $t\left(X_{k}^{\prime}\right)(d \xi)=(-1)^{k-1} \omega(\theta)\left[d \theta_{k}\left(X_{k}^{\prime}\right) d \theta_{1} \wedge \cdots \stackrel{k}{\cdots} \wedge d \theta_{p-1}\right.$

$$
\left.\left.-d \theta_{k+1}\left(X_{k}^{\prime}\right) d \theta_{1} \wedge \stackrel{\left.\begin{array}{c}
+1 \\
\cdots
\end{array}\right)}{(}\right) d \theta_{p-1}\right] \quad(\text { for any } k(1 \leq k \leq p-2))
$$

and $l\left(X_{p-1}^{\prime}\right)(d \xi)=(-1)^{p} \omega(\theta) d \theta_{1} \wedge \cdots \wedge d \theta_{p-2}$,
2) for any ε and $j(1 \leq j \leq p)$

$$
\begin{aligned}
l_{\varepsilon, j}^{*}\left(l\left(X_{k}^{\prime}\right)(d \xi)\right)= & \delta_{k, j}(-1)^{k-1}\left[\omega(\theta) d \theta_{k}\left(X_{k}^{\prime}\right)\right]_{\theta_{k}=\pi / 2} d \theta_{1} \wedge \cdots \stackrel{k}{\cdots} \wedge d \theta_{p-1} \\
& +\delta_{k+1, j}(-1)^{k}\left[\omega(\theta) d \theta_{k+1}\left(X_{k}^{\prime}\right)\right]_{\theta_{k+1}=\pi / 2} d \theta_{1} \wedge \cdots \stackrel{k+1}{\cdots \cdots \wedge d \theta_{p-1}}
\end{aligned}
$$

(for any $k(1 \leq k \leq p-3)$),

$$
\begin{aligned}
& l_{\varepsilon, j}^{*}\left(l\left(X_{p-2}^{\prime}\right)(d \xi)\right) \\
& =\delta_{p-2, j}(-1)^{p-3}\left[\omega(\theta) d \theta_{k-2}\left(X_{p-2}^{\prime}\right)\right]_{\theta_{p-2}=\pi / 2} d \theta_{1} \wedge \cdots \wedge d \theta_{p-3} \wedge d \theta_{p-1} \\
& \quad+\delta_{p-1, j}(-1)^{p-2}\left[\omega(\theta) d \theta_{p-1}\left(X_{p-2}^{\prime}\right)\right]_{\theta_{p-1}=\pi\left(2-\varepsilon_{p}\right) / 2} d \theta_{1} \wedge \cdots \wedge d \theta_{p-2}, \\
& \quad \begin{array}{l}
l_{\varepsilon, j}^{*}\left(l\left(X_{p-1}^{\prime}\right)(d \xi)\right)=\delta_{p-1, j}(-1)^{p}[\omega(\theta)]_{\theta_{p-1}=\pi\left(2-\varepsilon_{p}\right) / 2} d \theta_{1} \wedge \cdots \wedge d \theta_{p-2} \\
\quad+\delta_{p, j}(-1)^{p}[\omega(\theta)]_{\theta_{p-1}=a_{\varepsilon}} d \theta_{1} \wedge \cdots \wedge d \theta_{p-2},
\end{array}
\end{aligned}
$$

where $d \theta_{1} \wedge \cdots \vee \cdot \wedge d \theta_{p-1}=d \theta_{1} \wedge \cdots \wedge d \theta_{k-1} \wedge d \theta_{k+1} \wedge \cdots \wedge d \theta_{p-1}$ and $\delta_{k, j}$ is the Kronecker's δ.

Proof. 1) Put $l\left(X_{k}^{\prime}\right)(d \xi)=\sum_{1 \leq j \leq p-1} a_{j}(\theta) d \theta_{1} \wedge \stackrel{j}{\cdots} . \stackrel{\wedge}{ } \wedge d \theta_{p-1}$. Then we see from the definiton of the interior product that for any $j(1 \leq j \leq p-1)$,
$a_{j}(\theta)=\omega(\theta) \operatorname{det}\left[\begin{array}{ccccccc}d \theta_{1}\left(X_{k}^{\prime}\right) & c_{1,1} & \cdots & c_{1, j-1} & c_{1, j+1} & \cdots & c_{1, p-1} \\ \vdots & \vdots & & \vdots & \vdots & & \vdots \\ \vdots & \vdots & & \vdots & \vdots & & \vdots \\ d \theta_{p-1}\left(X_{k}^{\prime}\right) & c_{p-1,1} & \cdots & c_{p-1, j-1} & c_{p-1, j+1} & \cdots & c_{p-1, p-1}\end{array}\right]$
where $c_{i, j}=d \theta_{i}\left(\partial / \partial \theta_{j}\right)$ and $\operatorname{det} A$ is the determinant of a matrix A. Since $c_{i, j}$ $=d \theta_{i}\left(\partial / \partial \theta_{j}\right)=\delta_{i, j}(1 \leq i, j \leq p-1)$, if $1 \leq k \leq p-2$ then $a_{k}(\theta)=(-1)^{k-1} \omega(\theta)$ $d \theta_{k}\left(X_{k}^{\prime}\right), a_{k+1}(\theta)=(-1)^{k} \omega(\theta) d \theta_{k+1}\left(X_{k}^{\prime}\right)$ and $a_{j}(\theta)=0$ for $1 \leq j \leq k-1, k+2 \leq$ $j \leq p-1$. If $k=p-1$ then $a_{p-1}(\theta)=(-1)^{p} \omega(\theta)$ and $a_{j}(\theta)=0$ for $1 \leq j \leq p$ -2 . Thus 1) of the lemma is proved.
2) From the definition of $l_{\varepsilon, j}^{*}$ and 1), 2) is easily obtained.

Now we recall the functions φ_{ε}, h and the vector field X_{k} on \boldsymbol{R}^{p} or \boldsymbol{C}^{p}. In view of the remark on the vector fields X_{k} and X_{k}^{\prime}, we have

$$
X_{k} \varphi_{\varepsilon}(z, w)=\pi_{\varepsilon} \int_{S_{\varepsilon}}\left(X_{k}^{\prime} h\right)(z, w ; \xi) d \xi \quad \text { for any } \varepsilon \text { and } k
$$

Let $L_{X_{k}^{\prime}}$ be the Lie derivative over S^{p-1} with respect to X_{k}^{\prime}. Then $L_{X_{k}^{\prime}}(d \xi)=0$, because $d \xi$ is an invariant measure. Hence we have for any ε and k,

$$
\int_{S_{\varepsilon}}\left(X_{k}^{\prime} h\right)(z, w ; \xi) d \xi=\int_{S_{\varepsilon}} L_{X_{k}^{\prime}}(h(z, w ; \xi) d \xi) \quad \text { for }(z, w) \in D_{\varepsilon}
$$

Let d be the exterior derivative over S^{p-1}. Since

$$
L_{X_{k}^{\prime}}=d \circ l\left(X_{k}^{\prime}\right)+l\left(X_{k}^{\prime}\right) \circ d \quad \text { and } \quad d(h d \xi)=0
$$

we have for any ε and k.

$$
\int_{S_{\varepsilon}} L_{X_{k}^{\prime}}(h(z, w ; \xi) d \xi)=\int_{S_{\varepsilon}} d\left(l\left(X_{k}^{\prime}\right)(h(z, w ; \xi) d \xi)\right) \quad \text { for }(z, w) \in D_{\varepsilon} .
$$

Thanks to Stokes' Theorem 3.3 and from Lemma 3.4, we have
Lemma 3.5. For any ε and $(z, w) \in D_{\varepsilon}$,

$$
\begin{array}{r}
\left(X_{k} \varphi_{\varepsilon}\right)(z, w)=\varepsilon_{k} \pi_{\varepsilon} \int_{S_{\varepsilon}^{(k)}}\left[h(z, w ; \xi(\theta)) \omega(\theta) \cos \theta_{k+1}\right]_{\theta_{k}=\pi / 2} d \theta_{1} \stackrel{\stackrel{k}{*} \cdots d \theta_{p-1}}{ } \\
\quad-\varepsilon_{k+1} \pi_{\varepsilon} \int_{S_{\varepsilon}^{(k+1)}}\left[h(z, w ; \xi(\theta)) \omega(\theta) \cot \theta_{k}\right]_{\theta_{k+1}=\pi / 2} d \theta_{1} \stackrel{k+1}{\cdots+\cdots d \theta_{p-1}}
\end{array}
$$

