Noetherian property of symbolic Rees algebras

Akira Ooishi

(Received November 16, 1984)

In the course of giving a counter-example to a problem of Zariski, D. Rees [6] proved the following theorem: Let \mathfrak{p} be a prime ideal of a two-dimensional noetherian normal local domain with $ht(\mathfrak{p})=1$. If the graded ring $\bigoplus_{n\geq 0} \mathfrak{p}^{(n)}$ is noetherian, then $\mathfrak{p}^{(d)}$ is a principal ideal for some $d\geq 1$.

The aim of this note is to give a generalization of this theorem, which is stated as follows:

THEOREM. Let \mathfrak{p} be a prime ideal of a noetherian normal Nagata local domain R. Assume that dim $(R/\mathfrak{p})=1$ and $R_\mathfrak{p}$ is regular. Then the graded ring $\bigoplus_{n\geq 0} \mathfrak{p}^{(n)}$ is noetherian if and only if $\ell(\mathfrak{p}^{(d)}) = \dim(R) - 1$ for some $d\geq 1$. Here we denote by $\ell(I)$ the analytic spread of an ideal I. (Concerning Nagata domains, see [3].)

Throughout this paper, let R be a commutative ring and let I be an ideal of R. We denote by $S=R-Z_R(R/I)$ the set of R/I-regular elements of R, and for an R-module M, we put $M_I=M_S$. If R is a noetherian domain, then we have $R_I=\bigcap_{\mathfrak{p}\in Ass_R(R/I)}R_{\mathfrak{p}}$. For an integer $n\geq 0$, we define the *n*-th symbolic power $I^{(n)}$ of I by $I^{(n)}=I^nR_I \cap R=\{x\in R; tx\in R \text{ for some } R/I\text{-regular element } t\in R\}$.

PROPOSITION 1. (1) $Z_R(R/I^{(n)}) \subset Z_R(R/I)$ for all $n \ge 1$.

(2) $I^{(1)} = I$, $rad(I^{(n)}) = rad(I)$, $I^{(m)}I^{(n)} \subset I^{(m+n)}$ and $I^{(mn)} \subset I^{(m)(n)}$ for all $m, n \ge 1$.

(3) Assume that R is noetherian and $\operatorname{Ass}_{R}(R/I) = \operatorname{Min}_{R}(R/I)$. Then $\operatorname{Ass}_{R}(R/I^{(n)}) = \operatorname{Min}_{R}(R/I)$ for all $n \ge 1$. In particular, $Z_{R}(R/I^{(n)}) = Z_{R}(R/I)$ for all $n \ge 1$. Also, we have $I^{(mn)} = I^{(m)(n)}$ for all $m, n \ge 1$. Here we denote by $\operatorname{Min}_{R}(R/I)$ the set of minimal prime ideals of I.

PROOF. (1) Assume that $t \in R$ is R/I-regular and $tx \in I^{(n)}$ for some $x \in R$. Then we have $s(tx) \in I^n$ for some R/I-regular element $s \in R$. Hence st is R/I-regular and $(st)x \in I^n$. This implies that $x \in I^{(n)}$.

(2) We prove the inclusion $I^{(mn)} \subset I^{(m)(n)}$. Take an element x of $I^{(mn)}$. Then for some R/I-regular element $t \in R$, we have $tx \in I^{mn} \subset I^{(m)n}$. Since t is $R/I^{(m)}$ -regular by (1), we have $x \in I^{(m)(n)}$.

(3) If $\mathfrak{p} \in \operatorname{Ass}_{R}(R/I^{(n)})$, then $\mathfrak{p} \subset Z_{R}(R/I^{(n)}) \subset Z_{R}(R/I)$. Hence $I \subset \mathfrak{p} \subset \mathfrak{q}$ for some $\mathfrak{q} \in \operatorname{Ass}_{R}(R/I) = \operatorname{Min}_{R}(R/I)$. Therefore we have $\mathfrak{p} = \mathfrak{q} \in \operatorname{Min}_{R}(R/I)$.

Akira Ooishi

Let x be an element of $I^{(m)(n)}$. Then for every $\mathfrak{p} \in \operatorname{Ass}_R(R/I^{(m)}) = \operatorname{Ass}_R(R/I)$, we have $x/1 \in I^{(m)n}R_{\mathfrak{p}} = (I^{(m)}R_{\mathfrak{p}})^n = (I^mR_{\mathfrak{p}})^n = I^{mn}R_{\mathfrak{p}}$. Therefore $x \in I^{(mn)}$.

Q. E. D.

We define the symbolic Rees algebra of I by $R^{s}(I) = \bigoplus_{n \ge 0} I^{(n)}$. This ring can be identified with the graded subring $\bigoplus_{n \ge 0} I^{(n)}X^{n}$ of R[X], and we have $R^{s}(I) = R(I)_{I} \cap R[X]$ and $R^{s}(I)_{I} = R(IR_{I})$, where $R(I) = \bigoplus_{n \ge 0} I^{n}$.

PROPOSITION 2. Assume that R is a noetherian normal domain.

