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Introduction

In 1949 G. Bol [5] discovered nice formulae concerning the differential
operators and some operators induced by Mδbius transformations (see §1).
M. Eichler directed his attention to BoΓs formulae and demonstrated their
significance in his paper [9]. He took indefinite integrals of automorphic forms
for Fuchsian groups to obtain a new class of functions which are now called
Eichler integrals. Later L. Ahlfors [2] considered Eichler integrals for Kleinian
groups.

In [15] I. Kra introduced two distinguished classes of Eichler integrals for
a Kleinian group whose orbit space is a finite union of Riemann surfaces of
finite type, and showed that Eichler integrals in these classes are uniquely de-
termined by their periods (cf. [15; Theorem 2]; part of this theorem had earlier
been shown by Ahlfors [2].). The proof is based on the theory of compact
Riemann surfaces. The motivation of this paper is to generalize this fact to a
wider class of Kleinian groups.

A Kleinian group G acts in a certain way on the vector space of polynomials
in one complex variable of degree at most 2<?-2, where q is an integer greater
than one. We can thus form the first cohomology space of G with coefficients
in this vector space. The period of an Eichler integral of order 1 — q for G natu-
rally defines a cocycle, and we obtain a map, called the period map, that maps
Eichler integrals to the cocycles determined by their periods. Let D be a G-
invariant union of components of G. If the orbit space D/G is a union of compact
Riemann surfaces, then the period map on the space of Eichler integrals holo-
morphic on D is injective. However, if D/G has a non-compact component,
then the conclusion does not necessarily hold (even if DjG is a finite union of
Riemann surfaces of finite type). Thus, to make the period map on a class of
Eichler integrals for a general Kleinian group injective, we need some conditions
on Eichler integrals in the class other than holomorphicity. In [15] Kra restricted
the behavior of integrals at cusps. In this paper we introduce new classes of
Eichler integrals in terms of Hardy classes. If the group is a finitely generated
Fuchsian group of the first kind, then one of Kra's classes turns out to coincide
with one of ours (Theorem 3).
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Our main result is Theorem 4 which says that if every component of DjG
is a parabolic Riemann surface, then the period maps on our classes are injective.
Note that G may be infinitely generated. For the proof we use the E. Hopf-
Tsuji theorem (see Theorem A) to investigate the boundary behavior of Eichler
integrals in our classes.

In §1 we introduce our classes and give some properties of them. In §2
we prove the main theorem. In §3 we are concerned with a relation between
fine limits and periods of Eichler integrals in our classes. In the final section
we consider Fuchsian groups.

The author would like to express his deepest gratitude to Prof. F-Y. Maeda
for valuable suggestion and kind guidance. He also would like to express his
sincere thanks to Prof. Y. Kusunoki who kindly read the manuscript and gave
him a great deal of advice.

§ 1. Spaces of Eichler integrals

Let Mob denote the group of all Mδbius transformations acting on the
Riemann sphere C=Cu{oo}. Let ΛleMόb, and let k be an integer. When
/is a function defined on a subset E of C, we define a function Aff on A~\E)
by A$f(z) = (foA)(z)-A'(z)k (zeA~ι(E)). If B is also in Mob, then we have
(AoB)ΐf=B*k(A*kf).

Let G be a Kleinian group. We denote by Ω(G) the set of discontinuity
of G, and by A(G) the limit set of G.

Fix an integer q > 1. Let Π2q-2 be the vector space of all polynomials of one
complex variable with degree at most 2#-2. The group G acts on Π29-2 fr°m

the right (not from the left) by ΓL«-2 x GB(V, A)*-+Af-qveYl2q-2- A cocycle
is a map α: G^Yl2q-2 that satisfies ot(A°B)=Bf-q(ct(A)) + (x(B) for each AeG
and BeG. The coboundary of veY\2q^2 is the cocycle A^*Άf-qv — v. We
denote by Zι(G, Πiq-i) the vector space of all cocycles, and by B\G, Y\2q-2)
that of all coboundaries. The quotient vector space HX(G9Π2«-2) =

Z\G9 Tl2q-2)IB1(G, Π29-2) i s called the (first) cohomology group of G.
Let D be a G-invariant open subset of Ω(G). Let F be a holomorphic function

o n D n C . If 006D, we require that F(z) = O(|z|2«-2) (z-»αo), so that F is
meromorphic on D. We say that F is a (holomorphic) Eichler integral of order
1 — q for G on D if for every A e G the function A%-qF — F is equal to an element,
denoted by (pd F)(A), of Π2q-2 on D. The map pdF: G->Π2<z-2 defines a
cocyle, and is called the period of F. Two Eichler integrals Fγ and F 2 are equi-
valent if Fx —F2 is the restriction of some polynomial in Π23-2 t o ^ I n ^ s c a s e

pd (F1—F2) is a coboundary.

To introduce some classes of Eichler integrals we shall use Hardy classes.

Let V be an open subset of C, and let p be a positive real number. The Hardy
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class Hp(V) is the vector space of all holomorphic functions / on V such that
\f\p<s for some positive superharmonic function s on V. The space if°°(F)
consists of all holomorphic functions on V that are bounded on each component
of V. If 0<p<p'<oo, then HP'(V)C:HP(V). If V is the unit disk and if

0 < p< oo, then it is known that/e HP(V) if and only if suρ o^ r < 1 (
2* \f(reiθ)\Pdθ <

Jo
•f oo (cf. Duren [8; Theorem 2.12]).