(for any $k(1 \leq k \leq p-3)$),

$$
\begin{aligned}
& \left(X_{p-2} \varphi_{\varepsilon}\right)(z, w)= \\
& \varepsilon_{p-2} \pi_{\varepsilon} \int_{S_{\varepsilon}^{(p-2)}}\left[h(z, w ; \xi(\theta)) \omega(\theta) \cos \theta_{p-1}\right]_{\theta_{p-2}=\pi / 2} d \theta_{1} \cdots d \theta_{p-3} d \theta_{p-1} \\
& \quad-\varepsilon_{p-1} \pi_{\varepsilon} \int_{S_{\varepsilon}^{(p-1)}}\left[h(z, w ; \xi(\theta)) \omega(\theta) \cot \theta_{p-2}\right]_{\theta_{p-1}=\pi\left(2-\varepsilon_{p}\right) / 2} d \theta_{1} \cdots d \theta_{p-2} \\
& \left(X_{p-1} \varphi_{\varepsilon}\right)(z, w)= \\
& \varepsilon_{p-1} \varepsilon_{p} \pi_{\varepsilon} \int_{S_{\varepsilon}^{(p-1)}}[h(z, w ; \xi(\theta)) \omega(\theta)]_{\theta_{p-1}=\pi\left(2-\varepsilon_{p}\right) / 2} d \theta_{1} \cdots d \theta_{p-2} \\
& \quad-\varepsilon_{p-1} \varepsilon_{p} \pi_{\varepsilon} \int_{S_{\varepsilon}^{(p)}}[h(z, w ; \xi(\theta)) \omega(\theta)]_{\theta_{p-1}=a_{\varepsilon}} d \theta_{1} \cdots d \theta_{p-2} .
\end{aligned}
$$

Set $Y=w_{1} \partial / \partial z_{1}+z_{1} \partial / \partial w_{1}$. Then it is easily seen that

$$
\left\{Y-D\left(t, \theta_{1}, \tau_{1} ; \partial / \partial t, \partial / \partial \theta_{1}, \partial / \partial \tau_{1}\right)\right\} e^{i \lambda H(z, w ; \xi(\theta), \eta(\tau), t-i \mu)}=0
$$

where $D(t, \xi, \eta)=D\left(t, \theta_{1}, \tau_{1} ; \partial / \partial t, \partial / \partial \theta_{1}, \partial / \partial \tau_{1}\right)=\cos \theta_{1} \cos \tau_{1} \partial / \partial t-\sin \tau_{1} \cos \theta_{1}$ $\operatorname{coth}(t-i \mu) \partial / \partial \tau_{1}-\sin \theta_{1} \cos \tau_{1} \tanh (t-i \mu) \partial / \partial \theta_{1}$ and $\eta(\tau)=\left(\eta_{1}(\tau), \cdots, \eta_{q}(\tau)\right)(\epsilon$ S^{q-1}) is defined in a way similar to $\xi(\theta)$.

Let $\omega_{p}(\theta)=\omega(\theta)$ and $\omega_{q}(\tau)$ be defined in a way similar to $\omega_{p}(\theta)$. Then $d \eta$ $=\omega_{q}(\tau) d \tau_{1} \wedge \cdots \wedge d \tau_{q-1}$. Now, we calculate $Y \varphi_{\varepsilon}$. First we have
$Y \psi_{\varepsilon}(z, w)=\pi_{\varepsilon} \int_{0}^{\infty} \int_{S_{\varepsilon}} \int_{S^{q-1}}\left(D(t, \xi, \eta) e^{i \lambda H(z, w ; \xi, \eta, t-i \mu)}\right) \Delta(t-i \mu) d \eta d \xi d t$
$=\pi_{\varepsilon} \int_{S_{\varepsilon}} \int_{S^{q-1}}\left[\Delta(t-i \mu) e^{i \lambda H(,, t-i \mu)}\right]_{t=0}^{t=\infty} \omega_{p}(\theta) \cos \theta_{1} \cos \tau_{1} d \theta_{1} \cdots d \theta_{p-1} d \eta$
$-\pi_{\varepsilon} \int_{0}^{\infty} \int_{S_{\varepsilon}} \int_{S^{q-1}} \frac{d \Delta(t-i \mu)}{d t} e^{i \lambda H} \omega_{p}(\theta) \cos \theta_{1} \cos \tau_{1} d \theta_{1} \cdots d \theta_{p-1} d \eta d t$
$+\pi_{\varepsilon} \int_{0}^{\infty} \int_{S_{\varepsilon}} \int_{S^{q-1}} e^{i \lambda H} \Delta(t-i \mu) \operatorname{coth}(t-i \mu) \cos \theta_{1} \frac{\partial}{\partial \tau_{1}}\left(\sin \tau_{1} \omega_{q}(\tau)\right) d \xi d \eta d t$
$-\varepsilon_{1} \pi_{\varepsilon} \int_{0}^{\infty} \int_{S_{\varepsilon}^{(1)}} \int_{S^{q-1}} v\left(\theta^{\prime}, \tau, t\right) \Delta(t-i \mu) \operatorname{th}(t-i \mu) \cos \tau_{1} d \theta_{2} \cdots d \theta_{p-1} d \eta d t$
$+\pi_{\varepsilon} \int_{0}^{\infty} \int_{S_{\varepsilon}} \int_{S^{q-1}} e^{i \lambda H} \Delta(t-i \mu) \operatorname{th}(t-i \mu) \cos \tau_{1} \frac{\partial}{\partial \theta_{1}}\left(\sin \theta_{1} \omega_{p}(\theta)\right) d \theta_{1} \cdots d \theta_{p-1} d \eta d t$,
where $v\left(\theta^{\prime}, \tau, t ; z, w\right)=v\left(\theta^{\prime}, \tau, t\right)=\left[\omega_{p}(\theta)^{i \lambda H(\cdot, t-i \mu)}\right]_{\theta_{1}=\pi / 2} \quad$ and $\quad \operatorname{th}(t)=\tanh (t)$. But

$$
\begin{aligned}
& -\cos \theta_{1} \cos \tau_{1} \omega_{p}(\theta) \omega_{p}(\tau) \frac{d \Delta(t-i \mu)}{d t} \\
& +\Delta(t-i \mu) \operatorname{coth}(t-i \mu) \cos \theta_{1} \omega_{p}(\theta) \frac{\partial}{\partial \tau_{1}}\left(\sin \tau_{1} \omega_{q}(\tau)\right) \\
& +\Delta(t-i \mu) \tanh (t-i \mu) \cos \tau_{1} \omega_{q}(\tau) \frac{\partial}{\partial \theta_{1}}\left(\sin \theta_{1} \omega_{p}(\theta)\right)=0 .
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
& Y \psi_{\varepsilon}(z, w)=-\pi_{\varepsilon} \int_{S_{\varepsilon}} \int_{S^{q-1}} e^{i \lambda \boldsymbol{H}(z, w ; \xi(\theta), \eta(\tau),-i \mu)} \Delta(-i \mu ; p, q) \cos \theta_{1} \cos \tau_{1} d \xi d \eta \\
& -\varepsilon_{1} \pi_{\varepsilon} \int_{0}^{\infty} \int_{S_{\varepsilon}^{(1)}} \int_{S^{q-1}} v\left(\theta^{\prime}, \eta, t ; z, w\right) \Delta(t-i \mu ; p-1, q+1) \cos \tau_{1} d \theta_{2} \cdots d \theta_{p-1} d n d t
\end{aligned}
$$

By the same calculation for $Y_{\chi_{\varepsilon}}(z, w ; a, b)$, we have

$$
\begin{aligned}
& Y \chi_{\varepsilon}(z, w ; a, b)= \\
& \quad-\pi_{\varepsilon} \int_{S_{\varepsilon}} \int_{S^{q-1}}\left[e^{i \lambda H(\cdot,-i \zeta)} \Delta(-i \zeta ; p, q)\right]_{\zeta}^{\zeta=b}=a \cos \theta_{1} \cos \tau_{1} d \xi d \eta \\
& \quad-i \varepsilon_{1} \pi_{\varepsilon} \int_{a}^{b} \int_{S_{\varepsilon}^{(1)}} \int_{S^{q-1}} v\left(\theta^{\prime}, \eta,-i \zeta\right) \Delta(-i \zeta ; p-1, q+1) \cos \tau_{1} d \theta_{2} \cdots d \theta_{p-1} d \eta d \zeta .
\end{aligned}
$$

