On the growth of α-potentials in R^{n} and thinness of sets

Yoshihiro Mizuta
(Received December 11, 1984)

1. Introduction

In the n-dimensional euclidean space R^{n}, we define the α-potential of a nonnegative (Radon) measure μ by

$$
R_{\alpha} \mu(x)=\int R_{\alpha}(x-y) d \mu(y)
$$

where $R_{\alpha}(x)=|x|^{\alpha-n}$ if $0<\alpha<n$ and $R_{n}(x)=\log (1 /|x|)$. Then it is easy to see that $\left|R_{\alpha} \mu\right| \not \equiv \infty$ if and only if

$$
\begin{array}{ll}
\int(1+|y|)^{\alpha-n} d \mu(y)<\infty & \text { in case } \quad \alpha<n \\
\int \log (2+|y|) d \mu(y)<\infty & \text { in case } \quad \alpha=n \tag{1}
\end{array}
$$

Let h be a positive and nonincreasing function on the interval $(0, \infty)$ such that $h(r) \leqq$ const. $h(2 r)$ for $r>0$. In this paper, we first discuss the behavior of $h(|x|)^{-1} R_{\alpha} \mu(x)$ at the origin, in connection with the growth of the mean value of $R_{\alpha} \mu$ over the open balls centered at the origin. In our discussions, the aim is to find a criterion of the exceptional set E for which $h(|x|)^{-1} R_{\alpha} \mu(x)$ has limit zero or remains bounded above as x tends to 0 outside E. Our results obtained below will be similar to the characterizations of minimal thinness ([4]), minimal semithinness ([5], [6]) and logarithmical thinness and semithinness ([7]).

The thinness can be defined in terms of the α-capacity, like the expression of Wiener's criterion (see e.g. Brelot [1] and Landkof [3]). In this paper, letting $B(x, r)$ denote the open ball with center at x and radius r, we define the α-capacity of a set E in $B\left(0,2^{-1}\right)$ by

$$
C_{\alpha}(E)=\inf \mu\left(R^{n}\right),
$$

where the infimum is taken over all nonnegative measures μ with support in $B(0,1)$ such that $R_{\alpha} \mu(x) \geqq 1$ for every $x \in E$.

The exceptional set E appeared in the discussion will satisfy the condition that $h_{i}^{-1} \sum_{j=1}^{\infty} h_{j} \min \left\{a_{i}, a_{j}\right\} C_{\alpha}\left(E_{j}\right)$ is bounded or has limit zero as $i \rightarrow \infty$, where $h_{j}=h\left(2^{-j}\right), a_{j}=2^{j(n-\alpha)}$ if $\alpha<n, a_{j}=j$ if $\alpha=n$ and $E_{j}=E \cap B\left(0,2^{-j}\right)-B\left(0,2^{-j-1}\right)$. For particular choices of h, the condition means the α-thinness of E, the α-semi-
thinness of E and so on.
Further we discuss the best possibility of our results as to the size of the exceptional sets; that is, if E satisfies the above condition, then we find a nonnegative measure μ such that μ satisfies the required properties but $R_{\alpha} \mu$ behaves ill on E. When we want to find μ with finite energy, the above type condition only is not sufficient. To do so, we require an additional condition on E and show the existence of a nonnegative measure μ satisfying
(i) $\int R_{\alpha} \mu d \mu<\infty$,
(ii) $\quad R_{\alpha} \mu(x) \leqq h(|x|) \quad$ for any $\quad x \in S_{\mu}$ (the support of μ)
and
(iii) $\quad R_{\alpha} \mu(x) \geqq h(|x|) \quad$ for any $\quad x \in E$.

By considering the inversion with respect to $\partial B(0,1)$, our results will give a generalization of the results in [8], which deal with the existence of equilibrium measure of a closed set in the plane R^{2}.

2. Behaviors at the origin of $\boldsymbol{\alpha}$-potentials

If u is a function integrable on $B(0, r)$, then we define

$$
A(u, 0, r)=\frac{1}{|B(0, r)|} \int_{B(0, r)} u(y) d y
$$

where $|B(0, r)|$ denotes the n-dimensional Lebesgue measure of $B(0, r)$.
The following result can be easily proved.
Lemma 1. Let $\phi_{\alpha}(r)=R_{\alpha}(x)$ for $r=|x|$, and $R_{\alpha, y}(x)=R_{\alpha}(x-y)$. Then there exist positive constants c_{1} and c_{2} such that

$$
c_{1} \min \left\{\phi_{\alpha}(r), R_{\alpha}(y)\right\} \leqq A\left(R_{\alpha, y}, 0, r\right) \leqq c_{2} \min \left\{\phi_{\alpha}(r), R_{\alpha}(y)\right\}
$$

whenever $r \leqq 1 / 2$ and $|y| \leqq 1 / 2$.
Throughout this paper, we write $a_{j}=\phi_{\alpha}\left(2^{-j}\right)$ for each integer j. First we give the following result (cf. [5], [6], [7]).

Theorem 1. Let h be a positive and nonincreasing function on the interval $(0, \infty)$ such that $h(r) \leqq$ const. $h(2 r)$ for $r>0$, and let μ be a nonnegative measure on R^{n} satisfying (1). Then the following statements are equivalent:
(i) $A\left(R_{\alpha} \mu, 0, r\right) \leqq$ const. $h(r)$ for $0<r<1$.
(ii) If $1 \leqq p<n /(n-\alpha)$, then $A\left(\left|R_{\alpha} \mu\right|^{p}, 0, r\right)^{1 / p} \leqq$ const. $h(r)$ for $0<r<1$.
(iii) There exists a sequence $\left\{x^{(j)}\right\}$ such that $\lim _{j \rightarrow \infty} x^{(j)}=0,\left|x^{(j)}\right| \leqq$ const. $\left|x^{(j+1)}\right|$ and $R_{\alpha} \mu\left(x^{(j)}\right) \leqq$ const. $h\left(\left|x^{(j)}\right|\right)$ for each j.
(iv) For $\varepsilon>0$, there exists a set $E \subset B\left(0,2^{-1}\right)$ such that
(a) $\sum_{j=1}^{\infty} h_{j} \min \left\{a_{j}, a_{k}\right\} C_{\alpha}\left(E_{j}\right) \leqq \varepsilon h_{k} \quad$ for each k;
(b) $\lim \sup _{x \rightarrow 0, x \notin E} h(|x|)^{-1} R_{\alpha} \mu(x)<\infty$,
where $h_{j}=h\left(2^{-j}\right)$ and $E_{j}=E \cap B\left(0,2^{-j}\right)-B\left(0,2^{-j-1}\right)$.
Proof. We write $R_{\alpha} \mu=u+v$, where

$$
\begin{aligned}
& u(x)=\int_{B(0,1 / 2)} R_{\alpha}(x-y) d \mu(y) \\
& v(x)=\int_{R^{n-B(0,1 / 2)}} R_{\alpha}(x-y) d \mu(y)
\end{aligned}
$$

