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Introduction

A class X of Lie algebras is said to be a class of generalized soluble Lie algebras

if every soluble Lie algebra is an X-algebra and every finite-dimensional 3E-algebra

is soluble. As relatively large classes of generalized soluble Lie algebras we

know the classes E(<J)91 and E2I, which are the Lie-theoretic analogues of the

class of Si-groups and the class of SiV-groups respectively. In group theory

MaΓcev [6] has proved that the class of SJ-groups, the class of SiV-groups and

the class of Z-groups are L-closed. The first purpose of this paper is to prove the

Lie-theoretic analogue of this result.

Generalizing the class 91 of residually central Lie algebras, Amayo [2] has

introduced a relatively large class, denoted by 9t ( 1 ) in this paper, of generalized

soluble Lie algebras. In the recent paper [5] we have introduced the class 9t ( o 0 )

of residually (ω)-central Lie algebras. The second purpose of this paper is to

introduce and investigate various classes of Lie algebras generalizing the class 9ί.

Most of them are classes of generalized soluble Lie algebras.

In Section 2, following [8, §8.2] it can be more generally proved that the

classes E$ί, E ( O ) 9 I and E(o)2t are L-closed, where E ( O ) 5 Ϊ is the class of Lie

algebras having central series (Theorems 2.2 and 2.6). We shall also show that

every finite-dimensional subalgebra of an £(<i)£t-algebra (resp. a hypocentral

Lie algebra) is serial (resp. descendant) (Theorem-2.9).

In Section 3 we shall develop some results analogous to those of [5, §2] by

using the class 9t(J|c), naturally including the class 9?(oo), of generalized soluble

Lie algebras. Especially, we shall show that 9t(sN) n 9K(*) = E9ί (Theorem 3.5),

where 9W(s|ί) is a class of Lie algebras generalizing quasi-artinian Lie algebras.

Section 4 is devoted to investigating the classes 91*, 9l(*>, 9^i} and 9i{%],

naturally including the class 9ί ( 1 ), of generalized soluble Lie algebras. We shall

show that 9l(1> = 9l* = 9lw = (E^)9l(1> = (E^)9ί* = (E5I)9ϊ(*) and 9 t $ = M $ =

(E^l)9l[i)

) = (E9l)9i(

(ί] (Theorem 4.3). We shall also show that W $ Π Min-<r=

E ( O ) 2 I n Min-<i (Theorem 4.6).

In Section 5 we shall investigate the classes 9l ( 1 ) and 91* which are between

the classes 91 and 9ϊ(+). In particular, we shall present a sufficient condition for

a Lie algebra to be contained in the class 9t ( 1 ) and consequently show that 9t ( 1 )

is a subclass of the class 9t ( 1 ) (Theorem 5.2).
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1.

Throughout this paper we always consider not necessarily finite-dimensional

Lie algebras over a field f of arbitrary characteristic unless otherwise specified,

and mostly follow [3] for the use of notations and terminology.

Let L be a Lie algebra over ϊ and X a class of Lie algebras. X is said to be

a class of generalized soluble (resp. nilpotent) Lie algebras if ϊ n g < E ^ ί < ϊ

(resp. X Π <S<9l<X). As a relatively large class of generalized nilpotent Lie

algebras, we know the class 9ί of residually central Lie algebras, where L is re-

sidually central if x e L^{0} implies x i [x, L] L . In fact, since [2, Theorem 3.5]

(or [9, Corollary to Theorem 3.3]) states that

91 n Min-<ι < 3 n E91,

91 is a class of generalized nilpotent Lie algebras. In this paper we introduce

the classes 9t(1), 9t (1) and 9ί*, naturally including the class 91, as follows:

Le9l<1> iff x e L χ { 0 } implies x ^ f e L ] ^ 1 ) ;

Le9l ( 1 ) iff x e L \ { 0 } implies x<£ [x, L^] 1 - ;

Le 91* iff x e L \ {0} implies x i [x, L*]L,

where we denote by L* the intersection of all the terms in the transfinite lower

central series for L. Among them the class 9Ϊ ( 1 ) has been studied in [2, p. 16].

On the other hand, as relatively large classes of generalized soluble Lie

algebras, we know the classes E91, E(<I)2I, E2I, E(<I)21, E$Ϊ = E(<I)51, 9l(oo) and

9ί(1). ΈX (resp. E(<I)£) is the class of Lie algebras L having a family y =

{Λσ, Vσ: σeΣ} of subalgebras (resp. ideals) of L for some totally ordered set Σ

such that

(a) Vσ <π Λσ and ΛJVσ e X for all σ e Σ;

(b) Λσ<Vτifσ<τ;

(c) L^{0} = yjσeΣ(Λσ^Vσ).
Then y is called a series (resp. an ideal series) of L (of type Σ) with X-factors.

When Σ is well-ordered, ^ is called an ascending series (resp. ideal series) of L

with ϊ-factors. When Σ is reversely well-ordered, <¥* is called a descending series

(resp. ideal series) of L with 3E-factors. Le EX (resp. E(<I)3E) if L has an ascending

series (resp. ideal series) with I-factors. Le EX (resp. E(<I)£) if L has a descending

series (resp. ideal series) with ^-factors. From the definitions it is clear that E9I,

E(<I)2I, E21, E(<I)2I and E$I = E(<I)$I are classes of generalized soluble Lie algebras.

The class 9t(oo), strictly including the class 9ί, is defined in [5] by

Le 9l(00) iff x e L \ { 0 } implies x $ [x, L<ω>]L.

Then by [5, Theorem 2.3] we have
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9t(oo) n qmin-<] = E%

where qmin-<ι, strictly including the class Min-<ι, is the class of quasi-artinian

Lie algebras. In [1] L is said to be quasi-artinian if for any descending chain

/i > 12 > ''' of ideals of L there exists an integer n > 0 such that [/„, L ( n )] < Λ ^ i / f.