Therefore we have
Lemma 3.6. For any ε and $(z, w) \in D_{\varepsilon}$,
$Y \varphi_{\varepsilon}(z, w)=$
$-\varepsilon_{1} \pi_{\varepsilon} \int_{0}^{\infty} \int_{S_{\varepsilon^{(1)}}} \int_{S^{q-1}} v\left(\theta^{\prime}, \tau, t ; z, w\right) \Delta(t-i \mu ; p-1, q+1) \cos \tau_{1} d \theta_{2} \cdots d \theta_{p-1} d \eta d t$
$+i \varepsilon_{1} \pi_{\varepsilon} \int_{0}^{\mu} \int_{S_{\varepsilon}^{(1)}} \int_{S^{q-1}} v\left(\theta^{\prime}, \tau,-i \zeta\right) \Delta(-i \zeta ; p-1, q+1) \cos \tau_{1} d \theta_{2} \cdots d \theta_{p-1} d \eta d \zeta$.
Now, we give spherical hyperfunctions by the elements of the Čeck cohomology $H^{p+q-1}\left(\mathscr{W}^{\prime} ; \mathcal{O}\right)$. Under the same notation as in $\S 2$, we put

$$
f=\left[\left(U_{1}^{(1)} \cap \cdots \cap U_{p}^{(1)} \cap V_{1}^{(1)} \cap \cdots \cap V_{q}^{(1)} ; \chi(z, w)\right)\right]
$$

where

$$
\chi(z, w)=\int_{-\pi}^{\pi} \int_{S_{\varepsilon}} \int_{S^{q-1}} e^{i \lambda[\langle z, \zeta\rangle \cos \zeta-i\langle w, \eta\rangle \sin \zeta]} \Delta(-i \zeta ; p, q) d \xi d \eta d \zeta .
$$

Then it is clear that f is a real analytic function on R^{p+q} and $f \in \mathscr{B}_{v}^{G_{0}}\left(\boldsymbol{R}^{p+q}\right)$. Let

$$
g=\left[\left(U_{1}^{\left(\varepsilon_{1}\right)} \cap \cdots \cap U_{p}^{\left(\varepsilon_{p}\right)} \cap V_{1}^{(1)} \cap \cdots \cap V_{q}^{(1)} ; \varphi_{\varepsilon}\right)\right] .
$$

Then we have

Proposition 3.7. $g \in \mathscr{B}_{v}^{G_{0}}\left(\boldsymbol{R}^{p+q}\right)$.

Proof. It is clear that g satisfies the following differential equations;

$$
\begin{aligned}
& {\left[\left(\partial / \partial x_{1}\right)^{2}+\cdots+\left(\partial / \partial x_{p}\right)^{2}-\left(\partial / \partial y_{1}\right)^{2}-\cdots-\left(\partial / \partial y_{q}\right)^{2}\right] g=-\lambda^{2} g,} \\
& \left(y_{j} \partial / \partial y_{k}-y_{k} \partial / \partial y_{j}\right) g=0 \quad \text { for any } 1 \leq j, k \leq q
\end{aligned}
$$

Since the Lie algebra g is spanned by the differential operators $x_{k} \partial / x_{k+1}$ $-x_{k+1} \partial / x_{k} \quad(1 \leq k \leq p-1), \quad y_{k} \partial / y_{k+1}-y_{k+1} \partial / y_{k} \quad(1 \leq k \leq q-1), \quad y_{1} \partial / \partial x_{1}$ $+x_{1} \partial / \partial y_{1}$, we must prove that
$\left(x_{k} \partial / \partial x_{k+1}-x_{k+1} \partial / \partial x_{k}\right) g=0(1 \leq k \leq p-1)$ and $\left(y_{1} \partial / \partial x_{1}+x_{1} \partial / \partial y_{1}\right) g=0$.
First we prove that $\left(x_{k+1} \partial / \partial x_{k}-x_{k} \partial / \partial x_{k+1}\right) g=0$. For each k $(1 \leq k \leq p)$, set $\varepsilon(k)=\left(\varepsilon_{1}, \cdots, \varepsilon_{k-1}, 0, \varepsilon_{k+1}, \cdots, \varepsilon_{p}\right)$, where $\varepsilon_{j} \in\{ \pm 1\}$ for $j \neq k$ and $U(\varepsilon(k))=\bigcap_{\substack{1 \leq j \leq p \\ j \neq k}} U_{j}^{\left(\varepsilon_{j}\right)}$ for any $1 \leq k \leq p$ and $\varepsilon(k)$. Put
$\varphi_{\varepsilon(k)}(z, w)=\varepsilon_{k} \pi_{\varepsilon} \int_{S_{\varepsilon}^{(k)}}\left[h(z, w ; \xi(\theta)) \omega_{p}(\theta) \cos \theta_{k+1}\right]_{\theta_{k}=\pi / 2} d \theta_{1} \stackrel{k}{\cdots} \cdot d \theta_{p-1}$ (if $1 \leq k \leq p-2$),
$\psi_{\varepsilon(k)}(z, w)=\varepsilon_{k} \pi_{\varepsilon} \int_{S_{\varepsilon}^{(K)}}\left[h(z, w ; \xi(\theta)) \omega_{p}(\theta) \cot \theta_{k-1}\right]_{\theta_{k}=\pi / 2} d \theta_{1} \stackrel{k}{\ldots} \cdot d \theta_{p-1}$
(if $2 \leq k \leq p-2$),
where $d \theta_{1} \cdots \stackrel{k}{\cdots} \cdot d \theta_{p-1}=d \theta_{1} \cdots d \theta_{k-1} d \theta_{k+1} \cdots d \theta_{p-1}$ and

$$
\begin{aligned}
& \varphi_{\varepsilon(p-1)}(z, w)=\varepsilon_{p-1} \varepsilon_{p} \pi_{\varepsilon} \int_{S_{\varepsilon}^{(p-1)}}\left[h(z, w ; \xi(\theta)) \omega_{p}(\theta)\right]_{\theta_{p-1}=b_{\varepsilon}} d \theta_{1} \cdots d \theta_{p-2}, \\
& \psi_{\varepsilon(p-1)}(z, w)=\varepsilon_{p-1} \pi_{\varepsilon} \int_{S_{\varepsilon}^{(p-1)}}\left[h(z, w ; \xi) \omega_{p}(\theta) \cot \theta_{p-2}\right]_{\theta_{p-1}=b_{\varepsilon}} d \theta_{1} \cdots d \theta_{p-2}, \\
& \psi_{\varepsilon(p)}(z, w)=\varepsilon_{p-1} \varepsilon_{p} \pi_{\varepsilon} \int_{S_{\varepsilon}^{(p)}}\left[h(z, w ; \xi(\theta)) \omega_{p}(\theta)\right]_{\theta_{p-1}=a_{\varepsilon}} d \theta_{1} \cdots d \theta_{p-2},
\end{aligned}
$$

where $b_{\varepsilon}=\pi\left(2-\varepsilon_{p}\right) / 2$.
Then it is easily seen that $\varphi_{\varepsilon(k)}$ and $\psi_{\varepsilon(k)}$ are holomorphic on $U(\varepsilon(k))$ for $1 \leq k \leq p-1$ and $2 \leq k \leq p$, respectively. In fact, we see from the same proof as in Lemma 3.1 that if $(z, w) \in U(\varepsilon(k))$ then $\langle\operatorname{Im} z, \xi\rangle+\langle\operatorname{Im} w, \eta\rangle>0$ for any $\xi \in S_{\varepsilon}^{(k)}$ and $\eta \in S^{q-1}$, where we set $\varepsilon(k)=\left(\varepsilon_{1}, \cdots, \varepsilon_{k-1}, 0, \varepsilon_{k+1}, \cdots, \varepsilon_{p}\right)$ for ε $=\left(\varepsilon_{1}, \cdots, \varepsilon_{p}\right)$. Thus, by the same proof as in Lemma 3.2, $\varphi_{\varepsilon(k)}$ and $\psi_{\varepsilon(k)}$ are both holomorphic on $U(\varepsilon(k))$. For each $k(1 \leq k \leq p-1)$, let c_{k} be a $p+q-2$ cochain defined as follows:

$$
\begin{aligned}
& \left\{\left(U(\varepsilon(k)) \cap V_{1}^{(1)} \cap \cdots \cap V_{q}^{(1)} ;(-1)^{k+1} \varphi_{\varepsilon(k)}\right) \quad \text { for each } \varepsilon(k),\right. \\
& \left(U(\varepsilon(k+1)) \cap V_{1}^{(1)} \cap \cdots \cap V_{q}^{(1)} ;(-1)^{k+1} \psi_{\varepsilon(k+1)}\right) \text { for each } \varepsilon(k+1),
\end{aligned}
$$ (otherwise ; 0) $\}$.

