On the growth of α -potentials in R^n and thinness of sets

Yoshihiro MIZUTA

(Received December 11, 1984)

1. Introduction

In the *n*-dimensional euclidean space R^n , we define the α -potential of a nonnegative (Radon) measure μ by

$$R_{\alpha}\mu(x) = \int R_{\alpha}(x-y)d\mu(y),$$

where $R_{\alpha}(x) = |x|^{\alpha-n}$ if $0 < \alpha < n$ and $R_n(x) = \log(1/|x|)$. Then it is easy to see that $|R_{\alpha}\mu| \neq \infty$ if and only if

(1)
$$\int (1+|y|)^{\alpha-n} d\mu(y) < \infty \quad \text{in case } \alpha < n,$$
$$\int \log (2+|y|) d\mu(y) < \infty \quad \text{in case } \alpha = n.$$

Let h be a positive and nonincreasing function on the interval $(0, \infty)$ such that $h(r) \leq \text{const.} h(2r)$ for r > 0. In this paper, we first discuss the behavior of $h(|x|)^{-1}R_{\alpha}\mu(x)$ at the origin, in connection with the growth of the mean value of $R_{\alpha}\mu$ over the open balls centered at the origin. In our discussions, the aim is to find a criterion of the exceptional set E for which $h(|x|)^{-1}R_{\alpha}\mu(x)$ has limit zero or remains bounded above as x tends to 0 outside E. Our results obtained below will be similar to the characterizations of minimal thinness ([4]), minimal semithinness ([5], [6]) and logarithmical thinness and semithinness ([7]).

The thinness can be defined in terms of the α -capacity, like the expression of Wiener's criterion (see e.g. Brelot [1] and Landkof [3]). In this paper, letting B(x, r) denote the open ball with center at x and radius r, we define the α -capacity of a set E in $B(0, 2^{-1})$ by

$$C_{\alpha}(E) = \inf \mu(R^n),$$

where the infimum is taken over all nonnegative measures μ with support in B(0, 1) such that $R_{\alpha}\mu(x) \ge 1$ for every $x \in E$.

The exceptional set E appeared in the discussion will satisfy the condition that $h_i^{-1} \sum_{j=1}^{\infty} h_j \min \{a_i, a_j\} C_{\alpha}(E_j)$ is bounded or has limit zero as $i \to \infty$, where $h_j = h(2^{-j}), a_j = 2^{j(n-\alpha)}$ if $\alpha < n, a_j = j$ if $\alpha = n$ and $E_j = E \cap B(0, 2^{-j}) - B(0, 2^{-j-1})$. For particular choices of h, the condition means the α -thinness of E, the α -semithinness of E and so on.

Further we discuss the best possibility of our results as to the size of the exceptional sets; that is, if E satisfies the above condition, then we find a non-negative measure μ such that μ satisfies the required properties but $R_{\alpha}\mu$ behaves ill on E. When we want to find μ with finite energy, the above type condition only is not sufficient. To do so, we require an additional condition on E and show the existence of a nonnegative measure μ satisfying

(i)
$$\int R_{\alpha}\mu d\mu < \infty$$
,

(ii) $R_{\alpha}\mu(x) \leq h(|x|)$ for any $x \in S_{\mu}$ (the support of μ)

and

(iii)
$$R_{\alpha}\mu(x) \ge h(|x|)$$
 for any $x \in E$.

By considering the inversion with respect to $\partial B(0, 1)$, our results will give a generalization of the results in [8], which deal with the existence of equilibrium measure of a closed set in the plane R^2 .

2. Behaviors at the origin of α -potentials

If u is a function integrable on B(0, r), then we define

$$A(u, 0, r) = \frac{1}{|B(0, r)|} \int_{B(0, r)} u(y) \, dy,$$

where |B(0, r)| denotes the *n*-dimensional Lebesgue measure of B(0, r).

The following result can be easily proved.

LEMMA 1. Let $\phi_{\alpha}(r) = R_{\alpha}(x)$ for r = |x|, and $R_{\alpha,y}(x) = R_{\alpha}(x-y)$. Then there exist positive constants c_1 and c_2 such that

$$c_1 \min \{\phi_{\alpha}(r), R_{\alpha}(y)\} \leq A(R_{\alpha,y}, 0, r) \leq c_2 \min \{\phi_{\alpha}(r), R_{\alpha}(y)\}$$

whenever $r \leq 1/2$ and $|y| \leq 1/2$.

Throughout this paper, we write $a_j = \phi_{\alpha}(2^{-j})$ for each integer j. First we give the following result (cf. [5], [6], [7]).

THEOREM 1. Let h be a positive and nonincreasing function on the interval $(0, \infty)$ such that $h(r) \leq \text{const. } h(2r)$ for r > 0, and let μ be a nonnegative measure on \mathbb{R}^n satisfying (1). Then the following statements are equivalent:

(i) $A(R_{\alpha}\mu, 0, r) \leq \text{const. } h(r) \quad \text{for } 0 < r < 1.$

(ii) If $1 \le p < n/(n-\alpha)$, then $A(|R_{\alpha}\mu|^{p}, 0, r)^{1/p} \le \text{const. } h(r)$ for 0 < r < 1.

(iii) There exists a sequence $\{x^{(j)}\}$ such that $\lim_{j\to\infty} x^{(j)} = 0$, $|x^{(j)}| \le \text{const.} |x^{(j+1)}|$ and $R_{\alpha}\mu(x^{(j)}) \le \text{const.} h(|x^{(j)}|)$ for each j.

On the growth of α -potentials in \mathbb{R}^n and thinness of sets

- (iv) For $\varepsilon > 0$, there exists a set $E \subset B(0, 2^{-1})$ such that
- (a) $\sum_{i=1}^{\infty} h_i \min\{a_i, a_k\} C_a(E_i) \leq \varepsilon h_k$ for each k;
- (b) $\limsup_{x\to 0, x\notin E} h(|x|)^{-1}R_{\alpha}\mu(x) < \infty,$

where $h_j = h(2^{-j})$ and $E_j = E \cap B(0, 2^{-j}) - B(0, 2^{-j-1})$.