Now, let G and D be as before, and let 0<p< oo. We denote by EJ-β(D, G)
the set of all Eichler integrals F of order 1 — q for G on D such that S?-qFt e
H*(S"~ *(!))) for some SeMob and for some Eichler integral Fx equivalent to F.
Note that TΪ2q-2c:Eϊ-q(D> G). The purpose of this paper is to investigate the
properties of Ep.q(D, G). First of all, we show that the set £?_q(D, G) forms a
vector space.

LEMMA 1. Let SeMόb. // F e Ep_β(D, G), then Sf-qF belongs to E^q-

(S-^D), S-^GoS).

PROOF. It is easy to check that S%-qF is an Eichler integral for the group
S~ίoGoS. By the definition there are Te Mob and an Eichler integral Fx equivalent
to F such that T^qFί eH^T-^D)). The Eichler integral S1[-qFί is equivalent
to Sf_βF. Further, (S-1oT)?_,(Sf_€F1) = Tίf.qFί is an element of

=HP(T~ \D)). This completes the proof.

LEMMA 2. For each FeE{.q(D, G), there are FXEHP{D) and ^

j = l, 2, such that F=Fίvί + υ2 on D.

PROOF. We can find SeMob and v2eYl2q-2 such that Sf_€(F«-u2)e
. Set Ft=(Si-JiF-Ό2))oT and Vi=(T'y-«, where T=S"1. Then
and F—υ 2 =F ί v ί . Since ϋ! = Tf_ql e Y\2q-2, we have the lemma.

THEOREM 1. (a) Put S(z) = l/(z-α), where aeD-{oo}. Then

£?_//), G) = S?_,[£f ̂ (S(D), SoGoS-1) n #*(S(D))] + Π2 ί-2-

(fc) IfooeD,then

£f_β(D, G) = (£?_€(D, G) Π HP(D)) + Π 2 € - 2 .

PROOF. We have only to prove the statement (b) since (a) follows at once
from (b) and Lemma 1.

To prove (b), first note that the definition implies E^q(D, G)=>(£f_g(D, G) Π

To show the converse, let F e E{_q(D, G). By Lemma 2, there are Fx e
and Vje Tl2q-2, j = 1, 2, such that F=F1v1 +v2. Since Fji^ has a pole of order
at most 2q—2 at oo, we can choose v3eYl2q-2 so that F2=Fίv1 — v3 is holo-
morphic on D.
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We claim that F2EHP(D). Set r = p if 0</?<oo, and set r = l if p=oo.

Since Ft is in Hp(D), there is a positive superharmonic function s, which is constant

on every component of D if p= oo, such that | F 1 | r < s on D. Take a neighborhood

Fof oo whose closure is included in D, and let L = supD_v\vί\, M = supD_v \v3\9

and iV = supκ \F2\. Then, onZ)-F, we have

Hence, on D9

\F2\'<2'(L

which means that F2 is an element of HP(D).

Since F = F2 + (v2 + v3)9 we see that F2 is an Eichler integral equivalent to F.

We have proved the theorem.

COROLLARY. The class E{_q(D9 G) forms a vector space over C.

Let G and D be as before. The orbit space DjG is a union of Riemann

surfaces. Assume that there is a union S of Riemann surfaces such that D/G =

S — {a}, where α e S. Assume further that there is a punctured neighborhood V

of a such that the natural projection π: D-+DJG is unramified over K. Let F be

a component of π - 1 (F), and denote by Gv the stability subgroup of V, that is,

the subgroup consisting of all elements of G that fix V. Then it is known that

Gv is either trivial, or a cyclic group generated by an elliptic or parabolic trans-

formation. We set v(α) = ordGκ, and according as v(α) = oo or v(α)<oo, we

say that the puncture a is parabolic or non-parabolic. We will denote DjG

plus all such punctures by DjG. Note that D/G is also a union of Riemann

surfaces.

Define an operator d on meromorphic functions by df=df/dz. Bol [5]

discovered that d2q~1oAf_q = A^od2*'1 for every Mobius transformation A. A

proof of this formula can be also found in Kra [16; Lemma 4.1 in Chapter V].

Kra [15] used BoΓs formula to introduce two classes of Eichler integrals. If

F is an Eichler integral of order 1 — q on D for G, then BoΓs formula implies that

d2q~1F is a holomorphic automorphic form of weight — 2q on D for G, and hence

is projected to a meromorphic ^-differential Φ on D/G. The integral F is said

to be bounded in Kra's sense if Φ satisfies the following three conditions:

( i ) Φ extends to a meromorphic ^-differential $ on DjG,

(ii) if a puncture aeDjG — DjG is non-parabolic, then

[<?(1 — l/v(α))], where [x] denotes the largest integer not greater than x,

(iii) if a puncture aeD/G — DjG is parabolic, then ordfl3>> — q + l.