Then it follows from (1) that $v(x)$ is continuous on $B(0,1 / 4)$. Hence it suffices to prove the equivalence between (i) \sim (iv) with $R_{\alpha} \mu$ replaced by u. By Lemma 1, we have

$$
\begin{aligned}
c_{1} \int_{B(0,1 / 2)} \min \left\{\phi_{\alpha}(r), R_{\alpha}(y)\right\} d \mu(y) & \leqq A(u, 0, r) \\
& \leqq c_{2} \int_{B(0,1 / 2)} \min \left\{\phi_{\alpha}(r), R_{\alpha}(y)\right\} d \mu(y)
\end{aligned}
$$

for $r<1 / 2$.
By Hölder's inequality we have

$$
A(u, 0, r) \leqq A\left(u^{p}, 0, r\right)^{1 / p} \quad \text { for } \quad r<1 / 2
$$

if $p \geqq 1$. Conversely, we derive from Minkowski's inequality,

$$
\begin{aligned}
A\left(u^{p}, 0, r\right)^{1 / p} & \leqq \int_{B(0,1 / 2)} A\left(R_{\alpha, y}^{p}, 0, r\right)^{1 / p} d \mu(y) \\
& \leqq \text { const. } \int_{B(0,1 / 2)} \min \left\{\phi_{\alpha}(r), R_{\alpha}(y)\right\} d \mu(y)
\end{aligned}
$$

for $r<1 / 2$ and $p, 1 \leqq p<n /(n-\alpha)$. Thus (i) and (ii) are equivalent.
Assume that (i) holds. Then

$$
\begin{equation*}
\sum_{j=1}^{\infty} \min \left\{a_{j}, a_{k}\right\} \mu\left(B_{j}\right) \leqq \text { const. } h_{k} \quad \text { for each } \quad k \tag{2}
\end{equation*}
$$

where $B_{j}=B\left(0,2^{-j}\right)-B\left(0,2^{-j-1}\right)$. Letting $\widetilde{B}_{j}=B_{j-1} \cup B_{j} \cup B_{j+1}$ and $\varepsilon>0$, we consider the sets

$$
E_{j}=\left\{x \in B_{j} ; \int_{\tilde{B}_{j}} R_{\alpha}(x-y) d \mu(y) \geqq \varepsilon^{-1} h_{j}\right\} \quad \text { and } \quad E=\cup_{j=2}^{\infty} E_{j} .
$$

Then it follows from the definition of $C_{\alpha}(\cdot)$ that

$$
C_{\alpha}\left(E_{j}\right) \leqq \varepsilon h_{j}^{-1} \mu\left(\widetilde{B}_{j}\right)
$$

In view of (2), E satisfies condition (a) of (iv). On the other hand,

$$
\int_{B(0,1 / 2)-\tilde{B}_{k}} R_{\alpha}(x-y) d \mu(y) \leqq \text { const. } \sum_{j=1}^{\infty} \min \left\{a_{j}, a_{k}\right\} \mu\left(\widetilde{B}_{j}\right) \leqq \text { const. } h_{k}
$$

whenever $x \in B_{k}$, and

$$
\int_{\tilde{B}_{k}} R_{\alpha}(x-y) d \mu(y)<\varepsilon^{-1} h_{k}
$$

for $x \in B_{k}-E_{k}$, so that (b) of (iv) is fulfilled. Thus (i) implies (iv).
Assume that $\left\{x^{(j)}\right\}$ satisfies all the conditions in (iii), and define $r_{j}=\left|x^{(j)}\right|$. By Lemma 1, we have

$$
A\left(u, 0, r_{j}\right) \leqq \text { const. } u\left(x^{(j)}\right) \leqq \text { const. } h\left(r_{j}\right) \quad \text { for large } j .
$$

Take $M>1$ such that $r_{j} \leqq M r_{j+1}$ for each j, and note that

$$
\left(0, M^{-1} r_{1}\right] \subset \cup_{j=1}^{\infty}\left[M^{-1} r_{j}, M r_{j}\right]
$$

If $M^{-1} r_{j} \leqq r<M r_{j}$, then Lemma 1 again gives

$$
A(u, 0, r) \leqq \text { const. } A\left(u, 0, M r_{j}\right) \leqq \text { const. } h\left(r_{j}\right) \leqq \text { const. } h(r)
$$

Consequently, we have proved that (iii) implies (i).
Finally assume that (iv) is true. Note that

$$
c^{-1} a_{j}^{-1} \leqq C_{\alpha}\left(B_{j}\right) \leqq c a_{j}^{-1}
$$

for any j, where c is a positive constant. For $\varepsilon=c^{-1}$, take a set E satisfying property (b) and

$$
\sum_{j=1}^{\infty} h_{j} \min \left\{a_{j}, a_{k}\right\} C_{\alpha}\left(E_{j}\right)<c^{-1} h_{k} \quad \text { for each } \quad k
$$

Then $B_{j}-E_{j}$ is not empty. Letting $x^{(j)} \in B_{j}-E_{j}$, we see easily that (iii) holds for $\left\{x^{(j)}\right\}$. Thus (iv) implies (iii), and hence the proof of the theorem is complete.

Theorem 2. Let hand μ be as in Theorem 1. Then the following statements are equivalent:
(i) $\lim _{r \downarrow 0} h(r)^{-1} A\left(R_{\alpha} \mu, 0, r\right)=0$.
(ii) For $1 \leqq p<n /(n-\alpha), \lim _{r \downarrow 0} h(r)^{-1} A\left(\left(R_{\alpha} \mu\right)^{p}, 0, r\right)^{1 / p}=0$.
(iii) There exists a sequence $\left\{x^{(j)}\right\}$ such that $\lim _{j \rightarrow \infty} x^{(j)}=0,\left|x^{(j)}\right| \leqq$ const. $\left|x^{(j+1)}\right|$ for each j and $\lim _{j \rightarrow \infty} h\left(\left|x^{(j)}\right|\right)^{-1} R_{\alpha} \mu\left(x^{(j)}\right)=0$.
(iv) There exists a set $E \subset B\left(0,2^{-1}\right)$ such that
(a) $\lim _{k \rightarrow \infty} h_{k}^{-1} \sum_{j=1}^{\infty} h_{j} \min \left\{a_{j}, a_{k}\right\} C_{a}\left(E_{j}\right)=0$;
(b) $\lim _{x \rightarrow 0, x \notin E} h(|x|)^{-1} R_{\alpha} \mu(x)=0$.

