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0. Introduction

Let us consider a viscous incompressible fluid which is bounded above by a
free surface and below by a fixed plane inclined at an angle α to the horizontal
(0<α<π/2). The physical situation is described in Figure 1. We choose an
orthogonal coordinate system so that ξ^-plane (£3 = 0) coincides with the
fixed bottom SB, and that ^-axis is in the direction of greatest slope down the
plane SB. In this coordinate system the gravity force is given by (gu g2, #3) =
(gsinα, 0, — gcosoc) where g is the accelation of gravity. The fluid motion
due to gravity is governed by the Navier-Stokes equations with appropriate
boundary conditions. At the bottom SB the fluid satisfies the adherence condition
and at the free surface, which is not known a priori, satisfies the condition which
states the continuity of stress across the free surface. Surface tension is neglected.

w gravity force

Figure 1
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Thus, as in [2], we come to study the following problem: We are given an

initial domain ΩczR3 bounded above by a surface SF and below by the bottom

SB, as well as an initial velocity v0 in Ω. We wish to find, for each t e (0, T), a

domain Ω(t) occupied by the fluid at the time t, a velocity field v(-,t) and a pressure

p( , 0 defined on Ω(t), and a transformation η( , t): Ω-+R3 so that

(0.1) Ω(t) = η(Ω9 t), η(SB,t) = SB9 0 < t < Γ,

(0.2) dtη(x, t) = (voη)(x, t\ xeΩ, 0 < t < T,

(0.3) dfit + (ϋ, Γ,)^ - vΔη ϋ, + (3p/3ιj,) = 0, (i = l, 2, 3) in Ω(t), 0 < t < T,

(0.4) Γ, v = ΣJ=i (δV^y) = 0 in Ω(ί), 0 < ί < T,

(0.5) pn f - vΣ3=i ((d/drijΆ + (dldηdϋj)nj = po«i

(i = l ,2 ,3) on ιj(SF, 0, 0 < ί < T,

(0.6) v = 0 on SB,

(0.7) t;(x, 0) = vo(x), xeΩ,

(0.8) ?7(x, 0) = x,

Here (ηl9 η2, n^) a r e the spatial coordinates of Ω(t); Fη = (dldηu d/dη2, d/dη3)

and Δη— Σy=i (d/fyj)2'* δt means δ/δί. The constant v is the kinematic viscosity

of the fluid, and p0 is the atmospheric pressure assumed to be constant, n =

(nί9 n2, n3) denotes the outward normal at each point of the free surface η(SF, t).

Among such flows described by (0.1)-(0.8) the simplest case is treated in an

exercise in [5, Chap. 2, Sect. 17]: Assume that the fluid region is the inclined

slab Σ = {{ξu ξ2, £ 3); 0 < £ 3 < l } (see Fig. 1), that is, it does not depend on t and

has a constant depth equal to one everywhere. Furthermore, assume that the

flow has a velocity component only in the ^-direction and depends only on ξ3.

Then we obtain the flow described by the following velocity field and pressure

s ( O = (wl9 w2, w3) = (ξ3(2-ξ3)g sinα/(2v), 0, 0),

Ps(O = Po ~ (£3-1)9 cos α,

where ξ e Σ. We call (0.9) the unperturbed flow down the inclined plane SB.

In this paper we discuss the solvability of the nonstationary problem (0.1)-(0.8)

when the initial domain Ω is the image of Σ under a differomorphism. We now

rewrite the problem in the Lagrangian formulation to fix the domain of the

unknowns upon Ω (see [2], [7], [8]): Let v(x, t) be the velocity at the time t

of the fluid particle, which is located at x e Ω initially. Then define the transfor-

mation η( , t): Ω-+R3 by the relation
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(0.10) η(x, t) = x + Γ v(x9 τ)dτ.
Jo

lfη(',t): Ω-+R3 is a regular diffeomorphism, the upper free surface of the fluid

region Ω(t) at the time t is η(SF, t)9 and the relation between v and v is that v(x, t) =

v(η(x9 0, t), xeΩ, 0<t<T. Further, if we set p(x, t) = p(η(x, t)9 t), then (0.2)-

(0.8) become

(0.11) dtη(x9 t) = v(x, t) in Ωx(0,T),

(0.12) dfli - vζtjdMtjdpd + ζkidkp = 9i (i = l, 2, 3) in Ω x (0, T),

(0.13) C f c / Λ = 0 in Ω x (0, Γ),

(0.14) pN( - v(CkM + WkVj)Nj = PoNi (i = l, 2, 3) on SF x (0, Γ),

(0.15) υ = 0 on SB x (0, T),

(0.16) t<x, 0) = ι;0(x) in Ω,

(0.17) fy(x, 0) = x in Ω.

Here and hereafter we use summation convention; sum over repeated indices.

dk means d/dxk {k — 1, 2, 3). The coefficients £iy are the (ί, j) entries of the matrix

(Dη)-1 = (djηi)-ί. N(x, t) is the normal to η(SF, t) at η(x, t) (x e SF), i.e., N = noη.

As stated above, Ω is assumed to be the image of the inclined slab Σ under a

mapping /: Σ->Ω of the form I(ξ) = ξ + φ(ξ), φeC5(Σ\ R3). The conditions on

= (Φi(ξ), Φi(ξ), Φs(ξ)) are as follows:

(0.18) \(dldξ)yφi\ >0 as |{| > oo and (dlδξ)yφieL2(Σ)

(i = l ,2,3)

for any multi-index γ = (γl9 γ2, y3)
 w i t h 7i + y2 + 7a < 5,

(0.19) \dφjdξj\£ll5 for ξ e Γ (i, j = l, 2, 3),

(0.20) 0 | S B = (0,0,0).

An elementary calculation shows that /: Γ->Ω is a diffeomorphism of class C5.

We denote each point in Ω by x = (x1? x2> *3) Notice that SB = {x3 = 0} and

We seek a solution of the form ι;(x, ί) = w( 5̂ t) + ws(x), jp(x, 0 = ̂ (̂ > 0 +
ps(x) where w5(x) = vv(/~ x(x)) and ps(x) = ps(/~ J(x)). The relation (0.10) becomes

(0.21) η(x, t) = x + tws(x) + Γ w(x, τ)dτ.
Jo
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Substituting υ = u + ws and p = q + ps in (0.11)-(0.17), we obtain the problem for

u and q:

(0.22) dtη(x, t) = u(x, t) + ws(x) in Ω x ( 0 , Γ ) ,

(0.23) dtut - vζuMiAud + C«3rf

= yζkMtιM-tιJkPs + 9ι 0 = 1,2, 3) in Ω x (0, T),

(0.24) C*A«y = ~ f« 3 * w i in Ω x (0, T),

(0.25) βΛΓ, - v{ζkjdkUi + CwS^ΛΓy = 0 (i = 1, 2, 3) 5 F x (0, T),

(0.26) w = 0 on S β x (0, T),

(0.27) u(x9 0) = wo(x) in Ω,

(0.28) ^(x, 0) = x in Ω,

where ws=(wt, vv2, w3) and wo

= =ί ;o~v vs Here we have used the fact that

ws(xί9 x29 0) = w^ΓKxu x29 0)) = (0, 0, 0),

djwlx) = (dξ3ldxj) (dwjdξ3) (Γ\x)) = 0 for x e SF,

Ps(*) = P&'Kx)) = Po for x e SF.