We say that F is quasibounded in Kra's sense if Φ satisfies (i), (ii) and the follo-

wing condition:

(iii)' if a puncture aeDjG — DjG is parabolic, then oτda$>—q.
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The spaces of Eichler integrals that are bounded or quasibounded in Kra's sense

will be denoted by Efϊq(D, G) or Eflq(D, G), respectively.

We ask whether Eichler integrals in E{_q(D, G) are (quasi-)bounded in

Kra's sense.

LEMMA 3. // V is a bounded open subset of D, then the restriction to V of

every element of E\_q(D, G) is contained in HP(V).

PROOF. Since V is bounded, it is true that Y[2q.2czH0O(V). Thus the

conclusion follows from Lemma 2.

LEMMA 4. Let U be the upper half plane, and set A(z) = z + 1. Suppose

that FeE[_q(U, <A», where (A} denotes the cyclic group generated by A.

Then F has a Fourier expansion of the form

F{z) = Σ?=i ane
2πinz + aoz

2^ + v(z)

on U, where veY\2q-2- If l < p < o o in addition, then ao = 0 in the above ex-

pansion.

PROOF. Set S(z) = i(l + z)/(l-z), T=S-\ and F 0 = S?_4F. Then T(U) is

the unit disk, and FoeE^q(T(U), {ToAoT'1}). By Lemma 3 we see that Foe

HP(T(U)).

Since (δ2«-1F)(z + l) = (32«-1F)(z), we see that d2*-^ has a Fourier expansion

on U. Hence F has a Fourier expansion of the form

F(z) = Σ Λ * o an e
2™* + a0z

2^ + v(z)

on U, where v e Yl2q-2- We must show that an = 0 for every negative integer n.

For each r in the interval (1/2, 1), define a curve C r : [-1/2, 1/2]-• U by

Cr(t) = t + i

We have chosen Cr so that the image of ToCr is a subarc of the circle \z\ = r.

Fix a negative integer n. If we set V(z) = a0z
2*~ί + v{z) and m(r) = Im Cr(l/2),

then, by Cauchy's theorem,

ri/2
a \ e-

2πin(χ+imW{F(x + im(r))- V(x + im(r))}dx
J-l/2

= { e~2πίnzF(z)dz - Γ / 2 e-2πin(χ+im

JCr J-l/2l/2

= h{r) - I2(r) .
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Since

ri/2
\I2(r)\ < e2πnm^ \ \V(x + im(r))\dx,

J-l/21/2

we see that l im r _ 1 _ o / 2 (r) = 0. To estimate /i(r), observe that if z is on the
curve Cr, then

i\ψ < |Cr(0) + i|2/2 = 2( l- r ) " 2

Since F(z) = (F0oT)(z).T'(zy-«, we have

| / i ( r ) | < e2nnm(r) f |F0(T(z))| I r ( z ) | *-«|dz|
./ cr

< 2«(1 -r)-2«e2*»»<'> ( |F 0(T(

Denote the last integral by 73(r). If l<p<oo, then /3(r) = O(l) (r->l-0) since
FoeH^TiU)). If 0 < p < l , it follows from a theorem of Hardy-Littlewood
(cf. Duren [8; Theorem 5.9]) that 73(r) = o((l-r) 1 - 1 ^) (r->l-0). In any
case we see that lim r^1_o/1(r) = 0. Thus, we have proved that an = 0 for every
negative integer n.

Finally, it follows from the same theorem of Hardy-Littlewood quoted
above that snp0<ίθ<t2π\F0(reiθ)\-=o((l-r)-1^) (>->l-0) if 0<p<oo. Since,
for re(0,1),

βϋ) (r),

it follows that «o = 0 i f l < p < o o . The proof is complete.

THEOREM 2. Lei FeE{_q(D, G). T/ien F is quasίbounded in Kra's sense.
If l<p<oo in addition, then F is bounded in Kra's sense.

PROOF. Let Φ be the meromorphic ^-differential on D/G induced by the
automorphic form d2q~ίF. We have to verify that Φ satisfies the three conditions
(i), (ii) and (iii)' (or (iii) when 1 <p< oo) in the definition. Let π: D^D/G be the
natural projection, and let aeD/G — D/G. There is a punctured neighborhood
V of a in D/G such that π is unramified over F. Take a component V of π~\V).

Suppose first that a is non-parabolic. Then Fis also a punctured neighbor-
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hood of some point c e Ω(G). By taking conjugation if necessary, we may assume
that Fis bounded (and so c=£oo). Then c is a removable singularity of F by
Lemma 3. Thus Φ is extended meromorphically to (D/G) U {a} with ordα Φ >

If a is a parabolic puncture, then we can choose V so that Fis a disk or a half
plane in D. Let Gv be the stability subgroup of V. Then there is some S e Mob
such that S - 1(F) is the upper half plane and that S~1oGvoS is the cyclic group
generated by the translation zι-»z + l. Since Sf-.qFeE^q(S-l(V), S'^GyoS),
we can apply Lemma 4 and see that Φ is extended meromorphically to (DjG) U {a}
with ordαΦ>—q (or ordαΦ> — q +1 when 1 <p<oo). This completes the
proof.