Proof. Since the proof can be carried out in a way similar to that of Theorem 1 , we shall give only a proof of the implication (i) \rightarrow (iv). Assume that (i) holds.

Then, as in the proof of Theorem 1, we obtain

$$
\begin{equation*}
\lim _{k \rightarrow \infty} h_{k}^{-1} \sum_{j=1}^{\infty} \min \left\{a_{j}, a_{k}\right\} \mu\left(\widetilde{B}_{j}\right)=0 \tag{3}
\end{equation*}
$$

Set $\varepsilon_{k}=h_{k}^{-1} \sum_{j=1}^{\infty} \min \left\{a_{j}, a_{k}\right\} \mu\left(\widetilde{B}_{j}\right)$, and find a sequence $\left\{b_{j}\right\}$ of positive numbers such that $b_{j} \leqq b_{j+1} \leqq 2 b_{j}, b_{j} \leqq \varepsilon_{j}^{-1 / 2}$,

$$
\sum_{j=k}^{\infty} b_{j} \min \left\{a_{j}, a_{k}\right\} \mu\left(\widetilde{B}_{j}\right) \leqq 2 b_{k} \sum_{j=k}^{\infty} \min \left\{a_{j}, a_{k}\right\} \mu\left(\widetilde{B}_{j}\right)
$$

for each k and $\lim _{k \rightarrow \infty} b_{k}=\infty$ (see [7; Lemma 6]). Then (3) is fulfilled with $\mu\left(\widetilde{B}_{j}\right)$ replaced by $b_{j} \mu\left(\widetilde{B}_{j}\right)$. As in the previous proof, define

$$
E_{j}=\left\{x \in B_{j} ; \int_{B_{j}} R_{\alpha}(x-y) d \mu(y) \geqq b_{j}^{-1} h_{j}\right\} \quad \text { and } \quad E=\cup_{j=1}^{\infty} E_{j} .
$$

Then it is easy to see that (a) and (b) hold for this E, and hence (iv) holds. Thus the proof of Theorem 2 is established.

Remark 1. Let $\alpha>1$. Then $\lim \sup _{r \downarrow 0} h(r)^{-1} A\left(R_{\alpha} \mu, 0, r\right)<\infty \quad($ resp. $=0)$ if and only if $\lim \sup _{r \downarrow 0} h(r)^{-1} S\left(R_{\alpha} \mu, 0, r\right)<\infty($ resp. $=0)$, where

$$
S(u, 0, r)=\frac{1}{\sigma(\partial B(0, r))} \int_{\partial B(0, r)} u(y) d \sigma(y),
$$

σ denoting the surface measure on the boundary $\partial B(0, r)$.
Remark 2. If $h \equiv 1$ or if $h(r)=\max \left\{\phi_{\alpha}(r), 1\right\}$, then (a) of (iv) in Theorem 1 implies

$$
\sum_{j=1}^{\infty} a_{j} C_{\alpha}\left(E_{j}\right)<\infty,
$$

which means that E is α-thin at 0 (cf. [1], [3]).
Remark 3. If h satisfies the additional conditions:

$$
\int_{0}^{r} h(s) s^{n-\alpha-1} d s \leqq \text { const. } h(r) r^{n-\alpha} \text { and } \int_{r}^{1} h(s) s^{-1} d s \leqq \text { const. } h(r)
$$

for $r<1$, then (a) of (iv) in Theorem 1 can be replaced by
(a^{\prime}) $a_{j} C_{\alpha}\left(E_{j}\right)<\varepsilon$ for all $j ;$
and (a) of (iv) in Theorem 2 is equivalent to
(a") $\lim _{j \rightarrow \infty} a_{j} C_{a}\left(E_{j}\right)=0$.
If $\left(\mathrm{a}^{\prime \prime}\right)$ holds, then E is said to be α-semithin at 0 (cf. [6]). We note that

$$
h(r)= \begin{cases}r^{-a}(\log (r+1))^{b} & \text { for } r<r_{0} \\ r_{0}^{-a}\left(\log \left(r_{0}+1\right)\right)^{b} & \text { for } r \geqq r_{0}\end{cases}
$$

satisfies all the conditions mentioned above if $0<a<n-\alpha,-\infty<b<\infty$ and r_{0} is chosen so that h is nonincreasing.

3. Thinness of sets

The proof of the implication (i) \rightarrow (iv) in Theorem 1 shows the following: We can find $c_{1}, c_{2}>0$ such that if $0<\varepsilon<c_{1}$ and E is a subset of $B\left(0,2^{-1}\right)$ for which there exists a nonnegative measure v satisfying
(i) $A\left(R_{\alpha} v, 0, r\right) \leqq \varepsilon h(r) \quad$ for $\quad 0<r<1$
and
(ii) $\quad R_{\alpha} v(x) \geqq h(|x|) \quad$ for any $\quad x \in E$,
then

$$
\sum_{j=1}^{\infty} h_{j} \min \left\{a_{j}, a_{k}\right\} C_{\alpha}\left(E_{j}\right) \leqq c_{2} \varepsilon h_{k} \quad \text { for any } \quad k .
$$

Conversely we establish the following result, which serves as showing the best possibility of Theorem 1 as to the size of the exceptional sets.

Proposition 1. Let h be a positive and nonincreasing function on the interval $(0, \infty)$ such that $h(r) \leqq M h(2 r)$ and $\int_{0}^{r} h(s) s^{n-1} d s \leqq M h(r) r^{n}$ for any $r>0$, where M is a positive constant. Let E be a subset of $B\left(0,2^{-1}\right)$ satisfying (a) of Theorem 1, (iv) for some $\varepsilon>0$. Then there exists a nonnegative measure v with support in $B(0,1)$ such that
(i) $A\left(R_{\alpha} v, 0, r\right) \leqq c \varepsilon h(r) \quad$ for $0<r<1 / 2$
and
(ii) $\quad R_{\alpha} v(x) \geqq h(|x|) \quad$ for any $\quad x \in E$, where c is a positive constant independent of ε and E.