On the other hand, Amayo has indicated in [2, p. 16] that

WV n Min-<ι < έ(<ι)2I.

Therefore 9ί(oo) a n ( l $R(1) a r e indeed classes of generalized soluble Lie algebras.

In this paper we introduce the class 9ΐ(*), naturally including the class 91(00),

and the classes 91*, K<*>, 9l[l] and 9l{%], naturally including the class 5R(1), as

follows:

iff x e L ^ { 0 } implies x<£[x, L<*>]L;

Left* iff x e L \ { 0 } implies x<£([x, L]L)*;

iff x e L \ {0} implies x <£ ([x, L]L)<*>

iff x e L \ { 0 } implies x φ ([x,

iff xeL\{0} implies x^([x,

where we denote by L(s|ί) the intersection of all the terms in the transfinite derived

series for L.

Concerning L* and L(*} the following lemma is elementary.

LEMMA 1.1. Let I^L and H<L. Then:

(1) H* < L* and H( > < L< ).

(2) ( #

(3) 7/

((if+ /)//)<*>.

(4) (L(*))(*) = L< ) < L*.

2.

In this section, following [8, §8.2] we shall first show that for any {Q, R}-

closed class X of Lie algebras the classes ΈX and E ( < I ) £ are L-closed. We shall

secondly show that in a Lie algebra having a central series (resp. a descending

central series) every finite-dimensional subalgebra is serial (resp. descendant).

We begin by expressing the concepts of a series and an ideal series in functional

forms. Let L be a Lie algebra over ϊ. Assume that L has a series (resp. an ideal

series) {Λσ9 Vσ: σeΣ} of some type Σ (with Ό-factors). To each xeL\{0}

there corresponds a unique σ(x) eΣ such that x e Λσ(x^Vσ{x). For any x e L\{0}

we clearly see that xeΛσ iff σ>σ(x), and that x e Vσ iff σ>σ(x). We define a

binary function fL: LxL->{0, 1} as follows; for any x, yeL
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f 0 if x = 0 or if x, y Φ 0 and σ(x) < σ(y),
fL(*, y) = (*)

[ 1 otherwise.

Then we can easily verify that the function fL satisfies the following conditions
(i)-(iv) and (v) (resp.(v')), where x, y, zeL and α, βeί:

( i ) If fL(x, y) = fL(y, z) = 0 then /L(x, z) = 0.
(ii) Either/L(x, y) = 0 or fL(y, x) = 0.
(iii) If fL(x, 0) = 0 then x = 0.
(iv) If/L(x, z)=fL(y, z) = 0 then/L(αx + ̂ , z)=/L([x, y], z) = 0.
(v)

(V)

Conversely, assume that there exists a binary function /L: LxL->{0, 1}
satisfying the conditions (i)—(iv) and (v) (resp. (v')). Let x ~ y mean that/L(x, y) —
fL(y, x) = 0. By (i), (ii) and (iii) the relation ~ is an equivalence relation on L and
{x e L: x~0} = {0}. Let Σ denote the family of all ~-equivalence classes except
{0}. For σ, τeΣ, we write σ<τ if σΦτ and/L(σ, τ) = {0}. Then by (i) and (ii)
the relation < is a total order on Σ. We now define a family {Λσ, Vσ: σeΣ}
of subsets of L as follows; for each σeΣ

f \Jτ<σAτ if {τeΣ:τ<σ} φ 0,
Λσ = {xeL:/L(x, σ ) = {0}}, Vσ = (••)

[ {0} otherwise.

By (i) and (iv) {Λσ: σeΣ} is a totally ordered chain of subalgebras of L. It
follows that Vσ<Λσ for any σeΣ. If τ<σ then Λτ< Vσ. It is not hard to show
that L\{0} = WσeI(yl<τ\Fσ). By using (i) and (v) (resp. (i) and (vr)) we can
easily see that Vσ^Λσ (resp. Vσ, Λσ^L) for all σeΣ. Therefore {Λσ, Vσ: σeΣ}
is a series (resp. an ideal series) of L of type Σ (with O-factors).

Let J^o be the free Lie algebra over I on a countably infinite set {tl9 t2, }
An elements of J ^ is called a word.

LEMMA 2.1. Let L be a Lie algebra, Ω a set of words and 9SΩ the variety
determined by Ω. Then LeE$Bβ (resp. E(O)33Ω) if and only if there exists a
binary function fL: LxL-»{0, 1} satisfying the conditions (i)-(iv), (v) (resp.
(vr)) and

(vi) Ify Φ 0 andfL(xh y) = 0 ( l < ΐ < n ) , thenfL(y, w(x l v.., xπ)) = 1,

= w(ίl5..., tn)eΩ and xi9 yeL

PROOF. Assume that LeE93β (resp. E(<α)33β) and let {Λσ, Vσ: σeΣ} be a
series (resp. an ideal series) of L of type Σ with 93β-factors. Then the binary
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function fL: LxL->{0, 1} defined by (*) satisfies the conditions (i)—(iv) and (v)

(resp.(v')). Let w = w(ί1?..., tn)eΩ and xh yeL (l<i<ή). Suppose that

j ^ 0 a n d / L ( x , , y) = 0(l<i<n). T h e n ^ e y l ^ α ^ i ^ n ) . SinceΛσ{y)jVσ{y)eWΩ,

we have w(x1?..., xn)e Vσ(y). Hence w(x l5..., xn) = 0 or σ(w(xl9...9 xn))<σ(y).

This implies fL(y, w(x1?..., xπ)) = l. Therefore fL satisfies the conditions (i)—(iv),

(v) (resp. (v')) and (vi).