These follow immediately from (0.9). The purpose of this paper is to show

THEOREM. Let Ω be as above. Suppose 3<r<7/2. Let uo = (μOΛ, u0t2,

uO3)eHr~\Ω; R3) satisfy the compatibility conditions

«0 =

divu

0

= 1 \P,

0 =

on

y«o.r

-d.

sB,

w, in Ω.

= 0(0.29) {Σ3-i (βjuo.i + dtuojnj}^ = 0 on SF,

(0.30)

Then, there is a T>0, depending on Ω and the norm |wo|r_ l5 such that (0.23)-

(0.27) has a solution (u, q) with ueKr(Ωx(0, T)), Γq e K'-^Ω x (0, T)) and

q\SFeK'-V2(SFx(0,T)).

Here n(x) = (nί(x), n2(x), n3(x)) is the unit outward normal to SF at point xeSF.

{ }tan means the tangential component of the vector in brackets. Hr~\Ω)

denotes the usual Sobolev space. Kr(Ωx(0, T)) = Hr'2(0, T; H°(Ω)) fl#°(0,

T; Hr(Ω)) etc. are the function spaces introduced in [6, Chap. 4] to study para-

bolic problems. (See Section 1 for precise definitions.) These function spaces

are effectively used by Beale in [2]. There he considered the Navier-Stokes flow of

fluid occupying a region which approaches, at infinity, to a horizontal slab vertical
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to the gravity force, i.e., the case that the inclination approaches to zero at infinity.

Hence, he could choose w = 0 as an unperturbed flow and linearize the problem at

w = 0, and then showed the existence of a solution, local in time, by applying the

contraction mapping principle. We also use the same method as in [2] in showing

the existence of a solution. We, however, linearize the problem (0.23)-(0.27)

at the unperturbed flow (0.9) which has a non-zero component in the velocity.

Therefore, our linearized problem is a little more complicated than the one in

[2], and estimates for the linearized problem must be carried out more carefully.

Besides the work by Beale [2], there have been several investigations of the

motion of viscous fluid with free boundary. In [3] Beale considered the incom-

pressible flow near equilibrium under the effect of surface tension at free surface,

and obtained a regular solution, global in time, for sufficiently small initial data.

Solonnikov considered in [8] the fluid which is bounded entirely by a free surface,

and proved the existence of a solution, local in time, in a suitable Holder class.

His method relies on the Schauder-type estimates and is rather involved compared

with [2]. For other results, both for incompressible and compressible fluids,

see [7] and the references in [2, 3] and [7].

We begin with introduction and statements of properties of some function

spaces in Section 1. We also introduce some notations which are used in the

later sections. In Section 2 we study an auxiliary linear problem. We regard

our linearized problem as a perturbed problem from the one in [2, Sect. 4], and

then solve it by using the results in [2]. Our main concern in this section is to

find a "good" estimate for the solution of the linearized problem. Based on the

results in Section 2 we shall prove our theorem in Section 3 using the contraction

mapping principle.
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1. Preliminaries and basic notations

Throughout this paper Ω denotes the slab-like domain defined in the Intro-

duction. If s > 0 is an integer, HS(Ω) is the usual Sobolev space of functions

whose distributional derivatives up to order s belong to L2(Ω). For non-integer

5>0, HS(Ω) is the "fractional order" Sobolev space defined in the usual way

(see [6, Chap. 1]); we denote its norm by | | s. If X is a Hubert space, H°(0, T;

X) and H\0, T X) are the spaces of X-valued L 2 and H1 functions on the

interval (0, T) respectively. Their norms are denoted by | | 0 ; r a n ^ I Ί i ; r
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respectively. We next introduce fractional order spaces of X-valued functions on
(0, T), following [7, Sect. 1]. If 0 < r < l , we set for an X-valued function v
on (0, T)

G T (T \l/2

o J o Wίi)-ι<ί2)l i/ | ί i- ί2l 1 + 2 r ΛiΛ2)

We say that v belongs to Hr(0, T; X)(0<r<2, r ^ l ) , if the quantity

MΓ Γ = M[r];Γ + WVMr-lrl T

is finite. Set QT = Ω x (0, T). As in [2, 3] and [7] we use the space

K'(QT) = H°(0, T; H'(Ω)) n # r / 2 (0, Γ;

which is a Hubert space with the norm

Similarly we define Kr(dΩ x (0, Γ)), Kr(SF x (0, T)) and X'(SB x (0, T)). If
necessary, we shall write Kr(Qτ; R) or Kr(Qτ; R3) to indicate real-valued or R3-
valued functions; usually the distinction should be clear from the context.

REMARK 1.1. In [2, Sect. 2] the fractional order space Hr(0, T; X) is
defined as the domain of (r/2)-th power of the positive operator l—df with
Neumann boundary condition in H°(0, T; X). Here we have followed [7,
Sect. 1]. When X = R9 the equivalence of two definitions was shown in [1,
Chap. 7]. We can show that our fractional order space coincides with the one in
[2] by the same argument as in [1, Chap. 7]. (See also [6, Chap. 4].) Hence,
by the interpolation theory, Hs(0, T; X) = lHm(0, T; X), H°(0, T; X)]β, where
(1— θ)m = s and m is a positive integer >s.

We now state some properties of the function spaces introduced above.

LEMMA 1.2. Assume l < r < 4 .
(i) If an integer j satisfies 0<j<r—l/2, we can define the mapping u->dJ

nu,
which is a bounded operator: Kr(Qτ)-+KrJ(dΩx(0, T)) (ry = r-j-1/2).
Here dn is the normal derivative on dΩ.

(ii) If an integer k satisfies 0<2k<r—l, we can define the mapping u-+
dk

tu(x9 0) which is a bounded operator: Kr(Qτ)^Hr-2k-\Ω).

For a proof of this Lemma, see [6, Chap. 4]. The following three lemmas
are variants of [7, Lemmas 3.7-3.9 and Corollary 3.10]; see also [2, Sect. 2].

LEMMA 1.3. Suppose 3 < r < 7/2. Let u e Kr(Qτ). If w(0) = dtu(0) = 0, then
u can be extended to a function ueKr(Ωx(09 oo)) such that
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where C does not depend on T.

PROOF. It was shown in [7, Lemma 3.7] that ue#°(0, T; Hr(Ω)) n
Hs(0, T; H°(Ω))9 5 = 1 or 2, with dj

tu(0) = 0 (0<;<s- l/2) can be extended to
u e H°(0, oo Hr(Ω)) n # s(0, oo H°(Ω)) such that

\U\Ho(0,aθ;Hr(Ω)) + |W|HS(O,OO;HO(D))

where C does not depend on T. Hence, by interpolation we can show our case.