Proof. By [3; Theorem 2.7], for each positive integer j we can find a nonnegative measure v_{j} such that $S_{v_{j}} \subset \widetilde{B}_{j}, v_{j}\left(\widetilde{B}_{j}\right)<C_{\alpha}\left(E_{j}\right)+\delta_{j}$ and $R_{\alpha} v_{j}(x) \geqq 1$ for every $x \in E_{j}$, where $\left\{\delta_{j}\right\}$ is a sequence of positive numbers such that

$$
\sum_{j=1}^{\infty} h_{j} \min \left\{a_{j}, a_{k}\right\}\left[C_{\alpha}\left(E_{j}\right)+\delta_{j}\right] \leqq 2 \varepsilon h_{k} \quad \text { for each } k .
$$

Define

$$
v=\sum_{j=1}^{\infty} h_{j+1} v_{j} .
$$

Then v is a nonnegative measure with support in $B(0,1)$ and

$$
\begin{aligned}
\int_{B_{k}} R_{\alpha} v(x) d x=\int R_{\alpha} \chi_{B_{k}} d v & \leqq \text { const. } 2^{-k n} \sum_{j=1}^{\infty} h_{j} \min \left\{a_{j}, a_{k}\right\} v_{j}\left(R^{n}\right) \\
& \leqq \text { const. } \varepsilon 2^{-k n} h_{k}
\end{aligned}
$$

where χ_{A} denotes the characteristic function of a measurable set A. Since $\int_{0}^{r} h(s) s^{n-1} d s \leqq M h(r) r^{n}, \sum_{k=\ell}^{\infty} 2^{-k n} h_{k} \leqq$ const. $2^{-\ell n} h_{\ell}$, so that (i) holds. Clearly, $R_{\alpha} v(x) \geqq h(|x|)$ for every $x \in E$. Thus v satisfies all assertions in the proposition.

Theorem 2, (iv) is also best possible as to the size of the exceptional set.
Proposition 2. Let h be as in Proposition 1. If E satisfies (a) of Theorem 2, (iv), then there exists a nonnegative measure v with support in $B(0,1)$ such that
(i) $\lim _{r \downarrow 0} h(r)^{-1} A\left(R_{\alpha} v, 0, r\right)=0$;
(ii) $\lim _{x \rightarrow 0, x \in E} h(|x|)^{-1} R_{\alpha} v(x)=\infty$.

Proof. Let $\varepsilon_{k}=h_{k}^{-1} \sum_{j=1}^{\infty} h_{j} \min \left\{a_{j}, a_{k}\right\} C_{\alpha}\left(E_{j}\right)$, and take a sequence $\left\{b_{j}\right\}$ of positive numbers such that $\lim _{j \rightarrow \infty} b_{j}=\infty, b_{j} \leqq b_{j+1} \leqq 2 b_{j}, b_{j} \leqq \varepsilon_{j}^{-1 / 2}$ and

$$
\sum_{k=j}^{\infty} b_{k} h_{k} C_{\alpha}\left(E_{k}\right) \leqq 2 b_{j} \sum_{k=j}^{\infty} h_{k} C_{\alpha}\left(E_{k}\right)
$$

for any positive integer j (cf. [7; Lemma 6]). Then

$$
\begin{equation*}
\lim _{k \rightarrow \infty} h_{k}^{-1} \sum_{j=1}^{\infty} b_{j} h_{j} \min \left\{a_{j}, a_{k}\right\} C_{\alpha}\left(E_{j}\right)=0 \tag{4}
\end{equation*}
$$

As in the proof of Proposition 1, for each j take a nonnegative measure v_{j} such that $S_{v_{j}} \subset \widetilde{B}_{j}, v_{j}\left(\widetilde{B}_{j}\right)<C_{\alpha}\left(E_{j}\right)+\delta_{j}$ and $R_{\alpha} v_{j}(x) \geqq 1$ for any $x \in E_{j}$, where $\left\{\delta_{j}\right\}$ is a sequence of positive numbers satisfying (4) with $C_{\alpha}\left(E_{j}\right)$ replaced by $C_{\alpha}\left(E_{j}\right)+\delta_{j}$. Define

$$
v=\sum_{j=1}^{\infty} b_{j} h_{j} v_{j} .
$$

Then $R_{\alpha} v(x) \geqq b_{j} h_{j} R_{\alpha} v_{j}(x) \geqq b_{j} h_{j}$ for $x \in E_{j}$, and

$$
\int_{B_{k}} R_{\alpha} v(x) d x \leqq \text { const. } 2^{-k n} \sum_{j=1}^{\infty} b_{j} h_{j} \min \left\{a_{j}, a_{k}\right\} v_{j}\left(\widetilde{B}_{j}\right),
$$

from which it follows that v satisfies (i) and (ii). Thus the proof of Proposition 2 is complete.

We here give several properties which are equivalent to the α-thinness. For this purpose, denote by \mathscr{H} the family of functions h on $(0, \infty)$ which is positive and nonincreasing on $(0, \infty)$ such that $h(r) \phi_{a}(r)^{-1}$ is nondecreasing on $(0, \infty)$ and $\lim _{r \downarrow 0} h(r)=\infty$.

Proposition 3. Let $E \subset R^{n}$. Then the following statements are equivalent.
(i) E is α-thin at 0 .
(ii) $\lim _{k \rightarrow \infty} h_{k}^{-1} \sum_{j=1}^{\infty} h_{j} \min \left\{a_{j}, a_{k}\right\} C_{a}\left(E_{j}\right)=0 \quad$ for any $h \in \mathscr{H}$.
(iii) $\sum_{j=1}^{\infty} h_{j} \min \left\{a_{j}, a_{k}\right\} C_{a}\left(E_{j}\right) \leqq$ const. $h_{k} \quad$ for any positive integer k whenever $h \in \mathscr{H}$.
(iv) For any $h \in \mathscr{H}$, there exists a nonnegative measure v with compact support such that
(a) $\lim _{r \downarrow 0} h(r)^{-1} A\left(R_{\alpha} v, 0, r\right)=0$;
(b) $R_{\alpha} v(x) \geqq h(|x|) \quad$ for any $\quad x \in E \cap B(0,1)$.
(v) For any $h \in \mathscr{H}$, there exists a nonnegative measure v with compact support for which $\lim _{x \rightarrow 0, x \in E} h(|x|)^{-1} R_{\alpha} v(x)=\infty$.

