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§1. Introduction

In this paper we shall consider the system of linear ordinary differential
equations with a parameter

(1.1) e% — A1, §)X,

where ¢ is a complex parameter, ¢ is a complex variable and X is an unknown
vector function of ¢t and &. Let ¢,, ¢, and 6, be positive constants. We shall
introduce the following assumptions.

(i) A(t, &) is an n by n matrix function of ¢t and & which is holomorphic
in the domain:

D(to, €9, 00) = {(t, &)l [t] = 1o, 0 < [¢] < &0, large| < &0} ;
(ii) A(t, &) admits an asymptotic expansion:
A, &) = T 2o A(De
uniformly for [t| <t,, as ¢ tends to zero in the sector
1.2 0 < el = &, largel < 0o,

where each A(t) is holomorphic in the closed disk |¢|<ty;
(iii) the function Ay(?) has the form

0 1 Q- 0

0 0 - 0
A(®) =]

where g is a positive integer.

Assumption (iii) means that =0 is a turning point of order g of the differential
equation (1.1) and there is no other turning point in the closed disk [¢|<t,. In
order to investigate the asymptotic behavior of solutions of the system (1.1) in a



494 Shigemi OHKOHCHI

full neighborhood of the turning point t=0, we usually try to find a matrix Q(t, ¢),
which is holomorphic in the domain D(t;, &, 6,) (0<t;<ty, 0<g;<gp, 0<
0, <0,) and admits an asymptotic expansion of the form

Qt, &) ~ Xz P(0)e!

as ¢—0 in the sector (1.2), where the coefficients Py(¢) (i=0, 1,...) are holomorphic
in the closed disk |t|<t,, such that the transformation Y=Q(t, €)X reduces the
system (1.1) to a system of linear differential equations for Y, whose asymptotic
behavior can then be in an easy way analyzed in the closed disk [t]<¢,.

W. Wasow [8] solved such a problem to seek a simplifying transformation
Q(t, &) which admits the uniform asymptotic expansion in a full neighborhood of
a turning point for the case in which n=2 and g =1, by utilizing the properties of
Airy’s integral Ai(f). Wasow’s result was subsequently generalized to the case
qg=2 by R. Y. Lee [5], using the Whittaker’s parabolic cylinder functions. Y.
Sibuya [7] solved such a problem for the general case, by utilizing the sub-
dominant solutions of the differential equation

V' —Pl)y=0,P(t) =t1+4 a;t7! +--- 4+ a,_;t + a,

In [4], by utilizing the extended Airy function of the first kind defined by M.
Kohno [3], we have solved such a problem for the case in which » is any integer
and g=1. In this paper we shall make use of the method of Sibuya [7].

THEOREM 1.1. (See [4]). Let us denote the matrix A;(f)=(ay(t); i, k=
1,2,...,n). Under the assumption that au(t)=0(1"") (k<i; i, k=1, 2,..., n),
we can find a formal transformation

Y=P(t, )X = (X0 P(De)X,

where the coefficient matrices P(t) (i=0, 1,...) are holomorphic for |t|<t, and
dX

in paticular, Py(0)=1 (identity matrix), which reduces 87=A(t, &)X to
dy _ .
eW—B(t, &)Y with
0 1 O ceernrnnnnnn 0 0
0 0 | T 0 0
B(t,e) =| : : : : 2l
0 0 O ceverenennnn 0 1

bi(t,e) by(t,e) by(t,8)- -+ b,—y(t,e) O
where
by(t, &) = 17 + &2 ZIF BT, b(t, &) = &2 L5 Br(e)m
Br(e) = 2o Pr(i)e! (k=2,3,...,n—1;j=1,2,...,n—1).
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Considering the first component of the column vector Y and putting x=
te ™™ (f n is odd, applying the change of the independent variable
x=te" """ Pp~1 (w=exp (ni/(n+q)), we easily see that the reduced system of
linear differential equations becomes the single linear differential equation of the
form

(1.3) dry +<Zn—2 -2 g xmﬂ)+((_1)n+1xq+zq—2b xm)y =0
. dX" k=1 m=0 Yn—k,m dx" m=0Yn,m y ’
where

#(n+q)(n-2)~n2—(n+q)k+nk—nmﬁr’:1+l(8) (n ; even)
(14) bn—k,m =

#(n+q)(n'—2)~n2-(n+q)k+nk—nmﬁrl:1+1(s)wn—k (n : Odd),

(m=0,1,...,qg—2;k=0,1,..., n—2)
and urt1=¢=1. If q(n—2)<2n, we can see for each p, r,
(1.6) b,,=0(1) as ¢ tends to zero in the sector (1.2).

This fact is important in the following analysis.
In §3, we shall derive the following theorem.

THEOREM 1.2 (Uniform Simplification in a sector). For each integer
k (k=0, 1,..., n4+q—1), there exists an n by n matrix function Q,(t, &) such that

(i) the components of Q\(t, &) are holomorphic for D(t, &, 0,);

(ii) Q.(t, &) admits an asymptotic expansion

1.7 0,(t, &) ~ P(t, &)t

uniformly for te S, and as tends to infinity in the sector

(1.8 larg ul < 6/(n+q), |ul 2 M,

where

1.9) S,=nktr-1§,. S, |tI<t, and |argt—2kn/(n+q)| S (n+Dn/(n+q)—4,

and 6, t, are sufficiently small positive numbers and M is a sufficiently large
positive number;
(iii) the transformation

(1.20) X = Qt, &)Y

dx

IX — A1, 0)X into e4Y _ B, oY,

changes the system of differential equations ¢ 7t

where
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0 1 (1 TR 0 0
0 0 | T 0 0
B(t,e) =| : : : K :
0 0 O rvrernnnnnn 0 i

bi(t,e) by(t,e) bs(t,e) -+ b,_i(t,8) O
and
Bj(t, ) ~ bi(t, ¢) (j=12,...,n—-1).
as u tends to infinity in (1.8).

Sectors S, for k=0, 1,..., n+q—1 cover a neighborhood of the turning point
t=0completely. However, since the transformation (1.20) depends on k, in order
to establish a uniform simplification of (1.1) in a full neighborhood of =0, we
shall choose B7(¢) by the aid of the implicit function theorem, so that the matrices
Q.(t, &) become independent of k. To do this, we must investigate the so-called
connection formulas and Stockes multipliers for solutions of the reduced dif-
ferential equation (1.3). In §4, applying the Mellin transformation to (1.3), we
shall show that the recessive solution of the differential equation (1.3) corresponds
to the principal solution of a difference equation. In §5, and 6, utilizing the
form of the principal solution, we derive that the partial derivatives of Stockes
multipliers on the coefficients of b,, (pg—nr#n+q) do not vanish. In §7, we
shall prepare some lemmas on relations between Stockes multipliers. In §8 and
9, we shall complete the proof of the following main theorem on uniform sim-
plification of this paper.

THEOREM 1.3. We assume that
ay(t) = o1 Y) (k<i) and q(n-2)<2n,

then there exists an n by n matrix Q(t, &) such that
(i) the components of Q(t, €) are holomorphic for D(t,, &;, 0,);
(i) Q(t, &) admits an asymptotic expansion

Ot o) > T2, P(t)e!
uniformly for |t|<t,, and as ¢ tends to zero in the sector
lel < e and |argel < ey,

where the components of the n by n matrices P(t) are holomorphic for |t|<t,
and Py(0)=1 (identity matrix);
(iii) the transformation X=Q(t, §)Y changes the system of differential
dYy

equation s—‘fi—’t"=A(t, €)X into a system ¢ P =B(, ¢)Y.
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The major contribution of this uniform simplification theorem is the study
of the case in which n=3 and ¢=2. (cf. [4] and [7]) Therefore, in the following
analysis, we may assume that n>3 and g=2. Furthermore, from the condition
gq(n—2)<2n, we shall consider the following cases;

case (I): n>2 and g=2, case (I): n=3 and g=3,

case (IIl): n=3 and g=4, case (IV): n=3 and g=5,

case (V): n=4and gq=3, case(VI): n=5and g=3.

§2. Recessive solutions of the reduced equation

We consider the single linear ordinary differential equation of the form

n n—j
@.1) &Y+ Srea, (097 ~ o,

where a;(x) is a polynomial of degree m; (j=1, 2,...,n). We assume that
2.2) m;j < my[n (j=1,2,...,n-1)

and that the leading coefficient of a,(x) is (—1)**!. Under this condition,
B. L. J. Braaksma [2] obtained the following results.

THEOREM 2.1. The differential equations (2.1) has a solution j(x,a)=
y(x; ay, ay,..., a,) which is an entire function of x and the coefficients of the

polynomials a,(x), ay(x),..., a,—1(x) and a,(x) and which has an asymptotic
representation:

2.3 X, @) & x%n+ma(@)=(n—=1)mn/2n gy [ '!_i_mn‘lwx(n*’mn—i)/n]
( ) y( ’ ) P Jj=0 n+mn__]

X Xizo Aix™in

as x—oo uniformly on |arg x|<(n+1)n/(n+m,)—0c for any positive constant
o<(n+1rn/(n+m,) and the coefficients of the polynomials a/x) on compact
set. Here a(a), a;(a),..., 0,4, (a) are defined by

(2.4)  [xm/n Eoa;(@)xImm + Trog ap(x)[xmnin TP (@) x Mk = 0
and
2.5) oo(@) = — 1.

The coefficients A; (i=0, 1, 2,...) are functions of the coefficients of the polyno-
mials a x) (j=1,2,...,n) and Ay=1. Furthermore, the solution j(x, a) is
recessive on |arg x| <nmn/2(n+m,) and therefore it is uniquely determined.

If we assume that q(n —2)<2n, it is easy to see that the equation (1.3) satisfies
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the assumption (2.2). Therefore, applying Theorem 2.1 to the reduced dif-
ferential equation (1.3), we can obtain the following lemma.

LEMMA 2.2. Let 6 be a small positive number. There exists a solution
J(x; b)=§(x; b3 0s--+s D2 g—25eves Bppseses by gsenns bpg_2) of the differential equa-
tion (1.3) such that

(i) J(x; b) is an entire function of x and b,, (p=2,3,...,n;r=0,1,
2,...,9—2);

(ii) j(x; b) admits an asymptotic representation:

~ xtn+q(b)—(n—1)q/2n n+q—-1 na;(b) (n+q— j)/n}
(2.6) J(x;b) = x exp[ 7 i g=y x

x [1+0(x~1/")]

as x—oo uniformly in the sector |arg x|<(n+1)n/(n+q)—6 and for b,, (p=2,
3,...,n;r=0,1,...,9—2) on compact sets. The quantities ayb) (j=0, 1,...,
n+q) are determined by the following equalities:

2.7 cxo(b) =—1, Z=x4"Y2 ab)xi/n,
+ 21 X ab b mx™ 2 + [(— 1) xt + Y25 b, px™x™] = 0.
In the equation (1.3), by the change of the independent variable
x =wé, o=exp[2ni/(n+q)],
we can easily find that the equation (1.3) becomes

2.8) T+ | S T8 by o en |

+ [(= D)1 + Tih by, o ey = 0.
Therefore, for each integer k (k=0, 1, 2,...), if we put

(2.9) Yilx; b) = J(w™*x; GH(b)),
G¥(b) = (..., by j @ itmk ),

then y,(x; b) are solutions of the differential equation (1.3). At the same time,
the quantities a(G*(b)) (j=0, 1, 2,...,n+4q; k=0,1, 2,..., n+g—1) are deter-
mined by the following equalities:
1(GHB) = — 1,
(2.10) Z, = §Un Z P00 (GH(B)EI/,
(Z)" + 27126 XER bj m@ "t Im(Zy )T + (= 1)mH1Le
+ Z;’n;%) b"’mw(m+n)k€m = 05



Uniform simplification 499

Hence, by an easy calculation, we can derive the following lemma.
LeMMA 2.3. Let us put
(2.11) S — (n+Drf(n+q) + 2kn/(n+q) + 6 < argx
= (n+Drf(n+q) + 2kn/(n+4q) — 6

and

@.12)  Ey(x;b) = S8 exp [~ 2kni/n] m—”zfiikf’;)) wikinx(ra=iin

where 6 is a small positive number. Suppose that

(2.13) yi(x; b) = j(o7*x; GX(b))
and’
2.19 yi(x; b) = y,(x; b) if k=h (modn+gq).

Then each y,(x; b) is a solution of the reduced differential equation (1.3) which
is an entire function of x and b,, (p=2, 3,...,n;r=0,1,..., ¢—2) and admits
an asymptotic representation :

(2.15) Ye(x; b) ~ @ k(@n+p(G*(B))=(n=1)a/2h) xan+ o(G*(B))=(n=1)q/2n
x exp [E,(x; b)I[1+0(x""")],

as x— oo uniformly for x € Sy and for b,, on compact sets, where

(2.16) oy (GXb)w/*/" = ayb) (j=0,1,.,n+4g;k=0,1,...,n+q —1).

Furthermore, it holds that for each k (k=0, 1,...,n+q—1)

(2.17)  Wron [yy(x; b), yi+1(x; b),-..s Yisn—1(x; )]

= @~ TR (han+ o(GM(B)~ha(n=1)/2n det | (exp [ — 2hmmi/n])|
h=k,k+1,...,k+n—1
m=0,1,..., n—1.
~ We shall now prove the following lemma.

LeMMA 2.4. Let #, R and M be arbitrary but positive numbers, and let 6
be a sufficiently small positive number. Suppose that ¥, (1) (p=2, 3,..., n;
r=0, 1,..., g—2) are given functions of u which are holomorphic in the sector

(2.18) larg u| = /(n+1), lul 2 M

and
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(2.19) V() =0 (p=2,3,..,n;r=0,1,...,4-2)

as u tends to infinity in (2.18). Then, for m=0, 1,...,n—1,

@20) (B yiure, b4+9) = o yi(unt; b)) exp [— Ee(unt; )] = 0

uniformly for
(2.21) ltl s 7, Jargt — 2kn/(n+q)l < (n+D)(n+q) — 5, X5, X3 1b,,l S R,
as u tends to infinity in (2.18).

Proor. Put x=unt. For a given positive constant R, there exists a positive
constant ¢, such that

[yem(x; b+y) — yim(x; b)| S ¢y i, X2 W, Wl (m=0,1,...,n—1)
for ’

Ix| <R, T5-, 253 1b,,| < R, largpl < 6/(n+1), [ul 2 M,

where ¢, depends on R, R, M and ¥, (). On the other hand, the function
exp [— E(x, b)] is bounded in the domain

IXl g R’ Z;=2 2:-1;(% |bp,rl § R

Therefore, in order to complete the proof of the lemma, it is sufficient to consider

(t, p) in the domain
02 Ix| = R, |t| <7, largt — 2kn/(n+q)| < (n+D)n/(n+q) — 9,
' >r, 382 1b,, S R, largpl < 8/(n+1), |yl = M.

Let us put
e, 0) = (..., [ul~* D exp [i6,,],...),

where 0,, (p=2, 3,...,n;r=0, 1,...,g—2) are real variables. We shall now
prove that

(2.23)  |yim(x; b+e)exp [—Eyx; )]l < c;lul?  (m=0, 1,...,n—1)

in the domain (2.22) uniformly in 6,,, where ¢, is a positive constant and p is a
non-negative constant. Since we have

largx — 2kn/(n+q)| £ (n+D=r/(n+q) — 6/(n+1)

in the domain (2.22), we can use asymptotic representations (2.15). In fact, we
get
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lyim(x; b+e) exp [—E(x; b)]|
= c3|xFmb) Jlexp [Ey(x; b+e) — E(x; b)]|

in the domain (2.22) uniformly in 6

s Where c; is a positive constant and

F(m, k) = 0,4 (G¥(b)) — (n—1)/n + gm/n
m=0,.,n—-1;k=0,1,....,.n+qg —1).
Observe that the function #(m, k) is bounded for
-2 2058 |bprl SR and |yz2M,
uniformly in 6,,. We have also
R < |x| = |ul"t] < Pluj.
Hence, we get
llog x| = c4[1+1og|ul]
for (2.22), where c, is a positive constant. Thus we get
[xFm 0] < cg|ulP* (m=0,1,...,n—1;k=0,1,...,n+q—-1)

in the domain (2.22) uniformly in 6,,, where c; is a positive constant and p* is a
non-negative constant. Observe next that

E(x; b+¢) — Ey(x; b)

= S5 s (G b+ ) — ay(GHb))] exp [ - ghmifnaimxint e

lot,(GH(b+8)) — a(GHB))| < colul=+a-2)
and
[x| < Plul

in domain (2.22) uniformly in 6,,, where cq is a positive constant. Hence, the
function E,(x; b+¢&)—Ey(x; b) is bounded in domain (2.22) uniformly in 6,,
Thus we proved (2.23).

We shall now estimate the function

Dyim(u"t; b+y) — yim(urt; b)] exp [—Ey(u"t; b)]
in (2.22). Note first that

Y(x; B) = (2m)- (e 2>S S Yi™(x; b+8)d0y...d0, .0, ,
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and that
@20 WMl S et (p=2,3,,m57=0,1,...,4—2)

if |p| is sufficiently large. Since R<|x|<#|u|" in (2.22), (2.24) holds in (2.22) if
Ris sufficiently large. Then, by virtue of Cauchy’s integral representation theorem
we get

ym(x; b+y(w)
= (2m)~(n+a-2) SO

" _.Sz"  yim(x; b+e(u. O
0 ]._.[p—O r =0 (l_lpp,r(iu')ltu'ln‘rq “exXpL— IU‘, rl

X d03,0...d0,p...d0, 45 .

Therefore,

(m)(x b+|p) (m)(x b)
= @y oD (7 (G, 0)y( (x5 b+ 60, 1802

where

G(u, B) Hp ZH g(l+¢p r(”)luln*-q 2exp[—lep,r]

Hence the estimates of (2.23) yield that

Ly (unt, b+y(p)) — yim(umt; b)] exp [— Ey(u"t; b1]|
= clu|vtamzter 3o, I W, (W]

in (2.22), where c is a positive constant. Thus we have proved Lemma 2.4.
(cf. [7] Lemma 3.1.)

§3. Existence theorem in the sector

Hereafter we shall consider the system of linear differential equations (1.1).
Let P(t, €) be an n by n matrix satisfying the following conditions:
(i) the components of P(t, &) are holomolphic in domain D(%,, &, 6,),

(ii) ;t':' P(t, &)= P™(t, ¢) admit the asymptotic expansions

3.1 Pm(t, &) ~ T2, PmM(Hei (m=0, 1,...,n—1),
uniformly for [t|<t,, as e—0 in the sector (1.2), where

P(t, 8) = ?o=o Pi(t)si
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is the formal matrix given by the formal reduction Theorem 1.1. The existence
of such a matrix P(t, &) is a consequence of the theorem of J. F. Ritt. (See [8]
§9.) Since Py(0)=1I (identity matrix), the inverse matrix P(t,&)"! of the
formal matrix is well defined. The components of the inverse matrix P(¢, g)~!
are formal power series in ¢ whose coefficients are holomorphic in the closed disk
|t|<t,<t,. The inverse matrix P(t, &)1 also exists in the domain D(t,, &, 6,),
where t, <t,, &, <¢, and 0, <0,. The components of P(t, &)~! are holomorphic
in the closed disk |¢|<t, and in (1.2) and it holds that

3.2) P(t, &)t ~ P(t, &)1
as ¢—0 in the sector (1.2), uniformly for |¢| <t¢,.
Let
(3.3) aidt’i = [B(t, &) + Et, &)]Y

be the system to which the system of linear differential equations (1.1) is reduced
by the transformation

34 Y= PF(t, e)X.
This means that E(t, ¢) must satisfy the relation
E(t, &) = P(t, )A(t, &) P(t, &)t + P(t, &)~ 1P'(t, &) — B(t, ¢).