LEMMA 1.4. Suppose 3<r<7/2. Let ueKr(Qτ). Then there is a ue
Kr(Ωx(0, oo)) such that

(1.1)

C is independent of T.

PROOF. By [6, Chap. 4, Theorem 2.3] we can find a function UeKr(Ωx
(0, oo)) such that t/(O) = w(O) and dtUφ) = dtu(O) with

Applying Lemma 1.3 to u — U, we obtain the extension (w — U)~ of u — U in
Kr(Ωx(0, oo)). Then, setting u = (u — U)~+U, we obtain the desired extension.

LEMMA 1.5. Let r and u be as above. IfO<2p<r, u belongs to HP(0, T;
Hr'2P(Ω)) and satisfies

(1.2) \u\Hp(0iT;Hr-2P(Ω)) < 0(111(0)1,.-! + |d,w(0)|r_3 + \u\Kr(Ωx{O,τ))),

where C does not depend on T.

PROOF. Let ύ be the extension of u obtained in Lemma 1.4. By [6, Chap. 4,
Proposition 2.3], u belongs to HP(0, OO; Hr~2P{Ω)\ The estimate (1.2) follows
from (1.1) immediately.

Following [2] we write °Hr{Ω) or 0H
r(Ω) to denote the subspace of Hr(Ω)

consisting of functions which vanish on SF or SB, respectively. °Kr(Ωτ) or

0K
r(Qτ) is the subspace of Kr(Qτ) consisting of functions which vanish on SF

or SB. The dual space of °if *(&) is denoted by 0H-γ(Ω). We set

Kr{Ωτ) = H°(0, T; H'-^Ω)) n //'/2(0, T; oH-^Ω)).

See [2, Sect. 4] to observe how one comes to consider the spaces QH'1^) and
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Kr(Ωτ). We need the following two lemmas to see that the multiplications in
(0.23)-(0.25) make sense in the function spaces introduced above. For their
proofs see [2, Lemmas 2.5-2.6].

LEMMA 1.6. (i) Suppose r>3/2 and r>s>0. If ueHr(Ω) and veHs(Ω),
then uveHs(Ω) and \uv\s<C\u\r\v\s-

(ii) Let r and u be as above. Let σ e 0H~ι(Ω). If we regard multiplication
by u on 0H"1(Ω) as the adjoint of multiplication on °H1(Ω), then uσE0H~\Ω)
and \uσ\^1<C\u\r\σ\_1.

(iii) // ueH\Ω) and veH°(Ω), then uυ is defined in 0H~\Ω) and

LEMMA 1.7. Suppose that X, Y and Z are Hilbert spaces, and that there is
a bounded bilinear map M:XxY-+Z. Let l/2<s<2, s^3/2. Let ueHs(09

T; X) and veHs(0, T; Y). Then the Z-υalued function uυ defined by (uv)(t) =
M(u(t), v(t)) belongs to Hs(09 T; Z) and satisfies

\uv\HsiOtT;Z) < C(\u\Hs + \U(0)\X)(\V\HS + \vφ)\γ)

ifl/2<s<3l2,and

\uv\HS(0,T;Z) < C(|if|H. + \u(0)\x + \dtu(0)\χ)(\v\HS + \v(0)\γ + \dtvφ)\γ)

Ϊ / 3 / 2 < S < 2 . The constant C on the right hand side does not depend on T

To deal with Kr(Ωτ) we need

LEMMA 1.8. Let σί9 σ2e0H-ί(Ω). Then there is σeKr(Ωx(0, oo)) such
that σ(0) = σ1 and dtσ(0) = σ2 with

PROOF. Let ^H^Ω))1 be the orthogonal complement of °H\Ω) in H^Ω).
Setting (σj9 φ) = 0 for φe^H^Ω))1 0 = 1,2), we can regard a} 0 = 1,2) as
an element of {H\Ω))\ the dual of H\Ω). As characterized in [6, Chap. 1,
Sect. 12], {H\Ω)y consists of elements of H " 1 ^ 3 ) with support in Ω. Hence,
σp the Fourier transfrorm of σ} (7 = 1,2), satisfies (l + \y\2)-ί/2σjeH°(R3)
(yeR3). (i) We first assume σί=0. Take a real-valued function p(t)eC2

([0, oo)) n#°(0, oo) such that p(0)=0, p'(0) = l, and then set σ(t) = &-1(σ2p(t)
exp(—1^|20) It is easily checked that σ(ί) is the desired function, (ii) We
next assume that σ 2 =0. The choice of p(ί) is now made so that p(0) = 1, p'(0) = 0.
The desired function is obtained by setting σ(t) = ̂ r~1(σίp(f) exp (- |^ | 2 ί 2 )). By
combining (i) and (ii) we can prove the general case.

By the same argument as in the proof of Lemma 1.4, we obtain
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LEMMA 1.9. Let σeKr(Qτ) (3<r<7/2). Then we can extend σ to σe
Rr(Ω x (0, oo)) satisfying

(1.3) l*l*r(0x(0fco)) ^ C(|σ|j:r(0χ(ofr)) + lσ(°)l-i + \Stσ(O)\-ι),

where C is independent of T

The lemma below will be used in calculating (ζij) = (δij + tdjwi + \ dJuidτ)"1

9

and in obtaining crucial estimates in the following two sections. For a proof

see [2, Lemma 2.4].

LEMMA 1.10. Let X be a Hubert space. Let To>0be arbitrary, and choose
T< To. For u e ff°(0, T; X) define U e Jff̂ O, T;X)by

1/(0 = Γ u(τ)dτ.
Jo

Then u->U is a bounded operator from H°(Q,T;X) to H 1 " ^ , T; X)
(0<(5<l), and

\U\Hi-δ(0,T;X) < CTδ\u\Ho(OfT;X).

Furthermore, ifΌ<<5<l/4, then u-*U is a bounded operator from H2δ(0, T; X)
to H1+δ(0, T; X), and

The constants on the right hand sides do not depend on Tfor 0<T<To.

Let us introduce some notations to rewrite (0.22)-(0.28) in a more convenient
way. From now on the constant r is fixed so that 3<r<7/2 and write r = 3 + 2δ,
0 < δ < 1/4. First we set for u e Kr(Qτ R3)

(1.4) η[u\ (x, t) = χ + tws(x) + [' u(x, τ)dτ, xeΩ, t > 0.
Jo

(Pη[u](x, 0) denotes the Jacobian matrix (djηjiύ]) of η[u]. If (Dη[u\(x, ί))"1

exists, we set Z[M] (X, t) = (Ci7 [w] (x, 0)ΞCDtfM (x? 0)~x I n particular, for
«=0 we set ι?°(x,0 = tf[0](x,0, and Z°(x, ί) = (C?/^ O)
ίδjWj)"1. By an easy calculation

Hence, from the assumption on the mapping /: I-^Ω we can choose T o>0 so
that

min{l + ίδiW^x); (x, t) e Ω x [0, To]} > 0.