Let us introduce another class of Eichler integrals. Let G and D be as before,
and suppose that dD contains more than two points. Let λD(z)\dz\ denote the
Poincare metric on D. We denote by Ef-q (D, G) the space of all Eichler integrals
F of order 1-q on D for G such that supZ6D ^ ( z ) - ^ 2 * - 1 / ^ ) ^ + oo. If D
is a G-invariant union of components of Ω(G) and D/G is a finite union of Riemann
surfaces of finite type, then it is known that Ef-q (D, G) = Efϊq(D, G) (cf. Kra [16;
Remark in p. 199]).

THEOREM 3. // G is a Fuchsian group acting on a disk or a half plane D,
then Ef-q(D, G)c=E{_q(D, G). If, in addition, the Riemann surface D/G is
of finite type and if l<p<oo, then E\_q(D, G) = E™q(D, G) = £f_g(D, G).

PROOF. We may assume that D is the unit disk. Every FeE^q(D, G)
extends to a continuous function on D. A proof of this fact can be found in
[16; pp. 215-217]. However, we may prove as follows.

It follows from the definition that s u p ^ ί l - l z D ψ d ^ - ^ X z ) ^ H-oo.
Hence, we see that supzeD(l — \z\)\(dqF)(z)\< + oo by a theorem of Hardy-
Littlewood (cf. Duren [8; Theorem 5.5]), and so dq~2 F is extended continuously
to D by a theorem of Zygmund (cf. [8; Theorem 5.3]), which implies that F also
extends to a continuous function on D (cf. [8; Theorem 3.11 or Theorem 5.1]).

The last statement is an immediate consequence of the first and Theorem 2.

EXAMPLE 1. Choose 2q-l distinct points ax,..., a2q-t in C. Let μ be a
locally bounded measurable function on C such that μ(z) = 0(\z\2q~4) (z-»oo),
μ|D = 0, and μ(A(z))A'(zy-qA'(z)=μ(z) (a.e.) for all AeG. Then, the function
F on C defined by

is in E?-q (D, G). (Define F(oo) = l i m ^ F(z) if oo e D.)
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This example shows that if G is finitely generated and if D is a G-invariant
union of components of Ω(G) with DΦΩ{G), then £f_g(Z), G)^T\2q-2. How-
ever, if G is a finitely generated Schottky group or a finitely generated Fuchsian
group or a finitely generated quasi-Fuchsian group of the first kind and if D = Ω(G),
then £?-,(/), G) = U2q-2 for l<P<oo since £f*,(£>, G) = Π2q-2 For details,
see Kra [16; Chapter V].

EXAMPLE 2. We assume that oo is in Ω(G) and is not fixed by any element
in G-{id}. Set S = \JAeG {A(α>)}. If ζeΩ(G)-S, then the Poincare series

converges and represents a meromorphic function of z on Ω(G). If ζ&D, then
it is known that F( , ζ) is an Eichler integral of order 1—q on D (cf. Ahlfors
[2; Section 6.2] or Kra [16; Lemma 7.2 in Chapter V]). We set

for every positive integer v. It is clear that Fv( , ζ) is also an Eichler integral.
If ζφD and q > 3, then Fv( , Q 6 £f_, (D, G).

To show this, first note that if the Mδbius transformation A: ẑ -> az + t)

(ad-bc=:l) belongs to G-{id}, then ^Wrf A^2l\ V s a (finite) linear com-

bination of functions in

j c*A'(ζ

The coefficients in this linear combination do not depend on A. Let δ (>0) be
the distance from ζ to S. Then, since -djc = A~\oo) e S,

δ\c\ < I C+ 4 | M = \cC + d\ = \A\0\-1/2

N e x t , l e t Vo b e a d i s k c o n t a i n i n g ζ s u c h t h a t Vo f)D = 0. W e c a n c h o o s e Vo

so that B(V0) = V0 if BeGζ and B(V0) f]Vo = 0 if Be G-Gζ, where Gζ is the sta-
bility subgroup of {£}. Set V=\JBeGB(V0), and denote the distance from we V
to dFby τ(w). Then, we have λv(w)τ(w)>K>0, where AF(w)|dw| is the Poincare
metric on Fand K is an absolute constant (cf. [16; Proposition 1.1 (d) in Chapter
II]). Hence,

\z-A(ζ)\ > τ(A(ζ)) > KλyiΛiOT1 = Kλv(ζ)-i\A'(ζ)\

for every zeD. Thus, we have
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Since oo eΩ(G) and q — l>2, the series Σ^GGMXOI 9 " 1 converges (cf. [16; Lemma
9.2 in Chapter III]). Therefore, we see that Fv( , ζ) is bounded in D and hence

§2. Injectivity of period maps

Let G be a Kleinian group, and let D be a G-invariant open subset of Ω(G).
The period map pd: £f_β(D, G)-*Z\G, ΓL4-2) is C-linear. When is this
map injective?

The map is not always injective even if D is a union of components of Ω(G).
For instance, let Do be a component of Ω(G), and assume that ooeD0 and that
the stability subgroup of Do is trivial. (It is known that there are Kleinian groups
satisfying this hypothesis. We can even assume that Do is simply connected.
See Accola [1]. Of course, we are assuming that G itself is not trivial). Set
D=KJAeGA(D0). Take Fo in HP(D0), and define a function F on D by F =
(A-^f-qFo on A(D0) for each A e G. Then, it is easy to see that Fe E\_q (D, G)
and that pd F = 0. Therefore the period map is not injective in this case.