(1) $R^{s}(I)$ is normal if and only if $R(IR_{\mathfrak{p}})$ is normal for all $\mathfrak{p} \in Ass_{R}(R/I)$.

(2) If $G(IR_{\mathfrak{p}})$ is reduced for all $\mathfrak{p} \in \operatorname{Ass}_{R}(R/I)$, then $R^{\mathfrak{s}}(I)$ is normal. In particular, if I is a radical ideal which is generically a complete intersection, then $R^{\mathfrak{s}}(I)$ is normal. Here we denote by G(I) the associated graded ring $\bigoplus_{n\geq 0} I^{n}/I^{n+1}$ of I.

(3) Let \mathfrak{p} be a prime ideal of R such that $R_{\mathfrak{p}}$ is regular. Then $R^{\mathfrak{s}}(\mathfrak{p})$ is normal.

PROOF. (1) We have $R^{s}(I) = R(I)_{I} \cap R[X]$ and $R^{s}(I)_{I} = R(I)_{I}$. Hence $R^{s}(I)$ is normal $\Leftrightarrow R(I)_{I}$ is normal $\Leftrightarrow R(I)_{p}$ is normal for all $p \in Ass_{R}(R/I)$.

(2) follows from (1) and the following fact (cf. Barshay [1]): If G(I) is reduced, then R(I) is integrally closed in R[X]. Q. E. D.

PROPOSITION 3. The following conditions are equivalent:

(1) $R^{s}(I) = R(I)$, i.e., $I^{(n)} = I^{n}$ for all $n \ge 0$.

(2) G(I) is a torsion-free R/I-module.

Moreover if R is a locally quasi-unmixed noetherian ring, $\operatorname{Ass}_{R}(R/I) = \operatorname{Min}_{R}(R/I)$ and R(I) is integrally closed in R[X], then the above conditions are also equivalent to each of the following conditions:

(3) $\overline{A}^*(I) = \operatorname{Min}_R(R/I)$, where $\overline{A}^*(I) = \bigcup_{n \ge 0} \operatorname{Ass}_R(R/I^n)$.

(4) $\ell(IR_{\mathfrak{p}}) < ht(\mathfrak{p})$ for all prime ideals \mathfrak{p} of R such that $\mathfrak{p} \supset I$ and $\mathfrak{p} \notin Min_{R}(R/I)$.

(5) (Assume that R is local and dim (R/I)=1) $\ell(I)=ht(I)$.

PROOF. $(1) \Leftrightarrow R/I^n \to R/I^n \otimes_R R_I$ is injective for all $n \ge 0 \Leftrightarrow I^n/I^{n+1} \to I^n/I^{n+1}$ $\otimes_R R_I$ is injective for all $n \ge 0 \Leftrightarrow G(I) \to G(I) \otimes_R R_I$ is injective $\Leftrightarrow (2)$. $(1) \Leftrightarrow Z_R(R/I^n) \subset Z_R(R/I)$ for all $n \ge 1 \Leftrightarrow \operatorname{Ass}_R(R/I^n) = \operatorname{Min}_R(R/I)$ for all $n \ge 1 \Leftrightarrow (3)$ (note that we have $\overline{I^n} = I^n$ by the assumption). For the equivalence of (3) and (4), see [4], [5]. (4) \Rightarrow (5) is clear. (5) \Rightarrow (4): Assume that $\mathfrak{p} \supset I$, $\mathfrak{p} \notin \operatorname{Min}_R(R/I)$, and take $\mathfrak{q} \in \operatorname{Min}_R(R/I)$ such that $\mathfrak{p} \supseteq \mathfrak{q} \supset I$. Then we have $\ell(IR_\mathfrak{p}) = \ell(I) = ht(\mathfrak{q}) < ht(\mathfrak{p})$. Q. E. D.

THEOREM 4. Assume that R is a locally quasi-unmixed noetherian normal domain, $\operatorname{Ass}_{R}(R/I) = \operatorname{Min}_{R}(R/I)$, and $R^{s}(I)$ is normal. If $R^{s}(I)$ is noetherian,

then for some $d \ge 1$, we have $\ell(I^{(d)}R_p) < ht(p)$ for all prime ideals p of R such that $p \supset I$ and $p \notin Min_R(R/I)$. Moreover the converse also holds if R is a Nagata domain. Note that if R is local and dim (R/I)=1, the above condition is equivalent to the condition $\ell(I^{(d)}) = \dim(R) - 1$.

PROOF. If $R^{s}(I)$ is noetherian, then $R^{s}(I)^{(d)} = R(I^{(d)})$ for some d, where $R^{s}(I)^{(d)}$ denotes the d-th Veronesean subring of $R^{s}(I)$. The converse also holds if R is a Nagata domain (see Lemma 5 below). Now $R^{s}(I)^{(d)} = R(I^{(d)}) \Leftrightarrow I^{(dn)} = I^{(d)n}$ for all $n \ge 0 \Leftrightarrow I^{(d)(n)} = I^{(d)n}$ for all $n \ge 0$ (cf. Prop. 1, (3)) $\Leftrightarrow \ell(I^{(d)}R_{\mathfrak{p}}) < ht(\mathfrak{p})$ for all prime ideals \mathfrak{p} of R such that $\mathfrak{p} \supset I$ and $\mathfrak{p} \notin \operatorname{Min}_{R}(R/I)$ (cf. Prop. 3). Q. E. D.