Consequently, on the interval [0, To] (£?/x, *)) exists. Taking into account of
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the form of ws(x) = w^J"1^)), we see that

(1.5) C?i = 1/(1 + tdίwί), C?2 = -

S>22S22 ~ S33 — x> 4,21 — S31 ~ S32 ~ S>23 — u>

and that their derivatives up to the fourth order are continuous and bounded on

QTo. In the sequel To always denotes the constant chosen above.

For a while we assume that ue0K
3+2δ(Qτ) (T<T0) is so small that each

entry of the series of the matrix

(1.6) Σ ? = i ( - l

is convergent in H1+δ(0, T; H2-2δ(Ω)) nH 1 "*^, T; H2+2δ(Ω)). Note that

this is possible by virtue of Lemmas 1.5, 1.6 and 1.7. Then, one can see that

Z[u] = (Cίy[u]) exists and is given by

(1.7) Z[ιι] (x, t) = Z° + Z° Σ?-i ( - l)fc ( ( ^ Dudτ)

for (x, 0 e Ω x [0, T]. Therefore, */[>]( , i): Ω^^/[M] (Ω, 0 is a diffeomorphism

for each ί e [ 0 , T]. The normal N = (Nί9 N2, N3) to η[u](SF, t) appeared in

(0.25) may be described as follows: By the assumption on Ω we can take on SF

a pair of vector fields τl9 τ2 of class C4, which span the tangent space of SF at each

point. The unit normal N [ M ] (x, i) to η[u] (SF, t) at η\u] (x, t), x e SF, can be

written as

(1.8) Nlύ](x, t) = (τf xτ?)(x, ί)/|(τf xτf)(x, ί)l

where τj(x, t) = (Dηlύ](x, ί))τ/x), (x, t)eSFx [0, T],j = l, 2.
Let us set for T < T 0

and ^ | S F 6 K 3 / 2 + 2 5 ( S F x ( 0 , T))}.

With N [ M ] and (ί f j [w]) introduced above we put for (v, q) e XT

(1.9) Stiu] (v, q)(x, 0 = qN£u] - v{Ckjiu2dkvt + ζki[u]dkυj)N^ ,

i = l ,2 , 3,(x, ί ) 6 S F x [0,

Let S tan[w] (t;) denote the tangential part of S[w] (v, q), that is,

Note that the right hand side does not depend on q. Also note that Stan[w](t;)

(x, 0) does not depend on u, since CyM(x, 0) = 5 v ( x e Ω ) and JV[u](x, 0) =
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(τίxτ2)(x)/\(τixτ2)(x)\ = n(x), i.e., the normal to SF at xeSF. Therefore, we

write Stan(υ( -, 0)) (x) for 5 t a n[u] (ι;) (x, 0), x e SP.

Let YT be the space of (/, σ, α9 vo)eK1+2δ(Ωτ; R3) x K3+2δ(Qτ)xK3i2+2δ

(SF x (0, T) R3) x 0H
2+2δ (O R3) such that

(1.10) μ.Vo = σ(0) in Ω, Stan(v0) = αtan(0) on S f .

Here αtan(0) means the tangential part of α(0). For ue0K
3+2δ(Qτ; R3) such

that the series (1.6) converges, we define the operator Λ[u]\ XT->YT by

(1.11) Λ[u](υ, q) ^

+ CkiMdkq)h ζkJLύ]dkυj9 Slu](Ό, q),

We have to check that the right hand side of (1.11) belongs to Yτ under the

assumption that (1.6) converges in H 1 " ^ , T; H2+2δ(Ω)) Π Hί+δ(0, T; H2'2δ{Ω)\

First we consider the first component in the right hand side of (1.11).

Since υeK3+2δ(Qτ; R3) belongs to H^2+δ(0, T; H2(Ω)) by Lemma 1.5,

dtΌiEHW+'φ, T H^Ω)). Taking account of the form (1.5) of Z° = (ζ^)

and the fact that each entry of Z[u]-Z° belongs to Hί+δ(0, T; H2-2δ(Ω)),

and by using Lemmas 1.6-1.7, we can deduce that ζkjMSk(ζlj[u']dιvi)e H1/2+δ(09

T;H°(Ω)). Similar argument gives that c ^ O ] ^ ) e #°(0, Γ; Hι-2δ(Ω)).

By the Sobolev imbedding theorem, Hί+δ(0, T; H2+2δ(Ω))α C([0, T];

H2+2δ(Ω)). From this and the form (1.5), it follows that Ckjluld^djluid^de

H°(0,T;Hi+2δ(Ω)). Hence, CujLuld^jMd^eK^^iQr). By applying

Lemmas 1.5-1.7 we can see more easily that dtvt and ζki{u]dkq belong to K1+2δ (Qτ)?

We next consider the divergence term (i.e., the second component) of the right hand

side of (1.11). Since dkVjeHo(0, T; H2+2δ(Ω)), it follows from (1.5)-(1.7)

and Lemmas 1.6-1.7 that ζkJlύ]dkΌjeH°(0, T; H2+2δ(Ω)). To see ζkJ[u]dkVje

H3/2+<5(o? T ; 0H-i(Ω))9 we first notice that dkVjeH3/2+δ(0, T; OH~x(Ω)) (see the

beginning of [2, Sect. 4]). Then, by Lemma 1.6 (ii) and Lemma 1.7, ζkj[u]dkVj

eH^T oH-'iΩ)). As noticed above, dt(dkVj)eH^2+δ(0, T; OH-\Ω)). By

direct calculation we have

and

dJζkJlu]dkυj) = (dtζkjlu])dkυj + ζkJ

Taking account of the form of ws (1.5) and the fact that y

T;H2+2δ(Ω)), we see that dt(ζkJlύ]dkΌj)eH^2+\09 T; QH'^Ω)), by Lemmas

1.6 and 1.7. Thus, we see that ζkj[u]dkVj e X 3 + 2 ί (Q Γ ) . As to the boundary term

we observe as follows: Regard τ,. ( j = 1, 2) as the restriction of a C 4 vector field

in Ω. Then by an argument similar to the above we can see that S f[u] (i;, q) e
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K2+2δ(Qτ). By Lemma 1.2 (i) we have that S,[ιι](i>, q)eK^2+2δ(SFx(0, T)).

The condition (1.10) is trivial.

Our problem (0.23)-(0.27) is now written as follows: Find (u9q)eXτ

such that (1.6) converges in H1+δ(09 T; H2-2\Ω)) n f l 1 " ^ , T; H2+2\Ω)) so

that Z[fi] = (ζii/[iι]) = (Dιy[ιι])"1 exists, and (w, <?) satisfies

(1.12) Λ[i<](ii, <z) = ( * M , - Ckiίu]dkwl9 0, tt0)

where

(1.13) Φt[u] (x, o s v C ^ M a ^ C i y M δ ^ - ζkiLW]dkPs + Λ , i = 1,2,3.