Conversely, assume that there exists a binary function/L: L x L-»{0, 1} satisfy-

ing the conditions (i)-(iv), (v) (resp. (v')) and (vi). Let {Λσ, Vσ: σeΣ} be the series

(resp. the ideal series) of L defined by (**). We show that ΛJVσe 93Ω for all σeΣ.

Let σeΣ, w = w(tί9..., tn)eΩ and XχeAσ (l<i<n). Suppose that w(x l5..., xn)<£

Vσ. Since /L(x i,σ) = {0} (l<i<n), by (vi) we have fL(σ, w(x l9..., xπ)) = {l}.

We can find a τ e Σ such that w ( x l v . . , x j e τ . Then we have τ < σ .

Hence w(x l5..., xn)eΛτ<Vσ, a contradiction. Therefore we have w(xi + Vσ9...9

xn + vσ) = 0. It follows that ΛJVσ e 23β. Thus we obtain Le E $ Ω (resp. E(<α)93β).

Now we have the first main theorem of this section, which corresponds to

[8, Theorem 8.23].

THEOREM 2.2. For any variety 93 of Lie algebras, the classes E93 and E(<I)33

are L-closed. In other words, for any {Q, R}-closed class X of Lie algebras, the

classes ΈX and E ( < I ) Ϊ are L-closed.

PROOF. It is well known (cf. [3, p. 257]) that a class X of Lie algebras is a

variety if and only if X is {Q, R}-closed. Hence it suffices to prove the first half

of the theorem. Let 93 be a variety of Lie algebras. Then there exists a set

Ω of words determining 93. Let LGLE93 (resp. LE(O)93). We denote by S£ the

set of E93-subalgebras (resp. E(o)93-subalgebras) of L. Then J£? is a local system

on L in the sense of [8, p. 94]. It follows from Lemma 2.1 that for each He3?

there exists a binary function fH: HxH-+{0, 1} satisfying the conditions (i)-(iv),

(v) (resp. (v')) and (vi) which are obtained by replacing L with H. Owing to

[8, Lemma 8.22], there exists a binary function fL: LxL->{0, 1} such that,

given any finite subset {(xf, yt): l<ί<m} of L x L , there exists a n H e i f for

which (xh yt)eHxH and /L(x f, yd=fH(xi> yd ( 1 < Ϊ < ^ ) Since each of the

conditions (i)-(iv), (v) (resp. (v')) and (vi) involves a finite number of elements

of L, the function fL also satisfies the conditions (i)-(iv), (v) (resp. (v;)) and (vi).

Using Lemma 2.1 again, we have Le£93 (resp. E(<3)93).

We regard the class 21 as the variety determined by the set of the single word

\tu ί 2 ] . Then as an immediate consequence of Theorem 2.2 we have the following

COROLLARY 2.3. (1) LE9I = E21 and L E ( < 0 2 T = E ( < 3 ) 2 I .

(2)
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REMARK. By making use of [3, Corollary 6.5.3] and [2, Theorem 4.6],

we see that if I has zero characteristic then LE^ΪT^E^Ϊ. In his recent paper [4]

Ikeda has proved that L E ( O ) ^ T ^ E ( < I ) 9 1 ([4, Corollary 3.4]) and that if every

countable dimensional subalgebra of a Lie algebra L belongs to έ(<i)9ϊ then

Leέ(<ι)2I ([4, Corollary 2.10]). Moreover, we have LE91T*E5I. In fact, we

consider the McLain Lie algebra ^ ( Q ) over !, where Q is the set of rational

numbers with natural ordering (cf. [3, p. 111]). Then it is well known ([10, p. 96])

that S£t(Q) is perfect and locally nilpotent. Therefore we have

Next we introduce the Lie-theoretic analogue of the concept of marginal

subgroups of groups (cf. [7, p. 9]). Let / be an ideal of a Lie algebra L. For a

word w = w(ί1,..., tn), I is said to be w-marginal in L if w(xί,...9 xn) = w(yi9...9 yn)

whenever xi9 ^ e L and xf = ytmod/ (1 < i<ή). Let Ω be a set of words and 93β

the variety determined by Ω. Then / is said to be 93β-marginal in L if / is w-

marginal in L for all weΩ. Clearly if / is 33β-marginal in L then / e 33β. Since

the variety 21 is determined by {[tl9 t2~]}, we can easily see that I is 2I-marginal in

L if and only if / is central in L (i.e. / < Ci(£)). Let J be an ideal of L contained

in /. We say that /// is a 33Ω-marginal factor of L if //J is a factor of some ideal

series of L and is 33Ω-marginal in L/J. Then we define the classes E(<I)33 Ω ,

έ ( < ι ) $ β and E(o)& β of Lie algebras as follows:

LeE(o)33β iff L has an ideal series with 33β-marginal factors;

Leέ(<])23β iff L has an ascending ideal series with 93β-marginal factors;

$ iff L has a descending ideal series with 93β-marginal factors.

In particular, we have

LEMMA 2.4. (1) E(o)2l = {Le£): L has a central series}.

(2) έ(<i)2X = {LeO: L has an ascending central series} = 3 -

(3) E(<i)aί = {Le O: L has a descending central series} = {Le O: L* = {0}}.

REMARK. It has been indicated in [9, p. 58] that every Lie algebra having a

central series is residually central. It follows from Lemma 2.4 (1) that

In particular, E(<i)Φί is a class of generalized nilpotent Lie algebras.

We are able to express the concept of ideal series with marginal factors of

Lie algebras in functional form.