Then $\delta\left(c_{k}\right)=\left\{\left(U_{1}^{\left(\varepsilon_{1}\right)} \cap \cdots \cap U_{p}^{\left(\varepsilon_{p}\right)} \cap V_{1}^{(1)} \cap \cdots \cap V_{q}^{(1)}\right) ; \varphi_{\varepsilon(k)}-\psi_{\varepsilon(k+1)}\right)$, (otherwise; 0), for $\left.\varepsilon=\left(\varepsilon_{1}, \cdots, \varepsilon_{p}\right)\right\}$. On the other hand, by Lemma 3.5 and the definition of
$\varphi_{\varepsilon(k)}$ and $\psi_{\varepsilon(k)}$, we have

$$
X_{k} \varphi_{\varepsilon}=\varphi_{\varepsilon(k)}-\psi_{\varepsilon(k+1)} \quad \text { for any } \varepsilon \text { and } 1 \leq k \leq p-1
$$

Thus $\left(x_{k+1} \partial / \partial x_{k}-x_{k} \partial / \partial x_{k+1}\right) g=\left[\delta\left(c_{k}\right)\right]=0$ for any $1 \leq k \leq p-1$.
Next, we prove that $\left(y_{1} \partial / \partial x_{1}+x_{1} \partial / \partial y_{1}\right) g=0$. For any $\varepsilon(1)=\left(0, \varepsilon_{2}, \cdots\right.$, ε_{p}), let $\chi_{\varepsilon(1)}(z, w)$ be the holomorphic function on D_{ε} defined by the right-hand side of the equality of Lemma 3.6. Then in a way similar to the proof of Lemma 3.2, we see that $\chi_{\varepsilon(1)}$ is holomorphic on $U(\varepsilon(1))$. Let c be a $p+q-2$ cochain defined as follows;

$$
\left.c=\left\{\left(U(\varepsilon(1)) \cap V_{1}^{(1)} \cap \cdots \cap V_{q}^{(1)} ; \chi_{\varepsilon(1)}\right), \quad \text { (otherwise } ; 0\right) ; \text { for } \varepsilon(1)=\left(0, \varepsilon_{2}, \cdots, \varepsilon_{p}\right)\right\} .
$$

Then

$$
\begin{aligned}
\delta(c)=\left\{\left(U_{1}^{\left(\varepsilon_{1}\right)} \cap \cdots \cap U_{p}^{\left(\varepsilon_{p}\right)} \cap V_{1}^{(1)} \cap \cdots \cap V_{q}^{(1)} ; \chi_{\varepsilon(1)}\right),\right. & \text { (otherwise; } 0) ; \\
& \text { for } \left.\varepsilon=\left(\varepsilon_{1}, \cdots, \varepsilon_{p}\right)\right\} .
\end{aligned}
$$

Thus $\left(y_{1} \partial / \partial x_{1}+x_{1} \partial / \partial y_{1}\right) g=0$, because $Y \varphi_{\varepsilon}=\chi_{\varepsilon(1)}$ for any $\varepsilon=\left(\varepsilon_{1}, \cdots, \varepsilon_{p}\right)$. Therefore the proposition is proved.

Now, we consider the singular spectrum of the hyperfunction g. For any $\varepsilon=\left(\varepsilon_{1}, \cdots, \varepsilon_{p}\right)\left(\varepsilon_{j} \in\{ \pm 1\}\right)$, let

$$
g_{\varepsilon}=\left[\left(U_{1}^{\left(\varepsilon_{1}\right)} \cap \cdots \cap U_{p}^{\left(\varepsilon_{p}\right)} \cap V_{1}^{(1)} \cap \cdots \cap V_{q}^{(1)} ; \varphi_{\varepsilon}\right)\right] .
$$

Then $g=\sum g_{\varepsilon}$. For each ε and $(x, y) \in \boldsymbol{R}^{p+q}$, let $\Gamma_{\varepsilon}(x, y)$ be the dual cone of $D_{\varepsilon}(x, y)$, where $D_{\varepsilon}(x, y)=\left\{(a, b) \in \boldsymbol{R}^{p+q} ;(x+i a, y+i b) \in D_{\varepsilon}\right\}$. Here $\Gamma_{\varepsilon}(x, y)$ is regarded as the subset of $\sqrt{-1} T_{(x, y)}^{*} \boldsymbol{R}^{p+q}$. We put

$$
\tilde{\Gamma}_{\varepsilon}(x, y)=\left\{\tilde{p} \in \sqrt{-1} S_{(x, y)}^{*} \boldsymbol{R}^{p+q} ; p \in \Gamma_{\varepsilon}(x, y)\right\}
$$

for each ε and $(x, y) \in \boldsymbol{R}^{p+q}$, where \tilde{p} is the projection of $p \in \sqrt{-1} T_{(x, y)}^{*} \boldsymbol{R}^{p+q}$ to $\sqrt{-1} S_{(x, y)}^{*} \boldsymbol{R}^{p+q}$. Then one can easily see that

$$
\tilde{\Gamma}_{\varepsilon}(x, y)=\left\{i(a, b) \infty ; \varepsilon_{1} a_{1}+\cdots+\varepsilon_{p} a_{p} \geq\|b\| \text { and } \varepsilon_{j} a_{j} \geq 0 \text { for } 1 \leq j \leq p\right\} .
$$

In fact, if $\varepsilon_{1} \xi_{1}+\cdots+\varepsilon_{p} \xi_{p} \geq\|\eta\|$ and $\varepsilon_{j} \xi_{j} \geq 0(1 \leq j \leq p)$ then $\xi_{1} a_{1}+\cdots$ $+\xi_{p} a_{p}+\eta_{1} b_{1}+\cdots+\eta_{q} b_{q} \geq\|b\|\left(\varepsilon_{1} \xi_{1}+\cdots+\varepsilon_{p} \xi_{p}\right)+\eta_{1} b_{1}+\cdots+\eta_{q} b_{q} \geq\|b\| \|$ $\eta \|+\eta_{1} b_{1}+\cdots+\eta_{q} b_{q} \geq 0$ for any $(a, b) \in D_{\varepsilon}(x, y)$. Conversely, if $\xi_{1} a_{1}+\cdots$ $+\xi_{p} a_{p}+\eta_{1} b_{1}+\cdots+\eta_{q} b_{q} \geq 0$ for any $(a, b) \in D_{\varepsilon}(x, y)$ then $\varepsilon_{1} \xi_{1}+\cdots+\varepsilon_{p} \xi_{p} \geq$ $r\|\eta\|$ for any $0 \leq r<1$, because we can choose $(a, b) \in D_{\varepsilon}(x, y)$ such that $a_{j}=\varepsilon_{j}$ and $b_{j}=-\eta_{j} r /\|\eta\|$ for $0 \leq r<1$ and $1 \leq j \leq p$. Thus $\varepsilon_{1} \xi_{1}+\cdots+\varepsilon_{p} \xi_{p} \geq\|\eta\|$ and $\varepsilon_{j} \xi_{j} \geq 0$. In view of the definition of the singular spectrum, we have

$$
S . S g_{\varepsilon} \subset \bigcup_{(x, y) \in \mathbb{R}^{p+q}} \tilde{\Gamma}_{\varepsilon}(x, y) \quad \text { for each } \varepsilon
$$

We put $S=S_{(1, \cdots, 1)}, \varphi_{0}(z, w)=\varphi_{(1, \cdots, 1)}(z, w)$ and $g_{0}=g_{(1, \cdots, 1)}$. We shall prove that $(0,0 ; i(a, b) \infty) \in S . S g_{0}$ for any $(a, b) \in \boldsymbol{R}^{p+q}$ such that $\|a\|=\|b\|$ $=2^{-1 / 2}$ and $a_{j} \geq 0$ for any $1 \leq j \leq p$. Let

$$
D_{0}=D_{(1, \cdots, 1)} \text { and } D_{1}=\left\{(z, w) \in C^{p+q} ; \operatorname{Re} z_{j}>\|\operatorname{Re} w\| \text { for any } 1 \leq j \leq p\right\}
$$

Put

$$
\begin{aligned}
& \varphi_{1}(z, w)= \\
& i^{p+q-2} \int_{0}^{\infty} \int_{S} \int_{S^{q-1}} e^{-\lambda[\langle z, \xi\rangle \operatorname{sh}(t-i \mu)+\langle w, \eta\rangle \operatorname{ch}(t-i \mu)]} \Delta(t-i \mu ; q, p) d \xi d \eta d t .
\end{aligned}
$$

Then φ_{j} is a holomorphic function on $D_{j}(j=1,2)$. Moreover, it is easily seen that

$$
\varphi_{0}(z, w)=\varphi_{1}(z, w)-\chi_{0}(z, w ; 0, \mu-\pi / 2) \quad \text { for any }(z, w) \in D_{0} \cap D_{1}
$$

by the same proof as in Proposition 2.3 (or Lemma 1.2), where χ_{0} $=\chi_{(1, \cdots, 1)}$. But we have

Proposition 3.8. Let $(a, b) \in \boldsymbol{R}^{p+q}$ be such that $\|a\|=\|b\| \neq 0$ and $\|a\|^{-1} a \in S$ or $-\|a\|^{-1} a \in S$. Then φ_{1} is not holomorphic on any neighborhood of the point $(z, w)=\left(i a_{1}, \cdots, i a_{p}, i b_{1}, \cdots, i b_{q}\right)$. Hence φ_{0} can't be analytically continued to the previous point.