The purpose of this section is to prove the following theorem, which gives
a sufficient condition that the period map is injective.

THEOREM 4. Let G be a non-elementary Kleinian group, and let D be a
G-invariant open subset of Ω(G). If D/G is a union of parabolic Riemann
surfaces, then the period map pd: Ep

x-q{D, G)-*Z1(G, Π24-2) ϊ s injective.

To prove this theorem we need the theorem of E. Hopf-Tsuji. Let Γ be
a Fuchsian group which keeps the Unit disk U fixed. The limit set A(Γ) lies
in the unit circle dU. A limit point eiθ eA(Γ) is said to be a conical limit point
if there is a sequence {Sn} in Γ such that Sn(0)->eiθ (n-»oo) in some Stolz domain
with vertex eiθ. In this case the same sequence {Sn} has the property that for
any ζe U the sequence {Sn(ζ)} converges to eiθ in some Stolz domain with vertex
eiθ. The set of all conical limit points is denoted by AC(Γ).

THEOREM A (E. Hopf-Tsuji). Let Γ be a Fuchsian group acting on the
unit disk U. Then, the Lebesgue linear measure of AC(Γ) is 0 or 2π. The latter
occurs if and only if the orbit space U/Γ is a parabolic Riemann surface.

For a proof, see Hopf [14] and Sullivan [18; Section III]. See also Ahlfors
[3; Chapter VII].

In general, let H be a group of conformal automorphisms of a Riemann
surface R. Assume that H acts properly discontinuously on R, and that the
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universal covering surface of R is conformally equivalent to the unit disk U.
Let π: U^R be a holomorphic universal covering map. Denote by Mob(U)
the group of all Mδbius transformations that fix U. Let Γ be the set of all S in
Mob (10 such that π°5 = p(5>π for some ρ(S)eH. Then, it is known that Γ
is a Fuchsian group and the covering map π induces a (bijective) conformal
mapping U/Γ-^R/H. Further, p is a group homomorphism of Γ onto H.
The kernel K of p is the covering group of π, and thus U/K is conformally equi-
valent to R. We call Γ the Fuchsian model of iί via π. For details, see Kra
[16; pp. 48-50].

We are now ready to prove Theorem 4.

PROOF of THEOREM 4. Suppose first that D is connected. By Lemma 1,
we may assume that the point oo is in D and is not a fixed point of any elliptic
element in G. Let F e E{_q{D, G) and assume that pd F = 0. Then, we have

(1) F(A(z)) = F(z)A'(z)*-*

for all A e G.
Let π: [/-•£> be a holomorphic universal covering map with π(0)=oo,

where U denotes the unit disk. Let K be the covering group of π. Since G is
non-elementary, the (planar) Riemann surface D is hyperbolic (Myrberg [17].
See also Dodziuk [7; Theorem 3.3].). This means that K is of convergence
type, that is, Σr e κ( l- |Γ(0) | )<+oo, and hence the Blaschke product B(ζ) =
ζ Πτeκ-{jd} I Γ(0)|(T(0) - 0/Γ(OX1 - Wjζ) converges uniformly on every compact
subset of U. We set f(ζ) = F(π(ζ))B(ζ)2^2. Note that / is holomorphic on U.

By Theorem 1, there is vεYl2q-2 such that F0 = F — v belongs to HP(D)
and has a zero at oo. If g(z) is Green's function on D with pole at oo, then the
function h(z) = \z\e~βiz) is apparently bounded on D. Since \B(ζ)\=e~βoπ^\
we have \π(ζ)B(ζ)\ = hoπ(ζ), which is also bounded. Thus, we have (von)-B2q~2 e
if°°(l/). Since (F0°π).B2«-2eH*(l/), we see that feHP(U). Hence, at almost
every point eiθ edU,f has a non-tangential limit, which will be denoted by f(eiθ).

We want to show that/=0 a.e. on dU. Let Γ be the Fuchsian model of G
via π. Let E denote the set of all points eίθ e AC(Γ) — AC(K) at which /has a non-
tangential limit. Since U/Γ is a parabolic Riemann surface, and since U/K is
hyperbolic, the Lebesgue linear measure of E is equal to 2π by Theorem A. Let
eiθ e E. Then, there is a sequence {Sn} in Γ such that for every ζ e U the sequence
(Sn(ζ)} converges to eίθ in some Stolz domain with vertex eiθ. Since eiθξ£Ac(K),
there must be infinitely many cosets in {KoSn}n, and so we may assume that
An = p(Sn) (n = ί, 2,...) are all distinct, where p: Γ-+G is the canonical homo-
morphism. Because ooeD, the series ΣΛSG l^'(z)lβ converges uniformly on
each compact subset of D'= D—\jAeG{A(co)} (cf. Kra [16; Lemma 9.2 in
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Chapter III]). In particular limIJ_ooy4^(z) = 0 if zeD'. On the other hand,
using (1), we see that

= F(π(ζ))A'n(π(O)q-

Fixing Ceπ-^D') and letting n->oo in the above equality, we have/(eίβ) = 0 since
supζet/ \B(ζ)\ = l. Thus, we have shown that / = 0 a.e. on dU. Since feHP(U),
this implies that / = 0 and hence F = 0. We have proved the theorem in the
case where D is connected.