PROOF. We write $R_{\alpha}\mu = u + v$, where

$$u(x) = \int_{B(0,1/2)} R_{\alpha}(x-y)d\mu(y),$$
$$v(x) = \int_{R^n - B(0,1/2)} R_{\alpha}(x-y)d\mu(y).$$

Then it follows from (1) that v(x) is continuous on B(0, 1/4). Hence it suffices to prove the equivalence between (i) \sim (iv) with $R_{\alpha}\mu$ replaced by u. By Lemma 1, we have

$$c_{1} \int_{B(0,1/2)} \min \{\phi_{\alpha}(r), R_{\alpha}(y)\} d\mu(y) \leq A(u, 0, r)$$
$$\leq c_{2} \int_{B(0,1/2)} \min \{\phi_{\alpha}(r), R_{\alpha}(y)\} d\mu(y)$$

for r < 1/2.

By Hölder's inequality we have

$$A(u, 0, r) \leq A(u^{p}, 0, r)^{1/p}$$
 for $r < 1/2$,

if $p \ge 1$. Conversely, we derive from Minkowski's inequality,

$$A(u^{p}, 0, r)^{1/p} \leq \int_{B(0, 1/2)} A(R^{p}_{\alpha, y}, 0, r)^{1/p} d\mu(y)$$
$$\leq \text{const.} \int_{B(0, 1/2)} \min \{\phi_{\alpha}(r), R_{\alpha}(y)\} d\mu(y)$$

for r < 1/2 and $p, 1 \le p < n/(n-\alpha)$. Thus (i) and (ii) are equivalent.

Assume that (i) holds. Then

(2)
$$\sum_{j=1}^{\infty} \min \{a_j, a_k\} \mu(B_j) \leq \text{const. } h_k \quad \text{for each} \quad k,$$

where $B_j = B(0, 2^{-j}) - B(0, 2^{-j-1})$. Letting $\tilde{B}_j = B_{j-1} \cup B_j \cup B_{j+1}$ and $\varepsilon > 0$, we consider the sets

$$E_j = \left\{ x \in B_j; \int_{B_j} R_{\alpha}(x-y) d\mu(y) \ge \varepsilon^{-1} h_j \right\} \text{ and } E = \bigcup_{j=2}^{\infty} E_j.$$

Then it follows from the definition of $C_{\alpha}(\cdot)$ that

$$C_{\alpha}(E_j) \leq \varepsilon h_j^{-1} \mu(\tilde{B}_j).$$

In view of (2), E satisfies condition (a) of (iv). On the other hand,

$$\int_{B(0,1/2)-\tilde{B}_k} R_{\alpha}(x-y) d\mu(y) \leq \text{const.} \ \sum_{j=1}^{\infty} \min \{a_j, a_k\} \mu(\tilde{B}_j) \leq \text{const.} \ h_k$$

whenever $x \in B_k$, and

$$\int_{\mathcal{B}_k} R_{\alpha}(x-y) d\mu(y) < \varepsilon^{-1} h_k$$

for $x \in B_k - E_k$, so that (b) of (iv) is fulfilled. Thus (i) implies (iv).

Assume that $\{x^{(j)}\}\$ satisfies all the conditions in (iii), and define $r_j = |x^{(j)}|$. By Lemma 1, we have

$$A(u, 0, r_j) \leq \text{const. } u(x^{(j)}) \leq \text{const. } h(r_j) \quad \text{for large } j.$$

Take M > 1 such that $r_j \leq M r_{j+1}$ for each j, and note that

$$(0, M^{-1}r_1] \subset \bigcup_{i=1}^{\infty} [M^{-1}r_i, Mr_i].$$

If $M^{-1}r_i \leq r < Mr_i$, then Lemma 1 again gives

$$A(u, 0, r) \leq \text{const. } A(u, 0, Mr_i) \leq \text{const. } h(r_i) \leq \text{const. } h(r)$$

Consequently, we have proved that (iii) implies (i).

Finally assume that (iv) is true. Note that

$$c^{-1}a_j^{-1} \leq C_{\alpha}(B_j) \leq ca_j^{-1}$$

for any j, where c is a positive constant. For $\varepsilon = c^{-1}$, take a set E satisfying property (b) and

$$\sum_{j=1}^{\infty} h_j \min\{a_j, a_k\} C_{\alpha}(E_j) < c^{-1}h_k \quad \text{for each} \quad k$$

Then $B_j - E_j$ is not empty. Letting $x^{(j)} \in B_j - E_j$, we see easily that (iii) holds for $\{x^{(j)}\}$. Thus (iv) implies (iii), and hence the proof of the theorem is complete.

THEOREM 2. Let h and μ be as in Theorem 1. Then the following statements are equivalent:

(i) $\lim_{r \downarrow 0} h(r)^{-1} A(R_{\alpha}\mu, 0, r) = 0.$

(ii) For $1 \leq p < n/(n-\alpha)$, $\lim_{r \downarrow 0} h(r)^{-1} A((R_{\alpha}\mu)^{p}, 0, r)^{1/p} = 0$.

(iii) There exists a sequence $\{x^{(j)}\}$ such that $\lim_{j\to\infty} x^{(j)} = 0$, $|x^{(j)}| \leq \text{const.} |x^{(j+1)}|$ for each j and $\lim_{j\to\infty} h(|x^{(j)}|)^{-1}R_{\alpha}\mu(x^{(j)}) = 0$.