REMARK 1.11. Let u be as above. We have to check that the right hand

side of (1.12) belongs to Yτ. We first note that, by (0.18)-(0.19), the inverse

mapping of I is of the form, / " 1 ( x ) = x + S ( x ) ( x e S ) , where ΞeH5(Ω; R3)f\

C5(Ω; R3). Hence, from (0, 9) and (0.18) it follows that

(1.14) djw±(x) = (dξ3ldxj)(dwJdξ3)(I'\x))eH\Ω) fl

djPsix) = (dξt/dxj)(dpsldξ3)(I~\x)) e H\Ω) n C\Ώ\ j = 1, 2,.

Similarly we can see that

(1.15) ekdjwί and d3djwί belong to H*(Ω) n C3(ί2) (fc,; = l, 2).

By direct calculation, we have

Then, taking account of the form of 7"1 and the fact that Cv[ιι]-C?/eH1+ί(0,

T;H2-2<5(Ω)nH1-^(0, Γ;H 2 + 2 δ(Ω)), and using (1.5) and (1.14)-(1.15), we

can see that Φι[u]eKι+2δ(Qτ). By similar reasoning, one can see that Φj[u]

0 = 2 , 3 ) belong to K1+2δ(Qτ), and that -ζkltύ]dkw1e&+2δ(Qτ). The con-

dition (1.10) follows from the compatibility conditions on w0, (0.29)-(0.30).

Consequently the right hand side of (1.12) belongs to Yτ.

2. Auxiliary linear problem

In this section we study the following linear problem: For an arbitrarily

given (/, σ, a, u0) eYτ(T< To) find (u, q) e Xτ such that

(2.1)
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Regarding (2.1) as a perturbed problem of the one in [2, Sect. 4], we rewrite this

as follows

(2.2) dtut - j j j u j

+ (\i-ζ°ki)dkq (i = l, 2,3) in Ω x (0, Γ),

(2.3) r u = σ + (δhj-ζij)dkuj in Ω x (0, Γ),

(2.4) Sfu9q) = at 0 = 1,2,3) on SF x (0, T),

(2.5) w(x, 0) = uo(x) in Ω.

Here S^w, q) = qni — v(djui + diuJ)nj with the unit normal n(x) = (n 1 ? n 2, n3) to

SF at x. Note that ζ^j\SF = δij9 because 5 ^ = 0 on SF. The main result of this

section is the following proposition.

PROPOSITION 2.1. There is a positive number 7\ < To such that, for an arbi-

trarily given (/, σ, a, M 0 ) e T Γ l , there exists a unique solution (w, q)eXTί of

(2.2M2.5) with

(2.6) |w|χ

The constant C does not depend on Tx.

We shall solve (2.2)-(2.5) by successive approximations: For (u, q) eXτ put

F£u9q] = viζϊjζϊj-δMdJM

(2.7) + vζljdtffrut + (ίw-fl^rf, i = 1, 2, 3,

Take M<°> e K3+2<J (Ω x (0, oo)) so that ιι<°>(0) = u0 and δfιι(°)(0) = 0 with

This is possible by [6, Chap. 4, Theorem 2.3]. Set 4< 0 ) =0. We take as the

n-th approximation (u^n\ q^)eXT9 w = l ,2 , 3,..., the solution of the initial

value problem

(2.8) dtu\n) - vAu\n) + δ#<»>

= / i + F i [ w ( - 1 ) , ^ - 1 ) ] ( i = l ,2 , 3) in O x . ( 0 , I ) ,

(2.9) «(») = σ + G C M ^ " 1 ) ] in Ω x (0, T) 5
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(2.10) SKii<»>, <z(Λ)) = at 0 = 1,2,3) on SF x (0, T),

(2.11) ιι<»)=0 on S B x(0, T),

(2.12) w<n>(x, 0) = uo(x) in Ω.

To show that (M(/I), qW)eXτ can be determined from the known (n — l)-th ap-
proximation, we need to show the solvability of the problem

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

d,u — vAu + Fq = ψ

F u = ω

S(u, q)=b

u = 0

u(x, 0) = uo(x)

in

in

on

on

Ωx(0, Γ),

Ω >

sF

SB

in

<(0, T),

x (0, Γ),

x (0, T),

Ω,

where (ψ, ω, b, uo)e Yτ. Furthermore, for the convergence of {(M(Π), q(n))}™=o
to the solution in Xτ, we need a priori estimates for the solution of (2.13)-(2.17).
Though this problem was investigated in detail in [2, Sections 3, 4], we have to
check the construction of its solution carefully to verify (2.6) with a constant
C which has the stated property. Therefore, we review here the arguments of the
construction carried out in [2, Sections 3, 4] to observe how the solution of
(2.13)-(2.17) depends on the given data.

(I) First we state the result in [2, Sect. 3] for the problem

(2.18) dtu

(2.19)

(2.20)

(2.21)

(2.22)

Set Hd = {Γφ; φe°H1(Ω; R)}, and let Hσ be the ZAorthogonal complement of
Hd in L2(Ω; R3). Let P be the orthogonal projection of L2(Ω; R3) onto Hσ,
which is used to eliminate the unknown q from (2.18). (See [2, 3]. Also see [4]
and [9] for the problem in a fixed domain.) Beale [2, Theorem 3.2] obtained the
following

LEMMA 2.2. Given feKi+2δ(Qτ; R3) with P/(0) = 0, there is a unique
(u, q) satisfying (2.18)-(2.22) with

F

S(u,

u(x.

q =

u =

q) =

u =

0) =

f
o

0

o

0

in

in

on

on

in

Ω x

Ω x

sF

SB

Ω.

(0, T),

(0, T),

x (0, Γ),

x (0, T),
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(2.23) \u\κ3 + 2δ(Ωx(0,T))

where C does not depend on T.

(II) We next treat (2.13)-(2.17). As in [2, Sect. 4] we consider an operator
L: ZΓ->YΓ defined by the left hand side of (2.13)-(2.15), (2.17). The problem
is rewritten in a form: For an arbitrarily given (φ, ω, 6, w0) e Yτ, find (u, g) e Xτ

such that

(2.24) L(ιι,^) = (0,ω,6,ιio).

The purpose of this subsection is to show

LEMMA 2.3. Let (φ, ω, b, u0) be as above. Then there is a unique solution
(M, q)eXτ of (2.24) satisfying

(2.25) |w|κ

C does noί depend on T.

In [2, Sect. 4] the existence of the solution is proved, but the estimate like
(2.25) is not shown. To see that (2.25) holds, we review the argument in the proof
of [2, Theorem 4.1].