Proof. First assume that E is α-thin at 0 . For $\varepsilon>0$, take j_{0} such that $\sum_{j=j_{0}}^{\infty} a_{j} C_{\alpha}\left(E_{j}\right)<\varepsilon$. Since h_{k} increases to infinity,

$$
\begin{aligned}
\lim \sup _{k \rightarrow \infty} h_{k}^{-1} \sum_{j=1}^{k} h_{j} a_{j} C_{\alpha}\left(E_{j}\right) & =\lim \sup _{k \rightarrow \infty} h_{k}^{-1} \sum_{j=j_{0}}^{k} h_{j} a_{j} C_{\alpha}\left(E_{j}\right) \\
& \leqq \lim \sup _{k \rightarrow \infty} \sum_{j=j_{0}}^{k} a_{j} C_{\alpha}\left(E_{j}\right)<\varepsilon .
\end{aligned}
$$

On the other hand, since $h_{j} a_{j}^{-1}$ is nonincreasing, we have

$$
\lim \sup _{k \rightarrow \infty} h_{k}^{-1} \sum_{j=k}^{\infty} h_{j} a_{k} C_{\alpha}\left(E_{j}\right)=\lim \sup _{k \rightarrow \infty} a_{k} h_{k}^{-1} \sum_{j=k}^{\infty}\left(h_{j} a_{j}^{-1}\right) a_{j} C_{\alpha}\left(E_{j}\right)=0
$$

Thus (i) implies (ii). Clearly (ii) implies (iii). Since (iii) implies (i) by Remark 2 after Theorem 2, (i), (ii) and (iii) are equivalent to each other.

In view of Proposition 2, we infer that (ii) implies (iv) and (v). It follows from Theorem 2 that (iv) implies (ii).

From [1; Theorem IX, 7] we see that E is α-thin at 0 if and only if there exists a nonnegative measure v satisfying (1) and

$$
\lim _{x \rightarrow 0, x \in E} R_{\alpha}(x)^{-1} R_{\alpha} v(x)>v(\{0\}) .
$$

Since $\phi_{\alpha} \in \mathscr{H}$, (v) implies (i), and hence the proof of Proposition 3 is complete.
Remark. Let E be a closed set in $B\left(0,2^{-1}\right)$. Then the following statements are equivalent (cf. Wu [9; Theorems 1 and 2]):
(i) E is α-thin at 0 .
(ii) For any $h \in \mathscr{H}$, there eixsts a nonnegative measure v with support in E such that
(a) $\lim _{r \downarrow 0} h(r)^{-1} A\left(R_{\alpha} v, 0, r\right)=0$;
(b) $R_{\alpha} v(x) \geqq h(|x|) \quad$ for any $x \in E$ except those in a set with vanishing α-capacity.
(iii) For any $h \in \mathscr{H}$, there exists a nonnegative measure v with support in E such that $\lim _{x \rightarrow 0, x \in E-A} h(|x|)^{-1} R_{\alpha} v(x)=\infty$, where $C_{\alpha}(A)=0$.

Denote by \mathscr{H}^{*} the family of all positive and nonincreasing functions h on
$(0, \infty)$ satisfying the following conditions:
(a) $h(r) \leqq M h(2 r)$ for $r>0$;
(b) $\int_{r}^{\infty} h(s) s^{-1} d s \leqq M h(r) \quad$ for $\quad r>0$;
(c) $\int_{0}^{r} h(s) s^{n-\alpha-1} d s \leqq M h(r) r^{n-\alpha} \quad$ for $\quad r>0$,
where M is a positive constant.
Proposition 4 (cf. [6; Theorem 2]). Let $E \subset R^{n}$. Then the following statements are equivalent:
(i) E is α-semithin at 0 .
(ii) $\lim _{k \rightarrow \infty} h_{k}^{-1} \sum_{j=1}^{\infty} h_{j} \min \left\{a_{j}, a_{k}\right\} C_{\alpha}\left(E_{j}\right)=0 \quad$ for any $\quad h \in \mathscr{H}^{*}$.
(iii) For any $h \in \mathscr{H}^{*}$, there exists a nonnegative measure v with compact support such that
(a) $\lim _{r \downarrow 0} h(r)^{-1} A\left(R_{\alpha} v, 0, r\right)=0$;
(b) $\lim _{x \rightarrow 0, x \in E} h(|x|)^{-1} R_{\alpha} v(x)=\infty$.

This proposition can be proved in a way similar to the proof of Proposition 3, so we omit its proof (cf. Remark 3 after Theorem 2).

4. $\boldsymbol{\alpha}$-potentials with finite energy

We say that a nonnegative measure μ has finite α-energy if

$$
\langle\mu, \mu\rangle_{\alpha} \equiv \int R_{\alpha} \mu d \mu<\infty ;
$$

in case $n=2, \mu$ is assumed to have compact support.
Theorem 3. Let μ be a nonnegative measure with support in $B(0,1)$ such that $\langle\mu, \mu\rangle_{\alpha}<\infty$ and

$$
A\left(R_{\alpha} \mu, 0, r\right) \leqq h(r) \quad \text { for any } \quad r>0,
$$

where h is a function on $(0, \infty)$ as in Theorem 1 . Then for any $\varepsilon>0$, there exists a set $E \subset B\left(0,2^{-1}\right)$ possessing the following properties:
(a) $\sum_{j=1}^{\infty} h_{j} \min \left\{a_{j}, a_{k}\right\} C_{a}\left(E_{j}\right) \leqq \varepsilon h_{k} \quad$ for any k.
(b) $\sum_{j, k=1}^{\infty} h_{j} h_{k} \min \left\{a_{j}, a_{k}\right\} C_{a}\left(E_{j}\right) C_{\alpha}\left(E_{k}\right)<\infty$.
(c) $\lim \sup _{x \rightarrow 0, x \notin E} h(|x|)^{-1} R_{\alpha} \mu(x)<\infty$.

This theorem can be proved in the same way as the implication (i) \rightarrow (iv) of Theorem 1; so we omit its proof.

Remark. By Theorem 3 one can find $c_{1}, c_{2}>0$ such that if $0<\varepsilon<c_{1}$ and E is a subset of $B\left(0,2^{-1}\right)$ for which there exists a nonnegative measure v in $B(0,1)$ satisfying
(i) $\langle v, v\rangle_{\alpha}<\infty$,
(ii) $A\left(R_{\alpha} v, 0, r\right) \leqq \varepsilon h(r) \quad$ for any $\quad r>0$
and
(iii) $\quad R_{\alpha} v(x) \geqq h(|x|) \quad$ for any $\quad x \in E$, then E satisfies
(a) $\sum_{j=1}^{\infty} h_{j} \min \left\{a_{j}, a_{k}\right\} C_{\alpha}\left(E_{j}\right) \leqq c_{2} \varepsilon h_{k} \quad$ for any k and
(b) $\sum_{j, k=1}^{\infty} h_{j} h_{k} \min \left\{a_{j}, a_{k}\right\} C_{\alpha}\left(E_{j}\right) C_{\alpha}\left(E_{k}\right)<\infty$.