Corollary 3.9. $\quad(0,0 ; i(a, b) \infty) \in S . S g_{0}$ for any $(a, b) \in \boldsymbol{R}^{p+q}$ such that $\|a\|$ $=\|b\|=2^{-1 / 2}$ and $a_{j} \geq 0(1 \leq j \leq p)$.

Proof. Since $S . S g_{0} \subset \cup \tilde{\Gamma}_{(1, \cdots, 1)}(x, y)$, the corollary follows from Proposition 3.8.

For the proof of Proposition 3.8, we need some lemmas. Let N $=\{1,2, \cdots\}$ and $J_{v}(z)\left(\mathscr{H}_{v}^{(2)}\right)$ be the Bessel function (Hankel) of order v.

Lemma 3.10. If $\operatorname{Re} \beta>|\operatorname{Im} \alpha|, v \in N$ and $2 \mu \in N \cup\{0\}$ then we have

$$
\begin{aligned}
& \int_{0}^{\infty} e^{-\beta \operatorname{sht}}(\operatorname{ch} t)^{\mu+1}(\operatorname{sh} t)^{\nu} J_{\mu}(\alpha \operatorname{ch} t) d t \\
& \quad=c_{1}(v, \mu)(\partial / \partial \beta)^{v}\left\{\alpha^{\mu}\left(\alpha^{2}+\beta^{2}\right)^{-\mu / 2-1 / 4} \mathscr{H}_{-\mu-1 / 2}^{(2)}\left(\left(\alpha^{2}+\beta^{2}\right)^{1 / 2}\right)\right\} \\
& \quad-\int_{0}^{1} e^{-\beta\left(x^{2}-1\right)^{1 / 2}} x^{\mu+1}\left(x^{2}-1\right)^{(v-1) / 2} J_{\mu}(\alpha x) d x
\end{aligned}
$$

where $c_{1}(v, \mu)=(\pi / 2)^{1 / 2} e^{i \pi(v+\mu)}$ and $\arg \left(x^{2}-1\right)=\pi / 2$ if $x<1$.

Proof. We put $x=$ cht. Then

$$
\begin{aligned}
& \int_{0}^{\infty} e^{-\beta \operatorname{sst} t}(\operatorname{ch} t)^{\mu+1}(\operatorname{sh} t)^{\nu} J_{\mu}(\alpha \operatorname{ch} t) d t \\
& \quad=\int_{1}^{\infty} e^{-\beta\left(x^{2}-1\right)^{1 / 2}} x^{\mu+1}\left(x^{2}-1\right)^{(\nu-1) / 2} J_{\mu}(\alpha x) d x
\end{aligned}
$$

On the other hand, it is well known that for $\operatorname{Re} \beta>|\operatorname{Im} \alpha|$

$$
\begin{aligned}
& \int_{0}^{\infty} e^{-\beta\left(x^{2}-1\right)^{1 / 2}} x^{\mu+1}\left(x^{2}-1\right)^{-1 / 2} J_{\mu}(\alpha x) d x \\
& \quad=(\pi / 2)^{1 / 2} e^{i \pi \mu} \alpha^{\mu}\left(\alpha^{2}+\beta^{2}\right)^{-\mu / 2-1 / 4} \mathscr{H}_{-\mu-1 / 2}^{(2)}\left(\left(\alpha^{2}+\beta^{2}\right)^{1 / 2}\right),
\end{aligned}
$$

where $\arg \left(x^{2}-1\right)^{1 / 2}=\pi / 2$ if $x<1$ (see [1]). This implies the lemma.
Let U be a relatievely compact open subset of C. Then for each $\alpha \in \boldsymbol{C}$ we have

Lemma 3.11. If $v \in \boldsymbol{N}$ and $2 \mu \in \boldsymbol{N}$ then there exists a positive number M such that for any $\beta \in U \backslash\{ \pm i \alpha\}$

$$
\begin{aligned}
& \left|(\partial / \partial \beta)^{\nu}\left\{\left(\alpha^{2}+\beta^{2}\right)^{-\mu / 2} \mathscr{H}_{-\mu}^{(2)}\left(\left(\alpha^{2}+\beta^{2}\right)^{1 / 2}\right)\right\}-c_{2}(v, \mu) \beta^{\nu}\left(\alpha^{2}+\beta^{2}\right)^{-v-\mu}\right| \\
& \quad \leq M\left|\alpha^{2}+\beta^{2}\right|^{-v-\mu+1}
\end{aligned}
$$

where $\quad c_{2}=c_{2}(v, \mu)=(-1)^{v} 2^{v+\mu} \Gamma(v+\mu) / \Gamma(\mu) \Gamma(1-\mu) \quad$ if $\quad v \in N \quad$ and $\quad \mu$ $-1 / 2 \in N \cup\{0\},(-1)^{v+\mu+1 / 2} \pi^{-1} 2^{\nu+\mu} \Gamma(v+\mu)$ if $v \in N$ and $\mu \in N$.

Proof. 1) Let $\mu-1 / 2 \in N \cup\{0\}$. It is well known that

$$
\mathscr{H}_{-\mu}^{(2)}(z)=J_{-\mu}(z)-(-1)^{\mu} J_{\mu}(z) .
$$

Hence from the definition of $J_{ \pm \mu}(z)$, we have $z^{-\mu} \mathscr{H}_{-\mu}^{(2)}(z)=$

$$
\begin{aligned}
& 2^{\mu} z^{-2 \mu} \sum_{k=0}^{\infty} \frac{(-1)^{k} 2^{-2 k}}{\Gamma(k+1) \Gamma(-\mu+k+1)} z^{2 k} \\
& \quad-(-1)^{\mu} 2^{-\mu} \sum_{k=0}^{\infty} \frac{(-1)^{k} 2^{-2 k}}{\Gamma(k+1) \Gamma(\mu+k+1)} z^{2 k} .
\end{aligned}
$$

Hence, we have

$$
\begin{aligned}
& (\partial / \partial \beta)^{v}\left\{\left(\alpha^{2}+\beta^{2}\right)^{-\mu / 2} \mathscr{H}_{-\mu}^{(2)}\left(\left(\alpha^{2}+\beta^{2}\right)^{1 / 2}\right)\right\} \\
= & \frac{(-1)^{v} 2^{v+\mu} \Gamma(v+\mu)}{\Gamma(\mu) \Gamma(1-\mu)} \beta^{v}\left(\alpha^{2}+\beta^{2}\right)^{-v-\mu}+\left(\alpha^{2}+\beta^{2}\right)^{-v-\mu+1} \sum_{k=0}^{\infty} u_{k}(\beta)\left(\alpha^{2}+\beta^{2}\right)^{k},
\end{aligned}
$$

where $u_{k}(\beta)$ is a polynomial of β and the last term of the above equality is uniformly convergent on every compact subset of C with respect to the variable β. Thus there exists a positive number M such that $\left|\sum_{k=0}^{\infty} u_{k}(\beta)\left(\alpha^{2}+\beta^{2}\right)^{k}\right| \leq M$ for any $\beta \in U$. Therefore the lemma is proved when $\mu-1 / 2 \in N \cup\{0\}$.
2) Let $\mu \in \boldsymbol{N}$. It is well known that

$$
\mathscr{H}_{-\mu}^{(2)}(z)=(-1)^{\mu}\left\{J_{\mu}(z)-(-1)^{\mu} N_{\mu}(z)\right\},
$$

where N_{μ} is the Neumann function of order μ. From the definition of N_{μ} and the same calculation as 1), we have the lemma.

Lemma 3.12. Let $a \in \boldsymbol{R}^{p}$ such that $\|a\| \neq 0$ and $\|a\|^{-1} a \in S$ or $-\|a\|^{-1} a \in S$, we have

1) If $(1-p) / 2>v>-p-q / 2+3 / 2$ then

$$
\lim _{\delta \rightarrow+0} \delta^{(p+q-2) / 2} \int_{S}\left|\left\langle\delta e_{0}+i a, \xi\right\rangle^{2}+\|a\|^{2}\right|^{v} d \xi=0
$$

2) $\lim _{\delta \rightarrow+0} \delta^{(p+q-2) / 2} \int_{S}\left\langle\delta e_{0}+i a, \xi\right\rangle^{p-1}\left[\left\langle\delta e_{0}+i a, \xi\right\rangle^{2}+\|a\|^{2}\right]^{-p-q / 2+3 / 2} d \xi \neq 0$, where $e_{0}=(1, \cdots, 1) \in \boldsymbol{R}^{p}$.