(i) The first step is the reduction of (2.24) to the case of zero initial data.
Define <?£e/ί1/2+2<5(SF) by the equation S(u0, q$- n = b(0) n, and then extend
qh to H1+2δ(Ω). Then we choose qι eKi+2δ(Ωx(0, oo)) such that q\0) =

(2.26) k1lκ2+2«5(βχ(o,oo)) < C(\uo\2+2δ

We choose u1 e K3+2δ (Ω x (0, oo)) such that

M1(0) = wo in H2+2δ(Ω),

dtu
1(O) = vAuo-Fqh + φ(0) in H2δ(Ω),

M1 = 0 on SB x (0, oo),

with

(2.27) |κ1|*3+2d(0χ(0,oo)) < C(|uol2+2* + \?qh\2δ + \Φ(0)\2δ)

< C(\uo\2+2δ + \b(0)\Hίμ+2δ(SF)

The choice of (II1, q1) is possible by [6, Chap. 4, Theorem 2.3].
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(ii) The second step is to adjust the divergence term. Set ω 1 = F w1.

By Lemma 1.8 and (2.27), we can extend ω —ω 1 to an element ώ in K3+2δ(Ωx

(0, oo)) in such a way that ώ satisfies

(2.28) \ω\K3+2*iax(0tO0)) < C( |ω|* 3 + 2* ( β χ ( 0 i r)) + |ω(0) |_! + \dtωφ)\-i

+ |Wol2+2^ + l*(0)| f li/2«d (SF) + \Φ(O)\lδ),

where C does not depend on T. Then, for each t € (0, oo), define θ(t) e H*+2δ (Ω)

by

Δθ{t) = ώ(ί) in Ω,

0(0 = 0 on SF, d3θ(t) = 0 on SB.

By [2, Lemma 2.8] we have

(2.29) |0(OU+2* < C|ώ(ί)| 2 + 2* for re(O, oo).

Here C is independent of t. As in [2, page 376], we obtain

(2.30) l^ω-^ωio^Clώω-ώ^)!^ for tu t2 > 0,

where C is independent of tu t2. From (2.28)-(2.30) we obtain

( 2 . 3 1 ) \PΘ\K3 + 2δ(Ωx(0)O0)) < C|^liβ:3 + 2d ( β X (0,oo))

< C(|ω| 4 3 + a d ( O χ ( 0 i r)) + 10(0)1-! + 15,

where C does not depend on T. We set u2 = u1

(iii) We next adjust the tangential boundary condition without changing

the divergence term. As in the proof of Lemma 1.4, we can extend b to an

element BeK3'2+20(SFx(0, oo)) satisfying

(2.32) I^I

where C is independent of T. Applying [2, Lemma 4.2] with ac = {B — S(u2, gOltan

andβ=-F0 | S B χ ( O ,oo) , we find « 'e iC 3 + 2 d (Ω x (0, oo)) such that u/(0) = 3ίfi
/(0) = 0,

F.M '(0) = 0, S(w', ^1) t an = α on 5 F x(0, oo) and u'=-FΘ on 5 β x ( 0 , oo). By

the construction of u' in the proof of [2, Lemma 4.2], one can see

l W Ί κ 3 + 2<5(βχ(0}θ0)) < C(\5 — S(U2, ^ 1)lκ3/2 + 2«5(5JΓχ(0,00)) + | FΘ\K5 /2 + 2 < 5( S B X ( 0 , OO)))

Hence, from (2.26), (2.27), (2.31) and (2.32), we can deduce

(2.33) |w'|£

\Φ(β)\2δ)'
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Here C is independent of T. We set u3 = u2 + uf.

(iv) The final step is to find q'eK2+2δ(Ωx(0. αo)) so that q'(0) = 0 and

q' = b-n- S(u3, q1).-n on SF x (0, oo).

This is possible by [6, Chap. 4, Theorem 2.3]. Moreover, q' can be estimated as

( 2 . 3 4 ) | # Ί κ 2 + 2<5(βX(0,00)) ^ C( |£ |κ3/2 + 2<5(SFχ(O,OO)) + \S(U3', q1) |χ3/2+ 2<5(5 F X ( 0, OO)))

If we set q3 = qi + q\ we have

L(u3,q3) = (φ3,ω, b,u0),

where φ3 = δtu
3 — vAu3 + Fq3. Thus, for W=M —M3, q=q — q3 our problem is

reduced to

(2.35) L(u,£) = ( 0 - 0 3 , 0,0,0).

By the construction of (u3, g3), φ 3 satisfies Pφ3(0) = Pφ(0)9 and the estimates

(2.26-27), (2.31) and (2.33-34) imply

\uo\2+2δ + | ^ ( 0 ) | H I / 2 + 2 , ( S F ) + | ω ( 0 ) U

where C does not depend on T. Then, applying Lemma 2.2 to (2.35), we obtain

(2.25).

Hereafter we denote the left hand side of (2.25) by |(w, q)\Xτ, and denote by

\(φ, ω, b, uo)\Yτ the quantity in braces in the right hand side of (2.25).

Proof of Proposition 2.1: Since (C?J ) | f= 0 = (̂ iyX G[tι](0) = 0 for any

(u,q)eXτ. Hence, the right hand side of (2.2)-(2.4), (2.6) belongs to Yτ.

From this and Lemma 2.3, it follows that {(w(n), g(n))}£=i can be determined

successively by the scheme (2.8)-(2.12). To see the convergence, set 1/<W> =

α<» +i>-i,<">, ρ<»> = g<»+υ_g<«o, n = 0, 1, 2,... From(2.8)-(2.12), we have

+ PQW = FEC/e1-1), Q^-1^ in Ω x (0, T),

F . £/(«) = GCC/ί""1)] in Ω x (0, T),

S(l/<">, β<»)) = 0 on 5 F x ( 0 , T),

UW(x> 0) = 0 in Ω,

for n = l, 2, 3,.... By Lemma 2.3 we obtain for n = l, 2, 3,...,,

(2.36) |(l/<»>, β<»>)kτ < C| ( F C ^ - - 1 ) , β(»-«], GCl/t--1)], 0, 0 ) | Y τ .
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We proceed to estimate the norms of F[C/<">, Q<">] and G[l/<π>] in Kι+2δ(Qτ)

and R3+2>(QT)> respectively. Note that, from (1.5), we have

Also note that, by Lemma 1.5 and the Sobolev imbedding theorem, C7(H)e

Hi/2+<s(0) τ; H 2 (β))cC([0, T] H2(Ω)). Using these, we estimate the seminorm

\(IΆjζtj-δkjSιj)dlβlUl'%2+iiτ in fl1'^, T; tf°(Ω)) as follows

s u p 0 < ( < τ |

i | t/[ n ) | |3 + 2 4 +

The norm of this term in H°(0, T; H°(Ω)) and fίo(0, Γ; H1+2i(Ω)) can be

estimated more easily;

< CT|l/ί»>|IIo(o,Γ.H.+2(0)), 5 = 0, 1 + 2δ.