On the other hand, from Theorem 1.1, P(t, ¢) formally satisfies the following
relation

B(t, ) = P(t, &)A(t, e)P(t, &) + eP(t, &) 'P'(t, €).
Therefore, according to (3.1) and (3.2), we can easily get
(3.5 E(t,e)~0

uniformly for [¢t|<t,, as e»01in (1.2)
We shall apply to the system (3.3) the transformation

3.6) Y =-exp [—’11— g1 S; trace [E(s, s):] ds]Z.

Then, the system (3.3) becomes

(.7) " ‘ff = [B(, &) + F(t, §)]Z,

where

(3.8) F(t, &) = E(t, &) — % trace [E(t, ¢)].
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The components of the matrix function F(t, ) are holomorphic in the closed
disk |t|<t, and it holds that

(3.9 F(t,e) ~0

uniformly for [t|<t,, as e-0in (1.2). Furthermore, we can easily see that

(3.10) trace [B(t, ¢) + F(t, €)] = trace B(t, ¢) + trace F(t, &) =0
and that
(.11 exp [%e“ S trace [E(s, s)] ds] ~ 1,

]

uniformly for |¢|<t, as ¢—0 in (1.2).
In order to investigate the property of solutions of the system (3.7), we
shall now compare the system (3.7) with the simpler system
dZ _
(3.12) e = B(t, &)Z.
The system (3.12) is equivalent to the single linear differential equation (1.3).
Therefore, according to Lemmas 2.2 and 2.3, the system (3.12) admits solutions

1 0 0-0 Vi(x, b)
0wt 00 Yi(x, b)
(3.13) Z.(t,8) =
0 0 p?-0 Yi(x, b)
6 0 0 ....u'—nﬂ ygcn—l)'(x; b)
(k=0,1,..., n+g-1),
where
(.19 x=p"t and u= g Vinta,

Let us put n by n matrices @,(t, ¢) and D(t, ¢) (k=0, 1, 2,..., n+g—1) as
follows;
(3'15) ¢k(ti 8) = (Zk(t’ 8), 2k+ l(t’ 8),"" 2k+n—1(t9 8))5
(3.16)  Dy(t, &) = diag (exp [Ex(x; b)], exp [Ex+4(x; b)],..., €xp [Ex1n-1(x; b)]).

Then, for each k (k=0, 1,..., n+g—1), D,(¢, ¢) is a fundamental matrix solution
of the system (3.12). In fact, according to the fact that trace [B(t, ¢)]=0,
det @,(t, ¢) is independent of t. Therefore, we have only to show that

detd,(t,e) #0 for xenkints, .
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It is obvious from (3.13) and Lemma 2.3 that
(3.17) det D,(¢, &) = pu~ " D/2ZTRIi" (han+ o(GM(B))~hq(n=1)/2m)
x det | (exp [—ghmmi/n])|
h=kk+1,.,k+n—-1
m=0,1,...,n—-1
# 0.
If we put

(3.18) Dt &) = B(t,e)D(t,e) (k=0,1,.,n+q—1),

then, each ®,(t, ¢) satisfies the condition

(3.19) 182, Ol < clule*

in the domain

(3.20) . It =t, xenpEi'Sm lul 2 M,

where ¢ is a positive constant, g* is a non-negative constant and M is a sufficiently
large positive number. We here defined the norm |A|| for a matrix A=(a;;)
@i,j=1,2,...,n) by

4l = max,; {la;;l}.
Moreover, inverse matrices ®,(t, £)~! of &,(t, ) exist and then

@,‘(t, &)1 = D(t, e)P,(t, &)~ !

_ 1
T det D, (z, &)~ ldet @,(¢, &) A(D(t, ¢)),

where A(®,(t, €)) is a cofactor matrix of @,(t, ¢). Therefore, utilizing (2.16),
(3.17) and (3.19), we can obtain

(3.21) I1Bu(t, 1 < clpl®,

where c is a positive constant and g* is a non-negative constant.
Let &(t, s, ¢) be the n by n matrix function such that

(3.22) ﬂ%;_’i = B(t, e)0(t, 5, 8), (1 1,8) = 1.

Then the uniqueness of solutions shows that
(3.23) B(1, 5, ) = Pi(t, )Py(s, &)7!
=®,(t, e)D,(t, e)D,(s, &) 1B, (s, &)™ (k=0, 1,...,n4+q—1).
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It follows from (3.16) that
(3.24)  Dy(t, &)Di(s, &)~1 = diag [exp [E(x; b)—E(¢; b)],...,
Xp [Eyn—1(x; b)— Ey4,-4(&; D11,

where
(3.25) & = urs.
Hence, according to (3.18), (3.21), (3.23) and (3.24), we have

122, 5, )l < | Bi(t, ) - | Di(t, e)Di(s, &)~ - | Bils, &)1l

< 2lul*e it lexp [Ej(x; b)—E«&; b)]I,

in the domain (3.20).
We are now in a position to state the following theorem.

THEOREM 3.1. The system of differential equations (3.7) admits a solution
z= z,(t, €) such that

(i) the components of z,(t, €) are holomorphic in the domain D(t,, &, 6,);

(i) z(t, e) satisfies the asymptotic condition

(3.27) exp [—Ex(x; b)][zu(t, &) —Zi(t, €)] ~ 0
uniformly for
(3.28) |t| £¢,, largt — 2kn/(n+4q)| £ (n+D=n/(n+q) — 6,

as | tends to infinity in the sector
(3.29) largu| = 6/(n+q), |ul 2 M,

where 6 and t, are sufficiently small positive numbers and M is a sufficiently
large positive number.

ProOF. Let us reduce the system (3.7) to the integral equation
(3.30) 2t, &) = Z,(t, &) + & S' (1, s, &)F(s, £)z(s, £)ds,
to

and put as follows, assuming that N is a sufficiently large positive number,

z(t, &) = uN exp [Ex(x; D)IL(1, €),
zi(t, &) = pN exp [Ex(x; b)ILu(, €),
8(t, s, ) = exp [—E(x; b)]&(t, s, &) exp [E(¢, b)],

where
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&= ps.

Then, the above integral equation (3.30) becomes
(3.31) (9 =t )+ || 8, s, G, oG, s
ty

The norm of the matrix &(t, s, ¢) is estimated as follows;
IB(t, s, &)l = [ Bult, &) exp [— Ex(x; b)IDy(t, e)Dy(s, &)~
x exp [E (&, b)1.(s, &)1
< c2|uf2e” Thir~tlexp [Ef(x; b)—Ey(x; b)—(E{(&; b)—E(¢&; b))l .

If N is sufficiently large, {,(t, ¢) is bounded for (3.28).

We shall construct a bounded solution of the integral equation (3.31). To
do this, we shall fix ¢, and a path of integration y(¢f) so that the function
le=1d(t, s, e)F(s, €)| is sufficiently small along the path y(f). Let us consider
the mapping

(3.33) t=—7 4 ©xP [ 2kmi[n]icr+or
in the domain
(3.39) || £ty, largt — 2kn/(n+q)| £ (n+Dr/(n+4q) — d.

The image of this domain under the mapping (3.33) is given by

(3.35) S S =t
larg | £ (n+Dn/n — (n+1)d/n = (n+ Dn/n — 5.
Put
(3.36) D:|t|<t, and |arg?| £ (n+Dn/n — 3§, (See fig 1,),

where 1, is a sufficiently small positive number such that
(3.37) sina = 3,/3; < sin {711-1!—5] :

Then every point # in D can be joined to %, either by a line segment:
(i) =1 +s-exp[i-arg(i—1,)] O=ss=i-14),
where
larg (1—t,)—n| £ n/n - §,
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- _____q\l_\:’ ?1
t-plane
i Fig. 1.
(i) t=1 +s-exp[i-arg(t,—1)] (0=s=|8—14))
and
t=1% +s-exp[i-arg(i—%)] (0=s=Z|i—2)),
where

larg (Bo—2p)—n| S m/n — 6 and [arg(t—%p)—7| < n/n — 4.

For every point in D, we shall denote this path by $(?). Let y(f) be the path which
is mapped onto (i) by the mapping (3.33). Then this path y(¢) is a desirable
one. Now we consider an arc which is defined by

n
n+gq

(3.38) exp [—2kri/n] - t(s)(*+D/n = 2, + 5. €9,

where %, is a point in D, and 6 is a fixed real number such that
(3.39) 0—n| < n/n — 4.
Taking account of (3.38), (3.39) and
exp [ —2kni] [t(s)]q/n—d;% e
we observe that

A [E,(x; ) — Ei(x; b)]

= S528t i [1(9)1@ AU Texp (— 2mmijm)at (Gm(b)) o mim
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— exp (—2kmni/n)a;(G*(b)) wi*/"]
= prtae®{(1—exp[2(k—m)7i[n]) + 5L~ p=Ii[t(s)] 79/ %
x [exp [2(k —m)mi/n]a;(G™(b))w ™" — a;(G*(b))w */")]}.
Since
Re [€'%(1 —exp [2(k—m)ni/n])] < O (k#m; m=k+1,..., k+n+q-1),
we get

Re[ - [E,(u1(5); b) = Ewt9); b)] | <O,

provided that |u"t(s)| = N*, where N* is a sufficiently large positive number. If
[u"t(s)| < N*, it is obvious that E, (u"(s); b) are bounded.
Therefore,

Re [[En(x; b)—Ey(x; b)] — [E(&; b)—Ey(¢; b)]]

admit uniform upper bounds along the path y(¢) for every ¢ in D.

Let us consider the domain (3.28) and (3.29), where M is a sufficiently large
positive number. Denote by B, the set of all n-dimensional vector {(¢, ¢) whose
components are bounded and continuous in this domain and holomorphic in
the interior of this domain. The set B,; becomes a Banach space if we define
a norm of {(t, &) by ||{||=supy,, |{(, &)|. Define a linear transformation L[{] by

(3.40) L[{] = & Sym B(t, s, S)F(s, £)L(s, &)ds.

The definition of the integral path y(¢), the estimate of &(t, s, &) and the asymptotic
property (3.9) of F(t, €) imply that

(a) L[{]e B, for every { in By,;

(b) L[£1(t, €)~0 uniformly for (3.28) as ¢—0 in (3.29);

(c) the norm of L is bounded by 1/2 if M is sufficiently large. Since
{i(t, ©) is in By, we can define an n-demensional vector {(t, €) by

it &) = Lt ) + o=y LG (1, o),
and this vector is in B, if M is sufficiently large. Furthermore, we have

£t &) = G, &) + LILI(2, 8).

Now if we put
z = z)(t, &) = pN exp [E)(x; b)IL(t, o),

then z,(t, €), for each k, is a solution of the system (3.7) which satisfies all of the
requirement given in Theorem 3.1. Furthermore, z(t, €) is holomorphic in the
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domain D(t,, &, 0,), since there is no singular point of the system (3.7) with
respect to ¢ in the closed disk |t|<t,. This completes the proof of Theorem 3.1.

Let us consider now the system of differential equations

(3.41) e% = B, )2
" with
0 1 0 erernnes 0 0
B(t,e)=| 0 0 R 0 0,
Bi(t,e) by(t,6) ba(t, &)--Bor(tye) 0
where
(3.42) by(t, &) = 11 + &2 Y223 [B(e) + 67(e)]em,
bit,e) =2 [P +oT() ™ (j=2,3,....,n—1)
and
(3.43) e ~0 (k=1,2,...,n—1) as ¢—0 in (1.2).

Applying the change of the independent variable, we easily see that the system
(3.41) becomes as follows; (cf. (1.3) and (1.4))

dr2 - - d*2
12 4 | S1B3 B4 bumswim 20 + (—rtixag, =0,

(3.44)

where
x=pu"t, p=glmnta,
(3.45) b, &) =b,8) +V¥,(e) (p=2,3,....,n;r=0,1,..,9-2)

and 2, is the first component of the n-dimensional vector 2. Therefore, it holds
from (3.43) that

(3.46) V,(e) =0 as e-0 in (1.2).
Furthermore, from (3.13), the system (3.41) admits solutions

1 0 0. 0 Yi(x; b+Y)

0 pwt 0. 0 Vi(x; b+y)
(3.47) z,(t, ) =

0 0 p2 0 Yi(x; b+y)

0 0 0t ) yfrmi(x; b49)

(k=0, 1,..., n+q—1).
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From Lemma 2.4, we can easily derive that

(3.48) exp [—E,(x; b)] [zu(t, &) —£,(¢, &)] ~ 0

uniformly for (3.28), as u tends to infinity in (3.29).
In order to show the existence of analytic transformations in the sector,
we make some preparation for it. We now define

(3.49) Sy =nNki-1g . (cf. (2.11)

Then 8, nS;.;#6 (k=0, 1,..., n4+q—1) and n+q sectorial domains Sy, S;,...,
§"+q- 1 cover a full neighborhood of the turning point ¢=0. v
As we defined &,(t, ¢) which is a fundamental matrix solution of the system
(3.12), using Theorem 3.1 and (3.47), we here define n by n matrix functions
Y. (t, &) and P,(t, ¢) as follows;
(350) Tk(t’ B) = [zk(ts 8)> Zy+ l(t, 8):---’ Zk+n—1(ts 8)] >
Pu(t, &) = [2(t, ©), 2us1(t, &), Zpin—i(t, ©] (k=0,1,...,n+q—1).

Then it is easily seen from (3.27) and (3.48) that W,(¢, &) and P,(t, &) are funda-
mental sets of solutions of the systems (3.7) and (3.41), respectively, and satisfy
the asymptotic conditions

(3.51) [P.(t, €)— Di(t, e)]1D(t, €) ~ 0,
[Pu(t, &)= Dy(t, e)1Dy(t, &) ~ 0
uniformly for (3.49), as ¢—»0in (1.2). Moreover, if we put
(3.52) T(t, &) = Pi(t, P (t, &)  (k=0, 1,...,n+q—1),

the components of the n by n matrices T,(t, ¢) are holomorphic in the domain
D(t,, &, 0,) and Ti(t, ¢) satisfy the asymptotic condition

(3.53) Tilt, &) = Wi(t, D1, e)Di(t, ) 1P (t, &)1
~ @u(t, e)Di(t, e)Di(t, &) 1Py(t, &)~!
~ [ (identity matrix)
uniformly for (3.49) as ¢—0 in (1.2). Here we used (3.27) and (3.48). Hence,

if we put

(3.59) 0u(t, &) = B(t, ¢) exp[ L g1 g;ttace [E(s, a)]ds]’l}‘(t, g),

n

we have obtained Theorem 1.2.
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§4. Difference equation and Stokes multipliers (I)

The n+1 solutions y(x; b) (j=k, k+1,..., k+n) of the differential equation
(1.3) are linearly independent. Therefore, there are Ck(b) (k=0, 1,..., n+q—1;
j=1, 2,..., n), which are independent of x, such that
4.1 i(x; b) = 2oy C'f'(b)J’Hj(x; b).

Relation (4.1) is a connection formula for y,(x; b) and the coefficients C¥%(b) are
the Stokes multipliers for y,(x; b) with respect to y,, ;(x; b). In this section we
shall consider the Stokes multipliers as functions of b,,, utilizing the solutions
of difference equations which are obtained by the Mellin transformation.

We now represent j(x; b) as a power series of b,, (p=2, 3,...,n; r=0,
1,..., g—2) with coefficients that are entire functions of x as follows;
4.2) J(x; b) = J(x,..., by,,...)

= no(X) + L=y 2728 1p(X)b,,, + [higher order].
This series is uniformly and absolutely convergent on each compact set of the
(x; b)-space, so we can differentiate (4.2) termwise. Inserting (4.2) into (1.3),
we get the following differential equations for the coefficient functions #nq(x)
and 7, (x).
4.3) 16V (x) + (= 1)"+1xane(x) = 0,
ngmix) + (= 1)"+xan, (x) + xn§~P(x) = 0
(p=2,...,n; r=0,...,q-2).

Since

0 .
4.4 Npe(X) = Wy(x; b)lp=0 (p=2,3,...,n;r=0,1,..., g—2),

applying a theorem on differentiation of asymptotic expansions with parameters
to the representation (2.3), we can obtain the asymptotic expansion as follows;

4.5)

19 = [ exp [ oo B,

x‘f/":l +
b=0

aa" b —(n— n n n n 0 —jln
65:,(:» ) lb=0 (log x)x=(=14/2 exp[— n+gq X! ]ZFO Ajx il

—(n—1)q/2n n+q—1 n 0a;(b)
tx exp[ =% “n+q—j 0b,,

x[ n+d-1 n 0a;(b)
=0 “n+q-j 0b,,

x(n+q—j)/nJ © o A;xiln
b=0

x(n+q-j)/n:|
b=0
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as x tends to infinity uniformly for
(4.6) larg x| £ (n+n/(n+q) — 6,

where 6 is a small positive number. Here we used the condition «;(b)|,=o=0
(j=1, 2,..., n+q), which is easily derived from (2.7).

In order to know the asymptotic expansion (4.5) precisely, we shall prove
the following lemma.

LEMMA 4.1.

0a;(b)
ob,,,

b=0

{ 0 (j#pg—nr)
(=1?/n (j=pg—nr)

(p=2,3,...,n;r=0,..., g—2).
Proor. Differentiating (2.7) by b,,, we can get

C2 4 xZrrt 5oy SR by am(n— ) 207

n—1
(4.7) nZ abp’r = p, ab

=0.

DT
If we put b=0 (b,,=0 for p=2, 3,..., n; r=0, 1,..., g—2) in (4.7), we get

1 92 | zes| =
by Ib=0 b=0

4.9) nzZn"

Since
Z|b=0 = - quns

(4.8) becomes

. , —1)1-
xa/n 27;0 agl;,(,b,.) b=0x-1/n + (__ln) _p_xr+q(1—p)/n = 0.

From this relation, we can easily obtain Lemma 4.1.
Hence, using this lemma and (4.5), we can obtain the following results;
4.9) 1,,.(x)

( 04;
x—(n—1)a/2n @y |:_ n x(n+q)/n] @ J
Pl " n+g i=0°0b,,,

x—iln (pg—nr>n+gq),
b=0

-— 4 .
_(_Tl)_x—u—l)q/zn(]og x) exp[._ . iq x(n+q)/n} T oA, |pooxi/m

(pg—nr=n+yq),

(=1

_ (=D —-Das@mtnta-patann gx [_ Lx(nm/n] ® 4| x=iin
n+q_pq+nr p n+q Z_p—o _,lb—o

(pg—nr<n+gq)
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as x tends to infinity uniformly for (4.6).

Let M, ;. be the class of functions on (0, c0), which are summable in the
sense of Lebesgue on each compact set of (0, o) and which, with [ <l*, satisfy
the two boundary conditions

F(t)=0(t™") (t-0) and F(t) = O(t™™) (t—+ o).

Then for each F € M, ;. the integral

f(s) = g: F(i)es-1dt

exists in the strip /<Re[s]<I* and represents there a holomorphic function.
We write

f(s) = M[F, 5]

and call f the Mellin transform of F.
Now the solution j(x; b) of the equation (1.3) is an element of M, ;. for
any I*>0, so its Mellin transform

(4.10) H(s, b) = M[y(x; b), s]

exists as a holomorphic function in the right half-plane Re [s]>0. Moreover,
we have the following lemma. (See Wyrwich [9].)

LEMMA 4.2. The Mellin transform H(s; b) of j(x; b) has the following
properties:

(i) It is a meromorphic function of s with at most simple poles in s= —k,
k=0, 1,.... The residues of H(s, b) are given by

(4.11) Res,-— H(s, b) = 75;5%(0; b), k=0, 1,....

(ii) It is a solution of the difference equation

4.12) (—1rs(s+1)---(s+n—1)H(s, b) + (—1)"**H(s+n+gq, b)
+ 23X I A by im(— D s(s+1)--(s+ k—1)H(s+n—k+m, b) = 0.

(iii) For each complex number s (s#0, —1, —2,...), H(s, b) is an entire
function of the parameters b, , (p=2,...,n; r=0, 1,..., g —2).