Finally, assume that D is not connected. If FeE{_q(D, G), then Fe
E{-q(Dθ9 Go) for each component Do of D, where Go denotes the stability sub-
group of Do. Note that DojGo is a component of D/G. Thus, what we have
proved shows that F = 0 on Do if pd F = 0. Since Do is arbitrary, the injectivity of
the period map follows.

REMARK. Let D be a G-invariant union of components of Ω(G). It is
known that the period map pd: Ef£q(D9 G)-+Z1(G9 Yl2q-2) *s injective if every
component of D/G is a Riemann surface of finite type. Its proof depends on the
theory of compact Riemann surfaces (cf. Ahlfors [2] or Kra [15; Theorem 2]).
Hence, in this case, Theorem 4 is a trivial consequence of Theorem 2. If one
could show that Ef£q(D, G) = E^q(D, G) for some Jp>0, then Theorem 4
would be a generalization of the finite type case. However, at present the author
does not know whether Ef£q(D, G) = Ep

ί_q(D, G) holds or not.

If G is a Fuchsian group of the first kind which fixes a disk or a half plane D,
then Bers showed that the period map pd: Ef-q (D, G)^>Z1(G, Yl2q-2) i s injective
(cf. [4; Theorem 4]). He used the fact that every element in Ef-q (D, G) extends
to a continuous function on D Π C, which is also used in the proof of our
Theorem 3.

§ 3. Fine limits and periods of Eichler integrals

In this section we shall give a relation between fine limits and periods of
Eichler integrals in Hardy classes. We first investigate in a slightly more general
setting.

Let us recall the definition of the fine topology. For details, see Constanti-
nescu-Cornea [6]. Let R* denote the Martin compactification of a hyperbolic
Riemann surface R, and let A= A(R) = R* — R, the Martin boundary. To
each be A, there corresponds the Martin kernel kb, which is a positive harmonic
function on R. Let Aί=A1(R) be the set of all minimal points, that is, the set
of all be A for which kb is a minimal harmonic function. For each beAί9
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we denote by <&h the family of all open subsets D of R such that the balayaged

function (kb)R-D is a potential on R. Then &b is a filter base. We set <%{b) =

{DU {b}\De&b}. If beR, we let <W(b) be the family of all open subsets of R

that contain b. Then, the class {<%(b)\beR U At} satisfies the axiom of the

fundamental neighborhood system. Thus, we can induce a new topology on

R\J Al9 which is called the fine topology. Let φ be a continuous map of R into

a compact Hausdorff space X, and set φ*(b) = Γ\De#bφ(D). Denote by

the set of all points b e Ax such that ψ*(b) consists of a single point. If b e

then we denote the element of φ*(b) by φ(b). We may regard i ^ a s a map from

^(φ) into X.

Let HP(R) denote the vector space generated by all positive harmonic

functions on R. Let χ be the canonical measure of the constant function 1

eHP(R) (for the definition, see [6; p. 138]). Regarding every u in HP(R) as

a map into the extended real line [ — oo, +oo], we have χ(A — &r(u)) = 0. The

function ύ is integrable with respect to χ. It is known that u can be represented

uniquely in the form u = uq + us, where uq and us are quasibounded and singular,

respectively, in Parreau's sense. Note that uq(a) = $ύ(b)kb(a)dχ(b) for all aeR.

Let π: U-+R be a holomorphic universal covering map, where U denotes the

unit disk. As is well known, the Martin compactification U* of U is homeo-

morphic to Ό, the closure of U in C, and every point on the boundary is minimal.

If we take the origin 0 as a reference point, the canonical measure of leHP(U)

is the normalized Lebesgue linear measure dm = -^—dθ on the unit circle dU.

Since both U and R are hyperbolic, the covering map π: U-+R is a. Fatou map

(cf. [6; Satz 10.2]). Hence, regarding π as a map into R*9 we see that A is defined

almost everywhere on dU (cf. [6; Satz 14.4]).

THEOREM B (Hasumi). Let U, R and π be as above, and let K be the group

of covering transformations. Then the following two statements hold.

(a) There is a K-invariant Borel set £8 in dU with m(&)=l such that

<%a^(π) and fi(@)czA(R).

(b) If veHP(R) is quasibounded in Parreau's sense, then v°π = ϋo'ίt a.e.

on dU. Further, by the correspondence t*-+vofi, the Banach space LP(dχ) is

isometrically isomorphίc to the space Lp(dm)κ of all K-invariant functions in

LP(dm)(l<p<co).

For a proof, see Hasumi [10; §3 in Chapter III]. See also Hayashi [11;

Proposition 4.4].