Proof. For a positive number δ, we set

$$
\begin{aligned}
& I(\delta)=\int_{S}\left|\left\langle\delta e_{0}+i a, \xi\right\rangle^{2}+\|a\|^{2}\right|^{v} d \xi \\
& J(\delta)=\int_{S}\left\langle\delta e_{0}+i a, \xi\right\rangle^{p-1}\left[\left\langle\delta e_{0}+i a, \xi\right\rangle^{2}+\|a\|^{2}\right]^{-p-q / 2+3 / 2} d \xi
\end{aligned}
$$

If $\|a\|^{-1} a \in S$, then there exists an element $k(a)$ in $S O(p)$ such that a $=\|a\| K(a) e_{1} . \quad$ By the simple calculation, we have

$$
I(\delta)=\int_{k(a)^{-1} S}|K(\delta ; \xi ; a)|^{v} d \xi
$$

$$
J(\delta)=\int_{k(a)^{-1} S}\left(\left\langle\delta e_{0}, k(a) \xi\right\rangle+i\|a\|\left\langle e_{1}, \xi\right\rangle\right)^{p-1} K(\delta ; \xi ; a)^{-p-q / 2+3 / 2} d \xi
$$

where

$$
K(\delta ; \xi ; a)=\|a\|^{2}\left(1-\left\langle e_{1}, \xi\right\rangle^{2}\right)+2 i \delta\|a\|\left\langle e_{1}, \xi\right\rangle\left\langle e_{0}, k(a) \xi\right\rangle+\left\langle\delta e_{0}, k(a) \xi\right\rangle^{2} .
$$

Moreover, when $\|a\|^{-1} a \in S$, there exist real numbers $\rho_{1}\left(0 \leq \rho_{1} \leq \pi / 2\right)$, ρ_{2} $\left(\pi / 2 \leq \rho_{2} \leq \pi\right)$ and a compact set $C\left(\subset[0, \pi]^{p-3} \times[0,2 \pi]\right)$ such that

$$
k(a)^{-1} S=\left\{(\xi(\theta)) ; 0 \leq \theta_{1} \leq \rho_{1} \text { or } \rho_{2} \leq \theta_{1} \leq \pi,\left(\theta_{2}, \cdots, \theta_{p-1}\right) \in C\right\} .
$$

Of course, $\rho_{1}^{2}+\left(\rho_{2}-\pi\right)^{2} \neq 0$. When $\rho_{1}>0$, we set

$$
\begin{gathered}
I^{\prime}(\delta)=\int_{0}^{\rho_{1}} \int_{C}|K(\delta ; \xi(\theta) ; a)|^{\nu} \omega_{p}(\theta) d \theta_{1} \cdots d \theta_{p-1} \\
J^{\prime}(\delta)=\int_{0}^{\rho_{1}} \int_{C}\left(\left\langle\delta e_{0}, k(a) \xi\right\rangle+i\|a\|\left\langle e_{1}, \xi\right\rangle\right)^{p-1} K(\delta ; \xi ; a)^{-p-q / 2+3 / 2} d \xi .
\end{gathered}
$$

We put $x=\delta^{1 / 2} \cot \theta_{1}$. Then, by the simple calculation,

$$
\begin{aligned}
& I^{\prime}(\delta)=\delta^{v+p / 2-1 / 2} \int_{d(\delta)}^{\infty} \int_{C}\left|K_{1}\left(\delta ; x, \xi^{\prime} ; a\right)\right|^{v}\left(\delta+x^{2}\right)^{-v-p / 2} d x d \xi^{\prime} \\
& J^{\prime}(\delta)=\delta^{-d} \int_{d(\delta)}^{\infty} \int_{C} K_{2}\left(\delta ; x, \xi^{\prime} ; a\right)^{p-1} K_{1}\left(\delta ; x, \xi^{\prime} ; a\right)^{x}\left(\delta+x^{2}\right)^{q / 2-1} d \xi^{\prime} d x
\end{aligned}
$$

where

$$
\begin{aligned}
& K_{1}\left(\delta ; x, \xi^{\prime} ; a\right)=\|a\|^{2}+2 i\|a\| x\left(a^{\prime} x+\delta^{1 / 2}\left\langle e^{\prime}, \xi^{\prime}\right\rangle\right)+\delta\left(a^{\prime} x+\delta^{1 / 2}\left\langle e^{\prime}, \xi\right\rangle\right)^{2}, \\
& K_{2}\left(\delta ; x, \xi^{\prime} ; a\right)=a^{\prime} \delta x+\delta\left\langle e^{\prime}, \xi^{\prime}\right\rangle+i\|a\| x, d(\delta)=\delta^{1 / 2} \cot \rho_{1}, \\
& d=(p+q-2) / 2, \kappa=-p-q / 2+3 / 2, a^{\prime}=\|a\|^{-1} \sum a_{j}, e^{\prime}=k(a)^{-1} e_{0}-a^{\prime} e_{1}, \\
& \xi^{\prime}=\xi^{\prime}\left(\theta^{\prime}\right)=\left(\xi(\theta)-\cos \theta_{1} e_{1}\right)\left(\sin \theta_{1}\right)^{-1} \text { and } \\
& d \xi^{\prime}=2^{-1} \pi^{-p / 2} \Gamma(p / 2)\left(\sin \theta_{2}\right)^{p-3} \cdots \sin \theta_{p-2} d \theta_{2} \cdots d \theta_{p-1} .
\end{aligned}
$$

Hence if $-v-p / 2>-1 / 2$ then

$$
\begin{gathered}
\lim _{\delta \rightarrow+0} \delta^{-v-p / 2+1 / 2} I^{\prime}(\delta)=\tilde{c}\|a\|^{v} \int_{0}^{\infty} x^{-2 v-p}\left(\|a\|+2 i a^{\prime} x^{2}\right)^{v} d x \\
\lim _{\delta \rightarrow+0} \delta^{(p+q-2) / 2} J^{\prime}(\delta)=i^{p-1} \tilde{c}\|a\|^{(-q+1) / 2} \int_{0}^{\infty} x^{p+q-3}\left(\|a\|+2 i a^{\prime} x^{2}\right)^{x} d x
\end{gathered}
$$

where $\tilde{c}=\int_{C} d \xi^{\prime}$. When $\rho_{2}<\pi$, we set

$$
\begin{gathered}
I^{\prime \prime}(\delta)=\int_{\rho_{2}}^{\pi} \int_{C}|K(\delta ; \xi(\theta) ; a)|^{v} \omega_{p}(\theta) d \theta_{1} \cdots d \theta_{p-1}, \\
J^{\prime \prime}(\delta)=\int_{\rho_{2}}^{\pi} \int_{C}\left(\left\langle\delta e_{0}, k(a) \xi\right\rangle+i\|a\|\left\langle e_{1}, \xi\right\rangle\right)^{p-1} K(\delta ; \xi ; a)^{-p-q / 2+3 / 2} d \xi .
\end{gathered}
$$

Then, by the same calculation as $I^{\prime}(\delta)$ and $J^{\prime}(\delta)$, if $-v-p / 2>-1 / 2$ we obtain

$$
\begin{gathered}
\lim _{\delta \rightarrow+0} \delta^{-v-p / 2+1 / 2} I^{\prime \prime}(\delta)=\tilde{c}\|a\|^{v} \int_{-\infty}^{0}(-x)^{-2 v-p}\left(\|a\|+2 i a^{\prime} x^{2}\right)^{v} d x \\
\lim _{\delta \rightarrow+0} \delta^{(p+q-2) / 2} J^{\prime \prime}(\delta)=i^{p-1} \tilde{c}\|a\|^{(-q+1) / 2} \int_{-\infty}^{0}(-x)^{p+q-3}\left(\|a\|+2 i a^{\prime} x^{2}\right)^{\kappa} d x
\end{gathered}
$$

Hence if $(1-p) / 2>v>\kappa=-p-q / 2+3 / 2$ then $\lim _{\delta \rightarrow+0} \delta^{(p+q-2) / 2} I(\delta)=0$. Therefore, if $\|a\|^{-1} a \in S$, we have 1) of the lemma. When $-\|a\|^{-1} a \in S$, we obtain 1) of the lemma by the same proof. Moreover, $\tilde{c} \neq 0$ and

$$
\begin{aligned}
\int_{-\infty}^{\infty} & |x|^{p+q-3}\left(\|a\|+2 i a^{\prime} x^{2}\right)^{-p-q / 2+3 / 2} d x \\
& =\frac{\Gamma((p+q-2) / 2) \Gamma((p-1) / 2)}{\Gamma((2 p+q-3) / 2)}\left[\frac{2 i a^{\prime}}{\|a\|}\right]^{-(p+q-2) / 2} \neq 0
\end{aligned}
$$

since $a^{\prime}=\|a\|^{-1} \sum a_{j}>0$. Hence we have 2) of the lemma when $\|a\|^{-1} a \in S$. But when $-\|a\|^{-1} a \in S$ we have the same. Therefore the lemma is proved.