Using this lemma, we represent H(s, b) as a power series of b, ,;
(4.13) H(s, b) = Wo(s) + Xp-2 258 W, ()b, +-- .

For the coefficients Wy(s) and W, (s) of this expansion we have
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LeMMA 4.3, The coefficient functions W,(s) of (4.13) are meromorphic
functions. They are connected with n,,(x) by

(4.14) W, ) = M[11,,(x), 5]
and
(4.15) Res,-_ Wy, () = 21800, k=0,1,...,

and they satisfy the following system of difference equations
(4.16) Wo(s+n+q) = s(s+1)---(s+n—1)Wy(s),
@17)  (—=DsGs+D-(s+n—1DW, (s) + (=D W, (s+n+q)
+ (=D Ps(s+1)--(s+n—p—1)Wy(s+p+r) =0.

In order to know the asymptotic properties of Wy(s) and W, (s), we need the
following lemma. (See Wyrwich [9] Lemma 18.)

LemMA 4.4. Let F(t) be summable in the sense of Lebesgue on each compact
subset of (0, c0) and satisfy the two conditions:

(i) F®)=0(°), t—0,ceR
(i) F(t) ~exp[—atf]t*(logt)k, t—> o0, keN,a, f>0,yeC.

Then the Mellin transform f(s) of F(t) exists in the half-plane Re[s]>c and
satifies

(4.18) £(s) ~ -}}—ay/ﬁj—;‘[a“/ﬂI"(‘g—_ﬁy—)J ,

as s—oo in any half-strip
4.19) Re[s] > ¢, |Ims| <d.
Now, utilizing (4.9), we can state

LemMa 4.5. Putting v=1/(n+ q), the associated coefficient functions admit
the asymptotic representations:

(4.20) Wo(s) = (nv)1+@/D=D=nvs 59 o 4],=0(nv)7”
x I'(nvs—(qv[2)(n—1)—jv),

(4.21) Wp r(s) ~ (nv)1+(qv/2)(n—l)—nvs Z?:o aAi (nv)jv
’ 6b,,!, b=0

x I'(nvs—(qv/2)(n—1)—jv)
(if pg—nr>n+q),
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(42D Wyls) =y (W) @D B 4

x L [()y L (mvs— (gv[2) (1= 1) =]

(if pg—nr=n+gq),

1)—(ntgq—pg+nr)

(4.23) Wy, (s) =~ EDEC +£1—pq—-nr) (nv) 1+ @ /2=
X (nv)™™s 3 %0 Ajlp=0(nv)7”
x I'(nvs—(qv/2)(n—1) + (n+q— pg+nr)v—jv)
Gf pg—nr<n+g),
as s tends to infinity in any half-strip (4.19).

We shall now attempt to seek explicit solutions of difference equations
(4.16), (4.17). At first, from (4.16) and (4.20), we can obtain

(4.24) Wo(s) = (zn)(l—n)/Zn1/2v1+qv(n—1)/2,v-nvs 7;(1) F(V(S +J))
In fact, a special solution of the difference equation (4.16) is
Qo(s) = v I3z L'(Ws+j)), v=1/(n+q).

As the general solution of (4.16) is the product of Q,(s) and an arbitrary periodic
function p(s) of period n+ g, we can put

Wo(s) = Qo(s)p(s)

and have to determine p(s) from the asymptotic representation for Wy(s). Lemma
4.5 provides

Wo(s) = (n9) +@D0Dn=ms L (nvs — (v/2) (n — 1))
as s tends to infinity in (4.19). This gives
p(s) = (nv)r*@De=Dp=mvsI(nvs—(qv/2)(n— 1)) [Tj=6 I (v(s +)) 7

as s tends to infinity in (4.19).
Applying the multiplication theorem of the I'-function and the asymptotic

property of I'(z):

o L(z+b) _ (a—b)(a+b-1) _ .
4.25) z* T+b) — 1+ 5 +0(z72), z 0, a, beC,

we get
p(S) ~ vl+(qv/2)(n—1)(2n)(l—n)/2n1/2
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as s tends to infinity in (4.19). As p(s) was supposed to be periodic, we even have
equality in this relation and finally obtain (4.24).
Now if we put

= WP,r(s( + ))
(4.26) 0,.(s) = W%_ :

we can rewrite the difference equation (4.17) in the form

4.27) 0, (+1)=0,,()+4,,() (p=2,3,...,n;r=0,1,...,9-2),
where

4.28) A4,,(5)= (=1~

% Wo(s(n+q)+p+r)
[s(n+q)+n—plls(n+qg)+n—p+1]---[s(n+q) +n—1]1Wo(s(n+4q))

This is an inhomogeneous difference equation of the first order. Applying
(4.16), (4.24) and (4.25) to (4.28), we can easily find that

4.29) A, (5) = O(s™pa=mn)/ (n+a))

= O(s™1~(pa-nr(nt0)/(n+)) in (4.19).
Therefore, if
Ay pq — nr>n+ q,

we can apply the following lemma to the inhomogeneous difference equation
4.27)

LEMMA 4.6. If ¢(s) is holomorphic in a half-strip (4.19), and if
6() = 06~
with 6>0, then the difference equation

fi+1) =1() + ¢(s)

has a solution

(1) fo(s) = — Zizo #(s+k),
which is holomorphic in (4.19) and satisfies

(i) fo(s) = O(s7).

Hence, we can obtain
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(430)  Wpu(s) = — Wo(s) ZF=o Ap(vs+))

—_— p WO( + +) —(—1)r
= = (D Gy~ (T DK

(pg—nr>n+q),
where
4.31) K, i(s) = (=1)? X521 4,,(vs+)).

In fact, by Lemma 4.6, we get a solution @} ,(s) of (4.17) in the form

@:,r(s) = - 23'0=0 Ap,r(s + ]) ’

which is holomorphic in (4.19) and satisfies @} (s)=0(s~(Pa~nr=r~0/(n*D) there.
Since the general solution of (4.17) is the sum of the special solution @} (s)
and an arbitrary periodic function of period 1, it is clear that @} ,(s) is the only
solution of (4.17) with this property. On the other hand, since 4,=1, we have

from Lemma 4.5, '
0,,(5) = O(s~(pa—nr=n=q)/(n+q))
and this asymptotic condition implies ©,,(s)=0} .(s) (pq—nr>n+q).

writing this in terms of Wy(s), we have (4.30).
Furthermore, it follows from (4.28) and (4.31) that

Kp,r(s) = Z;D=1
Wo(s+j(n+q)+p+r)

% [s+j(n+qg)+n—plls+(n+qg)+n—p+1]---Is+j(n+q)+n—1]

% 1
Wols+j(n+q) °

Therefore, we get from (4.24) that
K, (s)>0 for s> —(n+9q).
Next we shall consider the case in which

(Ay) pg —nr<n+q.

We have the following lemma concerning inhomogeneous difference equations.

LeMMA 4.7 (Nérlund [6]). Let k be a non-negative integer, such that
(i) geCHso, );
i) g®@E) =061  for s=s; > s, and ¢ > 0.

Then
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0
F6) = lim,ao| |~ g(00edt = Siogls+R)ee | (¢, 5>50)
o
exists and this is a solution of the difference equation
SG+1) =f(s) + g(s5).
These solutions are called principal solutions.

If we can show that @,,(s) is a principal solution of the difference equation
(4.27), each W, (s), which is a solution of (4.17), has the following form:

(432)  Wp(s) = Wo() [e—(—1)PK, ()] — (—1)?

WO(S+p+r)

X GFn=pGIn—pIDGEn=D  (PaTnr<nta),

where
(4.33) K, () = lim,,, B: —(=1)?4, (t)e*dt

+ (=1 T2 A, (vs +j)e—£(vs+j)]
and

= S", A, (teedt.

Since 4, ,(s) is a real-valued function, c is a constant real number which depends
onp,r,n,qandc’.

In order to show that @, ,(s) is a principal solution of (4.27), we use the
following lemmas.

LeEmMMA 4.8 (Norlund [6]). Let k be a non-negative integer. We assume
that g(s) satisfies the following two conditions:

(4.34) geCksg, ©0) and g®(s) =0(s179)  for s=s; > 59,0>0.
Then each principal solution f(s) of the difference equation
(4.35) SG+1) =£(s) + g(s)
satisfies the following two conditions:
(1) f(9)€C¥(so, ),
(i) limg,,, f®)(s) exists.

LeMMA 4.9 (Norlund [6]). Let f(s) be a solution of the difference equation
(4.35) and let g(s) satisfy (4.34). Then, if
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limg, . f®)(s) exists,
f(s) is a principal solution of the equation (4.35).
LeEMMA 4.10 (Wyrwich [9]). We assume that h(s) is holomorphic in (4.19)

and
h(s) = O(s*) in (4.19) with aeR.
Then it holds that
h®)(s) = O(s*) in (4.19).

It follows from (4.28) and (4.16) that

A (s) = (= 1) s(n+q)[s(n+q)+1]---[s(n+q)+n—q—11Wy(s(n+q)+p+71)
" Wo((s+1)(n+9)) )

Therefore, A, ,(s) is holomorphic in Re s> —(p+r)/(n+q).
Furthermore, we get from (4.24), (4.25) and (4.28) that

2s

Apr0) = (21 (n +¢I)psp[l + s(nn——l-pq) J[l + ’.19(—'1‘3-—;)1 ] [l + s(’:z;-lq) }

y=nv(p+r)g(p+r) I—[;‘;(l) l:l i (P+’)((P+")V +2]V - 1) +0(S_2):|

1 —(pa- —1-(pa-
=(-Dr (7 F )Py s™(pa=nn)/(nta) 4 Q(s~1-(pa=nr)/(nta)),

Using Lemma 4.10, we can obtain
Ap A8) = O(s~1=(pg=nn)/(n+0))

Since (pq—nr)/{(n+q)>0 under the condition g(n—2)<2n, we find that 4, (s)
satisfies the conditions (4.34). It holds from (4.20), (4.23), (4.26) and (4.28)
that

0,,(s) = s1=(Pa=nn)/(nta) F2e0 1oy g=il(n+a),

Noting that (pg —nr)/(n+q)>0, we can get that
lim [i@ (s)] exists
§—+00 dS p,r .

Therefore, we have obtained from Lemma 4.9 that each @,,(s) is a principal
solution of the difference equation (4.27). Thus we have obtained (4.23).

Summarizing these results concerning difference equations (4.16) and (4.17),
we have the following

LeEmMA 4.11.
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(4.24) Wo(s) = (2r)(1~mi2.p1/2.y1+(av/2)(n=1) y=nvs | g = I'(v(s+j)).

» Wo(s+p+r)
+n—p)(s+n—p+1)--(s+n—1)

— (=1)PWo(s) K, ()
Gf pg—nr>n+q)

(4.30) Wpe(s) = = (—1)

and
(4.32) Wo,n(s) = Wo(s)[e— (—1)PK,, (s)] — (—1)?

x Wo(s+p+r)
(s+n—p)(s+n—p+1)---(s+n—1)

(if pg—nr<n+gq)

for s>—(p+r); s#0, —1,..., —(p+r)+1, where K, ,(s) and K, (s) are given
by (4.31) and (4.33), respectively. Furthermore,

K, (s)>0 for s> —(n+q)
and c is a constant real number which depends on p, r, n, q and c*.

Now we shall consider K, (s) [K} (s)] and K, (s+1) [K} (s+1)]. From
(4.33) and (4.28), we can get

(4.35)

A, (vs+k)etsth(—1)p
A, (vs' +k)e s Os O (—1)P

_ _Wym+p+nre s s*Y(m+n+p+1)(m+n—p+2)---(m+n)Wy(m+1)
(m+n—p)(m+n—p+1)---(m+n—1)Wo(m)Wo(m+1+ p+r)e-cvstvtk)

_ _ (m+n)Wy(m+1)Woy(m+p+r) v
(m+n—p)Wo(m)Wo(m+p+r+1) = °

where
(4.36) m=m+q)(vs+k)=s+ (n+q)k and s =s+ 1.
Using (4.24) and (4.25) for a sufficiently large integer k, we have from

(4.35)

(m+n)Wy(m+ 1)Wo(m+p+r)
(m+n—pWo(m)Wo(m+p+r+1)

eBV

(n+s+(n+ k)L (k+v(in+s)(k+v(s+p+7r) .,
(n+s—p+(n+ QL k+vs) (k+vs+p+r+n) ©
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= e[l L5 +0(e) [ 14220722521 4 o) |

y [1+ —vanQv(s+p+r)+vn—1 +0(k‘2)]

2k
e“’[l+ ( vn(vn+2vs—1) + —vaQv(s+p+r)+vn—1
n+q 2 2
+O(k‘2)]

= e[ L L e F+00) .

Since
(pg—nr)/(n+4q)> >0
under the condition g(n—2)<2n, we can get
4.37) (=124, (vs+k)e st > (—1)P A, (vs'+ k)e s (s +0)

for a sufficiently large integer k.
Next we assume that (4.37) holds for k2k' and we consider the (k' —1)-th
term. Using the fact that Wy(s) satisfies the difference equation (4.16), we can get

(=1)?Ap, (vs+k'—1)e"e(vstk -1
(=1)74, (v’ Tk —1)e O F=D

_ (M n—(n+g) Wo(m' = (n+q) + 1) Wo(m' + p+r—(n+4)) _
(M +n—=p—(n+q) Wo(m' = (n+9)) Wo(m +1+p+r—(n+q))

(m' —q) Wo(m' +1)(m'—(n+gq))---(m'—(n+q)+n—1)
' —p—g)(m' = (n+q) +1)-+-(m' — (n+q) + [+ n—1) Wo(m)

Wolm' +p+r)Y(m'+1+p+r—(n+4q))---(m'+1+p+r—(n+q)+n—1) oo
m+p+r—(n+q)--(m+p+r—(n+q)+n—-1)Wo(m'+1+p+r)

(m'—n—q)(m'+p+r—q) Wo(m' + p+r) Wo)(m' +1)

= —p—@) M FpHr—(n+q) Wo(m' +1+p+r) Wo(m)) ©

(m'+n—p)(m'—n—q)(m'+p+r—gq)
(m'+n)(m'—p—q)(m'+p+r—p—n)’

where
m' =s+ (n+q)k'.

Here we used the assumption of the induction that (4.37) holds for k=k’. Since
pq—nr>0 and
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[(m'+n—p)(m'—n—gq)(m'+p+r—q)]
— [m' +n)(m'—p—q)(m' +p+r—q—n)]
= (pq—nr)m’ + pg(—2n+p+r—q) + nr(2p—n),
we can obtain the following lemma from above results.
LeMMA 4.12.  Suppose that
(4.38) D*[n, q, p, r; s*, k*]
= (pq —nr)(s*+(n+q)(k*+1)) + pg(—2n+p+r—q) + nr2p—n) = 0.
Then (4.37) holds for s=s* and k=k*. Furthermore, if
D*(n, g, p, r;s*, 1) 2 0,
then
K, (s) > K, (s+1)[K, (s)>K, (s+1)]  for s=s*
We shall here make preparations for the use in §6. Assuming that
pg—nr>n+gq and (p—Dp—n(r+1)<n+gq,
we shall consider
(4.39) W3r(8) = LW, (s) = Wy 1,r41(5),

where L is a constant number. From (4.17), Wy (s) satisfies the following
difference equation;

(4.40)  (=D)s(s+1)-(s+n—DW3 (s) + (=1)"" W} (s+n+q)
+ (=D rs(s+1)--(s+n—p—1)(s+n—p+L)Wy(s+p+r) =0.
Putting
O*(s+1) = W} (s(n+q)/Wo(s(n+9)),
we can easily obtain that (4.40) becomes

O¥(s+1) = O*(s) + A} (s),
where

" — (—1\p [s(n+q)+n—p—1+L]Wy(s(n+q)+p+r)
4D 430 = D LGt e n—p— 1T G(n 4 ) +n— 1 oGO )

Therefore, using Lemmas 4.7-4.9, we can similarly obtain
(4.42) Wi(s) = Wo(s)[c*— (- 1)?K 7 ,(5)]

—(=1) (s+n—p—1+LYWo(s+p+r)
(s+n—p—-1)---(s+n-1) ’
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where
(4.43)

K34(6) = limyo| (7 = (= 1743 (e dt + (= 1)? T2, 43, 5+ ))es0D |

and if L is a real number, c* is a constant real number.
Lastly we prove the following lemma, which we often use in §5 and §6.

LEMMA 4.13. Let a, b (b>a) be non-negative integers. Then, we have

Wo(a+1) Wo(b)

Wol@) Wob+1) ~

(4.44)

Proor. From (4.24), it follows that

Wola+1) Wy(b) _ I'(v(a+n))I (vb)
Wo(a) Wo(b+1) I'(va)I'(v(b+n)) *

(4.45)

Since log [I"(x)] (x>0) is a strictly convex function, we have
n
log I'(vb) = log F( r——)v(b+n) + <m>va)

< (b )1og T'(v(b+n)) + (m—a) log I'(va)
and

log I'(v(a+n)) = log I’((b—_;%_—a>v(b+n) + <b—f_;—ia—>va>

< <m>log I'(v(b+n)) + ( )log I (va).

Therefore, we can easily obtain
log I'(vb) + log I'(W(a+n)) < log I'(v(b+n)) + log I'(va).
Using (4.45), we have obtained Lemma 4.13.
ReMark. If it holds that
(4.46) (pq—nr)(m+n+4q) + pg(—2n+p+r—q) + nr(2p—n) = 0,
then it follows from (4.35) and (4.38) that

(m+n)Wo(m+1)Wo(m+p+r)
(m+n—p)Wo(m)Wo(m+p+r+1)

> 1.

Therefore, using Lemma 4.11, we can get
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Wo(m+ 1) Wo(m+p+r) > m+n—p

(4.47) 1> Wo(m) Wo(m+p+r+1) m+n

under the conditions (4.46) and m=0.
Furthermore, from (4.24), it holds that

Wo(m+1) Wo(m+p+r) _ L'((m+n)/(n+g)I'(m+p+r)/(n+q))

(4.48) Wo(m)Wo(m+p+r+1) — T'(m[(n+g)(m+n+p+r)[(n+q))

Putting m=(n+q)k, p=2 and r=q—2, we get

Wom+1) Wo(m+p+r) _ I'(k+n/(n+g)I(k+q/(n+q))

_ (k=1+n/(ntq)(k—2+n/(n+gq))---(1 +n/$]rz+?g)'

I(!C'—1+q/(n +9)(k—=2+q/(n+q)--(1+4g/(n+q))

x I'(L+n/(n+g)I'(1+4/(n+q))

_ (k=1+n/(n+q)(L+n/(n+@)(k=1+g/(n+g)-(L+g/(n+g))
(k—1)1k1

% nq n
(n+q)? sin(nn/(n+q)) °’

Therefore, it follows from (4.27) that
nq(k—1)'k!
(k—1+n/(n+gq))--(1+n/(n+q))(k—1+q/(n+q))-

[k(n+q)+n]n
(1+g/(n+q))(n+q)*[k(n+q)+n—2]

> sin (nn/(n+q))
S ng(k—1)!
(k—=1+n/(n+q))--(1+n/(n+g))(k—1+g/(n+q))-
k!n
(I1+g/(n+q))(n+q)* °

ReMARK. In the differential equation (1.3), if we. put b=0, then (1.3) becomes
an extended Airy equation. Since y(x; 0) is a principally recessive solution on
the positive real axis arg x=0, an extended Airy function of the first kind A4i(x)
coincides with that. It follows that (See M. Kohno (3))

Af(x) = X1 d;- Awkix),

where
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_ (wkl_ 1)(60"1—" 1)...(60’”—1_ 1)(wkt+1)...(wk"_ 1)
- (wkl —_ wki)(wkz_ wkn)...(wkt—l — wki)(wki+l — a)ki)...(wkn — a)ki)

d;

and k; (i=1, 2,..., n) are mutually distinct modulo n+¢q. Hence we can easily
obtain

CH0)#0 (k=0,1,...,n+q—1;j=1,2,...,n).