(iv) There exists a set $E \subset B(0, 2^{-1})$ such that

- (a) $\lim_{k\to\infty} h_k^{-1} \sum_{j=1}^{\infty} h_j \min\{a_j, a_k\} C_{\alpha}(E_j) = 0;$
- (b) $\lim_{x\to 0, x\notin E} h(|x|)^{-1} R_{\alpha} \mu(x) = 0.$

PROOF. Since the proof can be carried out in a way similar to that of Theorem 1, we shall give only a proof of the implication $(i) \rightarrow (iv)$. Assume that (i) holds.

Then, as in the proof of Theorem 1, we obtain

(3)
$$\lim_{k \to \infty} h_k^{-1} \sum_{j=1}^{\infty} \min \{a_j, a_k\} \mu(\tilde{B}_j) = 0.$$

Set $\varepsilon_k = h_k^{-1} \sum_{j=1}^{\infty} \min \{a_j, a_k\} \mu(\tilde{B}_j)$, and find a sequence $\{b_j\}$ of positive numbers such that $b_j \leq b_{j+1} \leq 2b_j$, $b_j \leq \varepsilon_j^{-1/2}$,

$$\sum_{j=k}^{\infty} b_j \min \{a_j, a_k\} \mu(\tilde{B}_j) \leq 2b_k \sum_{j=k}^{\infty} \min \{a_j, a_k\} \mu(\tilde{B}_j)$$

for each k and $\lim_{k\to\infty} b_k = \infty$ (see [7; Lemma 6]). Then (3) is fulfilled with $\mu(\tilde{B}_i)$ replaced by $b_i\mu(\tilde{B}_i)$. As in the previous proof, define

$$E_j = \left\{ x \in B_j; \int_{\bar{B}_j} R_{\alpha}(x-y) d\mu(y) \ge b_j^{-1} h_j \right\} \text{ and } E = \bigcup_{j=1}^{\infty} E_j.$$

Then it is easy to see that (a) and (b) hold for this E, and hence (iv) holds. Thus the proof of Theorem 2 is established.

REMARK 1. Let $\alpha > 1$. Then $\limsup_{r \downarrow 0} h(r)^{-1}A(R_{\alpha}\mu, 0, r) < \infty$ (resp. =0) if and only if $\limsup_{r \downarrow 0} h(r)^{-1}S(R_{\alpha}\mu, 0, r) < \infty$ (resp. =0), where

$$S(u, 0, r) = \frac{1}{\sigma(\partial B(0, r))} \int_{\partial B(0, r)} u(y) d\sigma(y),$$

 σ denoting the surface measure on the boundary $\partial B(0, r)$.

REMARK 2. If $h \equiv 1$ or if $h(r) = \max \{\phi_{\alpha}(r), 1\}$, then (a) of (iv) in Theorem 1 implies

$$\sum_{j=1}^{\infty}a_jC_{\alpha}(E_j)<\infty,$$

which means that E is α -thin at 0 (cf. [1], [3]).

REMARK 3. If h satisfies the additional conditions:

$$\int_0^r h(s)s^{n-\alpha-1} ds \leq \text{const. } h(r)r^{n-\alpha} \text{ and } \int_r^1 h(s)s^{-1}ds \leq \text{const. } h(r)$$

for r < 1, then (a) of (iv) in Theorem 1 can be replaced by

(a') $a_j C_{\alpha}(E_j) < \varepsilon$ for all j;

and (a) of (iv) in Theorem 2 is equivalent to

(a") $\lim_{i\to\infty} a_i C_{\alpha}(E_i) = 0.$

If (a'') holds, then E is said to be α -semithin at 0 (cf. [6]). We note that

$$h(r) = \begin{cases} r^{-a}(\log{(r+1)})^b & \text{for } r < r_0, \\ \\ r_0^{-a}(\log{(r_0+1)})^b & \text{for } r \ge r_0, \end{cases}$$

satisfies all the conditions mentioned above if $0 < a < n-\alpha$, $-\infty < b < \infty$ and r_0 is chosen so that h is nonincreasing.

3. Thinness of sets

The proof of the implication (i) \rightarrow (iv) in Theorem 1 shows the following: We can find $c_1, c_2 > 0$ such that if $0 < \varepsilon < c_1$ and E is a subset of $B(0, 2^{-1})$ for which there exists a nonnegative measure v satisfying

(i)
$$A(R_{\alpha}v, 0, r) \leq \varepsilon h(r)$$
 for $0 < r < 1$

and

(ii)
$$R_{\alpha}v(x) \ge h(|x|)$$
 for any $x \in E$,

then

$$\sum_{i=1}^{\infty} h_i \min \{a_i, a_k\} C_{\alpha}(E_i) \leq c_2 \varepsilon h_k \quad \text{for any} \quad k.$$

Conversely we establish the following result, which serves as showing the best possibility of Theorem 1 as to the size of the exceptional sets.

PROPOSITION 1. Let h be a positive and nonincreasing function on the interval $(0, \infty)$ such that $h(r) \leq Mh(2r)$ and $\int_{0}^{r} h(s)s^{n-1}ds \leq Mh(r)r^{n}$ for any r > 0, where M is a positive constant. Let E be a subset of $B(0, 2^{-1})$ satisfying (a) of Theorem 1, (iv) for some $\varepsilon > 0$. Then there exists a nonnegative measure v with support in B(0, 1) such that

(i)
$$A(R_{\alpha}v, 0, r) \leq c \varepsilon h(r)$$
 for $0 < r < 1/2$

and

(ii)
$$R_{\alpha}v(x) \ge h(|x|)$$
 for any $x \in E$,

where c is a positive constant independent of ε and E.