LEMMA 5. Let R be a hyperbolic Riemann surface, and let H be a group of

conformal automorphisms of R. Assume that H acts properly discontinuously

on R, and that R/H is a parabolic Riemann surface. Then, there exist a subset
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BH °f ^i(R) and a sequence {Ab

n}n in H for every beBH such that the following

are valid:

(a) χ(A(R)-BH) = 0,

(b) lim^oo Ab(a) = b in R* for allaeR, and

(c) if ue HP(R), then l i m ^ u(Ab

n(a)) = ύ(b) for almost allbeBH and for
all aeR.

PROOF. We shall use the same notation as in Theorem B. Let Γ be the

Fuchsian model of H via π, and set BH = fi(& Π AC(Γ)). Denoting by 1E the

characteristic function of a set E, we see that

a.e. on dU9 by Theorem A and Theorem B(α). Hence χ(A— BH) = 0 by Theo-

rem B(b).

Let beBH. There are some eiθ(^b)e^ (]ΛC(Γ) f]A~ι(b) and a sequence

{Sb}n in Γ such that, for each ζeU, lim,,^ Sb(ζ) = eiθ^ in some Stolz domain

with vertex eiθ(b\ Set Ab = p(Sb) (Λ = 1, 2,...), where p: Γ^H is the canonical

surjection. If a = π(Q e Λ, then it follows from [6 Satz 19.2] that

lim^co Ab(a) = lim^oo p (Sb)oπ(ζ) = l i m ^ πoSb(ζ) = A(^iβ<&>) = b

in R*. We set

H and TeK}.

It is clear that ^ 0 is a iC-invariant subset of @ Π ΛC(Γ) and Λ(^0) = i5H. Since

l Λ o = lB j F foί = l a.e. on 5C7, the set 3t0 is Lebesgue measurable and has a full

measure in dU.

Finally, let u e HP(R). Denote by uq the quasibounded part of u, and by

us the singular part. Note that uq°π is also quasibounded and us<>π is singular in

HP(U) (cf. Hasumi [10; Theorem 6B in Chapter III]). Let E be the set of all

eiθ in ^ 0 such that

( i ) the non-tangential limit and the fine limit of uq°π at eiθ exist, coincide

and are finite,

(ii) the non-tangential limit and the fine limit of ws°π at eiθ exist and are

zero,

(iii) A(e^)e&(uq)nsr(us)9

(iv) u^π(eiθ) = ύqoτt(eiθ), and

( v ) ύsofi(eiθ) = 0.

It is easy to see that E is K-invariant and m(£)=l, and hence χ(Δ(R) —

If b e ή(E), then eiθ^ e E and so, for each a = π(Q e JR,
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ύ(b) = ύq(b) = ύqoή(eiθ^) = ^(eiθ(») = lim^oo uqo

= lim^oo uoπoSb

n(ζ) = lim,^*, u(Ab

n(a)).

This completes the proof.

The next theorem is a corollary to Lemma 5.

THEOREM 5. Let G be a non-elementary Kleinian group with oo e Ω(G), and

let D be a G-invariant connected open subset of Ω(G). Suppose that D/G is a

parabolic Rίemann surface. If l<p<oo and FeE%_q(D, G) f)Hp(D), then for

almost every beA(D) there exists a sequence {An} in G such that

P(b) = lim,,^ ((pd F)(AJ) (z) A'n(z)«-i

for all zeD — {oo}.

PROOF. Since both R e F and I m F are quasibounded in Parreau's sense,

it follows from Lemma 5 that for almost every b in A(D) there exists a sequence

{An} in G such that

= lim^oo {((pdF)(An))(z) A'n(zy

for all z e D - {oo}. Since oo e Ω(G), we have lim,,^^ A'n(z) = 0. Thus, we obtain

the conclusion.

REMARK. Theorem 5 says that the boundary function JF is determined by

the period of F. In particular, if D is bounded, this means that the period map

is injective, and we have obtained another proof of Theorem 4 in this case.

§ 4. Fuchsian groups

Let Mob (U) denote the group of all Mόbius transformations that fix the unit

disk U. Let dm = -^ dθ be the normalized Lebesgue linear measure on the unit

circle dU. We set P(θ, Q = Re {(eiθ + ζ)l(eiθ-ζ)} for 0e[O, 2π] and ζeU.

Recall that q is an integer greater than one.

LEMMA 6. Let Ae Mob (U). Iffe L\dm), then

\J θ, Λ(0)) dm(θ).

In particular,
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Γ* {(ί-\A(0)\2)l(ί-Ameiβ)}2"-2P(θ, A(O))dm(θ) = 1.
Jo

PROOF. We can set B(O=A-1(O=ei"(ζ-a)l(l-aζ) with aeU. Then,

B'(0 = e ί α(l-|α|2)/(l-αQ2, A(0) = a, and A'(0)=BXa)-1 = e-«(l-\a\2). There-

fore, we have

θ, ζ)dm(θ)

θ, A{ζ))dm{θ)

A(ζ))dm(θ)

- lαl2)}*-^! - a eiθ)2-2«P(θ, A(ζ)) dm(θ)

«) {(1 - |α|2)/(l - a eι»ψ >-2P(θ, A(ζ)) dm(θ).

Substituting zero for ζ, we have the first equality. Taking/= 1, we see the second

equality follows from the first.

COROLLARY. // A e Mob (U), then A*-q defines a bounded linear operator

LP(dm)->LP(dm)for l<p<oo.