§5. Difference equations and Stokes multipliers (II)

In §4, we obtained
CH0)#0 (k=0,1,...,n+q—1;j=1,2,...,n).

In this section, making use of solutions of the difference equations Wy(s) and
W, (s), we shall prove the following lemma.

LeMMA 5.1.  In the connection formula (4.1) it holds that

oCt(b)

#0 (pgq—nr#n+gq; k=0, 1,...,n+g—-1).
ob,,,

b=0

To do this, we prove the following

LEMMA 5.2. Suppose that

k
G.1) 0HD) | =0 (pg-nretntq).
p,r D=0
Then
(52) 7P )lbo =0 (j=1,2,...,9).
pr

PrOOF. From the Cramer rule and the connection formula (4.1), we see
that the Stokes multipliers C%(b) are given by the formula

_ _Wron [yux; b), yi+2(x; b),..., Yisalx; b)]
(5-3) Ci®) = Wron [yps 1063 B), Yer 20 Blrvros JeraCis BT °

It follows from Lemmas 2.3 and 4.1 that
Wron [yi41(x; 0), Yisa(X; 8),..., Yisn(x; 0)]
= @ Ziiii Thans o(GR () ~ha(n=1)/20] % det |(exp [ —2hmni/n])|

h=k+1, k+2,..., k+n}
m=0,1,...,n—1

does not depend on b,, (pq—nr#n+gq). Therefore, we get from (5.1)

(54 g Wron [0 b), Yesa0; Blvvr Jesa®: )] laeo = 0
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and

(5.5 FbiTWron Dk+1(05 b), Yi+2(05 B),...5 Yi+n(0;5 B)] lp=0 = 0.
Furthermore, from the definition (2.13), it holds that

(5.6) FE(0; b)ly=o = @ my™(0; b)| =0

lij - 0 .
55;)’1({")(% b)|p=0 = @(Ptr—mk 3b,, F™(0; b)|p=0
(m=0,1,...,n—1;k=0,1,..., n+g—1).
We get from Lemma 4.3
F™(0; b)|p=0 = m!-Resy-_,, Wo(s)

and

0§™(0; )
0b,, lp=0

Therefore, we can easily verify from Lemma 4.11 that j™)(0; b)|,—-, and
0y™(0; b)/0b,, |p=0 (pq—nr#n+q; m=0,1,..., p+r—1) -have real values.
Furthermore, it holds from (4.24) and (4.16) that

Res,. _,, Wo(s) > 0 for m=0,2,4,...,

=m! X Resg=_p, W, ,(5) (m=0,1,...,n-1).

and
Res,— _,, Wp(s) < 0 for m=1,3,5,....

Noting these facts, we consider the following cases;

Case (I) g=2; In this case, using (5.6) and letting k; be mutually distinct modulo
n+2, we put

(5.7 ﬁ;Wron [76,05 B)s Y105 By 1,05 B)] lymo = X323 L34y,

where
—_ 0 SO - n—=1 3 .
58 Lo =| g IO0: Blo ITizh 5005 0) x
| | 1

x det

J+1,..... J+1,..... J+1
}'1 'li_ ):n

At Ml Jn=1
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Here we put

A=k,

Now in the determinant of (5.8), for each j#£p—1, p—2 (mod n+2), there is
another row which coincides with the (j+1)-th row. So we can get L%, =0
for j#p—1, p—2. Hence, in order to seek the value of (5.7), we have only to
consider the cases in which j=p—1, p—2. To do this, the following notation
of the determinant is put to use:

1 1 oo 1 - 1
A A e Ay e A,
253 ,1115—3. . .,11}—3...,155—3
(5.9)  Vpt() =det| 4272 A2-2..0072..00-2 | = S0 d (e, ko, k) A,
Ap=1 p=1..7p=1..P-1

A1 m=toge-t., jn-t

An '1'1' ,1;! ,1:

Then we can get

Loy = [ 5 70 D0; D)lono | TTEED_ 590;0)(= 1",k ),
(5.10) r 0b,.0 k+p-2 P

2
L2 = 3b,,

FE=D(0; B) oo [Tizh  §®(0; 0) L= 1) Kapenr k).
y (O’ )lb—onﬁ%(;_ly (:0) H;‘=1'1i dp(kl’ 2 ’kn)

In order to consider the conditions (5.4) and (5.5), we must seek the values
of d,(k, k+2,...,k+n), d,(k+1, k+2,...,k+n), d,_, (k, k+2,..., k+n) and
d,—; (k+1, k+2,..., k+n). For that purpose, we put

(5.11) M1 A—w %) = 3" ,g9;A/ and
Ty (A= 0+ ) (A= 07%) = T 4,4/,
Using the identities
A—o™ ) (A—w™* 1) Fn_g;A = A2 — 1
and
(=™ Y0k Do gy = 142 — 1,
we can easily obtain

gj-2 — gj-1(@7*+w~**1) + gjo ko k1 =0 (j=2,3,...,n),
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Gamt = a0+ 07 =0,
— go(@ *+ 0 1) 4 g 0 ko k1 = 0,
gn=1 go=— @?!
and
Gi—2 — §ji—1(@07F 1+ @7*) + §io7 o7k = 0 (j=2,3,...,n),
Gun-1— Gu(@ 1+ @7 1) =0,
— Jo(@ * 1+ 0 ) + G k-lek1 = 0,
Ga=1, go= — w2

Therefore, it holds that

5.12 w7l ki 2 k=D
©-12) e e
and

- w2k+2 . w2k s
(5.13) §i=— 77 w*tDJ 4 T @*k—1J,

Since V,, 4(4) is a Vandermonde determinént, it holds that

Vars () = (= D)"0+D72 x [T (A= A) TTic; (h—4,).
Therefore, from the definition of d, (ky, k,,..., k,), we get
(5.14)  du(k+1,k+2,...,k+n)=(—1)r"+Di2g x T];<; (0% —kJ)
and
(5.15)  dk,k+2,..,k+n)=(—1)re+D/2G  x [Tz, (@ * —w *F)

X [a<icj(@* - 7*))
(m=0, 1,..., n).

Using these results, we can rewrite (5.4) and (5.5) as follows;

0

(5.16) 55 —FDO; OTIfzb  FO(0; 0)(— )" dyak, k+2,..., k-+n)
p,0 k=#p-2

b

0 F@=1(0: ( -1 SO - (—l)dp(k, k+2,..., k+”) =0
+ abp,o Yy ( ’ 0) H,I::Eg—l y (0, O) w—k ;n=2 w—k—i

G17) 2= §eD0;0)TTizs  59(0; 0)(=1)*1d,_y(k+1, k+2,..., k+n)
0b,,0 k#p-2 P

a ~(p_1) . n—1 ~(k) . (_l)dp(k+l,k+2,---,k+n)
+ abp’o y (09 O) nl,:f#%—l y (0: 0) H?=1 w—k—i

=0.
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Since
F®(0; 0) = k!Rese=—y Wo(s)
= k(= D¥*Q2r)A=m/2p1/2yv(n=Dynvk TTn8 I'(v(—k +5)) # 0,
Jj¥Fk

in order to prove (5.2) from (5.16) and (5.17), we have only to show that the
following determinant of the coefficient matrix does not vanish. In fact, we get

(=Ddp(k, k+2,..., k+n)
W™k H'i'=2 w ki

(= Ddy(k, k+2,..., k+n)

n —k—i
i=1 @

(=D d, ,(k, k+2,..., k+n)

(=D d, o(k+1,k+2,..., k+n)

= ITim2 @' TLic; (07* = 07 * ) [T}, (07* — 0™*77)

. . gp-l gp
X H2<i<j (07 * - o~ )w*
9p-2 WYGp
Furthermore, using (5.12) and (5.13), we get
o2 Gp w2k-2+2pk l — WP+ TP —@Pt24 7P
= =1_ 2_
ng_z wgp (CO l)(w l) w—l_w—p l_w-—l-—p

wzk—2+2pk-p(w —_ 1) (col’ — l)(a)P — co)(aﬂ’ - w*l)-

_ 1
T (07 =1)(0*—1)
Therefore, it holds that

gp—Z gp

#0 for p=2,3,...,n.
gp-2 @YGp :

Hence, we have obtained (5.2) for case (I)

Case (II) n=3 and q=3; In this case, pg—nr#n+q means (p, r)=(3, 0),
(2,1). Since it holds from (2.13) and (4.1) that

we put k=0 in (5.4) and (5.5). Then (5.4) and (5.5) become

FB‘?I’—:Wron [¥0(0; B), 2(0; b), ¥3(0; 5)]lp=0

1 @2+ 3+

a -~ ~) ~n
=1 w2 w3 W}’(O; b)|p=0 7'(0;0)5"(0; 0)

1 o¢ w™°
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1 1 1

+11 @2t 31 f(O;O)aTZ‘;f"(O;b)I,, 0 §7(0; 0)
1 o w8
1 1 1

+1 o™ ®=? 7(0;0)5°(0; 0) ab’i 7"(0; b)po
1 w2(p+r-2) w3(p+r—2)

= (2072=2) 52— 5(0; B) =0 7'(0; 0)5"(0; 0)
p,r
+ 202~ 2072 §(0; 0) 5 (0; 0) 52— 7"(0; B)lamo = 0,
p,r
(5.18)

aba Wron [y,(0; b), (05 b), ¥3(0; 5)]l5=0

@@t 2ptr)  p3(ptr)

—lot @ @ (05 Bl (05 005703 0)

-2 w4 -6
1 1 1

+| @D @D @ | 5(050) 55— 5(05 B)li=o 5703 0)
-2 o4 -6
1 1 1

Flot e 0500505055505 Bl

@D 2D g3hr2)
= (= 072=0) 52— 5103 )l=0 5'(0; 0)57(0; 0)

+ (1= 0)50; 0) 55— 5'(0; a0 503 0

+ (@7 = 072)5(0; 0503 0) 52— 57(0; Bly=o = O,

for (p, r)=(3,0), 2,1).
Noting that $™)(0; 0) and 3 ba F™(0; b) |,=¢ (m=0, 1, 2) have real values,

we can easily obtain from (5.18)

a ~7 a ~on
6b 7'(0; B)|p=0 = %::y (0; b)|p=0 = 0.

ab
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Case (I1I) n=3 and q=4; In this case, pg—nr#n+gq means that (p, r)=
2,0), (3,0, 2,1, (3, 1), (2,2), (3,2). Then, by a similar calculation to case
(II), we get

~ ~p~p S~

(08—’ —0*+ 0?2+ 0—1)§,7' 7" + (—w+3w3— 02— w)jj,j" =0,

G19 (05— 0*—202+20) 5, §' " + (- 0® + 0* + 03— 0*+ 0 - 1) §§}§" =
for (p,r)=(2,0),
(0°+0°+03=3)7,§'J" + (0°+ 0’ — 0t + 0 — 0’ ~ @) §F1 7" +
+ (05— 05+ 0*— 03+ 02+ ) §§' = 0,
(5.20)

~ o~y T

— (05 + 03— 0+ 03— 02— ) J, § "+ Qo+ w*— 03— 202 5, 7" +
+ (204 05— w2 +20)57' 7, =0
for (p,r)=(3,0)and (2, 1),

SNt~

(05—~ +1)§,§'" + (-0 -0’ +o+0? -0 +1)§F,j" +

S&rsn

+ (—0®+30*—0’—w)jj' iy =0,

(5.21) (—0*+203 =20+ 1) §,7'J" + (—0®—05+2)§§,7" +
+ (@ -0+t + 0P —w—1)F§ §, =0
for (p,r)=(3,1)and (2, 2),
(5.22) (0 + 03+ 02— 3w)§7, 7" + (0°— 05+ w*— w3 — w2 +1)§§' 7 = 0,

~ o~y o~y ~rop

(—o®—o’+w3+0?—0+1)jj,j" + (03— 0320 +2)§j' 73 =0
for (p,n=@3,2).

Similarly, noting that ™ = $m)(0;0) and j{™ = 3 bﬁ J™(0; b) |p=o (m=0, 1, 2)
p,r

have real values, we can obtain

Y05 0) = 73(0, 0) = 0 for (p, r) = (2,0),
7405 0) = 73(0; 0) = 53(0; 0) =0 for (p,r) =(3,0),(2 1), (5, 1), (2, 2),
7505 0) = 73(0; 0) = 0 for (p,r)=(3,2).

Hence we have proved (5.2) for case (III).
For other cases, by a quite similar manner, we can prove (5.2). Thus we
have finished the proof of Lemma 5.2.

ProoF of LEMMA 5.1. Case (I) and 2p>n+2; If we assume (5.1), then,
using Lemmas 4.3 and 5.2, we can get
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(5.23) ReSymy—p Wyo(s) = Resyey_p W, o(s) = 0.

Furthermore, in this case, (4.30) becomes

. Wats +p)
(524) Wy = (-1 l|: (s+n—p)(S+no-sP+p1)'“(S+"“1)

+ Wo(s)K,,o(s)] .

Since
s+p—1 _ (= 1)1
(s+n—p)(@s+n—p+1)--(s+n—1) ls=1-p (n—p)!2p—n-1)!"
s+p-—2 (=12

(s+n—p)@s+n—p+1)--(s+n—1) ls=2-p (—p+1!2p—n-2)!"

it holds from (5.23) that

(—' 1)p+1[ (n(__pl))'_("z—plfV;;(_l)l)| + Ress=1—p WO(S)Kp,O(l —p)] = 0,

-0 T2 Res,oay Wo©)Kyo@=P) | = 0.

(5.25)

Therefore, (5.25) means that

(5.26) Res;—i_p Wo()Kp(2—p) _ (n—p)!Cp—n—DN=1)""2W(2)
' Res,—1_, Wo()K,(I=p) ~ (=D Wo(D(n—p+1)!2p—n-2)!"

Since, using the difference equation (4.16), we have

Res,—_, Wo(s) = lim,-_, [ (s+k) Wo(s+n+2) ]

s(s+1)---(s+k)---(s+n—1)

Wo(—k+n+2)

= k-1t  *=0%Len=D,

we can see from (5.26) that

(=D Wo2=p+n+2)K,o2—p) _ Rp—n—1) W,(2)
(A=p+m)Wo(1-p+n+2)K,o(1—p)  (n—p+1)Wo(l)

(5.27)

In this case, we have
D*(n, 2, p, 0; s*, 1) = 2p(s*+p+2)
and then, using Lemma 4.10,

Kp,O(]-—p) > Kp,O(z_p)'
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Therefore, it must hold from (5.27) that

(p=D)WoR=p+n+DWo()  _ |

that is,

P=Dn+D)WeR—p+n+2) Wy(n+3)

Cp=n—-D\Wo(l—p+n+2) Wyn+d) =1

(5.28)

Applying (4.47) to (5.28) [put m=1—p+n+2], we can get

(p—1D(n+1)2n+3-2p)

Cp—n-D@n+3=p) <L

(5.29)

Noting the condition 2p>n+2, we then have from (5.29)

—np?+ (n*+n—-1)p <0,
that is,
p>n+1-—1/n

This is a contradiction. Thus we have proved Lemma 5.1 for the case in which
2p>n+2.

Case (I) and 2p<n+2; If we assume (5.1), then we can obtain from Lemma
4.3 and Lemma 5.2

(5.23) Res,—;_, Wy(s) =0 and Res,_,_, Wy(s) = 0.
Furthermore, noting 2p<n+2, we can easily derive
s(s+1)-(s+n—p—1)|=1-, =0 and s(s+1)---(s+n—p—1)|=_,=0.

Using (5.23) and (5.24), if we put s=1—p and s=2— p in the difference equation
(4.17), we get

(5.25) W,o(n+3—p)=0 and W, (n+4—p)=0.

Therefore, it follows from (4.32) that

Wo(n+3) — Pp— ! —_
G20 Grrsmzp@nta- pWamti—p - DT Koolnt3-p),
W(n+4) — ( _® _
G2 mra=zp)@n+i-pWamta—p) - (D¢ Koolnt4=p).
Since

D*(n, 2, p,0; n+3—p,1) =6p >0,
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it holds from Lemma 4.10 that
K, o(n+3—p) > K, o(n+4-p),
that is,
(—=1)Pc — K}, o(n+3—p) < (=1)Pc — K}, o(n+4—p).
Therefore, we can easily obtain from (5.26) and (5.27)

Wo(n+3)Wo(n+4—p) > 2n+3-2p

(5.28) Wo(n ¥ H) Won+3—p) > 2ni3—p

On the other hand, applying (4.47) to the left hand member of (5.28), we get
[put m=n+3—p.]

Wo(n+3) Wo(n+4—p) > 2n+3—2p
Wo(n+4) Wo(n+3—p) 2n+3—p

This is a contradiction. Hence we have proved Lemma 5.1 for case (I).

Case (II) and pg—nr>n+q i.e., (p, r)=(3,0); Assuming (5.1), we get from
Lemma 4.3 and Lemma 5.2

(5.29) RCSFO W3,0(S) = ReSs=_1 W3’0(S) = RCSF_Z W3’0(S) = 0.
Then, using (4.30) [put n=3, g=3, p=3, r=0.], we have from (5.29)

s(i’f‘i—‘)s&f’zy o + Res,—o Wo(s) x K3,0(0) = 0,

(i?;}")l)W&(i-;):;) LT Res,—_; Wy(s) x K3,0(—1) =0,
and

(i(ﬁi)nn?)s(i;;) o, TRes=2 Wo(s) X K;,0(=2) = 0.

Since it holds from the difference equation (4.16) that
Wo(—m+n+q) = (—1)y"m!(n—m—1)Res,__,, Wo(s) (m=0,1,...,n—1),
it follows from these conditions that
K3,6(0), K3,0(—1), K3,0(—2) <0.
This is a contradiction. (Lemma 4.11.)

Case (II) and pg—nr<n+gq i.e., (p, r)=(2,1); In this case, assuming (5.1),
we can similarly obtain
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(5.30) RCSFO Wzyl(s) = RCSS._._l Wz’l(s) = RCSF_Z WZ,I(S) = 0.

Using (4.32), we get

S Wo(s+3)

Res,—o Wo(s) e~ K2.0] — )5 12)

s=0

and

e (D) We(s+3) _
Ress=—-1 WO(S)[C KZ,l( 1)] (S+1)(S+2) a1 - 0-

Therefore, using the difference equation (4.16), we have

— g R (—1) = Wo(2) _ _ W2
(5.31) C KZ,I(O) and (4 2"( 1) Ress=_1 WO(S) WO(S) .
On the other hand, it follows from the condition

D*(3,3,2,1; —1,1)=0

that
(5.32) K3,1(0) > K3 4(5).
Noting that

’ — = WO(S) ’ _ — 4W0(2) ’
(533) 2,1( 1) 67 W0(5) + K2,1( 1+6) - 7 WQ(S) + K2,1(5)1

we can obtain from (5.31), (5.32) and (5.33)

Wo(2)

4 Wy (2) S
0

TWo(3) WD) 1 Ky 1(5) — K3,1(0) = Kp1(—1) — K3,(0) =

TWo(5)

Since it holds from (4.24) that

Wo(s) >0 for s> 0,
this is a contradiction. Hence we have obtained Lemma 5.1 for case (II).
Case (III) and pg—nr>n+gq; (i) (p, r)=(2,0); Assuming (5.1), we get
(5.34) Res,—o W,,0(s) =0, Res,_y W, o(s) = 0.
It follows from (4.30) that

(5.35) (SS—IVIL)(&—Z% _+ResWo(s) X Ky,o(0) = 0.

The condition (5.35) contradicts the fact that
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Res;—o Wy(s) >0 and K, ((0) > 0.
@ii)) (p, »=(3, 0); In this case, we can similarly obtain from (5.1)
Res,—o W3 0(5) = Resg=_; Wi o(s) = Res,=_5 W; o(s) = 0.
It follows from (4.30) that

CEDPOCID| -+ Reses Wa(9) x Kool =1) =0,
(i(ti)lp;/(os(i;;) oy TRESs Wo(s) x Kj3,0(—=2) = 0.