PROOF. By [3; Theorem 2.7], for each positive integer j we can find a nonnegative measure v_j such that $S_{v_j} \subset \tilde{B}_j$, $v_j(\tilde{B}_j) < C_{\alpha}(E_j) + \delta_j$ and $R_{\alpha}v_j(x) \ge 1$ for every $x \in E_j$, where $\{\delta_i\}$ is a sequence of positive numbers such that

$$\sum_{j=1}^{\infty} h_j \min \{a_j, a_k\} [C_{\alpha}(E_j) + \delta_j] \leq 2\varepsilon h_k \quad \text{for each} \quad k.$$

Define

$$v = \sum_{j=1}^{\infty} h_{j+1} v_j.$$

Then v is a nonnegative measure with support in B(0, 1) and

On the growth of α -potentials in \mathbb{R}^n and thinness of sets

$$\int_{B_k} R_a v(x) dx = \int R_a \chi_{B_k} dv \leq \text{const. } 2^{-kn} \sum_{j=1}^{\infty} h_j \min \{a_j, a_k\} v_j(R^n)$$
$$\leq \text{const. } \varepsilon \ 2^{-kn} h_k,$$

where χ_A denotes the characteristic function of a measurable set A. Since $\int_0^r h(s)s^{n-1}ds \leq Mh(r)r^n$, $\sum_{k=\ell}^{\infty} 2^{-kn}h_k \leq \text{const. } 2^{-\ell n}h_\ell$, so that (i) holds. Clearly, $R_xv(x) \geq h(|x|)$ for every $x \in E$. Thus v satisfies all assertions in the proposition.

Theorem 2, (iv) is also best possible as to the size of the exceptional set.

PROPOSITION 2. Let h be as in Proposition 1. If E satisfies (a) of Theorem 2, (iv), then there exists a nonnegative measure v with support in B(0, 1) such that

- (i) $\lim_{r\downarrow 0} h(r)^{-1}A(R_{\alpha}v, 0, r) = 0;$
- (ii) $\lim_{x\to 0, x\in E} h(|x|)^{-1} R_{\alpha} v(x) = \infty.$

PROOF. Let $\varepsilon_k = h_k^{-1} \sum_{j=1}^{\infty} h_j \min \{a_j, a_k\} C_{\alpha}(E_j)$, and take a sequence $\{b_j\}$ of positive numbers such that $\lim_{j \to \infty} b_j = \infty$, $b_j \le b_{j+1} \le 2b_j$, $b_j \le \varepsilon_j^{-1/2}$ and

$$\sum_{k=j}^{\infty} b_k h_k C_{\alpha}(E_k) \leq 2b_j \sum_{k=j}^{\infty} h_k C_{\alpha}(E_k)$$

for any positive integer j (cf. [7; Lemma 6]). Then

(4)
$$\lim_{k \to \infty} h_k^{-1} \sum_{j=1}^{\infty} b_j h_j \min\{a_j, a_k\} C_{\alpha}(E_j) = 0.$$

As in the proof of Proposition 1, for each *j* take a nonnegative measure v_j such that $S_{v_j} \subset \tilde{B}_j$, $v_j(\tilde{B}_j) < C_{\alpha}(E_j) + \delta_j$ and $R_{\alpha}v_j(x) \ge 1$ for any $x \in E_j$, where $\{\delta_j\}$ is a sequence of positive numbers satisfying (4) with $C_{\alpha}(E_j)$ replaced by $C_{\alpha}(E_j) + \delta_j$. Define

$$v = \sum_{j=1}^{\infty} b_j h_j v_j.$$

Then $R_{\alpha}v(x) \ge b_i h_i R_{\alpha}v_i(x) \ge b_i h_i$ for $x \in E_i$, and

$$\int_{B_k} R_{\alpha} v(x) dx \leq \text{const.} \ 2^{-kn} \sum_{j=1}^{\infty} b_j h_j \min \{a_j, a_k\} v_j(\widetilde{B}_j),$$

from which it follows that v satisfies (i) and (ii). Thus the proof of Proposition 2 is complete.

We here give several properties which are equivalent to the α -thinness. For this purpose, denote by \mathscr{H} the family of functions h on $(0, \infty)$ which is positive and nonincreasing on $(0, \infty)$ such that $h(r)\phi_{\alpha}(r)^{-1}$ is nondecreasing on $(0, \infty)$ and $\lim_{r \to 0} h(r) = \infty$.

PROPOSITION 3. Let $E \subset \mathbb{R}^n$. Then the following statements are equivalent.

(i) E is α -thin at 0.

(ii) $\lim_{k\to\infty} h_k^{-1} \sum_{j=1}^{\infty} h_j \min\{a_j, a_k\} C_{\alpha}(E_j) = 0$ for any $h \in \mathcal{H}$.

(iii) $\sum_{j=1}^{\infty} h_j \min\{a_j, a_k\} C_{\alpha}(E_j) \leq \text{const. } h_k$ for any positive integer k whenever $h \in \mathscr{H}$.

(iv) For any $h \in \mathcal{H}$, there exists a nonnegative measure v with compact support such that

(a) $\lim_{r\downarrow 0} h(r)^{-1}A(R_{\alpha}v, 0, r) = 0;$

(b) $R_{\alpha}v(x) \ge h(|x|)$ for any $x \in E \cap B(0, 1)$.

(v) For any $h \in \mathcal{H}$, there exists a nonnegative measure v with compact support for which $\lim_{x\to 0, x\in E} h(|x|)^{-1}R_{\alpha}v(x) = \infty$.