LEMMA 2.5. Let L be a Lie algebra, Ω a set of words and 33β the variety

determined by Ω. Then L e E ( < ) $ Ω if and only if there exists a binary function
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fL: LxL->{0, 1} satisfying the conditions (i)—(iv), (V) and

(vii) // zφO and fL(Xi-yi9 z) = 0 ( l < ί < n ) , then fL(z,wixi9...9xJ-

where w = w(ί1,..., tn)eΩ and xi9 yi9 zeL (l<i<ή).

PROOF. Assume that Le E(<ι)33β and let {Λσ9 Vσ: σ e Σ} be an ideal series of L

with 33β-marginal factors. Then the binary function fL: L x L->{0, 1} defined by

(*) satisfies the conditions (i)—(iv) and (V). Let w = w(tί9..., tn)eΩ and xi9 yi9 zeL

( l < i < n ) . Suppose that zΦOandfL(Xi — yi, z) = 0 ( l < ΐ < n ) . T h e n ^ — ^ 6 / 1 ^ )

( l < ϊ < n ) . Since Λσ(z)/Vσ(z) is a 33β-marginal factor, we have w(xl9..., xn) —

Φi ^ e K φ ) . It follows that w(xl9...9xn)-w(yί9..., yn) = 0 or (7(w(xlv..,

^)-w( j 1 , . . . , yn))<σ(z). Hence we have /L(z, w(xί9..., xn)-w(yί9...9 yn)) = l.

Conversely, assume that there exists a binary function fL: LxL->{0, 1}

satisfying the conditions (i)-(iv), (V) and (vii). Let {Λσ9 Vσ: σeΣ} be the ideal

series of L defined by (**). We show that ΛJVσ is a 33β-marginal factor of L for

any σeΣ. Let σeΣ, w = w(fl9..., ίπ)eΩ and xί? ^ e L (1 < i < n ) . Suppose that

xt = y(modΛσ (l<i<n). Then/L(x f —^f, σ) = {0} (l<i<n). It follows from

(vii) that fL(σ9 w(xί9...9 xn)-w(yί9..., yn)) = {l}. Suppose that 0^w(xί9...9 xn)-

w(yί9..., yn)eτeΣ. Then we have τ<σ. It follows that w(x l v.., xn) —

u j y,)εΛτ<Vσ. Therefore Λσ/Vσ is w-marginal in L/Vσ. Thus we have

Now we have the second main theorem of this section, which corresponds

to [8, Theorem 8.24].

THEOREM 2.6. Let Ω be a set of words and 33β the variety determined by Ω.

Then the class E(<0$ β is L-closed.

PROOF. By using Lemma 2.5, we can prove the theorem as in the proof

of Theorem 2.2.

By making use of Lemma 2.4 and Theorem 2.6, we have

COROLLARY 2.7. (1) L E ( < I ) £ = E ( < I ) £ .

(2) L9l = L3 = LE(<3)ίί<LR9l<LE(<])^ί<E(<3)«.

REMARK. Both of the classes E ( < I ) Φ = 3 and E(<I)§I are not L-closed.

In fact, the McLain Lie algebra ^t{Q) is locally nilpotent and is neither hyper-

central nor hypocentral.

It is well known that if Le έ(<α)$l = 3 then every subalgebra of L is ascendant

in L. On the other hand, it is not known whether every subalgebra of an E(O)2Ϊ-
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algebra (resp. an έ(<ι)$l-algebra) L is serial (resp. descendant) in L or not.
However, we can prove that every finite-dimensional subalgebra of an E(<I)5I-

algebra (resp. an έ(<ι)2ί-algebra) L is serial (resp. descendant) in L. To do this
we need the following lemma concerning vector spaces.

LEMMA 2.8. Let V be a vector space over ϊ, U a subspace of V and X a
finite-dimensional subspace of V. Assume that there exist a totally ordered set
Σ and a family {Λσ, Vσ: σeΣ} of subspaces of V such that

(a) U<=Vσ<=AσforallσeΣ;
(b) Λσ<=Vxifσ<τ;
(c) V^U=VσeΣ(Aσ^Vσ).

Then we have

PROOF. By using induction on n = dim(X), we show the result. It is clear
for n = 0. Let n>0 and assume that the result is true for n — 1. There are an
(n — l)-dimensional subspace Xo of X and a non-zero element x of X such that
X = X0 + lx. For each σeΣ, set Λ'σ = Λσ + X0, V'σ = Vσ + X0, A"σ = Λσ + X and
V'ά = Vσ + X. Then by inductive hypothesis the family {A'σ9 V'σ\ σeΣ) satisfies
the following conditions:

(a') U + Xo <= V'σ c A'σ for all σeΣ;
(b') A'σ^V'τifσ<τ;
(cf) V^ (U + Xo) = \JσeΣ(K^Vf

σ).
It follows from (by) and (c') that for any ve V^(U + X0) there exists a unique
σ(v)eΣ such that veA'σ(v)^V'σ(υ). In the case that xe U + Xo, by (a') and (c')
we have

So we consider the case that x φ. U + Xo. Let u e F \ ( l / + I ) . For each of the
cases

1) σ(x)<σ(v), 2) σ(v) < σ(x), 3) σ{x) = σ{v),

we show that υeA'^V'ό for some σe Σ.
Case 1). By (a') and (b') x e ^ g K ^ c ^ , It follows that A"σ{v) =

A'σ(υ) and V"σKυ) = V'σ(v). Hence we have ve A'^v)^V'^vy

Case 2). Suppose that ve V'ά(v) = V'σ(v) + ϊx and write v = u + ax (ueV'σ(v)9

OΦoceϊ). Then by (a') and (b') we have x = {v-u)jae V'σ(x), a contradiction.
Therefore we have ve Aliυ)^V"σ{υ).