From (4.16), these conditions mean that
Wo(3) + Wo(1)K;,0(0) = 0,
Wo(2) + Wo(6)K;,o(—1) =0,
Wo(1) + Wy(5)K;3 o(—2) = 0.
Using the condition D*(3, 4, 3, 0; —2, 1)=60>0, we can get
—Wo(2)/Wo(6) = K3,0(—1) > K;3,0(0) = — Wo(3)/ Wo(7).
Therefore, it must holds that

Wo(2)Wo(7)

WoDWol6) ~

which contradicts Lemma 4.13.
(iii) (p, r)=(3, 1); Assuming (5.1), we get

Res,—o W3,1(s) = Res,—_; W; 1(s) = Res,—_, W; 4(s) = 0.
Therefore, using (4.30) and (4.16), we get

Wo(4) + Wo(71)K3,1(0) = 0, Wy(3) + Wo(6)K;,,(—1) = 0.
It follows from the condition D*(3, 4, 3, 1; —1, 1)=6>0 that

- Wo(4)/Wo(7) = K3,1(0) < K3,1(—1) = - Wo(3)/Wo(6):
that is,

Wo(4H)Wo(6)

T Wo3) = 1
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This a contradiction. Thus we have proved Lemma 5.1 for pg—nr>n+gq.

Case (III) and pg—nr<n+q; (i) (p,r)=(2,1); If we assume (5.1) in this
case, we can similarly obtain

Res,=o Wy,1(s) = Res—_y W, 1(s) = Res—_, W, 4(s) = 0.
Putting s=0, —1, —2, in the difference equation (4.17), we get
(5.36) W,1(7) = W3,1(6) + Wo(2) = W,,1(5) + 2W(1) = 0.

Furthermore, using (4.32), we get
s Wo(s+3)

Ress=o Wo()[e = K310 — 7855y | .o = @
e S+ D) We(s+3) _
(5.37) Ress=—1 Wo(s)[c— K5, 1(—1)] m_{‘z)— s=—1 0,
Ress=—, Wo(s)[e = K2,1(=2)] — (s(:-—%-)ll;lzg(-i;)” =—2 0

Since
W,,1(6) = Wo(6) [c—K3,1(6)] — Wo(9)/7-8,

we can obtain from (5.36) and (5.37)
Wo(6) [K3,1(0)— K3,1(6)] = Wo(6) [c—K?3,,(6)]
= Wy(9)/7-8 — W, 1(6) = Wp(9)/7-8 — Wp(2) = — 4W,(2)/7 < 0.
Here we used the difference equation (4.16). It follows that
(5.38) K5 1(0) < K} 4(6).
On the other hand, the condition D*(3, 4, 2, 1; —2, 1)=7>0 means that
K3} 1(0) > K5 4(6).

This fact contradicts (5.38).
(i) (p, =(2,2); Assuming (5.1), we get

Resg=o W3,2(5) = Res=—y W 5(s) = Resya—y W) 5(s) = 0.
Putting s=0, —1, —2 in (4.17), we get

W,,2(7) = W,5(6) + Wo(3) = W,,5(5) + 2W,(2) = 0.
Since
W,,2(7) = Wo(7) [c— K3, 2(T)] — Wo(11)/8 x 9,

W2,2(6) = Wo(6) [c—K3,5(6)] — Wo(10)/7 x 8,
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we get
¢ — K3,2(7) = Wo(ID[12W(7), ¢ — K3,5(6) = [— Wo(3) + Wo(10)/561/ Wo(6).

On the other hand, the condition D*(3, 4, 2, 2; 0, 2)=0 means that

o W,(18) e ey Wo(17)
= [k2,2(7) 5X16% W0(14)] > [k“@ Tax15 % Wo(l3)]'

Therefore, we get

Wo(ll) | Wol8) _ Wo3) | Wo(10) . Wo(T)
T2Wo(7) 240 Wy (14) Wo(6) 56 W,(6) 210 W, (13) °
thatis,
(5.39) Wo(18)W,y(13) 3443-41184 _ 1.643....

Wo(14)W,(17) > 762301132
Here we used the difference equation (4.16). It holds from (4.47) that

Wo(I8)Wo(13) _ 16 _
W < 14 — 1-42...-

Therefore, (5.39) contradicts this fact.
(iii) (p, r)=(3, 2); Assuming (5.1), we can similarly obtain

Res,—_; W;,,(s) =0 and Res._, W; ,(s) = 0.
It follows from (4.32) that
Res,—_ 3 Wo(s)[c—(—1)3K; ,(—=1)] — (= 13+ DWy(s+5) =1y =0,
Res,=— Wo(s) [e—(—1)°K; ,(=2)] — (= 1)* (s +2)Wo(s+5)=-2 = 0,
that is,
(5.40) K3 ,(—1) = K3 ,(—2).
On the other hand, the condition D*(3, 4, 3, 2; —2, 1)=30>0 means
K3,,(—1) < Kj,(-2),
which contradicts (5.40). Thus we have proved Lemma 5.1 for case (III).

For other cases [cases (IV), (V), (VI)], by a quite similar manner to the
proof of cases (II) and (III), we can prove Lemma 5.1.
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§6. Difference equations and Stokes multipliers (III)

In the case g+#2, in order to prove the uniform simplification theorem, we
need the following

LEMMA 6.1.
aCy(b) aC9(b)
ob, , 0b,_, ,
(6.1) det| ” A
oC3(b) 0Cy(b)
abp,r abp—l,r+1 b=0

for p=3,4,...,n;r=0,1,..., n—1.

PrOOF. Case (II) i.e.,(p,r)=(3,0)and (p—1, r+1)=(2, 1); We assume
that (6.1) does not hold. Then, from Lemma 5.1, there exists a constant L (#0)
such that

aCo(b) oCo(b) aC3(b) oC3(b)
2 1 1 = 2 2 =0.
©2 L 0bs,0 lb=0 + 0byy =0 0, L 0b3,o lb=0 + 0by,y lb=0 0

Noting (5.3)—(5.6) and

Cy(b) = Wron [y (x; b), yo(x; b), y5(x; b)]
: Wron [y,(x; b), y;(x; b), y3(x; b)] ’

we can get from (6.2)

(2072 =2)[Lys, (0; 0) — s, ,(0; 0)]y'(0; 0)y"(0; 0)

+ 2w?—2w0"2)y(0; 0)[Ly}, ,0; 0) — y3, ,(0; 0)1y'(0; 0) = O,
(—o2=w™ ) [Lys, ,(0; 0) =y, ,(0; 0)1y'(0; 0)y"(0; 0)

+ (1 - w)y(0; 0) [Lyj}, ,(0; 0) —y}, (05 0)]y"(0; 0)

+ (@*—w@™2)y(0; 0)y'(0; 0) [Ly}, ,(0; 0)—y3, ,(0; 0)] = 0,
(=2)—2w™Y) [Ly,, 0; 0)— y4,,,(0; 0)]y'(0; 0)y"(0; 0)

+ Q™! =2w)y(0; 0)y'(0; 0) [Ly}, ,(0; 0)—y}, ,(0; 0)] =0,

where
o = exp [2ni/(n+q)] = exp [#i/3].
Since
2072 -2 0 2w?—-2w?
—w2-p! l-w w?—w™? # 0,

—2-2w™! 0 207 1-2w
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we can obtain
(6.3) L, ,0; 0) — J4,,,(0; 0) = L}, (05 0) — 7}, ,(0; 0)
= L3, (05 0) — 7,,(0;0) =0,
that is,
6.9 Res,—o W3 o(s) = Res—_ 1 W5 o(5) = Res—_, W% o(s) = 0.

Furtheremore, noting that {™(0; 0) (m=0, 1, 2) have real values, we see from
(6.3) that the constant L must be a real number.

Next we shall show that the constant L is a positive real number. In fact,
it holds from (6.3) that

L x Resg—g W3 0(s) = Res,_q W, 1(s), L x Res,—_y W; o(s) = Res=_; W, 4(5),
that is,
6.5)

{ L{Wo(3)/2+ Res=q Wy(s)K3,0(0)] = Res;—o Wo(s) [c—K3,1(0)],

L[Res,- _; Wo()K3,0(—1)—Wo(2)] = Res=— 1 Wo(s) [c— K5, 1(—1)] — Wy(2),
where we used (4.30) and (4.32). Using the difference equation (4.16), we have
from (6.5)

(6.6) LK ;3,0(—1)— K3,0(0) + Wo(2)/ Wo(5) — Wo(3)/ Wo(6)]

= K3,1(0) — K3,1(—1) + Wo(2)/Wo(5)

= K3,1(0) — K3,1(5) + 3Wo(2)/TW,(5).
Since D*(3, 3, 3,0; —1, 1)=45>0 and D*(3, 3,2,1;0; 1)=3>0, we get from
Lemma 4.13

K3,0(—1) — K3,0(0) + Wo(2)/Wo(S) — Wo(3)/Wo(6) > 0
and
K3,1(0) — K3 1(5) + 3Wo(2)/TWo(5) > 0.

Therefore, we see from (6.6) that the constant L is a positive real number in this
case.
Since the constant L is positive, using the difference equation
O*(s) = O*(s+1) — A} (s),
we get

W30(5) _ W3e(6) _ W5o(11) _ W30(12)
Wo(5) Wo(6) Wo(11) Wo(12)

> A3,0(5) — 43,0(6) + 45,0(11) — 43,0(12),

6.7

+ 45,0(5) — 43,0(6)
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W3o0(4) _ W3e(5) _ W3o(10) _ W3 o(11)
Wo4) Wo(5) Wo(10) Wo(11)

< A3,0(4) — 43,0(5) + 45,(10).

(6.8) + A% 0(4) — A4%,0(5)

Furthermore, it follows from (4.40) and (6.4) that

(6.9) W¥o(6) + LWy(3) = 0, Wi o(5) + (L—DW,(2) =0,
304 + (L-2)W,(1) = 0.

Using (6.9), (4.16) and (4.41), we get from (6.7)

Wo) . » Wo3) . 2x3x4 Wo(2)
=D gedy ¥ L) ~ Tx5x6x7 AT D W)

8x9Ix10x2x3x4 Wo(2) _  3x4x5

* sxexTxi0x1ix12x13 WOt D) 5y ~ Sx6x7x8
Wo(3) _ 9x10x11x3x4x5 Wo(3)
X G+ ey ~ Tix2x B3x14x6x7x8 LDy 6y
that is,
4 48 5 825
610 I—35— 001 T 28" + 20384 ¥

1 24 1 75
>L[1 ~W+ 35+ 5005 " 28" ~ 20384 W]’

where we put
W = Wo(3)Wo(5)/Wo(6)Wo(2) .

Since

W = 16Wy(9)Wo(11)/25Wy(12)Wy(8) = 1792W,(15)Wo(17)/3025 W, (18)Wy(14),
it follows from (4.47) that
(6.11) 1792 x 15/3025 x 17 = 0.5227... < W < 1792/3025 = 0.59239....
Therefore, it must hold from (6.10) that
(6.12) L<233....
Similarly, we get from (6.8)

Wo(l) _ 1 _ 7\ Wo(2) 23+ L) Wo(1)
@ ~ DGy < ax5x6x We(d)

_2x3x4x@+L)Wo(2) _ Tx8x9x1x2x3x(9+L)W,(1)
4x5x6x7x Wy(5) Ix10x11x12x4x5x6% Wy(4) *

(2-1)
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Putting
W' = Wo(Q)Wo(4) Wo(5)Wo(1),
we get
(6.13) 2 — W' —1/20 — 21/1100 + 4/35 < L[1—-W'+1/60+7/3300—1/35W"].

Since

WoQWo(4) _ TWo(8)W(10)
WoO)Wo(1)  16Wo(IDW(7) °

W =
it follows from (4.47) that
(6.14) 0.35 =7/20 < W' < 7/16 = 0.4375.

Therefore, it must hold from (6.12) that
L>244....
This contradicts (6.12). Thus we have proved Lemma 6.1 for case (II).

Case (III) and (p,)=(3,0), (p—1,r+1)=2,1); If we assume that (6.1)
does not hold, then there exists a constant L(50) such that

(6.15) Lac—(l)(b)_ + _QCi(_l_))_ =0, L 0C3(d) + oC3(b) =0.

0b3,0 Ib=0 0by,1 lb=0 0bso =0 0by; lp=0

Similarly, we get
(0% +w?+w®—3)[Lys, 0; 0)—y,, ,(0; 0)1y'(0; 0)y"(0; 0)
+ (0° + 0°+ @0* —w*— w? —w)y(0; 0) [Ly;, ((0; 0)— 3, 1(0; 0)]1y"(0; 0)
+ (0 +0*+ 0 —0° —w® - @*)p(0; 0)y'(0; 0) [Lyj, (0; 0)—yj3, 1(0; 0)] =0,
(0*+@?+w~—3)[Ly,, (0; 0)—ys, (0; 0)]y'(0; 0)y"(0; 0)
+ (0 +0*+ 0 -0’ —w® —w?)y(0; 0) [Ly;, (0; 0)—y},,1(0; 0)]y"(0; 0)
+ (@* + 0’ + w® —w—w*—w?)y(0; 0)y’(0; 0) [Ly; ,0; 0)—y}, 1(0; 0)] =0,
(@0*+0+1-0°—w?—w?)[Lyy, (0; 0)—y,, (0; 0)]y'(0; 0)y"(0; 0)
+ (0° + 0* + 0° — 0? — w0 — w?)y(0; 0) [Ly}, ((0; 0)— 3, 1(0; 0)]y"(0; 0)
+ (0+0° + 0 — 0 — 0 —w?)y(0; 0)y'(0; 0) [Ly;, ((0; 0)—y} ,,(0; 0)] = 0.

Then we can easily obtain

(6.16) Ly, (05 0) = y, (05 0), Ly, (0; 0) =y, ,(0;0),
Ly;, (05 0) = y;, (0; 0),
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that is,
6.17) Res;—o W3 o(s) = Res—_; W% o(s) = Resgey Wi o(s) = 0.
It follows from (6.16) that

[ sWo(s+3)

PSR | L+ Resio Wo(6) K o(0) | = Resymo Wo(s) e K3, (0))

s=0

and

[ (s+1) Wo(s+3)

sG+D(s+2) . + Ress=—1Wo(S)K3,o("1)]

= Res,=—; Wo(s)(c — K2,1(—1)) — Wo(2).
Then, using the difference equation (4.16), we get
(618) LLWo(2)] Wo(6) — Wo(2)] Wo(6)+ K 5,0(0)— K o~ 1)]
= Ké,l(_l) - K§,1(0) — Wo(2)/Wo(6)
= — 4Wo(2)/TWo(6) + K3,1(6) — K3,4(0).
Since D*(3, 4, 3, 0; —1, 1)>0and D*(3, 4, 2, 1; 0, 1)>0, it holds that
[Wo(3)/Wo(1] — [Wo(2)/Wo(6)] + K3,0(0) — K3,0(—1) <0

and
[—4Wo(2)[TWo(6)] + K3,4(6) — K3 4(0) <O.

Therefore, the constant L must be positive.
From (4.40) and (6.17), it follows that

(6.19) W3o(T) + LWy(3) =0, W%o(6) + (L—1D)Wo(2) =0,
5005 + (L=2)W,(1) = 0.

Since the constant L is positive, we can similarly obtain

(6.20) — Wio(D) L W30(6)  _ (S+L)Wo(®  _ _ (6+L) Wo(10)
) Wo(7) Wo(6) S5x6x7x8x%x Wy(6) 6x7Tx8%x9x%x Wo(7)
+ (12+ L) Wy(16) _ 13+ L) Wo(17)
12x13x14 x 15 x Wy(13) 13x14x15%x16 x Wy(14)
and
(6.21) W30(S) _ W3o(6) . (4+L)Wo(8)

Wo(5) Wo(6) 4x5x6%xTx Wo(5) °
From (6.19) and (4.16), (6.20) and (6.21) become
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Wo(B)Wo(6) (+Lp2x3x4
Wo(NWo(2) 5x6x7x8

_ (4+LD)1x2x3 Wy(3)W(6) + (124L)9%x10x11x2%x3x4
4x5x6xT Wy (THYWy2) 12x13x14%x15%x6x7 %8

_ (134L0)10x11x12x3x4%x5 Wo(3)Ws(6)
13x14x15x16x7x8%x9 Wy (NHW,(2) °’

Wy DWo(5) _ 1x2x3x(4+L)
(6.23) Q-L) - A-D)plomd) < ax5x6x7

622) L +(1-L)>

Since

W ()We(6) _ 3We(10)We(13) _ 36Wy(1T)We(20) _ 36

Wo(Wo(2) . SWo(Id)Wo(0)  65Wo(ZL)W,(16) ~ 65°

it follows from (6.22) that
(6.24) L<2.08....
On the other hand, it holds that

WoQWo(S) _ 2Wo(O)We(12) _ 4W,(16)W(19)
Wo(O)Wo(1)  SWo(13)We(8)  L1W,(20)Wo(15) *

Therefore, we get from (4.47)

4 _ WyQW(5) _ 32
T~ W Wel) > 99°

and then we get from (6.23)
(6.25) L>234....
This fact contradicts (6.24). Thus we proved (6.1) for this case.

Case (I1I) and (p,r)=(3,1), (p—1,r+1)=(2,2); If we assume that (6.1)
does not hold in this case, there exists a constant L (#0) such that

0CB) | L ICHB)| o LOCHB)| L OCHB)| _,

abs,l b=0 abz,z b=0 b3,1 b=0 abz,z b=0 -

(6.26) L

Then we get

(0 + @0’ +w—w?—1-w?)[Ly,, (0; 0)—y,, (0; 0)1y'(0; 0)y"(0; 0)
+ (1+ 0+ 0 - 0® — 0’ - w)y(0; 0)[Ly;, ,(0; 0)—yj, (05 0)]y"(0; 0)
+ (30t — 03— —w®)p(0; 0)y'(0; 0)[Lyj, ,(0; 0)— ¥}, (05 0)] = 0,

(@°+ @+ 0* -’ —w—1) [Ly,, ,(0; 0)— s, ,(0; 0)]y'(0; 0)y"(0; 0)
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+ (0+1+0? -0’ —0?—w*)y(0; 0) [Ly}, ,(0; 0)—y3, ,(0; 0)]y"(0; 0)
+ Bt —w?—ow*—w3)y(0; 0)y'(0; 0)[Ly}, ,(0; 0)—y;, ,(0; 0)] =0,
(3w — @ —20*) [Lys, (0; 0)—ys, ,(0; 0)1y'(0; 0)y"(0; 0)

+ 2+wf—w*—w*—w*y(0; 0)[Ly;, ,(0; 0)—y}, ,(0; 0)1y"(0; 0)

+ (0*+ 0+ 0’ —1-w—w?)y(0; 0)y'(0; 0)[Ly;, ,(0; 0)— 3, (05 0)] = O.
It follows that
(6.27) Ly, ,(0; 0) = y,, ,(0; 0), Ly;,,(0; 0) = y3, ,(0; 0)

Ly}, (05 0) = y;,,(0; 0),

that is,
(6.28) Res—oW3,(s) =0, Res,—_;W3,(s) =0 and Res,—_, W% ,(s) =0.

Furthermore, (6.27) means that the constant L is a real number.
Next we shall show that the constant L is positive. In fact, it follows from
(6.27) that

LIWy(D/Wo()+K;,1(0)] = ¢ — K3 5(0),
and
LIWy(3)/Wo(6)+ K3 1(— )] = ¢ — K3 5(—1) + Wy(3)/Wy(6).