LEMMA 5. Let $A = \bigoplus_{n \ge 0} A_n$ be a graded ring with $A_0 = R$. Assume that R is a Nagata domain, A is reduced and $A^{(d)}$ is noetherian for some $d \ge 1$. Then A is also noetherian.

PROOF. We may assume that A is an integral domain. In fact, since $A^{(d)}$ is noetherian, $Min(A^{(d)})$ is a finite set, and it is easy to show that Min(A) is also a finite set. Put $Min(A) = \{\mathfrak{P}_1, \dots, \mathfrak{P}_r\}$. Since $(A/\mathfrak{P}_i)^{(d)} \cong A^{(d)}/\mathfrak{P}_i^{(d)}$ is noetherian, A/\mathfrak{P}_i is noetherian by the assumption. Therefore $A \subset \prod_{i=1}^r A/\mathfrak{P}_i$ is a finite extension and $\prod_{i=1}^r A/\mathfrak{P}_i$ is noetherian. This implies that A is noetherian.

Now let A be an integral domain and let *Q(A) be the "graded quotient field" of A, i.e., $*Q(A) = \{a/b \in Q(A); a, b \text{ are homogeneous elements of } A\}$. Then it is well-known that $*Q(A) = *Q(A)_0[x, x^{-1}]$ for some x = a/b, and $*Q(A)_0 = *Q(A^{(d)})_0$. Put $B = A^{(d)}[a, b]$. Then we have $B \subset A \subset Q(B)$ and A is integral over B. Since R is a Nagata domain, A is finite over B. Therefore A is noetherian. Q. E. D.

Let Q = Q(R) be the total quotient ring of R, and for an R-submodule J of Q, put $J^{-1} = (R; J)_Q$. For the ideal I, put $\tilde{I} = (I^{-1})^{-1}$. If R is a noetherian normal domain and I is a non-zero ideal of R, then $\tilde{I} = I$ (or equivalently, I is a reflexive R-module) if and only if $\operatorname{Ass}_R(R/I) \subset \operatorname{Ht}_1(R) = \{p \in \operatorname{Spec}(R); ht(p) = 1\}$. We call the graded ring $\tilde{R}(I) = \bigoplus_{n \ge 0} \tilde{I}^n$ the divisorial Rees algebra of I. If R is a noetherian normal domain, then the ring $\tilde{R}(I)$ is also a normal domain and it is easy to see $\tilde{R}(I) = R^s(\tilde{I})$.

COROLLARY 6. Assume that R is a locally quasi-unmixed noetherian normal domain. If $\tilde{R}(I)$ is noetherian, then for some $d \ge 1$, we have $\ell(\tilde{I}^{d}R_{\mathfrak{p}}) <$ ht(\mathfrak{p}) for all prime ideals \mathfrak{p} of R such that $\mathfrak{p} \supset I$ and ht(\mathfrak{p}) ≥ 2 . The converse also holds if R is a Nagata domain.

COROLLARY 7. Assume that R is a two-dimensional noetherian normal domain.

(1) If $\tilde{R}(I)$ is noetherian, then \tilde{I}^d is invertible for some $d \ge 1$. The converse

Akira Ooishi

also holds if R is a Nagata domain.

(2) Assume moreover that R is a Nagata local domain. Then the following conditions are equivalent:

- (a) $\tilde{R}(I)$ is noetherian for every ideal I of R.
- (b) $\bigoplus_{n\geq 0} \mathfrak{p}^{(n)}$ is noetherian for every $\mathfrak{p} \in Ht_1(R)$.
- (c) The divisor class group Cl(R) of R is a torsion group.

For the assertion (1) of Cor. 7, we need the following

LEMMA 8 (cf. Cowsik and Nori [2]). Let R be a noetherian local ring which satisfies the Serre's condition (S_{n+1}) . If $\ell(I) = ht(I) = n$ and I is generically a complete intersection, then I is generated by an R-regular sequence. In particular, if R is a noetherian normal local domain and $\ell(I) = 1$, then I is a non-zero principal ideal.

References

- J. Barshay, Graded algebras of powers of ideals generated by A-sequences, J. Algebra 25 (1973), 90–99.
- [2] R. C. Cowsik and M. V. Nori, On the fibres of blowing up, J. Indian Math. Soc. 40 (1976), 217-222.
- [3] H. Matsumura, Commutative algebra, Benjamin, New York, 1970.
- [4] S. McAdam, Asymptotic prime divisors, Lecture Notes in Math. vol. 1023, Springer-Verlag, 1983.
- [5] L. J. Ratliff, Jr., A brief survey and history of asymptotic prime divisors, Rocky Mount. J. Math. 13 (1983), 437-459.
- [6] D. Rees, On a problem of Zariski, Ill. J. Math. 2 (1958), 145–149.

Department of Mathematics, Faculty of Science, Hiroshima University

584