THEOREM 6. Let Γ be a Fuchsian group that fixes a disk or a half plane D.

(a) If DjΓ is a parabolic Riemann surface and if l < p < o o , then

pd(£?-,(/>, Γ)) n pd(£5-β(£-Z5, Γ)) = B\(Γ, Π 2 ί-2).

(b) //Γ is of the second kind and if l<p<co, then either

pd(£?_,(£, Γ)) n pd(Ef- g(£-U, Γ)) ^ fii(Γ, Π2,-2)

or ί/ze period map pd: Ep

1_q{D, Γ)^Z1(Γ, Yl2q-2) ι s n o ί injective.

PROOF. We may assume that D is the unit disk U, by Lemma 1.

(a) Let /^eEf-gCC/, Γ) and F2eEp

i.q(C-U, Γ), and suppose that

pd Fi = pd F 2 . Theorem 1 implies that Fj admits radial boundary values Fj(eiθ) =

lim,..,! Fj(reiθ) for almost all eiθedU O' = l, 2). Set f=Fί-F2, and note that

fe LP(dm). We shall show that / = 0.

Let E be the set of all points eia e AC(Γ) such that

= 0.
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It follows from Theorem A and Lebesgue's theorem that m(E) = l.
Let eicteE. There exists a sequence {An} in Γ such that limπ_0Oy4M(0) =

in some Stolz domain with vertex ei<x. By Lemma 6, we have

^qf)(eiθ)dm(θ) -f (*'«)

| / ( ) / (
o

The last member tends to zero as n->oo, by Fatou's theorem. Thus,

/)(e' )

On the other hand, since Af-qf=f for each AeΓ, we see that

= lim^. A'M*-1 \2'f(e")dm(β) = 0.
Jo

Hence, we have/(eiα) = 0, and thus/=O a.e. on dU.
Now, every negative Fourier coefficient of Fί is zero, and the n-th Fourier

coefficient of F2 is zero if n>2q — 2. Thus, it must be that Px ( = P2) is the
restriction of some polynomial in Π24-2 t o d^> and so pάFt is a coboundary.

(£>) We have only to prove the assertion under the assumption that 1 < p < 00.
It follows from the hypothesis that we can choose a circular arc / in dU Π

Ω(Γ) such that A(I)f]I = φ if AeΓ -{id}. Take / 0 in L*(dm)-{0} for which
/ 0 = 0 on dU-I, and set / = Σ Λ e r ^ 1-4/0 Since p(q-l) + l>29 the series
ΣΛ€Γ \A'(eiθ)\p(q~1)+1 converges uniformly on any compact subset of dU n Ω(Γ)
(cf. Kra [16; Lemma 9.2 in Chapter III]). Hence, fe LP(dm), for

[2π\f(eiθ)\p(θ)dm(θ)
Jo

= ΣASΓ\ \h{A(e
JΛ-HD

0 0 .
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Let Hp denote the space of all functions in Lp(dm) whose negative Fourier
coefficients vanish, and Hg the space of all functions in Lp(dm) whose non-
negative Fourier coefficients vanish. M. Riesz's theorem (cf. Heins [12; Theorem
3 in Chapter IV] or Hoffman [13; pp. 151-152]) assures us that / is uniquely
decomposed into the sum of PfeHp and QfeHξ. If the arc / is so short that/
vanishes on an open arc, then neither Pf nor 6/is the zero function (cf. [13; the
second Corollary in p. 52]). Since A\_qf—f for each AeΓ, it follows that
Λf-q(Pf) — Pf( = Qf—Λ:f_q(Qf)) is the restriction of some polynomial in Π24-2
to dU. Thus Pf and Qf determine F1eEp

1_q(U, Γ) and F2eEp_q(C-U, Γ)
with F2(oo) = 0, respectively. Since F2 is not a polynomial, we conclude from
Painleve's theorem that F± is not a polynomial, either. It is clear that pdFA =
pd( —F2). If pdF x is a coboundary, then the period map pd: £?_g(C/, Γ)->
Z\Γ, Π24-2) i s n o t injective since Fx is not a polynomial. Thus we have the
conclusion.

REMARK, (a) If Γ in Theorem 6(b) is trivial, then ρd(£?_/D, Γ)) n

(fe) Let Γ be a finitely generated Fuchsian group of the second kind acting

on a disk or a half plane D. If 1 < p < 00, then the period map pd: E\_q (D, Γ)->

Z\Γ, Π24-2) i s n o t injective.
We assume that D is the unit disk U, and use the same notation as in the

proof of Theorem 6(b). It follows from the proof of Theorem 6(b) that there
exists an infinitely dimensional vector subspace K of Lp(dm) such that if/e K — {0},
then A\.J=f for every AeΓ, P/#0, and β/^0. Either P(K)9 the image of K
under P, or Q(K) is of infinite dimension. On the other hand, since Γ is finitely
generated, the vector space Z\Γ, ΓLg-2) i s of finite dimension. Hence, there is
some fQeK-{0} such that Af-q(Pf0) = Pf0 for every AeΓ. The Poisson integral
of Pf0 is a non-zero element in E{_q(U, Γ), whose period is zero.
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