Case 3). We may suppose that veV'ά(v) = V'σ(v) + lx. Write v = w + βx
(weV'σ(v), OΦβeϊ). Then w£U + X0. Since we V'σio)^V'σ(w)9 by (a') and (b')
wehave V'σiw)^V'σiυ). It is clear that V'σ(v) nϊx = {0}. If ve F ; ( w ) = K;(

then by modular law
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w = υ - βxeV'σ(v)n(V'σ{w) + ϊx) = V'σ(w) + (V'σ(v) nix) = V'σiw)9

a contradiction. Hence we have v φ. F£ ( w ). Since v = w + βx e Λ'σ{w) + tx = Λ£(vv),
we obtain veΛ^iw)^V^(w).

In every case we have shown that ve\JσeΣ(Λ^V'£). Thus we have F \
(U + X)c\jσeΣ(A^V'£). The converse inclusion is trivial from (a') This
completes the proof.

We can now prove the third main theorem of this section.

THEOREM 2.9. Let L be a Lie algebra over I.

(1) J/Le E(<])21, then every finite-dimensional subalgebra of L is serial
in L.

(2) // Leε(<ι)5l, then every finite-dimensional subalgebra of L is de-
scendant in L.

PROOF. Let F be a finite-dimensional subalgebra of L. If Le E(<α)9ί, then
by Lemma 2.4 (1) L has a central series {Λσ, Vσ\ σeΣ} of some type Σ. For
each σeΣ, set Λ; = Λσ + F and F; = Vσ + F. Then by Lemma 2.8 we. have L \ F =
\JσeΣ(Λ'σ^V'σ). For any σeΣ, since ^IJF^ is central, we have V'σ^Λf

σ. Hence
{Λ'σ, V'σ: σ e Σ} is a series from F to L and therefore F is serial in L. Especially,
if Leέ(<])2l then we may suppose that I1 is a reversely well-ordered set. Thus
F is descendant in L.

It has been proved in [2, Theorem 4.6] that (5r<L9t, where (5r is the class
of Gruenberg Lie algebras, that is, (Sr is the class of Lie algebras in which every
1-dimensional subalgebra is ascendant. Here we analogously define the classes
(Sr and (5r of Lie algebras as follows:

Le (Sr iff every 1-dimensional subalgebra of L is serial in L;

Le ώr iff every 1-dimensional subalgebra of L is descendant in L.

Then by Corollary 2.7 (2) and Theorem 2.9 we have

L91 < E(<i)2ί < <5r and R91 < E ( < ] ) £ < ©r < <5r.

It follows that (5r contains all free Lie algebras. Since every non-abelian free
Lie algebra is not locally nilpotent, we have

©r < L91 < <5r and ©r φ <5r.

Considering the example described in [4, p. 119], we have ©r^(Sr. On the
other hand, the following result shows that ©r is a class of generalized nilpotent
Lie algebras.
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PROPOSITION 2.10. L91 = Lg n (5r = L Min n ©r.

PROOF. By using [3, Proposition 13.2.4], we can easily see that every sub-

algebra of a locally nilpotent Lie algebra is serial. It follows that L 9 I < L 5 n © r <

L Min Π @>r. Let Le L Min n (Sr and let H be a finitely generated subalgebra

of L. Then we have H e Min. Let x e H. Since Le (5r, there exists a series

{Λσ, Vσ: σeΣ} from <x> to H of some type Σ. We may assume that VaΦAσ

for all σeΣ. Then Vσ< Vτ iff σ<τ. Since every non-empty subset of {Vσ: σeΣ}

has a minimal element, Σ must be a well-ordered set. Thus we have <x> asc //,

so that HeOΰx. Owing to [2, Theorem 4.6], we have

Hence Le L91 and therefore L Min Π (5r < L91.

3.

From the definitions clearly we have

In this section we shall develop some results analogous to those of [5, §2] by using

9t(*} instead of 5R(oo).

We begin with the following result corresponding to [5, Lemma 2.1].

PROPOSITION 3.1. (1) {s, R}5R(sH) = 9i(*).

(2) E

PROOF. (1) By Lemma 1.1 (1) clearly we have s9l(ϊ|e) = 9l(s|e). Using

Lemma 1.1 (2), we can easily show as in the proof of [5, Lemma 2.1] that R!H(S|C) =

(2) If Le E2I then L<*> = {0}. It follows that E2T< <R(s|t). We consider the

McLain Lie algebra L = &t(Q) over I. Then LeL9i<9t<9ί ( ϊ | { ) . Since L^ = L,

we have L φ E9I.

We here introduce the class S0ίl(*) of Lie algebras, naturally generalizing

that of quasi-artinian Lie algebras, as follows:

iff for any descending chain Iί>I2>'" of ideals of L contained

in L(*> there exists an integer n = n(Il9 / 2 , . . . )>0 such that In/Γ\i^ιli<

We present some equivalent conditions for a Lie algebra to be an S0t<*>-algebra

in the following

LEMMA 3.2. For a Lie algebra L, the following conditions are equivalent:

(1)
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(2) For any descending chain I1>I2>" of ideals of L contained in

there are integers n, r>0 such that IjΓλ^i ^/^Cr(^ (* }/Π^i Ii).

(3) For any descending chain I1>I2> ' of ideals of L, there is an integer

n>0 such that [/„, L^)]<n^i/ f .

(4) For any descending chain Iι>I1>- of ideals of L, there are integers

n, r>0 such that [/ΠjΓ LW]<r\^i /*.

PROOF. It is sufficient to show that (2) implies (3). Let / 1 > / 2 > be a

descending chain of ideals of L. Then [J1 ? I/**] > [/2, L(5|ί)] > is a descending

chain of ideals of L contained in !/*>. By (2) there are integers n, r > 0 such that

[/„, LW]/Λ f e l [/„ L< >] <C r(L(*)/n^! Ut, LWD- Since L<*> is perfect, we have

[/„, L<*>] = Un,r+

Hence (2) implies (3) and therefore the conditions (l)-(4) are equivalent.