Similarly we can estimate the norms of other two terms in Fj[t/ ( B ), β ( w ) ] in

Kί+2δ(Qτ) We next estimate G[t/(w)] in K3+2δ(Qτ). By (1.5) we have

To estimate its norm in H3'2+δ(0, T; QH-^Ω)), we need the fact that djU(

t

n) e

H\0, T; H2\Ω)), which follows from Lemma 1.5. From this and the equality

by applying Lemma 1.10 we obtain

(2.37) l^^n)lfli/2+,(o,r ;H"(Ω))

Direct differentiation of G[(7 ( n )] in t gives



Viscous incompressible flow down an inclined plane 637

Since E/<«>(0)=0 for n=0, 1, 2,..., we see that 3iG[C7(»)](O)=O. Also note that
F[17<»>, β<">](0)=0. Then, by [2, Theorem 4.3], we see that 0,U<»>(O)=O and
Q(«)(0)=0. By the argument in [2, page 375], we obtain

|dA^iΠ)|ffW2+a(o,Γ;oH-i(Ω)) <> C| ί^01*3+

where C is independent of T, Hence, by (1.5),

Since we can regard H2δ(Ω) as the subspace of QH" 1 (Ω) by the ZΛinner product,
we obtain from (2.37)

Therefore, we obtain

Similarly and more easily, one can see that
\K3+2δ(Qτy Collecting these, we obtain

where C is independent of T. Hence, we can choose Ti>0 so that for some

, β(-+«)|X τ i <; γ\ (U<*\ β(->)|Xτi for n = 0, 1, 2,....

From this, we can deduce that (u(π), g(n)) converges to some(w, q)eXTί which is
a unique solution of (2.1). Also we can deduce

(2.38) |(t/, q)\Xτί < |(«(0)f

< ( l- 7 )- i((2- r ) | ( W <°), 0 ) | X τ i

Since (w(1}, g(1)) satisfies (2.8H2.12) with n = l, by Lemma 2.3 we obtain

(2.39) Kl/d), β ( « ) | X τ i <; C| (/+F[W(0), 0], σ + G[u«»], α, u o ) | r τ i

Taking account of (2.7) and the choice of u<°>, we have

[u<*\ 0], G[i/W], 0, 0 ) | Γ τ i < Clιι<0)|X3«a(Qri) ^ C|ι/0 | f l 2 + 2, ( Ω ),

where C is independent of 7\. From this, (2.38) and (2.39), the estimate (2.6)
follows, which completes the proof of Proposition 2.1.
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3. Proof of Theorem

We now proceed to solve the nonlinear problem (1.12). Let uo = (μOtl9

M0 2 , u0t3)e0H
2+2δ(Ω; R3) be as in the Theorem. If a solution (w, q) is known,

then

Hence, (u, q) must satisfy

(3.1) W " ] « U = - (d^Y - (dw

By Lemma 1.8 we can choose σ0 e K3+2δ(QTί) so that

<τo(0) = - d±wl9 dtσo(0) = ( ^ , H Ί ) 2 +

Here Γx is the constant given in Proposition 2.1. As the first approximation

(M°, #°) to the solution (w, g), we take the solution of the problem

(3.2) Λ[0](u°, g<0 = (O,σo,O,!io).

Since F M O = - 5 1 W 1 and Stan(wo) = 0 by the assumptions on u 0, (0, σ0, 0, u0)

belongs to YTί. The existence of (w°, ^ f o )eZ T l is assured by Proposition 2.1.

As the second approximation (M1, q1) we take the solution of the problem

(3.3) Λ[0] (u1, q1) = (Φ[ιι°], - C y C u ^ a ^ - σ o , 0, 0).

(See (1.13) for the definition of Φ.) To do so, we note that, by virtue of Lemma

1.10, if TiKTJ is small, Z[wo] = (Cί7[Mθ]) = ( ^ [ w 0 ] ) " 1 e x i s t s a n d e a c h e n t r y

of Z i y i - Z 0 belongs to Hί+δ(0, T; H2~2δ(Ω)) n H 1 " ^ , T; H2+2δ(Ω)). By

the choice of σ0, the right hand side of (3.3) belongs to Yτ for such a T. Hence,

there exists (w1, g1) by Proposition 2.1. Provided T > 0 is kept small so that

Z[u°], Z [ M X ] and Z[M° + M 1] exist, we seek a solution of (1.12) in the form (u, q) =

(u°, q°) + (uγ, q^ + iu2, q2). The problem to find the unknown (M2, q2) is now

written as follows: Find (u2, q2)eXτ such that

(3.4) ΛluO + ̂  + u^iu2, q2) = - Λ[u° + W1

+ ( Φ ^ + M ^ M 2 ] , - CijluO + ̂  + u^diWj, 0, u0) .

By using (3.2) and (3.3), we can rewrite (3.4) as follows

(3.5) ^ [ 0 ] ( W

2 , ^ ) = (Φ[w2 + W

1 + W ° ] - Φ [ W

0 ] , (C,y[«°]

^ D ^ w ^ O , 0)
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For convenience we simply write Λ[w]t; for Λ[u](υ, q) etc., and set A0 — A\Qi].

If we can define on some complete subset B of Xτ the mapping R: B-+B by

(3.6) R(u\q2)

where Ψ = (Λ0 — Λ[uί-\-u°J)(u1-\-u0, q1 + q°), then our desired solution (u2, q2)

is a fixed point of R: B-+B. To fix a subset B in Xτ we need the following

LEMMA 3.1. Let

Xτ,o = {(v, q)eXτ; v(0) = dtv{ϋ) = 0, «(0) = 0},

*r,o = {(/, σ9 a, 0) e r τ ; / ( 0 ) = 0, σ(0) - δfσ(0) = 0, a(0) = 0}.

T/ieπ, yl0: ^ Γ . O ^ ^ Γ . O ^ Λ S a bounded inverse ΛQ1: YT,O->XT,O The norms of
Λo and ΛQ1 are bounded for 0<T<TX.

PROOF. We have only to show ΛQl(Yτ^c:XTiQ. It is shown in [2, Theorem

4.3] that Lr\YTQ)<=.Xτj0 with the norm independent of T, where L is the linear

operator defined in Section 2 (II). From this it immediately follows that each

(M(«)9 g(«)) in the iteration scheme (2.8)-(2.12) for a given (/, σ, α, 0) e Yτ>0 belongs

to XTt0. Therefore, the limit of {(u^n\ <?(w))}£=i in Xτ also belongs to Xτ,o>

The assertion for the norm of ΛQ1 follows from (2.6).

Let (u°, q°) and (u1, qι) be as above. Let u2eK3+2δ(Qτ) with M2(0) = 0.

Assume |w2|κ3+2«5(βx(o,r)) i s s m a l l enough so that Z[M° + M1 + M 2] exists. Then,

as calculated in the beginning of this section

d&jlu° + u*] | ί = 0 = ̂ - [ V + ̂  + ii2] | f = 0 =

Using this and ζij[uo + u1 + u2](0) = ζijtu
o + u1li(0) = δij, we can easily see that

the first and second terms in the right hand side of (3.5) belong to YTi0. For the

divergence term of the third term in (3.5), we have

Ij - C υ [«°+u 1 ])5 ί u3)u 0 = m h - ζijίu0+u1])) (0)diU%0)

+ (ζfj-ζijLu°+uίj)(θ)δt(δjuj)(θ) = o.