We do not know whether Theorem 3 is best possible as to the size of the exceptional set or not. We shall prove only the following result.

Proposition 5. Let E be a subset of $B\left(0,2^{-1}\right)$ satisfying (a) in Theorem 3 for some $\varepsilon>0$ and
($\left.\mathrm{b}^{\prime}\right) \quad \sum_{j=1}^{\infty} h_{j}^{2} C_{a}\left(E_{j}\right)<\infty$.
Then there exists a nonnegative measure v with support in $B(0,1)$ such that $\langle v, \nu\rangle_{\alpha}<\infty$ and

$$
\lim _{x \rightarrow 0, x \in E} h(|x|)^{-1} R_{\alpha} v(x)=\infty .
$$

Remark 1. If E satisfies (a) and (b'), then it also satisfies (b). In case $\left\{a_{j} / h_{j}\right\}$ is bounded above, (b^{\prime}) implies (a) for any $\varepsilon<0$; but, in general, the converse is not true.

Remark 2. Let $h_{j}=a_{j}^{\beta}$ for $\beta>0$. If $\beta<1$, then we can find a positive constant c such that

$$
\sum_{j=1}^{\infty} h_{j} \min \left\{a_{j}, a_{k}\right\} C_{\alpha}\left(E_{j}\right) \leqq c h_{k} \quad \text { for any } \quad k,
$$

whenever $E \subset B\left(0,2^{-1}\right)$; if $\beta<1 / 2$, then (b') holds for any set $E \subset B\left(0,2^{-1}\right)$.
Proof of Proposition 5. Let E be as in the proposition. Then, in view of [7; Lemma 6], we can construct a sequence $\left\{b_{j}\right\}$ of positive numbers such that $\lim _{j \rightarrow \infty} b_{j}=\infty, b_{k} \leqq b_{k+1} \leqq 2 b_{k}$,

$$
\begin{equation*}
\sum_{j=1}^{\infty} b_{j} h_{j} \min \left\{a_{j}, a_{k}\right\} C_{\alpha}\left(E_{j}\right) \leqq \text { const. } b_{k} h_{k} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j=1}^{\infty} b_{j}^{2} h_{j}^{2} C_{\alpha}\left(E_{j}\right)<\infty . \tag{6}
\end{equation*}
$$

Take a sequence $\left\{\delta_{j}\right\}$ of positive numbers which satisfies (5) and (6) with $C_{\alpha}\left(E_{j}\right)$ replaced by $C_{\alpha}\left(E_{j}\right)+\delta_{j}$. By [3; Theorem 2.7], for each j we can find a nonnegative measure v_{j} such that $S_{v_{j}} \subset \widetilde{B}_{j}, v_{j}\left(\widetilde{B}_{j}\right)<C_{\alpha}\left(E_{j}\right)+\delta_{j}, R_{\alpha} v_{j}(x) \geqq 1$ for any $x \in E_{j}$ and $R_{\alpha} v_{j}(x) \leqq 2^{n-\alpha}$ for every $x \in R^{n}$. Define

$$
v=\sum_{j=1}^{\infty} b_{j} h_{j} v_{j} .
$$

Then $R_{\alpha} v(x) \geqq b_{k} h_{k} R_{\alpha} v_{k}(x) \geqq b_{k} h_{k}$ for $x \in E_{k}$ and

$$
\begin{gathered}
R_{\alpha} v(x)=\sum_{j=1}^{\infty} b_{j} h_{j} R_{\alpha} v_{j}(x) \leqq \text { const. }\left\{\sum_{j=1}^{k-2} b_{j} h_{j} a_{j} v_{j}\left(\widetilde{B}_{j}\right)+\sum_{j=k-1}^{k+1} b_{j} h_{j}\right. \\
\left.+\sum_{j=k+2}^{\infty} b_{j} h_{j} a_{k} v_{j}\left(\widetilde{B}_{j}\right)\right\} \leqq \text { const. } b_{k} h_{k}
\end{gathered}
$$

for $x \in B_{k}$. Hence it follows that $\lim _{x \rightarrow 0, x \in E} h(|x|)^{-1} R_{\alpha} v(x)=\infty$ and

$$
\langle v, v\rangle_{\alpha}=\sum_{k=1}^{\infty} b_{k} h_{k} \int R_{\alpha} v d v_{k} \leqq \text { const. } \sum_{k=1}^{\infty} b_{k}^{2} h_{k}^{2} v_{k}\left(\widetilde{B}_{k}\right)<\infty .
$$

Thus v satisfies all the conditions required in the proposition, and the proposition is proved.

5. Gauss variation

Throughout this section, let f be a continuous function in $R^{n}-\{0\}$ such that

$$
\begin{equation*}
\sup _{B_{j}}|f| \leqq{\text { const. } \inf _{B_{j-1}}|f|, ~}_{\text {ren }} \tag{7}
\end{equation*}
$$

where $B_{j}=B\left(0,2^{-j}\right)-B\left(0,2^{-j-1}\right)$ as before. Define

$$
f_{j}=\sup _{B_{j}}|f|
$$

and

$$
h_{j}=\max \left\{f_{1}, \ldots, f_{j}\right\} .
$$

By (7), $h_{j} \leqq h_{j+1} \leqq$ const. h_{j} for any positive integer j.
Our main result in this section is the following.
Theorem 4. Let E be a subset of $B\left(0,2^{-1}\right)$ possessing the following properties:
(a) $\sum_{j=1}^{\infty} h_{j} \min \left\{a_{j}, a_{k}\right\} C_{a}\left(E_{j}\right) \leqq$ const. h_{k} for each k;
(b) $\sum_{j=1}^{\infty} h_{j}^{2} C_{\alpha}\left(E_{j}\right)<\infty$,
where $a_{j}=\phi\left(2^{-j}\right)$ and $E_{j}=E \cap B_{j}$ as before. Then there exists a nonnegative measure μ with support in $B(0,1)$ such that
(i) $R_{\alpha} \mu(x) \geqq f(x) \quad$ for any $x \in E-\{0\}$;
(ii) $R_{\alpha} \mu(x) \leqq f(x) \quad$ for any $x \in S_{\mu}-\{0\}$;
(iii) $\langle\mu, \mu\rangle_{\alpha} \equiv \int R_{\alpha} \mu d \mu<\infty$.

Without loss of generality, we may assume that $h_{j}>0$ for any j. Let h be a nonincreasing and continuous function on $(0, \infty)$ such that $h\left(2^{-j}\right)=h_{j}$ for each j.