Here we used (4.16), (4.30) and (4.32).
Then we get

LIK;,:(—1) = K3,1(0)+ Wo(3)/ Wo(6) — Wo(4) Wo(T)

= —Kj,,(—1) + K3,2(0) + Wo(3)/Wo(6)

= —K3,(6) —3 x4 x5x Wy3)/6 x7x 8 x Wyb) + K3 (2
+ Wo(3)/Wo(6)

> Wo(11)/7 x 8 x 9 x Wy(7) — Wy(17)/13 x 14 x 15 x Wy(13)
+ Wo(3)/Wo(6) — 3 x 4 x 5 x Wp(3)/6 x T x 8 x Wy(6)

=4 x5%x6xWy4)]7x8x9xWyT)
+ (1—1/60—5/28) W,(3)] Wy(6) > 0.

Here we used the condition D*(3, 4, 2, 2; 0, 2)=0 and (4.16). Since

K3,1(=1) > K;5,4(0) and  W(3)/W(6) > Wo(4)/Wo(7),

we could find that the constant L is a positive real number.
From (6.28) and (4.40), it follows that
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(6.29) W% .(7) + LWo(4) =0, W% ,(6) + (L—1)W,(3) =0,
W31(5) + (L=2)Wo(2) = 0.

Since the constant L is positive, we can obtain

630 WO WL LW ((+L)W(lD)
’ Wo(6) Wo(T7) S5x6%x7x8x Wy(6) 6XxTx8%x9% Wy(7)
+ (12+ L) W, (17) _ (13+ L) W,(18)
12x13x14 x 15 x W,y(13) 13 x14 x15x16 x W,(14)
and
63 PO _WLO @D WO) __(5+L)We(l0)
: Wo(5) Wo(6) 4x5x6xT7x Wy(5) S5x6x%x7%x8x Wy(6)
+ (114 L) Wy(16)

IIx12x13x14x Wy(12) °
From (6.28) and (4.16), (6.30) and (6.31) become

Wo(4) W, (6) > (5+L)3x4x5  (6+L)4x5x%x6
Wo(7) Wo(3) 5x6x7x%x8 6Xx7x8x%x9

Wo(4) Wy (6) (12+L)10x 11 x12x3 x4 x5
Wo(7) Wo(3) 12x13x14x15x6%x7x8

_ (134 L)11x12x13 x4 x5 %6 Wy(4) Wy(6)
13x14x15x16 x7Tx8 x9IW,(7) W,(3)

Wo(3) Wo(5) < (4+L)2x3x4
Wo(2) Wo(6) 4x5%x6x7

_ (5+L)3x4x5 Wo(3) We(5) + (11+L)9%x10x11x2x3x4
Sx6xTx8 Wy(2) Wy(6) 11x12x13x14x5x6x7

6.32) (1-L)+L

X +

6.33) (2-L)—(1-L)

Furthermore, since

Wo(@)Wo(6) _ 3W(11)Wy(13) _ 120W,(18)W,(20)
WoDWo(3) . W, (14)Wo(10)  169We(21)Wo(17)

and

Wo()Wo(5) _ 16Wo(10)Ws(12) _ 3Wo(1T)W(19)
Wo@Wo(6)  25Wo(O)Wo(13)  SWo(16)W,(20)

we get from (4.47)

108 _ Wo@We(6) _ 120 51 _ We(D)We(5) _ 3

169 < WyMWo(3) ~ 169° 95 ~ W@)We(6) ~ 5"

Therefore, we get from (6.32) and (6.33)
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L<3,32... and L> 3.334....
This is a contradiction. Thus we have proved (6.1) for this case.
For other cases;

(case (V) (i) (=G0, (-Lr+)=Q1)
(i) @nN=G1, (-Lr+1)=(22)
(i) (nN=@(,2, (p-1,r+1)=(2,3)
case (V) (i) (BN =@,0, (p—Lr+)=(Q2,1
(i) nN=@40, (p-Lr+)=G1
case (VI) (i) (7, =(3,0), (p—Lr+1)=(2,1)
(i) nN=@40, (p-Lr+H)=G1
(@) P,nN=G0, (-1 r+)=(@41),

we can prove Lemma 6.1 by a similar manner to the proof of cases (II) and (III).
So we omit them.

REMARK. In (6.11), for example, it holds that

_ WoQWe(5) _ I'(5/6)I'(5/6)
Wo@©OWo(2) — I'(8/6)I'(2/6)

(See [1] pp. 267-270.)

w

= 0.5354....

§7. Relations between Stokes multipliers

Case (I) q=2; Let x,(f) and X,(¢) be solutions of the differential equation (1.3)
and

(7.1) x(8) = x, (1), X)) =%,(t) (k=h (modn+2)).
Furthermore, we write their connection formulas as follows;
(7.2) () = Li-gafxe () and  %(1) = Ty biXei(0).
In this case, we shall derive the following

LemMmA 7.1. Suppose that
(7.3) al=bl#0 (j=0,1,2,..,n+1)
and

(7.9 a

-t
]
S
tn

(s=0,1,2,...,n-2).
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Then it holds that

(7.5 al, =bl, (j=0,1,.,n+1;m=1,2,.., n).
Utilizing the Cramer rule, we get from (7.2)

(7.6) Wron [x,(£), X, 41(Ds--es Xisn-1(0)]

= (—1)"1ak Wron [x; 4 (8], X4 2(8),--.5 Xg4n(2)]

and

(17  ak= Wron [X41(2),.s Xirm=1(2)s Xu(t)s Xprms1(t),---5 Xaan(?)]
) ™ Wron [X41(2),eens Xeam—1(2)s Xkam(8)s Xiama1(2)seres Xpan()]

Noting (7.1), we consider the following connection formula

Xame1 () = aF ™ X o () + o + @bETnt X0 (2) +
+ afiniix (8) + o + @kt x 2401 (2).

Then, from the Cramer rule, it holds that

(7.8) ak+m+l = WrIon [Xiime2sees Xktns Xtmt1s Xhoeers Xktms24n—1] .
. Wron [Xi+m+2(2)s-s Xitme24n—-1(2)]

Here, using (7.6), we can get

(7.9) Wron [x;41(8)s--s Xp4a(t)]

= (—=1)""lax*t Wron [x;4 2(8),.-.s Xp4n+1(H)]

= (== DD TTmbt gk*+s Wron [Xg sy ma 2(8s- s Xgtm+24n-1(] -

Since

Wron [Xytm+25e0s Xitns Xktm+15 Xioeees Xkt m+24+n—1]
= -m-1
= (=D Wron [Xg i m+ 15-+0s Xkt m Xio Xt 1505 Xkt m—1]

= (=)™ Wron [Xp4 150005 Xktm—15 Xko Xkbm 15+++> Xe4n »
(7.7), (7.8) and (7.9) mean that
(7.10)  ak = — T (ak**)~1gkim+t (k=0,1,...,n+1; m=1, 2,...,n—1).

This relation is important in the proof of Lemma 7.1.
Next we shall seek other relations of the Stokes multipliers. Let us put

X)) = (u®), Xps 1(8s- 05 X 40— 1(1)) and
(71.11) A=A +J,
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where
ak 0.eeee 0 0 1 0.-0
ERPRL S I N,
a:l‘, 0 0 0 Qeeeeeen ) (l)
and suppose that
(7.13) ak£0 (k=0 1,...,n+1).

Then n by n matrices X,(f) are fundamental sets of solutions of (3.1) and from the
connection formula (7.2) and (7.1) it holds that

(7-14) HZ:})ZH;. = HZ:(I) (Ak+h+J) = (Ak+n+1+J)“‘(Ak+1+J)(Ak+J) =L

We shall introduce the following notation. In this section, an n by n matrix
A is called j-th column matrix (j=1, 2,..., n), if only j-th column elements may
have non-zero elements. Then, in (7.12) each matrix A4, is a first column matrix
and A4, J"(m=0,1,...,n—1) are (m+1)th column matrices. Furthermore,
let B be any n by n matrix and A a first column matrix, then BA is a first column
matrix. Noting these results and (7.14), we put

(7.15) 28 (Ags i) = Xio Uk+n—1)JmJ,
where
(7.16) Ugk+n—1)=1, Uyk+n—1)= A, ,_4,

Ugk+n—1) = 328 (Agsn-i+ DAgn-; (G =2,3,...,1).
Then we can easily obtain
qik+n—-1) gy k+n—1)---q¥k+n—1) qi(k+n-1)
IT=8 (Akvi+J) = | g3k +n—=1) g5 '(k+n—1)--g5(k+n—1) gi(k+n-1)|,
giktn=1) gri(ktn—1)-gik+n—1) gik+n—1)
where we put
qi(k+n—1) 0---0
(7.17) Ujk+n—1)= qﬁ'(k-i:n—l) 00 | (j=1,2...,m).
gk £n—1) 0.0

Furthermore, the condition (7.14) can be written as



a§+n4_a§+n+laf+n

a§+"4-a§+”+1af+”

aﬁ+n4_aﬁiq+la§+n
a£+n+1alf+n

From this relation we get

(1m)arﬁmrw«k+n—n+arﬁwak+n—n={

(7.19) [ak*"+aktrtiak*n]gi(k+n—1) + aktrtigi(k+n—1) = t

Uniform simplification

a¥+n+1

ag+n+1
kn+1

ap-1

a§+n+1

551
| 0 g7 g legl
0 1 q3 qs;‘ b
. =t
0 ceeeen 0 |lgp :
[\ 0 )\q7 q::—l...q:I
0 (j#1)
1 (=D,
0 (j#2)
1 (j=2),

(7.20) [aktn,, +akintigh+nlgi(k+n—1) + aktrtigi(k+n—1)

+ Gr-mea(k+n—1) = [

0 (j#m+1)

From (7.13) and (7.18), the conditions (7.19) and (7.20) become

(7.21) qgitk+n—1)=0 for j+#1,2;
(7.22) aktntigktngl(k+n—1) + ak*1+t = 0;
(7.23) agakrn—1)=1;

and

(7124 aifnagik+n—1 + @hpiok+n—1)=0  (j#m+1,1);
(725)  axtnagitk+n—1) + aifitapttt + gqppyo(k+n—1) = 0;

(7.26) aktn  qrti(k+n—1

)+ gt (k+n—-1) =1 (m=2,3,...,n-1).

Therefore, we can obtain from (7.18), (7.21), (7.24) and (7.26)

(7.27) ITi=6 (ks +J) =

It holds from (7.16) that

00
00
1 0
i1

0.1 g2(k+n—1) qlk+n—1)

0 g¥k+n-1) ql(k+n—-1)
0 g3tk+n—-1) gi(k+n-1)
0 gi(k+n—1) qi(k+n—1)

1 (j=m+1)  (m=2,3,..,n-1).
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(7.28) gitk+n—1) = a1 (j=1,2,..,n)

and

(7.29) [ gik+n—1) = @kl 2 4 gkt (j=1,2,..,n-1),
gi(k+n—1) = ak*"1gt+n2,

Putting (7.28) into (7.18) and (7.25), we get

(7.30) aktn=1 = ][gk+n+l — gktngk+n=1

and

(7.31)  akiril = — gkintljgktntl _ ghin—igkin (m=2,3,..., n—1).

Similarly, we can get (7.10), (7.30) and (7.31) for b%.
We are now in a position to prove Lemma 7.1.

PRrOOF OF LEMMA 7.1. From (7.4) and (7.30), we can easily obtain

]

(7.32) aj = bs (s=0, 1,..., n—=3).
Using this relation and putting m=n—1 in (7.31), we can get

(7.33) a§ = b (s=0, 1,...,n—4).

wa
]

Similarly, putting m=n—-2, n—3,..., 2, we get from (7.31)

(7.34) as, = b;, (s=0,1,...,n—-m—1; m=1,2,...,n-1).

Next, using the relation (7.10), we get from (7.34)

(7.35) as_, = b5_,, (s=m+1, m+2,....,n; m=1,2,...,n—1).

Therefore, we have obtained

(7.36) a3, = b3, (m=1,2,..,n—1;5s=0,1,...,n—m—1, n—m+1,..., n).
Now we have obtained from (7.36)

(7.37) Ay =B, and A,=B,.

Then, putting k=1 in (7.14), we have

(7.38) Ay 1 T1i=8 Aivy = Boi TTi26 Bis o,

that is,
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artt 1 0 0/ 0-eee 0 4i(n) ql(n)
att 0 1 01l 0.t 0 4%(n) qi(n)
(7.39) A Lo b
g 0 0ol 01 gin gim
BItt 1 Qe 0V O-eeeen 0 G §in)
b3t 0 1o 0[] O 0 G3(n) gi(n)

b::“ 0 0.0 i é‘ﬁin) ti.‘.in) :
where we put
0 0o 0 gik+n-1) gGi(k+n-1)
0 Q.eeee 0 g3k+n-1) gi(k+n—1)
1326 (Biwi +J) = : : S

0 0wl G(ktn—1) Ghtk+u—1)
Since it holds from (7.28) that

gi(m)=a3=>b"=qin) (=12,.,n),
the (j, n)-elements of (7.39) give us
(7.40) artt = pnti (j=1,2,.,n) ie., A,y =B,
Then, from (7.39), it holds that
(741)  q3%(n) = G%(n) (j=1,2,...,n) ie., (A,+DA,-,=B,+J)B,_;.

The conditions (7.41) and (7.37) mean A,_,=B,_,. Therefore, from (7.4),
(7.37) and (7.40), we have obtained

(7.42) aj = b3 (s=0,1,...,n+1).
Hence, we can easily obtain (7.5) by the use of (7.30) and (7.31).

Now we shall consider the case in which g#2. For case (I)(VI), we shall
derive the following lemmas.

LeMMA 7.2 (Case (II) n=3 and q=3). Let a;, b;, c;, a}, b; (#0) be complex
numbers and
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a; 1 0 a; 1 0
M =|b 0 1|, Mi=|b; 0 1 #=0,1,...,5).

¢; 00 ¢; 00
Then, if

MM MMM Ms = MoM{M; MMM = 1
and

a;=ay, asz=a; dao=a, b= Dby,

we have

a;=a; and b;=Db; (i=0,1,...,5).

LeMMA 7.3 (Case (III)n=3 and q=4). Let a;, b;, c;, aj, b; (#0) be complex
numbers and

a; 1 0 a; 1 0
M;=|b 0 1|, M;=|b; 0 1 #=0,1,...,5,6).
¢; 00 ¢c; 00
Then, if
MM MMM M Mg = M\M{MMMMMg = 1
and
a; = a; (i=1,2,3,4), b;=0b; (j=3,4),
we have

M,=M, (i=0,1,..,5,6).

LEMMA 7.4 (Case (IV) n=3 and q=5). Let a;, b, ¢;, a;, b; (#0) be complex
numbers and

M,=|b, 0 0|, M/=|b 0 1 (i=0,1,...,5,6,7).

Then, if
MMM, MMMMM,; = M;M{M\MM,MMcM75 = 1
and
a,=a; (i=1,2,3,4,5), b;=0Db] (j=3,4,5),
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we have
M;=M; (i=0,1,...,5,6,7).

LemMA 7.5. (Case (V) n=4 and q=3). Let a;, b, c;, d;, a}, b}, ci, (#0)
be complex numbers and

a; 1 00 a; 1 0 0
by 01 0 b; 01 0
M; = , M= (#=0,1,..., 6).
c; 0 01 ¢; 0 0 1
d 0 00 d, 0 00
Then, if
MM M MMMMs = M;MIM ;MM MM{ = 1
and
a;=a; (j=0,1,2,3), b =b, (k=2,3),
we have

M,=M, (i=0,1,...,5,6).

LemMA 7.6 (Case (VI) n=5 and q=3). Let a;, b, c;, d;, €;; aj, b}, ¢}, d} (0)
be complex numbers and

a; 1 0 0 0 a; 1 0 00
b 0 1 0 O b; 01 0 O
Mi=|¢; 001 0|, Mi=|c¢c; 001 O (=0,1,...,7).

d, 0 0 01 d 0 0 0 1
e; 00 0O e, 0.0 00

Then, if
MM MMMMMM, = M\M MMM MMM’ =1,

and

a; = aj (j=0,1,2,3,4), b,=by (k=2,3,4),
we have

M,=M, (i=0,1,...,6,7).

ProoF oF LEMMA 7.2. Since M,= Mg and
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a,(a,a;+b;3) +bas+c; aa,+b, a, \( aas+bs a, 1

M1M2M3M4M5= bl(a2a3+b3)+02a3 b1a2+C2 bl b4a5+05 b4 0 N

cy(aas +bs3) cia, ¢y )\ cqas cy O
it follows from the condition M\ M ,M ;M , M4 %M MIMiM M that
ay(aas+b3) + byas + ¢3 = a,(azas+b3) + bras + cs,
bi(asaz+b3) + cya; = bi(asas+bj) + cyas,
c1(aza3+b3) = cy(azas +b3).
Therefore, it holds that b, =b] or a,a;+by=aja;+b5=0. We assume that
aaz+b;=0. Then, from the condition M(M, M, M ;M ,M =1, we can get
ag(braz+c3) + ca3 =0, bo(baz+c3) =0, co(braz+cy) =1.

This is a contradiction. Thus we have obtained b, =bj.

(ie, M,=M))
Since

ay(asay+by)+bia,+cy axas+b; a,Y(as 1 0O
M2M3M4M5 = bz(a3a4+b4)+C3a4 b2a3+C3 b2 b5 0 1 9

ca(azas+b,) €203 c2)les 0 0,
we can get from the condition M,M ;M M =M ;MM M
aas + by = aza; + bh, a,(asa,+b,) + byas + ¢,
= ay(azas+by) + biay + ca,
bya; + ¢3 = bjas + ¢3, by(asas+by) + cza, = by(asas+by) + ciay,
cy(azas+b,) = cy(azay+by).
From the conditions, we can easily obtain
a,=a; a,=a, b,=0b, by=>by and b, = b;.
Thus we have obtained Lemma 7.2.

Proor oF LEMMA 7.3. It holds from the assumption that

I= (M0M1)(M2M3M4)(M5M6)
aga,+b, a; 1\ g, * *)* *x 1°
= b0a1+cl bo O gz * % * * 0

Cody o 0/lgs * *)x » 0
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and
1= (MoM;3)(M;M3M)(M5Ms)
aga,+by ap, 1) g, * *Y(* * 1
=| boay+c; by 0|/ g5 * *| % % 0],
Cody co 0)lgs * x){* = O
where

g1 = ax(azas+by) + bya, + ¢4 gy = by(azas+by) + csay,
g3 = cy(azas+by), g3 = by(azas+by) + cia,.
Then we can easily obtain from this relation
€191 + Cof2 = 1 = coa191 + Cog3s
(boa;+c1)g1 + bog, = 0= (boa; +c,)gy + bogs,
(aoay+b1)gs + aog, + g3 = 0 = (aoa; +b))g, + aogz + gs-
These conditions means that
g, =g5 (e, b,=b)) and b, = b}
Therefore, it holds that MsM M M, =M ;M¢MoM, that is,
asag+bs as 1) aga;+b, a, 1
bsag+cg¢ bs O || bgay+c; by O
Csdg ¢cs 0 ){ coay co O
asag+bg ag 1\ aga,+b; aj 1
= | bsag+ce¢ as 0 || bpa;+c; by O
csbs ¢cs 0 ) coay c O
It follows that
Csdg = Cs5ag, Csdgdg + Csby = csagag + csby,
and
csag(@ody +by) + cs(boay +c¢;) = csag(agay +b1) + cs(boa,+c¢y).
Hence we get ag=ag, a,=ap and b, =b;. Thus we have obtained Lemma 7.3.

By a similar manner to the proof of Lemma 7.3, we can prove Lemmas7.6-7.6.
Therefore we here omit them.
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§8. Uniform simplification (g=2)

In this section we shall prove the main Theorem 1.3 for the case in which
g=2. (i.e., case (I)) To do this, we shall consider the systems of differential
equations (3.7), (3.12), (3.41). Let us put their connection formulas as follows;

3.1 z(t, &) = 21-1d4e)zi4 (1, ©),
(3.2 2, &) = Xh=1 cMe)Zi4 (1, ©),
(8.3) 2i(t, &) = 2h=1 ek(e)2x1 (1, ©) (k=0, 1,...,n+q-1).