So the third term in (3.5) also belongs to YTfi, if u 2 (0)=0. Consequently, under

the assumption on u 2 stated above, R(u2, q2) defined by (3.6) satisfies that

From this consideration, we take
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B = {{u\ q2)eXτ; (u\ q2) - Λ~0'ΨeXTi0, \(u2, q2) - A

If we take T small enough, then the series (1.6) converges in#1 + < 5(0, T; H2'2δ{Ω))

ΠH^XO, T; H2+2δ(Ω)) for every (u2, q2)eB by virtue of Lemma 1.10. The

rest of this paper is devoted to show that the mapping JR defined by (3.6) maps B

into itself and is a strict contraction mapping on B, provided that T is sufficiently

small. This is carried out by estimating the first three terms in the right hand

side of (3.5).

(I) To begin with, we estimate the first component of the second term in

(3.5), which is written as

(3.7) - vζujί

- ζki\u]dkq

+ ( U ^ + t t 0 ] - C«

Here we have set (u, q) = (u2 + uί + u°, q2 + qί + q°) again. Note that for

ueK*+2δ(Qτ)

(3.8) |Cιy[«] " C 0 ,Wr; f f<-( Ω ) ) = O{T>),S = 1 + δ, 1 - δ,

as T-^0 by (1.7) and Lemma 1.10. Since 3,11,8/p/2+*(0, T; H^Ω)) by Lemma

1.5, ζ^ + u^d^eH^^φ.T H^Ω)) by Lemmas 1.6 and 1.7. Hence

dtJiζijίu1 + u(y]dιudGHm+δφ9 T; H°(Ω)). Again by Lemmas 1.6 and 1.7, and

using (3.8), we obtain

uniformly for (u2, q2)eB as T tends to zero. As to the estimate in H°(0, T;

Hί+2δ (Ω)), we first note that 3,u, e H°(0, T H2+2δ(Ω)). By the Sobolev imbedd-

ing theorem, ζijί^ + u^-ζ^ belongs to C([0, T ] ; H2+2δ{Ω)). From this

and Lemma 1.5, it follows that CylV + ii0;^,!!, belongs to i/°(0, T; iί2 + 2^Ω)),

and hence d^ζul^ + u^d^eH0^ T; H1+2δ(Ω)). By the same reasoning

as above, we see that (ζkjί^ + u^-ζkjlu^d^ζijlu^u^d^i) belongs to H°(0,

T; H1+2δ(Ω))9 and that its norm in H°(0, Γ; Hί+2δ(Ω)) is of order Tδ as Γ-^0.

By the same argument, we can prove that

< CT»,

for every (u2,q2)eB. Let (ΰ 2, q2) also be in B. Set (ΰ, i ) s ( u 2 + u 1

q2+qι + q°). Note that
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Z[fi](x, ί) - Z\u]{x, ί) = - Z[ΰ]

Applying Lemmas 1.5,1.6 and 1.10 to each entry of the right hand side, we obtain

(3.9) ^tjLΰl-ζijMlH'iO.T ^-^Ω^CT^ΰ-U^^^Q^, S=l+δ, l-δ.

Using (3.8)-(3.9), by an argument similar to the above, we can show

for (ΰ2, q2), (u2, q2)eB. Here (Λ[«](u, q))t denotes the first component of
Λ [«](«, q). Similarly, we can show that

' + U 0 ] - Φ[«°] | κ l + 2 . ( Q τ ) <; CTS,

< CT>\{ΰ2, q2) - («2, ?

2 ) | X r

and that

Λ[V + M°]) (u2, ί 2 ) ) ^ , , . ^ ^ ) ^ CΓ*.

2, q2)-(u2,q2)\Xτ,

foτ(ΰ2,q2),(u2,q2)eB.
(II) We next estimate the divergence term (i.e., the second component) in

R3+2S(Qτ) The estimates in H°(0, T; H2+2S(Ω)) can be carried out in just the
same way as in (I). We only have to be concerned with the estimates in H3/2+i(0,
Γ oH-HΩ)). Since dk(u2+ul+u°)jeH1+i(0, T; H°(Ω)) by Lemma 1.5, it
follows from Lemmas 1.6 and 1.7 and the estimate (3.8) that

uniformly for (u2, q2) e B as T->0. Next we estimate

(3.10) j j

in HWφ, T; oH-iφ)). Since δkUjeH3/2+\0, T; oH'KΩ)), dt(dkuj) belongs
to H1'2*^, T; oH-KΩ)). Hence, by Lemmas 1.6 and 1.7, and by (3.8),

p t i ( O , Γ . o H - . ( f l ) ) = o(τ>)

uniformly for (u2, q2) e B as T-^0. To estimate the first term on the right hand
side of (3.10), we express dkuj as
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dkUj(f) = dkUj(0) -

Note that, by Lemma 1.5, dt(dkUj)eH°(0, T; H2δ(Ω)). Then, applying Lemma

1.10 to the second term, we see that its norm in H^2+δ(0, T; H2δ(Ω)) is of order

7-1/2-«β Regarding dkUj(0) as a constant function in H^2+δ(09 T; H2δ(Ω)),

we also see that the norm of 3fcu/0) in H^2+δ(0, T; H2δ(Ω)) is of order Tιl2~δ.

Consequently, we have

\duλ i/2+<5 2δ <CTxi2~δ.

To estimate dtζkj[u]9 we differentiate the matrices Z[w] and Z [ U 1 + M°] in t and

obtain

- dtZ[u] = - (Zt

u°] - Z\_\i\).

Taking account of the form of ws, the fact that djU^eH1'^6^ T\H\Ω))

(r = 0, 1, 2), and the form of (Cl7[>]), we can see that dtζkj[u1 + uo]-dtζkj[u'] e

H^2+δ(0, T; H\Ω)). Hence, by Lemmas 1.6 and 1.7,

uniformly for (w2, q2)eB as Γ->0. Furthermore, we can show in the same way

that

~δ\u2 - u2\κ3+2δ(Qτ)

for (M2, ^f2), (M2, ^ 2) e 5. We can similarly estimate other two divergence terms

in (3.5).

(Ill) To treat the boundary term (i.e., the third component), we regard the

vector fields τl9 τ2 used for the construction of the unit normal N[u] as the

restrictions to SF of vector fields in Ω of class C 4. Further, we extend q\SFe

K3ί2+δ(SFx(0,T)) to q*eK2+2δ(Ωx(Q,T)). Then, we can estimate the

extension of the boundary term in K2+2δ(Qτ; R3) in just the same way as in (I).

After this, we restrict it to S F x(0, T) and use Lemma 1.2(i) to obtain estimates

similar to those in (I) and (II).

Collecting the results in (I), (II) and (III) and using Proposition 2.1, we see

that the mapping R defined by (3.6) maps B into itself and is strictly contractive

in (M2, q2) e B, provided that T > 0 is sufficiently small. Thus R has a fixed point

in B for small T > 0 . This completes the proof of the Theorem.
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