Proof of Theorem 4. Since $C_{\alpha}(\cdot)$ is an outer capacity, there exists an open
set G such that $E-\{0\} \subset G \subset B\left(0,2^{-1}\right)-\{0\}$ and (a), (b) in Theorem 4 hold for $E=G$. Denote by $U(G)$ the family of all nonnegative measures μ such that $S_{\mu} \subset G$ and $\langle\mu, \mu\rangle_{\alpha}<\infty$. Define

$$
V(\mu)=\langle\mu, \mu\rangle_{\alpha}-2 \int f d \mu
$$

and consider

$$
a=\inf \{V(\mu) ; \mu \in U(G)\}
$$

Take a nonnegative measure v as in Proposition 5 with E replaced by G. Here we may assume that $S_{v} \subset B\left(0,4^{-1}\right)$. Then we obtain for $\mu \in U(G)$,

$$
\int h(|x|) d \mu(x) \leqq M \int R_{\alpha} v d \mu \leqq 2^{-1}\left(\langle\mu, \mu\rangle_{\alpha}+M^{2}\langle v, v\rangle_{\alpha}\right)
$$

which implies that

$$
V(\mu) \geqq-M^{2}\langle v, v\rangle_{\alpha},
$$

where M is a positive constant. Hence the quantity a is finite. Take a sequence $\left\{\mu_{j}\right\}$ of nonnegative measures in $U(G)$ such that $\lim _{j \rightarrow \infty} V\left(\mu_{j}\right)=a$. Then it is easy to see that $\left\{\left\langle\mu_{j}, \mu_{j}\right\rangle_{\alpha}\right\}$, and hence $\left\{\int h(|x|) d \mu_{j}(x)\right\}$, is bounded. It follows that $\left\{\mu_{j}(G)\right\}$ is bounded, and hence we may assume that $\left\{\mu_{j}\right\}$ converges vaguely to a nonnegative measure μ_{0}. Note here that $\left\langle\mu_{0}, \mu_{0}\right\rangle_{\alpha}<\infty$, and hence $\mu_{0}(\{0\})=0$.

For $r>0$, define

$$
A(r)=\inf \left\{h(|x|)^{-1} R_{\alpha} v(x) ; x \in G \cap B(0, r)\right\} .
$$

By assumption, $\lim _{r \downarrow 0} A(r)=\infty$. Let ψ_{r} be a continuous function on R^{n} such that $\psi_{r}=1$ on $B(0, r / 2), \psi_{r}=0$ outside $B(0, r)$ and $0 \leqq \psi_{r} \leqq 1$ on R^{n}. Then we have

$$
\left|\int h(|x|) d \mu_{j}(x)-\int\left[1-\psi_{r}(x)\right] h(|x|) d \mu_{j}(x)\right| \leqq A(r)^{-1} \int_{B(0, r)} R_{\alpha} v d \mu_{j}
$$

for r sufficiently small. Since $\lim _{r \downarrow 0} A(r)=\infty$ and $\left\{\int_{B\left(0,2^{-1}\right)} R_{\alpha} v d \mu_{j}\right\}$ is bounded, it follows that

$$
\lim _{j \rightarrow \infty} \int h(|x|) d \mu_{j}(x)=\int h(|x|) d \mu_{0}(x)<\infty
$$

In a similar manner, noting that $|f| \leqq h$, we obtain

$$
\lim _{j \rightarrow \infty} \int f d \mu_{j}=\int f d \mu_{0}
$$

On the other hand,

$$
a \leqq V\left(\left(\mu_{j}+\mu_{k}\right) / 2\right)=\left[V\left(\mu_{j}\right)+V\left(\mu_{k}\right)\right] / 2-\left\langle\mu_{j}-\mu_{k}, \mu_{j}-\mu_{k}\right\rangle_{\alpha} / 4
$$

for any positive integers j and k, so that

$$
\lim _{j \rightarrow \infty}\left\langle\mu_{j}-\mu_{0}, \mu_{j}-\mu_{0}\right\rangle_{\alpha}=0
$$

Moreover it follows that $V\left(\mu_{0}\right)=a$.
If $\mu \in U(G)$ and $t>0$, then $\mu_{j}+t \mu \in U(G)$, which yields

$$
\begin{equation*}
\int R_{\alpha} \mu_{0} d \mu \geqq \int f d \mu \tag{8}
\end{equation*}
$$

Similarly, since $(1-t) \mu_{j} \in U(G)$ for $0<t<1$, we establish

$$
\int R_{\alpha} \mu_{0} d \mu_{0}=\int f d \mu_{0}
$$

Let $x^{0} \in G$. By taking as μ the unit uniform surface measure on the boundary $\partial B\left(x^{0}, r\right)$ and letting $r \downarrow 0$ in (8), we derive

$$
R_{\alpha} \mu_{0}\left(x^{0}\right) \geqq f\left(x^{0}\right)
$$

Thus it follows that $R_{\alpha} \mu_{0} \geqq f$ on G. We next let $x^{0} \in S_{\mu_{0}}-\{0\}$ and suppose

$$
R_{\alpha} \mu_{0}\left(x^{0}\right)>f\left(x^{0}\right)
$$

Since $R_{\alpha} \mu_{0}$ is lower semicontinuous, there exists $r>0$ such that

$$
R_{\alpha} \mu_{0}(x)>f(x) \quad \text { for any } \quad x \in B\left(x^{0}, r\right)
$$

Let ψ be a continuous function on R^{n} such that $\psi=1$ on $B\left(x^{0}, r / 2\right), \psi=0$ outside $B\left(x^{0}, r\right)$ and $0 \leqq \psi \leqq 1$ on R^{n}. Then, since $\mu_{j}+t \psi \mu_{j} \in U(G)$ for $-1<t<1$, we obtain

$$
\int\left(R_{\alpha} \mu_{0}-f\right) \psi d \mu_{0}=0
$$

Thus a contradiction follows, and hence $R_{\alpha} \mu_{0}\left(x^{0}\right) \leqq f\left(x^{0}\right)$. The proof of the theorem is now complete.

In the same way we can prove the next theorem.
Theorem 5. If E is as in Theorem 4, then there exist a number γ and a nonnegative measure μ with support in $B(0,1)$ such that $\mu\left(R^{n}\right)=1, R_{\alpha} \mu \leqq f+\gamma$ on $S_{\mu}-\{0\}, R_{\alpha} \mu \geqq f+\gamma$ on $E-\{0\}$ and $\langle\mu, \mu\rangle_{\alpha}<\infty$.

We also establish the following results with a slight modification of the proof of Theorem 4.