PROOF. First assume that E is α -thin at 0. For $\varepsilon > 0$, take j_0 such that $\sum_{j=j_0}^{\infty} a_j C_{\alpha}(E_j) < \varepsilon$. Since h_k increases to infinity,

$$\limsup_{k \to \infty} h_k^{-1} \sum_{j=1}^k h_j a_j C_{\alpha}(E_j) = \limsup_{k \to \infty} h_k^{-1} \sum_{j=j_0}^k h_j a_j C_{\alpha}(E_j)$$
$$\leq \limsup_{k \to \infty} \sum_{j=j_0}^k a_j C_{\alpha}(E_j) < \varepsilon.$$

On the other hand, since $h_i a_i^{-1}$ is nonincreasing, we have

$$\limsup_{k\to\infty} h_k^{-1} \sum_{j=k}^\infty h_j a_k C_\alpha(E_j) = \limsup_{k\to\infty} a_k h_k^{-1} \sum_{j=k}^\infty (h_j a_j^{-1}) a_j C_\alpha(E_j) = 0.$$

Thus (i) implies (ii). Clearly (ii) implies (iii). Since (iii) implies (i) by Remark 2 after Theorem 2, (i), (ii) and (iii) are equivalent to each other.

In view of Proposition 2, we infer that (ii) implies (iv) and (v). It follows from Theorem 2 that (iv) implies (ii).

From [1; Theorem IX, 7] we see that E is α -thin at 0 if and only if there exists a nonnegative measure v satisfying (1) and

$$\lim_{x\to 0, x\in E} R_{\alpha}(x)^{-1}R_{\alpha}v(x) > v(\{0\}).$$

Since $\phi_a \in \mathcal{H}$, (v) implies (i), and hence the proof of Proposition 3 is complete.

REMARK. Let E be a closed set in $B(0, 2^{-1})$. Then the following statements are equivalent (cf. Wu [9; Theorems 1 and 2]):

(i) E is α -thin at 0.

(ii) For any $h \in \mathcal{H}$, there eixsts a nonnegative measure v with support in E such that

(a) $\lim_{r\downarrow 0} h(r)^{-1} A(R_{\alpha}v, 0, r) = 0;$

(b) $R_{\alpha}v(x) \ge h(|x|)$ for any $x \in E$ except those in a set with vanishing α -capacity.

(iii) For any $h \in \mathcal{H}$, there exists a nonnegative measure v with support in E such that $\lim_{x\to 0, x\in E-A} h(|x|)^{-1}R_{\alpha}v(x) = \infty$, where $C_{\alpha}(A) = 0$.

Denote by \mathscr{H}^* the family of all positive and nonincreasing functions h on

 $(0, \infty)$ satisfying the following conditions:

(a)
$$h(r) \leq Mh(2r)$$
 for $r > 0$;
(b) $\int_{r}^{\infty} h(s)s^{-1}ds \leq Mh(r)$ for $r > 0$;
(c) $\int_{r}^{r} h(s)s^{n-\alpha-1}ds \leq Mh(r)r^{n-\alpha}$ for $r > 0$,

where M is a positive constant.

PROPOSITION 4 (cf. [6; Theorem 2]). Let $E \subset \mathbb{R}^n$. Then the following statements are equivalent:

- (i) E is α -semithin at 0.
- (ii) $\lim_{k\to\infty} h_k^{-1} \sum_{j=1}^{\infty} h_j \min\{a_j, a_k\} C_a(E_j) = 0$ for any $h \in \mathscr{H}^*$.

(iii) For any $h \in \mathscr{H}^*$, there exists a nonnegative measure v with compact support such that

- (a) $\lim_{r\downarrow 0} h(r)^{-1}A(R_{\alpha}v, 0, r) = 0;$
- (b) $\lim_{x\to 0, x\in E} h(|x|)^{-1} R_{\alpha} v(x) = \infty$.

This proposition can be proved in a way similar to the proof of Proposition 3, so we omit its proof (cf. Remark 3 after Theorem 2).

4. α -potentials with finite energy

We say that a nonnegative measure μ has finite α -energy if

$$\langle \mu, \mu \rangle_{\alpha} \equiv \int R_{\alpha} \mu d\mu < \infty;$$

in case n=2, μ is assumed to have compact support.

THEOREM 3. Let μ be a nonnegative measure with support in B(0, 1) such that $\langle \mu, \mu \rangle_a < \infty$ and

$$A(R_{\alpha}\mu, 0, r) \leq h(r) \quad \text{for any} \quad r > 0,$$

where h is a function on $(0, \infty)$ as in Theorem 1. Then for any $\varepsilon > 0$, there exists a set $E \subset B(0, 2^{-1})$ possessing the following properties:

- (a) $\sum_{j=1}^{\infty} h_j \min \{a_j, a_k\} C_{\alpha}(E_j) \leq \varepsilon h_k$ for any k.
- (b) $\sum_{i,k=1}^{\infty} h_i h_k \min \{a_i, a_k\} C_{\alpha}(E_i) C_{\alpha}(E_k) < \infty$.
- (c) $\limsup_{x\to 0, x\notin E} h(|x|)^{-1} R_{\alpha} \mu(x) < \infty.$

This theorem can be proved in the same way as the implication $(i) \rightarrow (iv)$ of Theorem 1; so we omit its proof.

REMARK. By Theorem 3 one can find c_1 , $c_2 > 0$ such that if $0 < \varepsilon < c_1$ and E is a subset of $B(0, 2^{-1})$ for which there exists a nonnegative measure v in B(0, 1) satisfying

(i) $\langle v, v \rangle_{\alpha} < \infty$, (ii) $A(R_{\alpha}v, 0, r) \leq \varepsilon h(r)$ for any r > 0

and

(iii) $R_{\alpha}v(x) \ge h(|x|)$ for any $x \in E$, then E satisfies

(a) $\sum_{j=1}^{\infty} h_j \min \{a_j, a_k\} C_{\alpha}(E_j) \leq c_2 \varepsilon h_k$ for any k and

(b) $\sum_{j,k=1}^{\infty} h_j h_k \min \{a_j, a_k\} C_{\alpha}(E_j) C_{\alpha}(E_k) < \infty$.

We do not know whether Theorem 3 is best possible as to the size of the exceptional set or not. We shall prove only the following result.