It is easy to see that if Leqmin-o then L(*> = L<π) for some n<ω. We

now denote by Xo the class of Lie algebras L such that L<*} = L ( n ) for some n<ω.

Then we have the following result characterizing the classes qmin-<ι and SOΪ(*>.

PROPOSITION 3.3. (1) 5R(*> n 3E0 = qmin-<ι.

(2)

PROOF. (1) By using Lemma 3.2 we have ϊflW n3E0<qmin-<ι. The

converse inclusion is evident.

(2) Let Le 9W<*)fe9l. Then there exists an ideal / of L such that / e W * )

andL//eE9ί. By Lemma 1.1 we have L<*> = (L<*>)<*> =/ί*>. L e t / i ^ ^ ^ be

a descending chain of ideals of L contained in L<*>. Since L̂ *> = /(*> and / e

9«(*), there exists an integer n > 0 such that [/„, L<*>] = [/„, /<*>] < n ^ i /;. Hence

we have

It is clear that qmin-<ι u E2ί<SDΐw. Furthermore, we have

PROPOSITION 3.4. qmin-<i u

PROOF. Let 5 be a 3-dimensional simple Lie algebra over ϊ with basis {x, y, z}

such that

[x, y~] = z, |>, z] = x, [z, x] = y,

and M the McLain Lie algebra J^ f(Z) over t, where Z is the set of integers with

natural ordering. Then M has basis {αί7 : i, j e Z, i <j} such that

[βy> akϊ\ = δjkβii - δuakj.

Since M" = <α f i: iJeZ,j-ί>n} ( l < n < ω ) , we have M ω ={0}, so that Me
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R91 < RE2I < E3T. Define L = S®M. Then by Proposition 3.3 (2) we have

Le9K(*>. Since L<*> = S#SΘM<"> = L<»> (n<ω), we have L£XO\JE% SO that

Lφ. qmin-o U E2I. Therefore we obtain qmin-<ι U E 2 I < W * > .

The following result, corresponding to [5, Theorem 2.3], is the main theorem

of this section.

THEOREM 3.5. X n 9) = E2I for any class X of Lie algebras such that E 9 I <

) and any class 9) of Lie algebras such that E

PROOF. It suffices to prove that Mw n $K(5|C) < E 5 I . Let Le SR(1|t) n S0i(*} and

assume that L ^ E S I . Set 7 = L<*). Then /<«> = /#{0} for all ordinals α. It

follows from [3, Lemma 8.1.1] that £*(7)<7. First we show that if xe7\£ α (7)

then x£ [x, 7 ] L + £α(7)> by using transfinite induction on α. It is clear for α = 0.

Let α > 0 and suppose that the result is true for all β < α. Then it is also true for

α if α is a limit ordinal. So we consider the case that α is not a limit ordinal. Let

x e [ x , / ] L + £α(7) and write x = y + z ( j / e [ x , / ] L , z e Cα(/)). Then we have

[x, ΠL<Ly, J ] L + Cα-iCD Hence by inductive hypothesis we have j>eCα-iCO,

so that x = y + ze ζa(I). This completes the induction.

Next we construct a sequence (Xi)T=i of elements of I^ζ*(I) such that for any

and

There is an x^/^C+CD- Then xx £ [x 1 ? J ] L + £*(7) Let i > l and suppose

that it has been constructed up to xf. Since xf ^ C*CO> there exists an

*i+i e [Xf, / ] L + C*(/) such that x i + 1 <£ ̂ (7). Then we have x ί + 1 i [x i + 1 , 7] L +

ζ+(7). Therefore we can inductively show that such a sequence exists actually.

Set Ii = [xi9 7 ] L + C*W 0 > l ) . Then 7 1 > 7 2 > is a strictly descending

chain of ideals of L contained in L(5|e). Since Le90ϊ(5|c), there exists an integer

n > 0 such that [7Π, 7] < Π ^ i 7;. Since 7 is perfect, we have

ι x , nL < [[χ», / ] , / ] L < [[χ», / ] L , /] < [/», /] < / Λ + i .

It follows that 7 Π <I n + 1 9 a contradiction. Therefore we have 5R(#) Π 9W(*} <E2I.

By making use of Proposition 3.3 (1) and Theorem 3.5, we have

COROLLARY 3.6. 9iw n qmin-<i = E 9 1 .

It is immediately deduced from Corollary 3.6 that 9ί ( + ) is a class of generalized

soluble Lie algebras.
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4.

In this section we shall first characterize the classes 5R(1) and 9t[$], and

secondly prove that Amayo's result ([2, p. 16]), described in §1, is also true for

instead of 9ΐ(1).

We begin with the following

PROPOSITION 4.1. (1)

(2) £(•

PROOF. (1) is easily proved from Lemma 1.1.

(2) Let LeE(<i)2ί and xeLχ{0}. L has an ideal series {Λσ9 Vσ:σeΣ}

with $ί-factors. Then xeΛσ^Vσ for some σeΣ. Since [x, L]L<Λσ, we have

([x, L]Lyv< Vσ, so that x φ. ([x, L\L)^\ Hence Le SW1) and therefore E(<I)9I<

91*1). It is clear that SRW ŜR and 9lw^9i[i]^9l{i]. Using Lemma 1.1,

we have «•<£»<*> £91$.

REMARK. We shall prove in Theorem 4.3 below that 9l ( 1 ) = 9t* = W | ί ) and

$R(i> = 9ί(*>. On the other hand, it has been indicated in [2, p. 16] that the class

9l ( 1 ) is {s, R, L}-closed. It follows that the classes 91* and 9t<*> are {s, R, L}-

closed.