Each solution y,(x; b) of the differential equation (1.3) has the connection
formula (4.1). Noting that

8.4 CKb) = CYG*b)) (k=0,1,....,n+q—1;j=1,2,..,n)
in (4.1), we can show the following

LEMMA 8.1. Let 6 and M be the same as in Theorem 3.1. Then, in the
connection formulas (8.1), (8.2), (8.3), the Stokes multipliers d%(e) c%(e) and
ek(e) are holomorphic in (3.29) and satisfy the following conditions:

(8.5) dj(e) — C(b(e)) = dj(e) — CH(G*(b(e))) ~ O,

(8.6) cj(e) — Ci(b(e)) = cl(e) — CHGH(b(e)) =0,

8.7 ef(e) = Ci(b(e) +¥(e)) = CYG*(b(e)+Y(e)) ~ CHG*(b(e)))
(j=1,2,...,n;k=0,1,...,n+g—1)

as u tends to infinity in (3.29).

Proor. From (3.13), we can easily obtain (8.6). Similarly, (3.47) means that
ej(e) = Ci(b(e) +¥(e)) -
From the Cramer rule, d%(e), ck(e) and e%(e) are given by

( d¥(e) = Wron [Zy415--+5 Zitj=15 Zks Zktj+1s+s Zitnl
! Wron [z415.-05 Zk4al

b

Wron [Zi415-05 Zivj=15 Zis Zutjr1eoes Zatnl

k. 3
®8) § @ Wron [Z41,-.5 Zi4n] ’
ek(e) = Wron [£i41,--+5 2kt j-15 Zks ?k+j+1v--, Zyenl .
Y Wron [£411,...5 Zk+al

Since
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trace [B(t, &)+ F(t, &)] = trace B(t, &) = trace B(t, &) =0,

each right hand member of (8.8) is independent of . Theorefore, from (3.27)
and (3.48), we can prove

d¥(e) ~ ck(e) = CX(b(e)) ~ e¥(e) as p—o0 in (3.29).

In §3, we defined the n by n matrices ®,(t, &), ¥i(t, &) and P,(¢, &). ((3.15),
(3.50)) Furthermore, we put

ck(e) 1 0eeeeenn 0
ck(e) 0 looeeeeen 0
(8.9) re=|
P 1
ck(e) 0 Qeeeeeenn 0
di(e) 1 0eeeeeen 0
k(e) O Leeeeeene 0
(8.10) T =|
S 1
di(e) 0 0-eeeeenn 0
and
ek(e) 1 0eeeeenenn 0
ek(e) 0 leeeeeeenn 0
@10 = & & - (k=0, 1,..., nq—1),
P 1
ek(e) 0 0-eeeeeen 0

Then it holds from connection formulas (8.1), (8.2) and (8.3) that
(8.12) Bt 8) = Byr (1, OTW(e), Pull, ©) = Vs (8, D),
Pi(t, &) = Piess(1, ©)F(e).
Since
Dt 6) = Dy(t, &), Wi(t, &) = Wit 8), Pu(t,e) =P, ¢)
for k=h (modn+g),
we can obtain from (8.12)
(8.13) TIjE§ 'l e)=1 TIRE'Te(t,6) =1, TIj28 1 Fult,e) = I

By computing the determinants on both sides of (8.13), we get
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(8.14) TInt&lci(e)=1, TIi2§ () =1, IIH&tei(e)=1.
From Lemma 8.1 and (8.9)—(8.11), it holds that
8.15) (&) ~ I'(e) ~ I(e)
as u tends to infinity in (3.29). Then, if we obtain the relation
(8.16) r(e)="re (k=0,1,.,n+q-1),
it follows from the definition (3.52) and (8.12) that
(B.17)  Ti(t, &) = Vit 0P (t, &)1 = Ppys(t, T () 1P 4(t, €)1
= Pt Phis(t, 71 = Toiy (1, ©).
Putting
T(t, &) = Ti(t, &) = Tis1(t, ) == Tispig-1(t, €),
we define

o(t, &) = P(t, &) exp [%s‘l S; trace E(s, s)ds]T(t, €).

Since, from the above definition,
Q(t9 3) = Qk(t’ 8) = Qk+1(t’ 8) == Qk+n+q—1(t, 8)9

we finish the proof of the uniform simplification in a full neighborhood of the
turning point ¢=0.

Therefore, we have only to prove (8.16), by choosing ¥, (¢) (p=2, 3,..., n;
r=0, 1,..., ¢—2) and the modification p(u)z,(t, ¢). Here y(u) is a scalar function
of u such that

(i) 7y(w) is holomorphic in (3.29)
and

(i) 7p(u)=~1 as u tends to infinity in (3.29).

Then y(u)z(t, ¢) is a holomorphic solution of the system (3.7) and furthermore,
satisfies the condition (ii) in Theorem 3.1. In fact, from (3.27) it follows that

exp [—Ey(x; b)] [Y(wzi(t, &) —Zi(t, €)]
= exp [— Ey(x; b)]1 [Y(W)zu(t, &) —v(WZ,(1, £)]
+ exp [— Ey(x; )] [(v(w) — Dzi(t, €)]
~0
uniformly for (3.28) as u tends to infinity in (3.29).

Case (I) and n is odd. In the connection formula (4.1), from (2.17) and the
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Cramer rule, the Stokes multipliers C¥(b) are given by

= ( — n— WI'OH [y (x,b)s y + (x;b)’"', y +n— (x,b)]
@G18)  Co® = D G on Tyrei (3 B), T 205 B)rimey Yesn(x: B

—_ wnann(b) exp [-ani/n]-(n—l)‘

Since n is odd and

[T5E3Cib) = 1,
we get from (8.18)

8.19) CKb) = @~ (»=1D (k=0,1,...,n+1).
It follows from Lemma 8.1 that for k=0, 1,...,n+1,
(8.20) ck(e) = =D, dk(e) > =D, ek(g) = (1)

as u=g"1/(n*2) tends to infinity in (3.29).
If we put

k
(8.21) we) = LE (k=0,1,..,n+1),

the quantities y,(¢) are holomorphic in (3.29) and

(8.22) () ~ 1

as p tends to infinity in (3.29). From (8.14) it holds that
(8.23) Va+1(E)7a(6)---¥1(e)70(e) = 1.
Let us put

(8'24) Co(t, 8) = ZO(t’ 8)’ Cmn(t: 8) = [l—.[:n=_01 ‘Yin(a)]zmn(ta 8) (m= 13 2’"" n+ 1) s
where
Cmn(t’ 8) = Cm’n(ts 8) for mn=m'n (mOd n+2).

Then {i(t, ¢) (k=0, 1,..., n+1) are solutions of the system (3.7) which satisfy the
same conditions as z(t, &) (k=0, 1,..., n+1). If we substitute {,(t, &) for z,(t, &),
the connection formula (8.1) becomes

(8.25) it &) = Tzl; dX@)es st ) + 0~V (1 8)  (k=0, 1,...,n+1),
where d¥(e) are holomorphic in (3.29) and
(8.26)  dk(e) — ck(e) = d¥(e) — Cx(b(e)) ~0 as u— o0 in (3.29).

Here we used (8.22) and the fact that n is odd. Furthermore, (8.3) is written as
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(8.27) 24(t, ) = Zzlek@)2ys f(t, &) + 0~ VZ,, (t, ) (k=0,1,...,n+1).

We shall now construct n—1 functions ¥, 4(¢) (p=2, 3,..., n) so that

(a) each Y, q(e) is holomorphic for |argu|<d/(n+2), |u|=M’, where M’
is a sufficiently large positive number;

(b) ¥,,0(e)~0 as p tends to infinity in (3.29);

(c) Clbe)+y(e)=d%e) (k=0,1,...,n—=2).
To do this, we need the following lemma.
LeMMA 8.2. Let us put
b = (0, byo, b3,00e-s buo)s b= 1(bo, by,e.er bu_z),
¥ =(0, V3,0, ¥3,05-2 ¥n,0) 5

and

Jib, ¥) = CYGHDb+y)) — CYGb)) k=0,1,.,n—2.
Assume that ¢, and ¢, are fufficiently small positive numbers. Then, if
(8.28) Ynalbpol S &, Xi31bsl S e
there exists a unique solution

(8.29) ‘P = g(b, B) = (0, gz(b’ 5), g3(ba 5)""’ gn(ba 5))

of the system of equations
(8.30) fub, ) =b,  (k=0,1,...,n-2)

so that g,(b, b),..., g.(b, b) are holomorphic in the domain (8.28) and
8.31) g;b,00=0 (j=2,3,.,n).
ProOOF. Since
G¥(b) = (0, w**b, o, W3*bs ..., @" b, ,),
we can easily get

afk(b’ l//) = Pk aC?(b)

0Vp,0 v=d 0b,o lb=0"

This means that the Jacobian determinant of the system (8.30) with respect to
Vp0 (P=2, 3,...,n) at b=0, Yy =0 s given by
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1 1 e 1
wz w3 ...... "

I oC(b)
4 6 2 I=2"0b, =0
[} w® e wn 0 b=0
@2(=2)  3(m=2) ...... n(n—2)

By virtue of Lemma 5.1, this Jacobian determinant is different from zero. This
proves Lemma 8.2.

Let us now put
(8:32)  by(e) = d¥(e) — CYGH(b)) = d¥e) — Cib)  (k=0,1,...,n-2),
and
833)  Yyo® = 6,6, 5@  (=23,....n).
Since

Jub(@), ¥(&) = bue) - (k=0, 1,...,n—2),

we get
(8.34) d%(e) = CH(b(e)+Y(e)) = ek(e) (k=0, 1,...,n—2).

Hence, in the connection formulas (8.25) and (8.27), utilizing Lemma 7.1 and
(8.34), we can easily obtain

(8.35) die)=el(e) (=0,1,.,n+1;m=1,2,...,n—1).
If we put again
i, &) = (G, €), Gera(t, ),y Gean—a(t, ©)),
dk(e) 1 0
CONNL IS

Fi@ =| Y
@ 0 w1
W=D Q0 eeennnn. ...'0
and
T, &) = PE, e)P.(t, &)t (k=0, 1,...,n+1),
we get

I'¥e) = e) and T¥{t, &) = TE (t,e) (k=0,1,...,n+1).

Since
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T¥t, &) ~1

uniformly for (3.49) as u tends to infinity in (3.29), and sectors (3.49) for k=
0, 1,..., n+1 cover a full neighborhood of the turning point =0,

T, &) = TE(E, &) = Tuy(t, &) = - =T¥ip44(1, )
is a desirable transformation.
Case (I) and n is even; From (8.14) and (8.18), it holds that
nan+2(b) Zkirtt exp [-2jni/nl-(n-1)(n+2) = 1’
that is,
(8.36) @men+2(B)(] 4 g 2mi/n) = ],
Using (8.5) and (8.18), we get
(8.37) dk(e) > nan+2(b) exp [=2kni/n]=(n=1) (k=0,1,...,n+1)
as u tends to infinity in (3.29). Therefore,
(8.38) [1nt2)/2=1 gnh(g) a [Tint2)/2-1 [pnan+a(b) exp [~2hnil-(n=1)]
~ (_ l)n;lw(n+2)nzn+z(b)/2
as u tends to infinity in (3.29). Here we put
dr(e) =dh(e) if nh=h (modn+2).

We now define a function d(e) which is holomorphic in (3.29) and satisfies the
following two conditions:

(8.39) (d(e)) 212 = (— 1)1 [[4?/2-1 dih(e)]
and
(8.40) d(e) ~ wmn+2(®) as y tends to infinity in (3.29).

Similarly, it holds form (8.37) that
ng;-162)/2-1 d:h+1(8) ~ (_ l)n—lw(l/Z)n(n+2)a,. +2(b) exp [—2ni/n]

as u tends to infinity in (3.29). Therefore, there exists a function d*(e) which is
holomorphic in (3.29) and satisfies the following two conditions:

(8.42) (@*(e))= 212 = (=1 ([T i )]
and

(843) d*.(g) ~ @~ "%n+2(b) exp [—2=ni/n]
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as u tends to infinity in (3.29). Since
2 dh(e) = /21 dih(e) x TIYE/ 1 dihi (o),
it follows from (8.14), (8.39) and (8.32) that

< ai(:g)) )(n+2)/2 -1

Therefore, there exists an integer p* (p*=0, 1,..., (n+2)/2—1) such that

3(8) _ 2p* L p*
i =l wm )= o

Then, using asymptotic conditions (8.40), (8.43) and (8.36), we get

(8.44) w??* =1, ie., d(e) = d*().
Let us put

d;"(e)

Pty (AN Yunt1(8) = @~ (=D nh+1(g) d*(¢)

Yun(€) =
(h=0,1,..., (n+2)/2-1).
Then the quantities y;(¢) are holomorphic in (3.29) and
(8.46) yie) ~1 as utends to infinity in (3.29).
Furthermore, from (8.39) and (8.42), it holds that
(8.47) T2 y,n(e) = 1, TTREEY'271 yppea(e) = 1.
Now, let us put
no(t, &) = zo(t, &), Numlt, &) = [TT7=4 Yan(e)1zun(t, €),

"l(t’ 8) = Zl(t’ 8)’ Nom+ l(t’ 8) = [HZ';(} Ynn+ 1(8)]an+ l(t’ 6)’
(m=1,2,..., (n+2))2—1).

(8.48)

Then n,(t, €) (k=0, 1,..., n+1) are solutions of the system (3.7) which satisfy the
same conditions as z,(t, €) (k=0, 1,..., n+1). Furthermore, (¢, &) (k=0, 1,...,
n+1) admit connection formulas:

nnm(t’ 8) = 27;{ a.';m(e)"nm+j(ts 8) + w—("—l)a(s)nn(m+l) (t’ 8)9

(8.49) _ -1
Nam+1(2, €) = 2121 aj N pme14+(t, €) + _3;—(;)—

(m=0,1,..., (n+2)/2-1),

Nam+1y+1 (2, €)
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where
(8.50) dnm(e) ~ dum(e) ~ CUG™(b)),
a;gm+l(8) ~ d;;m+1(8) ~ C?(Gnm+1(b)),

as u tends to infinity in the sector (3.29). On the other hand, from the asymtpotic
property (8.40) of d(e), there exists a function ¢(e) which is holomorphic in (3.29)
and satisfies the following two conditions:

(8.51) g(g)a)“"ann(") = @9
and
(8.52) ¢(e) = 0 as u tends to infinity in (3.29).

We shall now construct n— 1 functions ¥/, o(¢) (p=2, 3,..., n) so that

(a) each Y, (e) is holomorphic for |arg u|<6/(n+2), |u|=M", where M”
is a sufficiently large positive number;

(b) ¥,0(e) 0 as utends to infinity in (3.29).

(c) d3Me) _ CUAG*M(b(e) +Y(2))) _ )
d9(e) CIb(e) + ¥ () (r=1,2,..., n[2—1),

(8.53) d9(e)d3**1(e) = C(b(e) + V() CUG*1(b(e) + Y (¢)))
(h=0, 1,..., nj2—2),
na,2(b(e) + Y (e)) = na,2(b(€)) + ¢(e),

where
Y(e) = (0, Y2,0(e); ¥3,0(8)s- ¥,0()) -
To do this, we shall prove the following
LeMMA 8.3. Let us put
b = (0, by, b3gse.s bpo)y b= (by, bs,..., b,),
¥ = (0, ‘ﬁz,o, ‘//3,0,---, ‘ﬁn,o),

and

= CUGH*(b+Y)) _ CUG*"(b)) B _
Sfu(b, ¥) = OB +V) () (h=1,2,..., n/2—-1),

Sane1(b, ¥) = CLUBHY)CUGH 1 (b +)) — CRB)CUG*"+1 (D))
(h=0,1,..., n[2-2).

Assume that ¢, and e, are sufficiently small positive numbers. Then, if
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(8.54) Sialbyol S e, Tiilbjl S e,
there exists a unique solution
(8.55) ¥ = g(b, b) = (0, g(b, b), gs(b, b),..., gu(b, b))
of the system of equations
8560) filb:¥)=b,  (k=1,2,0n=2),  tpis(b+Y) = %ra(d) = b1,
such that g,(b, b), gs(b, b),..., g.(b, b) are holomorphic in the domain (8.54) and
8.57) gib,0)=0  (j=2,3,...,n).

Proor. Since

G¥(b) = (0, w?*b, o, W3*bj,g,..., ©"*b, ),

we can easily get

Woss ) | ooy L 2CB)
. U= Sl Gt e (1) syl P

af‘2h+1(b’ '1]) b= = (w(2h+l)j+l)c(l)(0) aCl(l)(b)

o ly=o 0bj,0 ls=0

We also derive from Lemma 4.1

0 (j#n/2+1)

an+2(b+lp) lb=6 =
Wio =0 (_1)1'% . (J=n/2+1).
Putting
. =2, 3,...
o=t (-p ([T n2 /2 2 m),

denote by D the determinant of the (n—2) by (n—2) matrix whose components
are the w;,. Then

D=VI[II}-» (@/+1)],

JjFn/2+1
where
1 e 1 1 1
V=|w2 o "2 o2tz L "
a:,Z(n—Z) ...... a:,n(n—Z)/z a:,(n/2+2)(n—2) ...... a:)n(n—Z)
Since

ol +1#0 (j=2,3,...,n/2,n/24+2,...,n),
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we get
D #0.

Now it is easily shown that the Jacobian determinant of system (8.56) with respect
to Y, (p=2, 3,...,n) at b=0, Yy =0 is given by

1 [ 0CY(d) }
— x D x n_ 1 .
n I_Ij'%%t/2+l abj,o b=0

Therefore, by virtue of Lemma 5.1, this Jacobian determinant is deifferent from
zero. This proves Lemma 8.3.

Let us put

_ dihe) _ CUGH (b)) = -
52;,(8) - a(l)(s) IC?(b) (h—‘l, 2’-.., n/2 l)a

bane1(e) = d9(e)dFH+1(e) — C(B)CI(G?+1(8))

(8.58)
(h=0,1,..., n/2-2),

Boes(e) = 1 6(2),
and
(8.59) Y& =g/be), b(e)  (j=2,3,...,n).

Then, using Lemma 8.3, we can obtain (8.53). If we put

(8.60) O

then, using (8.50), we can get that the function f(¢) is holomorphic for
(8.61) larg u| < 6/(n+2), |ul = M”,

and

(8.62) B(e) ~ 1 as u tends to infinity in (7.62).

If M” is sufficiently large, from this asymptotic property (8.62), we may assume that
B(e)#0 in (8.61). Therefore, from (8.53), it holds that

B(e)d3h(e) = CUG(b(e) + Y (2)) (h=1,2,...,n/2-1),
(8.63)

,B(le) d3+i(e) = CUG*+1(b(e) + ¥ (e)) (h=0, 1,..., n[2—2).

Now, if we put
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(8.64) Lam(t, ) = BEMNan(ts €); Lams 1(Es €) = Nm+1(2, €)
(m=0, 1,..., (n+2)/2-1),
then connection formulas (8.49) for n,(t, €) become
Cam(t5 ) = 2321 B(E)AT () Name (1, 8) +
+ @ (DR (1 g),
Lame1 (2, ©)= Z1=1 A7 () N 1452, €) +

+ CL)~("-1)_"a‘"+2(b+.l/)Cnn(m+l)+1(t’ 8)'

(8.65)

On the other hand, in the connection formulas (8.3) for 2,(t, ¢):
2nm(t’ 8) = E_'}=l e:;m(s)énm+j(t9 8)’

2nm+ l(ts 8) = Z;!=1 e?m+l(8)2nm+j+l(ts 8)

(m=0,1,..., n/2),

(8.66)

we can derive from (8.36) that
e"m(g) = C'(b+) = nan+2(b+¥) exp [~2nmni/n]-(n—1)
= @~ DFnan2(b+y)
(8.67) enmti(g) = CrmHi(h+1) = nan+a(b+) exp [=2(am+1)mi/nl=(n=1)
= @~ ran+2(b+P)—(n=1)
(m=0, 1,..., n/2).