PROPOSITION 5. Let E be a subset of $B(0, 2^{-1})$ satisfying (a) in Theorem 3 for some $\varepsilon > 0$ and

(b') $\sum_{i=1}^{\infty} h_i^2 C_{\alpha}(E_i) < \infty$.

Then there exists a nonnegative measure v with support in B(0, 1) such that $\langle v, v \rangle_{\alpha} < \infty$ and

$$\lim_{x\to 0, x\in E} h(|x|)^{-1} R_{\alpha} v(x) = \infty.$$

REMARK 1. If E satisfies (a) and (b'), then it also satisfies (b). In case $\{a_j/h_j\}$ is bounded above, (b') implies (a) for any $\varepsilon < 0$; but, in general, the converse is not true.

REMARK 2. Let $h_j = a_j^{\beta}$ for $\beta > 0$. If $\beta < 1$, then we can find a positive constant c such that

$$\sum_{i=1}^{\infty} h_i \min \{a_i, a_k\} C_{\alpha}(E_i) \leq ch_k \quad \text{for any} \quad k,$$

whenever $E \subset B(0, 2^{-1})$; if $\beta < 1/2$, then (b') holds for any set $E \subset B(0, 2^{-1})$.

PROOF OF PROPOSITION 5. Let *E* be as in the proposition. Then, in view of [7; Lemma 6], we can construct a sequence $\{b_j\}$ of positive numbers such that $\lim_{j\to\infty} b_j = \infty$, $b_k \le b_{k+1} \le 2b_k$,

(5)
$$\sum_{j=1}^{\infty} b_j h_j \min \{a_j, a_k\} C_{\alpha}(E_j) \leq \text{const. } b_k h_k$$

and

(6)
$$\sum_{i=1}^{\infty} b_i^2 h_i^2 C_{\alpha}(E_i) < \infty.$$

Take a sequence $\{\delta_j\}$ of positive numbers which satisfies (5) and (6) with $C_{\alpha}(E_j)$ replaced by $C_{\alpha}(E_j) + \delta_j$. By [3; Theorem 2.7], for each *j* we can find a nonnegative measure v_j such that $S_{\nu_j} \subset \tilde{B}_j$, $v_j(\tilde{B}_j) < C_{\alpha}(E_j) + \delta_j$, $R_{\alpha}v_j(x) \ge 1$ for any $x \in E_j$ and $R_{\alpha}v_j(x) \le 2^{n-\alpha}$ for every $x \in \mathbb{R}^n$. Define

On the growth of α -potentials in \mathbb{R}^n and thinness of sets

$$v = \sum_{j=1}^{\infty} b_j h_j v_j.$$

Then $R_{\alpha}v(x) \ge b_k h_k R_{\alpha}v_k(x) \ge b_k h_k$ for $x \in E_k$ and

$$R_{\alpha}v(x) = \sum_{j=1}^{\infty} b_j h_j R_{\alpha}v_j(x) \leq \text{const.} \left\{ \sum_{j=1}^{k-2} b_j h_j a_j v_j(\tilde{B}_j) + \sum_{j=k-1}^{k+1} b_j h_j \right.$$
$$\left. + \sum_{j=k+2}^{\infty} b_j h_j a_k v_j(\tilde{B}_j) \right\} \leq \text{const.} b_k h_k$$

for $x \in B_k$. Hence it follows that $\lim_{x \to 0, x \in E} h(|x|)^{-1} R_{\alpha} v(x) = \infty$ and

$$\langle v, v \rangle_{\alpha} = \sum_{k=1}^{\infty} b_k h_k \int R_{\alpha} v dv_k \leq \text{const.} \sum_{k=1}^{\infty} b_k^2 h_k^2 v_k(\tilde{B}_k) < \infty.$$

Thus v satisfies all the conditions required in the proposition, and the proposition is proved.

Gauss variation 5.

Throughout this section, let f be a continuous function in $\mathbb{R}^n - \{0\}$ such that

(7)
$$\sup_{B_j} |f| \leq \text{const. inf}_{B_{j-1}} |f|,$$

where $B_j = B(0, 2^{-j}) - B(0, 2^{-j-1})$ as before. Define

$$f_i = \sup_{B_i} |f|$$

and

$$h_i = \max\{f_1, \dots, f_i\}.$$

By (7), $h_j \leq h_{j+1} \leq \text{const. } h_j$ for any positive integer j.

Our main result in this section is the following.

THEOREM 4. Let E be a subset of $B(0, 2^{-1})$ possessing the following properties:

(a) $\sum_{i=1}^{\infty} h_i \min \{a_i, a_k\} C_{\alpha}(E_i) \leq \text{const.} h_k$ for each k;

(b)
$$\sum_{j=1}^{\infty} h_j^2 C_{\alpha}(E_j) < \infty$$
,

where $a_i = \phi(2^{-j})$ and $E_i = E \cap B_i$ as before. Then there exists a nonnegative measure μ with support in B(0, 1) such that

- (i) $R_{\alpha}\mu(x) \ge f(x)$ for any $x \in E \{0\}$; (ii) $R_{\alpha}\mu(x) \le f(x)$ for any $x \in S_{\mu} \{0\}$;

(iii)
$$\langle \mu, \mu \rangle_{\alpha} \equiv \int R_{\alpha} \mu d\mu < \infty$$
.

Without loss of generality, we may assume that $h_j > 0$ for any j. Let h be a nonincreasing and continuous function on $(0, \infty)$ such that $h(2^{-j}) = h_j$ for each j.