In the proof of Proposition 3.8, we use the following notation. For each $w=\left(w_{1}, \cdots, w_{q}\right) \in C^{q}$, we set $\gamma(w)=\left(\sum_{1 \leq j \leq q} w_{j}^{2}\right)^{1 / 2}$. Here $z^{1 / 2}=|z|^{1 / 2} e^{(i \operatorname{Argz}) / 2}$ for each $z \in \boldsymbol{C}$, where $\operatorname{Arg} z$ is the principal value of $\arg z$. Then the notation γ is an extension of the notation $\|\|$ in $\S 2$.

Proof of Proposition 3.8. For a positive number δ, we put $z(\delta)=(\delta$ $\left.+i a_{1}, \cdots, \delta+i a_{p}\right)$ and $w_{0}=\left(i b_{1}, \cdots, i b_{q}\right)$. Then $\left(z(\delta), w_{0}\right) \in D_{1}$. It is well known that

$$
\int_{S^{q-1}} e^{i\langle w, \eta\rangle} d \eta=2^{(q-2) / 2} \Gamma(q / 2) \gamma(w)^{-(q-2) / 2} J_{(q-2) / 2}(\gamma(w))
$$

Since $\gamma(\lambda \operatorname{ch}(t-i \mu) b)=\lambda \operatorname{ch}(t-i \mu)\|b\|=\operatorname{ch}(t-i \mu) \gamma(\lambda b)$ for any $t \geq 0$ and $b \in R^{q}$, we have

$$
\begin{aligned}
& \varphi_{1}\left(z(\delta), w_{0}\right)=c_{0}(\lambda\|b\|)^{-(q-2) / 2} \times \\
& \quad \int_{0}^{\infty} \int_{S} e^{-\lambda\left\langle\delta e_{0}+i a, \xi\right\rangle \operatorname{sh}(t-i \mu)} J_{(q-2) / 2}(\lambda\|b\| \operatorname{ch}(t-i \mu)) \Delta(t-i \mu ; q / 2+1, p) d \xi d t
\end{aligned}
$$

where $c_{0}=i^{p+q-2} 2^{(q-2) / 2} \Gamma(q / 2)$. Set

$$
I_{1}(\delta)=c_{2}^{\prime} \int_{S}\left\langle\delta e_{0}+i a, \xi\right\rangle^{p-1}\left[\left\langle\delta e_{0}+i a, \xi\right\rangle+\|b\|^{2}\right]^{-p-q / 2+3 / 2} d \xi
$$

$$
\begin{aligned}
& I_{2}(\delta)=\int_{S} L(\delta ; \xi ; a, b) d \xi \text { and } \\
& I_{3}(\delta)=-\int_{S} \int_{0}^{1} L_{1}(\delta ; \xi ; a, b) d x d \xi \\
& \quad+i \int_{S} \int_{0}^{\mu}\left[e^{\beta \operatorname{shit}} \Delta(-i t ; q / 2+1, p) J_{(q-2) / 2}(\alpha \operatorname{ch}(-i t))\right]_{\substack{\alpha=\lambda\|b\| \\
\beta=\lambda\left\langle\delta e_{0}+i a, \xi\right\rangle}} d t d \xi,
\end{aligned}
$$

where $c_{2}^{\prime}=c_{2}(p-1,(q-1) / 2) \lambda^{-p-q+2}$,

$$
\begin{aligned}
L(\delta ; \xi ; a, b) & =\left[(\partial / \partial \beta)^{p-1}\left\{\left(\alpha^{2}+\beta^{2}\right)^{(-q+1) / 4} \mathscr{H}_{(-q+1) / 2}^{(2)}\left(\left(\alpha^{2}+\beta^{2}\right)^{1 / 2}\right)\right\}\right. \\
& \left.-c_{2}(p-1,(q-1) / 2) \beta^{p-1}\left(\alpha^{2}+\beta^{2}\right)^{-p-q / 2+3 / 2}\right]_{\substack{\alpha=\lambda\|b\| \\
\beta=\lambda\left\langle\delta e_{0}+i a, \xi\right\rangle}}
\end{aligned}
$$

and

$$
\begin{aligned}
& L_{1}(\delta ; \xi ; a, b)= \\
& \quad\left[e^{-\beta\left(x^{2}-1\right)^{1 / 2}} x^{q / 2}\left(x^{2}-1\right)^{(p-2) / 2} J_{(q-2) / 2}(\alpha x)\right]_{\substack{\alpha=\lambda\|b\| \\
\beta=\lambda\left\langle\delta e_{0}+i a, \xi\right\rangle}} .
\end{aligned}
$$

Then from Lemma 3.10, it is easily seen that

$$
\varphi_{1}\left(z(\delta), w_{0}\right)=c_{0}\|\lambda b\|^{(-q+2) / 2}\left\{c_{1}\left(I_{1}(\delta)+I_{2}(\delta)\right)+I_{3}(\delta)\right\} .
$$

Indeed, if $\operatorname{Re} \beta>|\operatorname{Im} \alpha|, \operatorname{Re} e^{-\mu}(-\beta \pm i \alpha)<0$ and $|\mu|<\pi$, we have

$$
\begin{aligned}
I(\alpha, \beta)= & \int_{0}^{\infty} e^{-\beta \operatorname{shh}(t-i \mu)}(\operatorname{ch}(t-i \mu))^{v+1}(\operatorname{sh}(t-i \mu))^{v^{\prime}} J_{v}(\alpha \operatorname{ch}(t-i \mu)) d t \\
= & \int_{0}^{\infty} e^{-\beta \operatorname{sht}(\operatorname{ch}(t))^{v+1}(\operatorname{sh}(t))^{v^{\prime}} J_{v}(\alpha \operatorname{ch}(t)) d t} \\
& +i \int_{0}^{\mu} e^{\beta \operatorname{shit}(\operatorname{ch}(-i t))^{v+1}(\operatorname{sh}(-i t))^{v^{\prime}} J_{v}(\alpha \operatorname{ch}(-i t)) d t,}
\end{aligned}
$$

from Cauchy's integral formula. Hence, from Lemma 3.10,

$$
\begin{aligned}
I(\alpha, \beta)= & c_{1}\left(v^{\prime}, v\right)(\partial / \partial \beta)^{v^{\prime}}\left\{\alpha^{v}\left(\alpha^{2}+\beta^{2}\right)^{-(2 v+1) / 4} \mathscr{H}_{-v-1 / 2}^{(2)}\left(\left(\alpha^{2}+\beta^{2}\right)^{1 / 2}\right)\right\} \\
- & \int_{0}^{1} e^{-\beta\left(x^{2}-1\right)^{1 / 2}} x^{v}\left(x^{2}-1\right)^{\left(v^{\prime}-1\right) / 2} J_{v}(\alpha x) d x \\
& +i \int_{0}^{\mu} e^{\beta \operatorname{shit}}(\operatorname{ch}(-i t))^{v+1}(\operatorname{sh}(-i t))^{v^{\prime}} J_{v}(\alpha \operatorname{ch}(-i t)) d t .
\end{aligned}
$$

First, from Lemma 3.12 2), we have $\lim _{\delta \rightarrow+0} \delta^{(p+q-2) / 2} I_{1}(\delta) \neq 0$. Secondly, from Lemma 3.11, we have 3.11, we have

$$
\left|\delta^{(p+q-2) / 2} I_{2}(\delta)\right| \leq M^{\prime} \delta^{(p+q-2) / 2} \int_{S}\left|\left\langle\delta e_{0}+i a, \xi\right\rangle^{2}+\|b\|^{2}\right|^{-p-q / 2+5 / 2} d \xi
$$

where $M^{\prime}=M|\lambda|^{-2 p-q+5}$ (see Lemma 3.11 for M). Hence from Lemma 3.12
1), we have $\lim _{\delta \rightarrow+0} \delta^{(p+q-2) / 2} I_{2}(\delta)=0$, if $\|a\|=\|b\| \neq 0$ and $\|a\|^{-1} a \in$ $\pm S$. Finally, since $\lim _{\delta \rightarrow+0} I_{3}(\delta)$ exists, we have $\lim _{\delta \rightarrow+0} \delta^{(p+q-2) / 2} I_{3}(\delta)=0$. Therefore

$$
\lim _{\delta \rightarrow+0} \delta^{(p+q-2) / 2} \varphi_{1}\left(z(\delta), w_{0}\right) \neq 0
$$

Since $\left(z(\delta), w_{0}\right) \rightarrow\left(i a_{1}, \cdots, i a_{p}, i b_{1}, \cdots, i b_{q}\right)$ if $\delta \rightarrow+0$, Proposition 3.8 is proved.
Now, we have the following proposition from Corollary 3.9.
Proposition 3.13. S.S g coincides with the following set A;

$$
\begin{aligned}
& A=\left\{(x, y ; i(a, b) \infty) ;\|a\|=\|b\|=2^{-1 / 2}, a_{j} x_{k}=a_{k} x_{j}, b_{m} y_{n}=y_{m} b_{n}\right. \\
& \left.b_{m} x_{j}=-a_{j} y_{m} \text { for any } 1 \leq j \leq p, 1 \leq k \leq p, 1 \leq m \leq q, 1 \leq n \leq q\right\}
\end{aligned}
$$