Before showing the first main theorem of this, section, we need

LEMMA 4.2. Let xeL and X^L. Then the following conditions are

equivalent:

(1) ^ ( [ x , ! ] ^ 1 )

(2)

(3)

PROOF. (l)t=>(2)«=>(3) is clear from Lemma 1.1 (4). So we show that (3)

implies (1). Set J = [x, X~\L and assume that x e / ( 1 ) . Since 7 ( 1 )<iL, we have

<x>L</(1>. Obviously/ = [x, X ] L < [ < x > L , X ] L < < x > L . It follows that <x>L =

/ = /<1). Hence we have x e /<•>. Therefore (3) implies (1).

We now have the first main theorem of this section, which characterizes the

classes SW1) and $

THEOREM 4.3. (1) The following classes coincide with each other:

Wx\ «*, «<*>, ( E ^ ) ^ ^ ) , (E51)$R*, (E^H)

(2) The following classes coincide with each other:
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PROOF. We here only prove (1), since (2) is proved similarly. By using

Lemma 4.2, we can easily see that SR(D = 9l* = 9l(sie>. Let Le(fe8l)5R<*> and

xeL\{0} . There exists an ideal I of L such that IGEM and L//e9l<*>. If

x£I then by Lemma 1.1 (2) x + I£(fl>, L]L)(*) + /)// and so ^ ( [ x , L ] L ) W .

If xel then by Lemma 1.1(1) ([*, L]L)(*></w = {0} and so xgflx, L]L)W.

Hence Le 9t<*> and therefore (fe8l)9l<*> = SR<*>. This completes the proof.

In [2, p. 16] Amayo has indicated without proof that if M is a minimal ideal

of an SRW-algebra L then Me81 and L/MeW1), and that St*1) n Min-<α<

έ(<ι)8ί. We shall next show that these results also hold for 5R(J} instead of 9i^\

To do this we need

LEMMA 4.4. //M is a minimal ideal of a Lie algebra L, then (L/M)^*) =

PROOF. We can find a sufficiently large ordinal σ such that (L/M)(5|ί) =

(/ and M^ = M^\ First we consider the case that M<L^ for all

α<σ. By transfinite induction on α we can easily see that (L/M)(α) = L(α)/M

for all α < σ. It follows that (L/M)W = L^/M. Next we consider the case that

for some α<σ. Then there exists the least ordinal μ<σ with respect to

Clearly μ is non-zero and is not a limit ordinal. Since M<L^ for

all α < μ - l , we have (L/M)^"1) = L^-1VM, so that (L/My^ = (L^-\-M)/M.

By the minimality of M we have L("> Π M = {0}. Using Lemma 1.1, we have

(L/Λί)(*) = ((L/M)<">)<*> = ((!>) +M)/M)<*> =

PROPOSITION 4.5. Lei Le JRjJJ. // M is α minimal ideal of L, then M e 21

ami L/M e 9 t $ .

PROOF. By Theorem 4.3 (2) we may prove the proposition for 9i[l] instead of

9t[l]. Assume that M £ 81. Then there exists an a e M^ζt(M). Since Le 9ί(

( J ,̂

we have α £ ([α, L^*)]1-)^). By the minimality of M we see that [α, L(*>]L = {0}

or [α, L<*)]L = M, and that M is perfect. By Lemma 1.1(1) M = M^<U*\

If [α, L<*)]L = {0}, then [α, Λί]-s [α, L<*>] = {0} and so a e Ci(M), a contradiction.

If [α, L ( * } ] L = M, then a£MW = M9& contradiction. Therefore we have M e 81.

Now we show that LjM e SR$. Let x e L \ M and set / = [x, L<*>]L. By

using Lemma 4.4 we have

([x + M, (L/Λί)W]L/")α> = (/(1) + M)/M.

Assume that x e / ( 1 ) + M and write x = y + z ( j ; e / ( 1 ) , z e M ) . By the minimality

of M we have [Z*1), M] = {0} or ll^\ M]=M. First we consider the case that

[/(D, M] = {0}. Set 7 = 0 , L<*>]L and Z = [ z , L<*)]L. Then / < Y + Z ,

and Z < M . Since U(1\ M] = {0} and Me8I, we have
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so that yeY^ = (ly,LW]Lyί\ Hence y = 0 and therefore x = zeM, a con-
tradiction. Next we consider the case that [/^>,M]=M. Since M<I^\
we have xe/ ( 1 ) = ([x, L(*>]L)^>. Hence x = 0eM, a contradiction. Therefore
we have x^I^ + M, so that x + M<£([x + M, (L/M^ψ^)^. Thus we
obtain L/M e M{1].

We now set about showing the second main theorem of this section.

THEOREM 4.6. 9i{%] n Min-<i = E ( O ) 2 1 n Min-<ι.

PROOF. By Proposition 4.1 (2) and Theorem 4.3 (2) it suffices to prove that
9l[l] nMin-<]<E(<])2ϊ. Let LeSR^ n Min-o. We shall construct a strictly
ascending series {Lα: α>0} of ideals of L such that Lα+1/Lαe2I and L/Lαe9l^i^
for all α>0. Define Lo = {0}. Let α>0 and assume that {Lβ: β<oϊ) has been
constructed. First we consider the case that α is not a limit ordinal. If Lα_ ± = L
then LGE(<I)2I. If K_γΦU then { O ^ L / L ^ e«[J{ Π Min-o. Let L J L ^
be a minimal ideal of L/La^1. Then by Theorem 4.3 (2) and Proposition 4.5 we
have L J ^ . i G S ί and L/Lαe9l^. Next we consider the case that α is a
limit ordinal. Define La=\Jβ<(XLβ. Let xeL and suppose that x + Lae

α, (L/Lα)<*>]L/L«)(1>. Since Le Min-<ι, it is not hard to see that (L//)<*> =
for any 7<αL. Hence we have xe([x, L(*)]L)(1> + Lα. It follows

that xe([x, L<*>]L)(χ) + L̂  for some β<a. Then we have x + Lβe([x + Lβ,
*ψ/Lβyι\ Since L/L^eK^j, we have xeLβ<La. Therefore LjLae

^ Thus we can inductively construct such a series. By set-theoretic con-
sideration we see that L = Lσ for some ordinal σ. Therefore we have LeE(<])2ί.
This completes the proof.