PROOF OF THEOREM 4. Since $C_{\alpha}(\cdot)$ is an outer capacity, there exists an open

set G such that $E - \{0\} \subset G \subset B(0, 2^{-1}) - \{0\}$ and (a), (b) in Theorem 4 hold for E = G. Denote by U(G) the family of all nonnegative measures μ such that $S_{\mu} \subset G$ and $\langle \mu, \mu \rangle_{\alpha} < \infty$. Define

$$V(\mu) = \langle \mu, \mu \rangle_{\alpha} - 2 \int f d\mu,$$

and consider

$$a = \inf \{ V(\mu); \mu \in U(G) \}.$$

Take a nonnegative measure ν as in Proposition 5 with E replaced by G. Here we may assume that $S_{\nu} \subset B(0, 4^{-1})$. Then we obtain for $\mu \in U(G)$,

$$\int h(|x|)d\mu(x) \leq M \int R_{\alpha} v d\mu \leq 2^{-1} \left(\langle \mu, \mu \rangle_{\alpha} + M^2 \langle \nu, \nu \rangle_{\alpha} \right),$$

which implies that

$$V(\mu) \geq -M^2 \langle v, v \rangle_{\alpha},$$

where *M* is a positive constant. Hence the quantity *a* is finite. Take a sequence $\{\mu_j\}$ of nonnegative measures in U(G) such that $\lim_{j\to\infty} V(\mu_j) = a$. Then it is easy to see that $\{\langle \mu_j, \mu_j \rangle_{\alpha}\}$, and hence $\{\int h(|x|)d\mu_j(x)\}$, is bounded. It follows that $\{\mu_j(G)\}$ is bounded, and hence we may assume that $\{\mu_j\}$ converges vaguely to a nonnegative measure μ_0 . Note here that $\langle \mu_0, \mu_0 \rangle_{\alpha} < \infty$, and hence $\mu_0(\{0\}) = 0$.

For r > 0, define

$$A(r) = \inf \{h(|x|)^{-1}R_{\alpha}v(x); x \in G \cap B(0, r)\}.$$

By assumption, $\lim_{r\downarrow 0} A(r) = \infty$. Let ψ_r be a continuous function on \mathbb{R}^n such that $\psi_r = 1$ on B(0, r/2), $\psi_r = 0$ outside B(0, r) and $0 \le \psi_r \le 1$ on \mathbb{R}^n . Then we have

$$\left| \int h(|x|) d\mu_j(x) - \int [1 - \psi_r(x)] h(|x|) d\mu_j(x) \right| \leq A(r)^{-1} \int_{B(0,r)} R_\alpha v d\mu_j$$

for r sufficiently small. Since $\lim_{r\downarrow 0} A(r) = \infty$ and $\left\{ \int_{B(0, 2^{-1})} R_{\alpha} v d\mu_j \right\}$ is bounded, it follows that

$$\lim_{j\to\infty}\int h(|x|)d\mu_j(x)=\int h(|x|)d\mu_0(x)<\infty.$$

In a similar manner, noting that $|f| \leq h$, we obtain

$$\lim_{j\to\infty}\int fd\mu_j=\int fd\mu_0\,.$$

On the other hand,

$$a \leq V((\mu_{j} + \mu_{k})/2) = [V(\mu_{j}) + V(\mu_{k})]/2 - \langle \mu_{j} - \mu_{k}, \mu_{j} - \mu_{k} \rangle_{\alpha}/4$$

for any positive integers j and k, so that

$$\lim_{j\to\infty} \langle \mu_j - \mu_0, \, \mu_j - \mu_0 \rangle_{\alpha} = 0.$$

Moreover it follows that $V(\mu_0) = a$.

If $\mu \in U(G)$ and t > 0, then $\mu_i + t\mu \in U(G)$, which yields

(8)
$$\int R_{\alpha}\mu_{0}d\mu \geq \int fd\mu.$$

Similarly, since $(1-t)\mu_i \in U(G)$ for 0 < t < 1, we establish

$$\int R_{\alpha}\mu_0 d\mu_0 = \int f d\mu_0 \, .$$

Let $x^0 \in G$. By taking as μ the unit uniform surface measure on the boundary $\partial B(x^0, r)$ and letting $r \downarrow 0$ in (8), we derive

$$R_{\alpha}\mu_0(x^0) \ge f(x^0).$$

Thus it follows that $R_{\alpha}\mu_0 \ge f$ on G. We next let $x^0 \in S_{\mu_0} - \{0\}$ and suppose

$$R_{\alpha}\mu_0(x^0) > f(x^0).$$

Since $R_{\alpha}\mu_0$ is lower semicontinuous, there exists r>0 such that

$$R_{\alpha}\mu_0(x) > f(x)$$
 for any $x \in B(x^0, r)$.

Let ψ be a continuous function on \mathbb{R}^n such that $\psi = 1$ on $B(x^0, r/2)$, $\psi = 0$ outside $B(x^0, r)$ and $0 \le \psi \le 1$ on \mathbb{R}^n . Then, since $\mu_j + t\psi\mu_j \in U(G)$ for -1 < t < 1, we obtain

$$\int (R_{\alpha}\mu_0 - f)\psi d\mu_0 = 0.$$

Thus a contradiction follows, and hence $R_{\alpha}\mu_0(x^0) \leq f(x^0)$. The proof of the theorem is now complete.

In the same way we can prove the next theorem.

THEOREM 5. If E is as in Theorem 4, then there exist a number γ and a nonnegative measure μ with support in B(0, 1) such that $\mu(R^n)=1$, $R_{\alpha}\mu \leq f+\gamma$ on $S_{\mu}-\{0\}$, $R_{\alpha}\mu \geq f+\gamma$ on $E-\{0\}$ and $\langle \mu, \mu \rangle_{\alpha} < \infty$.

We also establish the following results with a slight modification of the proof of Theorem 4.

THEOREM 4'. Let K be a compact set in \mathbb{R}^n containing the origin and

satisfying (a), (b) in Theorem 4 with E replaced by K. Then there exists a nonnegative measure μ supported by K such that $R_{\alpha}\mu \leq f$ on $S_{\mu} - \{0\}, R_{\alpha}\mu \geq f$ on K except for a set of vanishing α -capacity and $\langle \mu, \mu \rangle_{\alpha} < \infty$.