Proof. Thanks to Sato's theorem, we have $S . S g \subset A$. Put $A_{0}=A \cap$ $\{x=y=0\}$ and $A_{1}=A \cap\{x \neq 0$ or $y \neq 0\}$. First we prove that $S . S g \cap A_{0} \neq$ ϕ. Indeed, from the remark of the singular spectrum of g_{ε}, we have $S . S g_{\varepsilon} \cap$ $\{x=y=0\} \subset \tilde{\Gamma}_{\varepsilon}(0,0)$ for each ε and $S . S g \subset S . S g_{\varepsilon}$. But from the definition of $\widetilde{\Gamma}_{\varepsilon},(0,0 ; i(a, b) \infty) \notin \widetilde{\Gamma}_{\varepsilon}$, if $\varepsilon \neq(1, \cdots, 1),\|a\|=\|b\|=2^{-1 / 2}$ and $a_{j}>0$ (for any $1 \leq j \leq p$). Thus we have $S . S g \cap A_{0} \neq \phi$ from Corollary 3.9. We recall the Lie group $G_{0}=S O_{0}(p, q)$ and it's natural action on \boldsymbol{R}^{p+q}. This action induces the action on $\sqrt{-1} S^{*} \boldsymbol{R}^{p+q}$, naturally. It is easily seen that A_{0} is G_{0} - stable under this induced action of G_{0}. Moreover A_{0} is G_{0}-transitive.
Hence $S . S g \cap A_{0}=A_{0}$. In fact, if $p \in A_{0}$ and $p \notin S . S g \cap A_{0}$, then for $p_{0} \in S . S$ $g \cap A_{0}(\neq \phi)$ there exists $k \in G_{0}$ such that $p=k p_{0}$, because A_{0} is G_{0}-transitive. But, since $S . S g$ is G_{0}-stable, $p \in S . S g \cap A_{0}$. This contradicts to $p \notin S . S g \cap A_{0}$. Thus $S . S g \cap A_{0}=A_{0}$.

On the other hand, since the differential operator $P=\sum\left(\partial / \partial x_{j}\right)^{2}-\sum$ $\left(\partial / \partial y_{k}\right)^{2}$ is simply characteristic, it is well known that the singular spectrum propagates along the bicharacteristic curve of the Hamiltonian vector field $H_{\sigma(P)}$, where $\sigma(P)$ is the principal symbol of the differential operator P (see [6]). Thus $S . S g \cap A_{1}=A_{1}$. In fact, it is easily seen that the bicharacteristic curve through the point $(a, b ; i(c, d) \infty) \in \sqrt{-1} S^{*} \boldsymbol{R}^{p+q}$ is

$$
\gamma(t ; a, b, c, d)=\left(c_{1} t+a_{1}, \cdots, c_{p} t+a_{p},-d_{1} t+b_{1}, \cdots,-d_{q} t+b_{p} ; i(c, d) \infty\right)
$$

Hence $A_{1} \subset S . S g$, since for any $(x, y ; i(a, b) \infty) \in A_{1} \gamma(t ; 0,0, a, b)$ through the point $(0,0 ; i(a, b) \infty) \in A_{0}$. Thus $S . S g=A$, since $A=A_{0} \cup A_{1}$. Therefore the proposition is proved.

We recall the Lie group $G=O(p, q)$. Then we have

Proposition 3.14. f and g are both G-invariant,

Proof.

$$
\text { Let } \left.k_{1}=\left[\begin{array}{cccc}
-1 & & & 0 \\
& 1 & & \\
& & & \ddots
\end{array}\right], k_{2}=\left[\begin{array}{cccc}
1 & & & 0 \\
& \ddots & & 0 \\
& & & 1
\end{array}\right] . \quad \begin{array}{ll}
\\
0 & \\
& \\
&
\end{array}\right] . \quad \text { Then } k_{j} \in G \text { and } G=G_{0}
$$ $\cup k_{1} G_{0} \cup k_{2} G_{0} \cup k_{1} k_{2} G_{0}$. Hence it is sufficient to prove that $f^{k_{j}}=f$ and $g^{k_{j}}=g$ $(j=1,2)$. The proof of the k_{j}-invariance of f is as the same proof of f_{0} in Proposition 2.6. Since

$$
\psi_{\varepsilon}\left(-z_{1}, z_{2}, \cdots, z_{p}, w\right)=-\psi_{\left(-\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{p}\right)}(z, w)
$$

for any $\varepsilon=\left(\varepsilon_{1}, \cdots, \varepsilon_{p}\right)$, we have $g^{k_{1}}=-\left[\left(U_{1}^{\left(-\varepsilon_{1}\right)} \cap U_{2}^{\left(\varepsilon_{2}\right)} \cap \cdots \cap U_{p}^{\left(\varepsilon_{p}\right)} \cap V_{1}^{(1)} \cap \cdots \cap\right.\right.$ $\left.\left.V_{q}^{(1)} ;-\varphi_{\left(-\varepsilon_{1} \cdots \varepsilon_{p}\right)}\right)\right]=g$. Since $\varphi_{\varepsilon}(z, w)$ is k_{2}-invariant, we have $g^{k_{2}}=g$. Therefore the proposition is proved.

Finally, we have the following theorem.
Theorem 3.15. If $p \geq 2$ and $q \geq 2$ then

$$
\mathscr{B}_{v}^{G}\left(\boldsymbol{R}^{p+q}\right)=\mathscr{B}_{v}^{G_{0}}\left(\boldsymbol{R}^{p+q}\right)=\langle f\rangle \oplus\langle g\rangle .
$$

Proof. It is clear that f and g are linearly independent from Proposition 3.13 and $S . S f=\phi$. Therefore, from the Cerezo's result; $\operatorname{dim} \mathscr{B}_{v}^{G}\left(\boldsymbol{R}^{p+q}\right)$ $=\operatorname{dim} \mathscr{B}_{v}^{G_{0}}\left(\boldsymbol{R}^{p+q}\right)=2(p \geq 2, q \geq 2)$ and Proposition 3.7, we have the theorem.

References

[1] A. Erdélyi, W. Magnus, F. Oberhettinger, F. Tricomi, Higher transcendental functions, vol II. 1953. McGRAW-HILL Book company,INC.
[2] A. Cerezo, Equations with constant coefficients invariant under a group of linear transformations, Trans. Amer. Math. Soc. 204 (1975), 267-298.
[3] L. Ehrenpreis, A fundamental principle for systems of linear differential equations with constant coefficients and some of its applications, Proc. Intern. Symp. on Linear Spaces, Jerusalem (1961), 161-174.
[4] J. Faraut, Distributions sphériques sur les espaces hyperboliques. J. Math. Pures et Appl. 58 (1979), 369-444.
[5] M. Hashizume, A. Kowata, K. Minemura, K. Okamoto, An integral representation of an
eigenfunction of the Laplacian on the euclidean space, Hiroshima Math. J. 2 (1972), 535545.
[6] T. Kawai, Construction of local elementary solutions for linear partial differential operators with real analytic coefficients (I)--The case with real principal symbols--Publ. Res. Inst. Math. 7 (1971), 363-397.
[7] H. Komatsu, An introduction to the theory of hyperfunctions, Hyperfunctions and PseudoDifferential Equations, Lecture Notes in Math. 287, Springer-Verlag, Berlin and New York 1973.
[8] A. Kowata, K. Okamoto, Harmonic functions, and the Borel-Weil theorem, Math. J. 4 (1974), 89-97.
[9] P. D. Methee, Sur les distributions invariantes dans le groupe des rotations de Lorentz, Comment. Math. Helv. 28 (1954), 225-269.
[10] G. de Rham, Solution elementaire d'operateurs differentiels du second ordre, Ann. Inst. Fourier (Grenoble) 8 (1958), 337-366.
[11] M. Sato, Theory of hyperfunctions, I, II, J. Fac. Sci. Univ. Tokyo 8 (1959), 139-193, 387437.
[12] M. Sato, T. Kawai and M. Kasiwara, Microfunnctions and pseudo-differential equations, Hyperfunctions and Pseudo-Differential Equations, Lecture Notes in Math. 287, SpringerVerlag, Berlin and New York 1973, 265-529.
[13] P. Shapira, Theorie des hyperfonctions, Lecture Notes in Math. 126, Springer-Verlag, Berlin and New York 1970.
[14] A. Tengstrand, Distributions invariant under an orthogonal group of arbitrary signature, Math. Scand. 8 (1960), 201-218.

Department of Mathematics,
Faculty of Science,
Hiroshima University