Theorem 4'. Let K be a compact set in R^{n} containing the origin and
satisfying (a), (b) in Theorem 4 with E replaced by K. Then there exists a nonnegative measure μ supported by K such that $R_{\alpha} \mu \leqq f$ on $S_{\mu}-\{0\}, R_{\alpha} \mu \geqq f$ on K except for a set of vanishing α-capacity and $\langle\mu, \mu\rangle_{\alpha}<\infty$.

Theorem 5'. If K is as in Theorem 4^{\prime}, then there exist a number γ and a nonnegative measure μ supported by K such that $\mu(K)=1,\langle\mu, \mu\rangle_{\alpha}<\infty, R_{\alpha} \mu \leqq$ $f+\gamma$ on $S_{\mu}-\{0\}$ and $R_{\alpha} \mu \geqq f+\gamma$ on K except for a set of vanishing α-capacity.

Remark 1. If $\lim \sup _{x \rightarrow 0} R_{\alpha}(x)^{-\beta}|f(x)|<\infty$ for some β with $0<\beta<1 / 2$, then the conclusions of Theorems $4,5,4^{\prime}$ and 5^{\prime} remain true in view of Proposition 5 and its Remark 2.

Remark 2. Let h be as in Theorem 1 and μ be a nonnegative measure on $B(0,1)$. If $R_{\alpha} \mu \leqq H$ on S_{μ}, then $R_{\alpha} \mu \leqq M H$ on R^{n}, where M is a positive constant independent of μ and $H(x)=h(r)$ for $|x|=r$.

For a proof of this fact, let $h_{j}=h\left(2^{-j}\right)$ and $\left.\mu_{j}\right|_{B_{j}}$, where $\bar{B}_{j}=\left\{x \in R^{n} ; 2^{-j-1} \leqq\right.$ $\left.|x| \leqq 2^{-j}\right\}$. Since $R_{\alpha} \mu_{j} \leqq M_{1} h_{j}$ on $S_{\mu_{j}}$, we see that

$$
R_{\alpha} \mu_{j} \leqq 2^{n-\alpha} M_{1} h_{j} \quad \text { on } \quad R^{n},
$$

where M_{1} is a positive constant so chosen that $H(x) \leqq M_{1} h_{j}$ for $x \in \bar{B}_{j}$. If $x \in \bar{B}_{j}$, then

$$
R_{\alpha} \mu(x) \geqq R_{\alpha} \mu_{j}(x)+M_{2} \sum_{k \neq j} \min \left\{a_{j}, a_{k}\right\} \mu\left(B_{k}\right),
$$

so that

$$
R_{\alpha} \mu_{j} \leqq 2^{n-\alpha}\left\{M_{1} h_{j}-M_{2} \sum_{k \neq j} \min \left\{a_{j}, a_{k}\right\} \mu\left(B_{k}\right)\right\}
$$

where M_{2} is a positive constant and $B_{j}=B\left(0,2^{-j}\right)-B\left(0,2^{-j-1}\right)$. Hence it follows that

$$
\begin{aligned}
R_{\alpha} \mu(x) & \leqq R_{\alpha} \mu_{j-1}(x)+R_{\alpha} \mu_{j+1}(x)+R_{\alpha} \mu_{j}(x)+M_{3} \sum_{k \neq j} \min \left\{a_{j}, a_{k}\right\} \mu\left(B_{k}\right) \\
& \leqq 2^{n-\alpha} M_{1}\left(h_{j-1}+h_{j+1}\right)+M_{4} h_{j} \leqq M_{5} H(x)
\end{aligned}
$$

for $x \in B_{j}$, where M_{3}, M_{4} and M_{5} are positive constants. Thus the conclusion of the remark follows by noting that the constants $M_{1} \sim M_{5}$ are determined independently of μ.

Finally it is noted that the next statements are equivalent:
(i) $\sum_{j=1}^{\infty} a_{j}^{2} C_{\alpha}\left(E_{j}\right)<\infty$.
(ii) There exists a nonnegative measure μ with support in $B(0,1)$ such that $R_{\alpha} \mu(0)<\infty$ and

$$
\lim _{x \rightarrow 0, x \in E} R_{\alpha}(x)^{-1} R_{\alpha} \mu(x)=\infty .
$$

(iii) There exists a nonnegative measure μ with support in $B(0,1)$ such that $R_{\alpha} \mu(0)<\infty, R_{\alpha} \mu(x) \geqq R_{\alpha}(x)$ on $E \cap B\left(0,2^{-1}\right)$ and $R_{\alpha} \mu(x) \leqq R_{\alpha}(x)$ on S_{μ}.

In fact, (i) implies (ii) by Lemma 3; (iii) follows from (ii) in view of the proof of Theorem 3; (iii) implies (i) by Proposition 6.

Further (i), (ii) and (iii) are equivalent to
(iv) There exist a nonnegative measure μ with support in $B(0,1)$ and unit mass and a number γ such that $R_{\alpha} \mu(0)<\infty, R_{\alpha} \mu(x) \geqq R_{\alpha}(x)+\gamma$ on $E \cap B\left(0,2^{-1}\right)$ and $R_{\alpha} \mu(x) \leqq R_{\alpha}(x)+\gamma$ on S_{μ}.

In case $\alpha=n=2$, this result gives Theorem 3 in [8] by considering the inversion with respect to the surface $\partial B(0,1)$.

References

[1] M. Brelot, On topologies and boundaries in potential theory, Lecture Notes in Math. 175, Springer, Berlin, 1971.
[2] S. Kametani, Positive integral quadratic forms and generalized potentials, Proc. Imp. Acad. Tokyo 20 (1944), 7-14.
[3] N. S. Landkof, Foundations of modern potential theory, Springer, Berlin, 1972.
[4] J. Lelong-Ferrand, Étude au voisinage de la frontière des fonctions surharmoniques positives dans un demi-espace, Ann. Sci. École Norm. Sup. 66 (1949), 125-159.
[5] Y. Mizuta, Minimally semi-fine limits of Green potentials of general order, Hiroshima Math. J. 12 (1982), 505-511.
[6] Y. Mizuta, On semi-fine limits of potentials, Analysis 2 (1982), 115-139.
[7] Y. Mizuta, Study of the behavior of logarithmic potentials by means of logarithmically thin sets, Hiroshima Math. J. 14 (1984), 227-246.
[8] Y. Mizuta, On the behavior at infinity of logarithmic potentials, J. Math. Soc. Japan 36 (1984), 475-481.
[9] J.-M. G. Wu, Minimum growth of harmonic functions and thinness of a set, Math. Proc. Cambridge Philos. Soc. 95 (1984), 123-133.

Faculty of Integrated Arts and Sciences, Hiroshima University