THEOREM 5'. If K is as in Theorem 4', then there exist a number γ and a nonnegative measure μ supported by K such that $\mu(K)=1$, $\langle \mu, \mu \rangle_{\alpha} < \infty$, $R_{\alpha}\mu \leq f + \gamma$ on $S_{\mu} - \{0\}$ and $R_{\alpha}\mu \geq f + \gamma$ on K except for a set of vanishing α -capacity.

REMARK 1. If $\limsup_{x\to 0} R_{\alpha}(x)^{-\beta}|f(x)| < \infty$ for some β with $0 < \beta < 1/2$, then the conclusions of Theorems 4, 5, 4' and 5' remain true in view of Proposition 5 and its Remark 2.

REMARK 2. Let h be as in Theorem 1 and μ be a nonnegative measure on B(0, 1). If $R_{\alpha}\mu \leq H$ on S_{μ} , then $R_{\alpha}\mu \leq MH$ on R^{n} , where M is a positive constant independent of μ and H(x) = h(r) for |x| = r.

For a proof of this fact, let $h_j = h(2^{-j})$ and $\mu_j|_{\overline{B}_j}$, where $\overline{B}_j = \{x \in \mathbb{R}^n; 2^{-j-1} \le |x| \le 2^{-j}\}$. Since $R_{\alpha}\mu_j \le M_1h_j$ on S_{μ_j} , we see that

$$R_{\alpha}\mu_{i} \leq 2^{n-\alpha}M_{1}h_{i} \quad \text{on} \quad R^{n},$$

where M_1 is a positive constant so chosen that $H(x) \leq M_1 h_j$ for $x \in \overline{B}_j$. If $x \in \overline{B}_j$, then

$$R_{\alpha}\mu(x) \geq R_{\alpha}\mu_j(x) + M_2 \sum_{k \neq j} \min\{a_j, a_k\}\mu(B_k),$$

so that

$$R_{\alpha}\mu_{j} \leq 2^{n-\alpha} \{M_{1}h_{j} - M_{2} \sum_{k \neq j} \min\{a_{j}, a_{k}\}\mu(B_{k})\},\$$

where M_2 is a positive constant and $B_j = B(0, 2^{-j}) - B(0, 2^{-j-1})$. Hence it follows that

$$R_{\alpha}\mu(x) \leq R_{\alpha}\mu_{j-1}(x) + R_{\alpha}\mu_{j+1}(x) + R_{\alpha}\mu_{j}(x) + M_{3}\sum_{k\neq j}\min\{a_{j}, a_{k}\}\mu(B_{k})$$
$$\leq 2^{n-\alpha}M_{1}(h_{j-1}+h_{j+1}) + M_{4}h_{j} \leq M_{5}H(x)$$

for $x \in B_j$, where M_3 , M_4 and M_5 are positive constants. Thus the conclusion of the remark follows by noting that the constants $M_1 \sim M_5$ are determined independently of μ .

Finally it is noted that the next statements are equivalent:

(i) $\sum_{j=1}^{\infty} a_j^2 C_{\alpha}(E_j) < \infty$.

(ii) There exists a nonnegative measure μ with support in B(0, 1) such that $R_{a}\mu(0) < \infty$ and

$$\lim_{x\to 0, x\in E} R_{\alpha}(x)^{-1}R_{\alpha}\mu(x) = \infty.$$

(iii) There exists a nonnegative measure μ with support in B(0, 1) such that $R_{\alpha}\mu(0) < \infty$, $R_{\alpha}\mu(x) \ge R_{\alpha}(x)$ on $E \cap B(0, 2^{-1})$ and $R_{\alpha}\mu(x) \le R_{\alpha}(x)$ on S_{μ} .

In fact, (i) implies (ii) by Lemma 3; (iii) follows from (ii) in view of the proof of Theorem 3; (iii) implies (i) by Proposition 6.

Further (i), (ii) and (iii) are equivalent to

(iv) There exist a nonnegative measure μ with support in B(0, 1) and unit mass and a number γ such that $R_{\alpha}\mu(0) < \infty$, $R_{\alpha}\mu(x) \ge R_{\alpha}(x) + \gamma$ on $E \cap B(0, 2^{-1})$ and $R_{\alpha}\mu(x) \le R_{\alpha}(x) + \gamma$ on S_{μ} .

In case $\alpha = n = 2$, this result gives Theorem 3 in [8] by considering the inversion with respect to the surface $\partial B(0, 1)$.

References

- [1] M. Brelot, On topologies and boundaries in potential theory, Lecture Notes in Math. **175**, Springer, Berlin, 1971.
- [2] S. Kametani, Positive integral quadratic forms and generalized potentials, Proc. Imp. Acad. Tokyo 20 (1944), 7-14.
- [3] N. S. Landkof, Foundations of modern potential theory, Springer, Berlin, 1972.
- [4] J. Lelong-Ferrand, Étude au voisinage de la frontière des fonctions surharmoniques positives dans un demi-espace, Ann. Sci. École Norm. Sup. 66 (1949), 125–159.
- [5] Y. Mizuta, Minimally semi-fine limits of Green potentials of general order, Hiroshima Math. J. 12 (1982), 505-511.
- [6] Y. Mizuta, On semi-fine limits of potentials, Analysis 2 (1982), 115-139.
- Y. Mizuta, Study of the behavior of logarithmic potentials by means of logarithmically thin sets, Hiroshima Math. J. 14 (1984), 227-246.
- [8] Y. Mizuta, On the behavior at infinity of logarithmic potentials, J. Math. Soc. Japan 36 (1984), 475-481.
- [9] J.-M. G. Wu, Minimum growth of harmonic functions and thinness of a set, Math. Proc. Cambridge Philos. Soc. 95 (1984), 123-133.

Faculty of Integrated Arts and Sciences, Hiroshima University