Furthermore, in the connection formulas (8.65), it holds that
( BEAT™ (&l +1(8, €) = BE)AT™ (&) + 1, €)
= CUG™ (b +Y ) +1(t, &)

for nm'=2,4,...,n—2 (modn+2),

(8.68) nm” +
3'1"""“(3)’1(':»." +n+1(t &) = al—ﬂ(g)ﬂc(nrn" +n+1(5 ©)

= CUG™ * (b + YN, (um + 1)+ 1(2, ©)
\ for nm”"=0,2,..,n—4 (modn+2).

Hence, if we rewrite two connection formulas (8.65), (8.66) as

Gt &) = Z=1 A7 @)+ (1 9),
(8.69) (k=0, 1,...,n+1)

2(t, &) = X1 ek(e)2 (1, ©),
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then it holds from (8.67) and (8.68) that

d¥(e) = CYb+y) = ek(e) (k=0,1,...,n+1)
and

d¥(e) = Ck(b+y) =eie) (j=0,1,...,n=2).
Then, using Lemma 7.1, we can derive

d¥e)=ee) (j=1,2,...,n;k=0,1,...,n+1).

Similarly, if we put again

Vit &) = (G, &), v it 8),eves Giin—1(t5 8))s
@ 1
CCI

rie=|
ditie) 0 e
d*@E) 0 (1)
and
TH(t, &) = VX, e)P(t, ©)~! (k=0, 1,...,n+1),
we get
T'¥e)=T¥e) and T, e) = Tk (1, ¢) (k=0, 1,...,n+1).
Therefore,

T*(ta 8) = Txf(t, 8) = Tlt+l(t’ 8) == Tlt+n+1(ta 8)

is a desirable transformation. Thus we have obtained Theorem 1.3 for the case
in which g=2.

§9. Uniform simplification (q#2)

Case (II) n=3 and q=3; In this case, connection formulas (8.1) and (8.3)
become

zo(t, &) = d(e)z,(t, ) + dUe)z,(t, &) + dY&)za(t, €),
0.1 z4(t, &) = di(e)z,(t, &) + di(e)zs(t, &) + di(e)za(t, ©),

z5(t, &) = di(e)zo(t, €) + d3(e)z4(1, &) + d3(e)z,(1, ),

and
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Zo(t, &) = e}(e)2,(1, &) + e3(©)Z(t, &) + e8(e)Z5(1, ©),
Z,(t, &) = ei(e)22(1, &) + e3()Z5(t, &) + eX(O)Z4(1, 8),
£4(1,©) = el(©)2a(t, ) + eA(OZ:(0, ) + X ).
Furthermore, using (2.17) and the Cramer rule, we get
9.3) C4(b) = w32s(®) exp [~2kni/3]1-3 (k=0,1,..., 5).
Therefore, using Lemma 8.1, we can get
[ dlac(s)’ d13¢+3(£) ~ w3a6(b) exp [-2k1u'/3]—3,

dé(e) x di+3(e) ~ [w3%s(b) exp [~2kni/31-372

as u tends to infinity in (3.29). From these results, we now define functions
d(e), d*(e), d**(¢) which are holomorphic in (3.29) and satisfy the following
conditions:

9.4 d(e) ~ w33, [d(e)]> = di(e)d3(e)
(95) @) > @@ x2S, [T4(6)]2 = di(e)di(e)
(9.6) J**(e) ~ @3as(d) exp[—4ni/3]—3’ [‘]**(8)]2 — d%(s)dg(s)

as u tends to infinity in (3.29). Then it hods from the asymptotic property of
d(e), d*(e), d**(e) that

9.7 d(e)d*(e)d**(e) = — 1.
Let us put
Yo(e) = d3(®)/d(e),  ¥(e) = di(e)/d(e),
©.8) 11(e) = di(E)/A*(e),  va(e) = d4(e)/d*(e),
12(6) = d3(©)/d**(©), 7s(e) = d3(e)/d**(e).
Then the quantities y(¢) (j=0, 1,..., 5) are holomorphic in (3.29) and
.9 70(8)73(e) = 1, 71(e)ra(e) = 1, y2(e)ys(e) =1,
7;(e) 1 as pu tends to infinity in (3.29).
Now, let us put
no(t, &) = zo(t, &), Mi(t, &) = z4(t, 8), ma(t, &) = z5(t, ),
n3(t, &) = z3(t, &)yo(e), 1a(t, &) = z4(t, &)y4(e),
ns(t, &) = z5(1, £)7,(e).
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Then #,(t, ) (k=0, 1,..., 5) are solutions of the system (3.7) which satisfy the
same condition as z(t, ). Furthermore, from the condition (9.9), the con-
nection formulas (9.1) become

no(t, &) = dem(t, &) + d¥&,(t, &) + d(E@ma(t, ©),

ni(t, &) = A, &) + 2Oy (1, 6) + Pemat, ©),

( ) "3
_ i) d3()
”Z(I, 8) - ”3(t’ 8) + 2 ’74(% 8) + a**(&)ﬂ_r,(t, 6)’
9.10) yo(€) 71(8)
mm@=xﬂd%ma@+%@d%maw+amwsx
nalt, &) = ?f%mmwenw&w@%a@+%@ma@

1s(t, €) = p2(e)di(EMo(t, &) + v2(e)d3(En, (1, &) + d**@n, (1, ¢).

On the other hand, from the definition of d(e) and d*(e), there exist functions
¢.(e) and ¢,(¢) which are holomorphic in (3.29) and satisfy the following
conditions;

J(e) = @3e6(b)=3+é1(e) a*(e) = 3a6(b) exp [~2ni/3]-3+2(e)
and
¢1(€), ¢o(e) 20 as putends to infinity in (3.29).
Then, from (9.7), it follows that

9.11) d**(g) = @3%s(b) exp [~4ni/31-3-¢1(2)=$2(2),

We shall construct functions ¥/, o(€), ¥,1(€), ¥3,0(¢), ¥3,1(¢) so that
(a) each ¥, (¢) is holomorphic for (3.29);
(b) ¥, (e) 20 as putends to infinity in (3.29);

(c) ( _di(e)vo(e) _ CR(G3(b(e) +¥ ()
di(e)y1(e) Ci(b(e)+¥(e)

012 | BOEE _ ch66) + ¥EICUEGE +IO),

306(b(e) + Y (€)) = 3ag(b(e)) + b1(e),
3o(b(e) + Y(¢)) exp [—27i/3] = 3ae(b(e)) exp [—27i/3] + ¢,(¢).

To do this, we shall prove the following lemma.

LEMMA 9.1. Let
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b= (bz,o’ bz,v bs,o, bs,x), b= (52,03 52,1, 53,0, 53,1),
¢ = (Wz,o, ‘pz,n ‘pa,o, lp3,1)

and

_ CUGBHY) _ CUCB)
FOV="Cieryy —~Cc1m

F*(b, ¥) = CYb+Y)CUG*(b+Y)) — CUL)C(G*(D)).
Assume that €, and &, are sufficiently small positive numbers. Then, if
(9.13) 1b2,0l + 1b2,1] + b3 0l + |b3,4] < 24,
152,0] + 162,11 + 1b3,0l + 163,1] < &,
there exists a unique solution
¥ = g(b, b) = (92,0(b, b), g2,1(b, b), g3,0(b, b), g3,1(b, b))
of the systems of equations
(9.14) F(b,y) = by, F*b,¥)=b,,,
ag(b+y) — ag(b) = b3 0, as(G(b+Y)) — a6(G(B)) = b3 4,
such that g, (b, b) are holomorphic in the domain (3.29), and
gp(b,0) =0 (r=2, 3;r=0,1).
Proor. We defined G¥(b) (k=0, 1,..., 5) by
GH(b) = (0?*b;,9, @3*b,,;, @3*b; o, W**by ;).
Furthermore, we put from Lemma 5.1

— 0C2(d) aCc(db)
f_ abs,o b=0 X b3,0 + abz’l b=0 X b2,1

Then the Jacobian determinant of the system (9.14) with respect to ¥/, o, ¥/3 4 and
fat b=0, y=0 (i.e. f=0) is given by

OF(b, ¥) OF (b, ¥) OF (b, ¥)
0b,0 of 0b; 4
dag(b+Y) Oag(b+y) Oag(b+y)
abz’o af ab3, 1
0as(G(b+VY)) 0as(G(b+Y)) 0ag(G(b+Y))
2,0 of bs,, =9
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Therefore, we have determined i/(z,o(a) and Y5 (e). Next, we fix them and
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_ (@*—1)(o*~w

) %o.

w3—1 N
C1(0)
1
0 3
_1 4
0 3w

consider the following Jacobian determinant:

of of
Gbyo b
OF*(b,y) OF*(, ¥)
0bs,0 0b,,1 b=0,y=0
o0CY(b) 0C9(b)
0bs o 0b,,1
0b,
0C9(b) 0CY(b)
ab3,o abz’l
= x C9(0).
0C9(b) 0CY(b)
ab3,o abZ’ 1

9x C3(0)

0
0C30) co(0) + 2O cg0yws 2C3B) o0 + ICIB) g0y |, ,
,0 0b; 0 0b,,, 0b,,, v

Therefore, by virtue of Lemma 6.1, this determinant is different from zero. Thus

we have proved Lemma 9.1.

Let us put
= d3(E)v0(e) _ CUAG (D)

©19 P20 = Ziom ~~ Ct®)

b,y = OAE) _ cya)c0620)),

53,0 = ¢,(e)/3, 53.1 = ¢,(e),
and

¥ = g(b, b).

Then, from Lemma 9.1, we can obtain (9.12). Furthermore, if we put
(9.16) Bi(e) = C?(bff;(:‘)‘//(ﬁ)) and B,(e) = C(z)(bffg)(':)‘p(ﬁ)) ,

then the functions f,(¢) and B,(¢) are holomorphic for (3.29) and
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9.17) Bi(e), B(e) 1 as ptends to infinity in (3.29).

Here we used (8.5). From (9.16) and (9.12), we can derive

p1@- 1O, = 4G ) + v,

di()__ _ coG2(b(e) + ¥(2))),

Ba(@)yo(e)
d(e) = @GO3 = CY(b(e) +Y(e)) = CYG3(B(e) + ¥(2))),
d*(e) = w3 CCOHWEN3 = CY(G(b(e) +Y(2)) = CG*(B+Y)),
d** () = @@ COHEN3 = CYG2(b(e) +Y(8) = CHG3(b+V)).

(9.18)

Therefore, if we put
no(t, &) = &o(t, &), n3(t, &) = &3(t, €),
n1(t, &) = B1(&)81(1, ), na(t, &) = By()eu(t; ©),
Nyt &) = Ba(e)8a(t ), ns(t, &) = By(e)es(t, 8),
the connection formulas (9.10) for #,(t, ¢) become

oty €) = eQE)EL(t, &) +e(e)a(t, €) + e8(e)Es(t, ),
Eut,e) = die) B2 g1, 0) + 920 __¢ (1 6) + el(e)Ea(t, ),

B, FROLAC)
@mw=dmémw+%%%%gamw+é@amw,
9.19
¢-19 amw=4@amw+ﬂﬁ%%yﬂﬂ@mw+éwama,
amo=ﬂ%%%%@@mw+h%%@amw+4@ama
Es(t ) = 220430 ¢ oy 4 22d3EBE) ¢ (o) 4 e3(e)E,(10),

B2(e) B2 (e)

We rewrite these connection formulas as

&t, &) = d¥ ()i 1(t, &) + d3 (e)Ey42(t, &) + A3 “(e)Er45(t, €)
(k=0,1,..., 5).

Then, using Lemma 7.2, we can derive

@) = eie)  (k=0, 1,...,5;j=1,2, 3).
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Thus we have obtained Theorem 1.3 for the case (II).
Case (I1I) n=3 and q=4; Since
Ck(b) = (= 1) Yexp [q(n—1)mi/2] n¥n+a(b) exp [~2kni/n1~(n=1)a/2
(k=0,1,..., n4+g-1),
in this case, it follows that
Ck(b) = w?3a7(b) exp[-2kni/3]-4 (k=0, 1,..., 6).
Then, using (8.14), we can easily derive
@3%7(b) exp [=2kni/3] = | (k=0, 1,..., 6).

It follows from Lemma 8.1 that

(9.20) Cib) = o~* ~die)  (k=0, 1,..., 6).
If we put
(9'21) 'yk(e) = d’é(ﬁ)/w_‘* (k=0’ Ia"w 6)9

the quantities y,(¢) are holomorphic in (3.29) and
(9.22) (e) 1 as utends to infinity in (3.29).
From (8.14) and (9.21), it holds that

9:23) Y0(e)71(e)72(€)73(e)y4(e)75(e)y6(e) = 1.

Furthermore, let us put

Eo(t, &) = zo(t, &),

&1(t, &) = yo(e)y3(e)ye(€)y2(e)7s(e)z1 (2, ©),
E2(t, &) = 7o(e)y3(e)ye(e)z2(2, €),

9.24) ¢a(t, &) = vo(e)z3(1, ),

Ca(t, &) = 7o()y3()6(e)y2(e)75(e)y1(e)z4(t; €),
¢s(t, &) = yo(e)ys(e)ye(e)y2(e)zs(t, €),

Ce(t, &) = Yo(e)y3(e)z6(t; &) .

Then, from (9.23), the connection formulas for z,(t, €) become
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Solt, &) = [d9(e)/vo(e)va(e)ys(e)v2(e)ys(e)]E4 (2, €)

+ [d3(e)/ro(e)73(e)v6(€)]E2(8, &) + w™*E5(t, 8),
€1(t, &) = v5(e)y2(e)di(e)E2(t, &) + V3(e)ye(e)y1(e)di(e)Es(t, &) + w™Cu(t, ),
$a(t, &) = v3(6(e)di(e)Es(1, &) + [d3(e)/ys()y2(e)y1()]Ea(t, €) + 0™4Es(1, ),
&3(t, &) = [d3(e)/75(e)3(e)ve(€)r2(e)y1(€)]E4(t, &)

+ [d3(e)/73(e)6(e)y2(8)1Es(2, &) + w™*Ee(t, ©),
Sa(t, ) = v5(e)y1(e)di(e)s(t, &) + s(e)ye(e)y2(e)y1()ds(e)le(t, €) + w™*Eo(t, €
¢s(t, &) = 6(e)y2(e)di(e)6(t, ) + vo(€)73(e)ye()y2(e)d3(e)Eo(t, €) + w™#E4(1, €),
 E6(t, €) = 73(8)70()AT(e)E0(t, &) + [d5(e)/72(e)ys(e)ve(8)]E1(1, €) + @™4E5(t, 8).

These connection formulas are written as

(5.25) Elt, ) = d¥E)Ekr1(t, &) + AYOErs2(t, &) + 074451, ©),
where d¥(¢) and d%(e) (k=0, 1,... 6) are holomorphic in (3.29) and
(5.26) di(e) ~ Ck(b(e)), d4(e) ~ Ci(b(e)).

We shall construct functions ¥, ,(e) (p=2, 3; r=0, 1, 2) so that
(a) each ¥, ,(e) is holomorphic for (3.29) ;
(b) ¥, (e) ~0 as putends to infinity in (3.29).

(c) CHbE+Y() =die) (k=0,1, —1(=6), —2(=5)),
Cibe)+¥(e) = die)  (j=0, 1),
To do this, we need the following lemma.
LeMMA 9.2. Let
b = (by,0, b3,0, b2,1, b3,1, b3,2, b3,5),
b = (b3,0, b3,0, b3,1, b3,1, B35, b3,2),
V= (a0 Va0 Vo, Va0 ¥, ¥3,0)
and
Fi (b, ¥) = CY(G*(B+V¥)) — CUG* () (k=0,1, -1, =2),
F3(b,¥) = CYGI(b+Y)) — CHG/(B))  (j=0,1).

Assume that ¢, and &, are sufficiently small positive numbers. Then, if

577
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©.27 62,0 + 1b3,0l + 2,11 + 1b3,1] + 1b2,5| + 1b3,5] < &y,
162,01 + 163,00 + 162,11 + 153,11 + 162,2] + 155,2] S &5,
there exists a unique solution
¥ = g(b, b) = (92,0(b, b),..., g3,2(b, b))
of the systems of equations
(9:28)  Fo(b, ¥)=bso, Fi(b,¥)=bso, F_y(b,¥)=bsy, F_5(b,¥)=b3,,
(9.29) FibY)=by, F(b,¥)=b;,,
such that g, (b, b) are holomorphic in the domain (9.27) and
9pr(b,0) =0  (p=2,3;r=0,1,2).

Proor. Using Lemma 5.1, we put

_ 9C?(d) o9Ce(b)
Si= 3bso =0 X b3 + 3by1 |p=o X by,
and
_ 9C3() aCB)
f2 - 51’3,1 5=0 X b3,1 + abz,z b=0 X b2,2'

Since we defined G¥(b) (k=0, 1,..., 6) as
G*(b) = (w2kb2,0a wskba,o, wakbz,n w“‘bs,u w4kb2,2a Q’Skbs,z),

we can easily obtain

0Fy(b, ¥)  OF(b,¥)  OF(b,¥)  0Fy(b, ¥)
0bs,0 of 0f2 0b3, 2
OF (b, ¥) OF\(b,¥) OF (b, Y)  OF\(b, ¥)
0bs,0 of 0f2 0bs,,
OF_y(b,¥) OF_y(b,¥) OF_y(b,¥) OF_((b,¥)
0bs,0 ofy of2 0bs, 2
OF_3(b,¥) OF_3(b,¥) OF (b, ¥) OF_5(b, )
abZ,O afl afl ab3,2 b=0,y=0

1 1 1 1

S A s (O NI el ()
P ab;,o b=0 ab3,2 b=0

w? w3 ot

w—4 w—6 w—8 w™ 10
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and

fs f ofy ofy
0b3,4 0b, ob; 0b,,,

0f> 0f ofs 0f>
0b3)0 abz’l ab3,1 abZ,z

OF3(b,¥) OF§(b,¥) - OF5(b,¥) OF§(b, ¥)
6b3,0 6b2,1 0b3,1 abz’z

0F§(b, ¥) O0F3(b,Y¥) OF5(b,¥) OF§(b,Y)
ab3,0 ab2,l ab3,l abZ,Z b=0,y=0

aC(b) oC{(b)
0bs ob, 4

0 0 o0CyB)  AChe)
3,1 abz,z

0CY(b) o0CY(b) aC9(b) 0CY(d)
0b; o ob, ¢ 0b; 4 0b, ,

Cb) s OCHB) 2 OCIB) o ICID) L4

3,0 b2,1 a173,1 ab2,2 b=0

0 0

Therefore, by virtue of Lemmas 5.1 and 6.1, these Jacobian determinants are
different from zero. Thus we have proved Lemma 9.2.

If we put
ba,o = d9(e) — C2b(e)), bs,0 = di(e) — CUG(B(2))),
b1 = d7'(e) = CUG(B(E))), 53 1 = di2(e) — CUG2(b(¥))),
ba,» = d3(e) — C3(b(2)), 3,2 = dj(e) = CY(G(©))),
then we can obtain from Lemma 9.2 that
(9:30) di(e) = Ch(b(e) + Y() = el(e)  (k=0,1, —1, —2)
and
(9.31) die) = Cib(e) + Y(e) = efle)  (j=0,1).

Using Lemma 7.3, we derive from (9.30) and (9.31)
die) = ek(e)  (k=0, 1,...,6;j=1,2,3).
Thus we have proved Theorem 1.3 for case (III).

The proof of Theorem 1.3 for cases (IV), (V), (VI) is quite similar to that of
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case (III). Therefore, we have finished the proof of the main theorem on full
uniform simplification of the turning point in this paper.
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