COROLLARY 4.7. (1) 9t{$} n Min-<α n Max-<α <E$I. In particular, SR{%] is
a class of generalized soluble Lie algebras.

(2) Iff has non-zero characteristic, then 9i[%] Π Min-<3 Π Max-<α =E^I Π 3r.

PROOF. (1) is directly deduced from Theorem 4.6.
(2) Since I has non-zero characteristic, owing to [3, Corollary 11.2.3] we

have έ(<ι)2ϊ n Min-<ι n Max-<i=E^ί Π ft. Therefore the result follows from
Theorem 4.6.

REMARK. If ϊ has zero characteristic, then 9t[^ n Min«o Π Max-<i >
E3Ϊ n δ I n fact, let L be the Hartley algebra (cf. [3, Example 6.3.6]) over ϊ.
Then it is well known that Le E2Ϊ Π Min-<i Π Max-<i and

5.

In this section we shall investigate the classes SR(1) and 9Ϊ*. Concerning
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them the following proposition is elementary.

PROPOSITION 5.1. (1) {s, R, L}9*(1) = 9 Ϊ ( 1 ) and {s, R}9ίs|{ = 9ίϊ|c.
(2) 9l<9ί ( 1 )<9l*<9ί (* ).

PROOF. (1) Obviously {s, R}$R(1) = 9Ϊ ( 1 ) . Let LGL91 ( 1 ) and assume that
L i 9Ϊ(1). Then there exists an x e L\{0} such that x e [x, L<1>]L. We can find
a finite subset X of L such that xe[x, <JO ( 1 ) ] α > . Set # = <x, X}. Then
JίeίR ( 1 ) and xe[x, if(1>]H. Hence x = 0, a contradiction. Therefore we have
L9Ϊ ( 1 ) = 9Ϊ ( 1 ) . By using Lemma 1.1, easily we have {s, R}9ΐ* = 9ί*.

(2) 9Ϊ < 9t(1) < 91* is trivial. It follows from Lemma 1.1 (4) that 91* < 9 t w .

Next we prove that 9ί(1) is a subclass of the class 9ΐ(1). To do this we present
a sufficient condition for a Lie algebra to be contained in the class 9t(1) in the
following

THEOREM 5.2. Let Lbe a Lie algebra over ϊ. // xeL\{0} implies xφ
ίλn<ωlx, LW + 1]L, then LeW1). In particular, JR

PROOF. It suffices to prove the first half of the theorem, since the latter
half is immediately deduced from the first half. Let xeL\{0}. By using
induction on n we first show that for any n < ω

([x, L]L)(«) <= [x, L»+1]^.

It is clear for n = 0. Let n > 0 and assume that the result is true for n — 1. Then

([x, L]*)<»> <= ([x, L»]*)<i> s Σ*<ω [[x, L\ k L], L«+ 1].

Set /fc = [[x? IΛ k L], Lw+1] (k<ω). Clearly /0<=[x, L«+ 1]L. If / ^ [ x , LW + 1]L,
then by the Jacobi identity

Ik+ί s [/fc, L] + [[x, L», k L], L«+1] c [x, L»+ 1]L.

Hence by the second induction on k we have Ik^[x, L" + 1 ] L (k<ω). Thus

([x, L]^-) £ Σ*<«Λ£ [x, L'+i]^.

This completes the first induction. Since x^ Π w < ω [x? L n + 1 ] L , there exists an
n = n(x)<ω such that x^ [x, LΠ + 1]L . Then we have x£ ([x, L]LYn\ so that
xί([x, L]L)<*>. It follows from Lemma 4.2 that x ί ( [x ,L] L ) ( 1 ) Therefore
wehaveLeSRW.

In Proposition 5.1(2) we have given relationships among four classes.
Among them 91 and 5R(J|C) are respectively a class of generalized nilpotent Lie
algebras and a class of generalized soluble Lie algebras. Concerning SR(1) and 91*
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among them we next consider whether a similar fact will be shown or not. In

[2, Theorem 3.5] (or [9, Corollary to Theorem 3.3]) it has been proved that

<R Π Min-<ι<3nE2I.

If this holds for the class 5R(1) instead of the class % then 9t ( 1 ) will be a class of

generalized nilpotent Lie algebras. By Corollary 3.6 and Proposition 5.1 (2)

we have

9t ( 1 ) Π Min-<α ̂ SB* Π

However, the following proposition shows that

SR(1) Π

PROPOSITION 5.3. 9t ( 1 ) n g φ 91.

PROOF. Let L be a 2-dimensional non-abelian Lie algebra over I. Then it is

well known that L has basis {x, y} such that [x, y] = x. We claim that Le 9? ( 1 ).

Assume, to the contrary, that there exists a z e L \ { 0 } such that ze\_z, L ( 1 ) ] L .

Clearly {/: 7<ιL} = {{0}, L<1) = <x>, L}. Hence z e [z, L<1>]L = <x> and there-

fore z e [ ( x ) , < x ) ] L = {0}, a contradiction. Thus we obtain Le5R ( 1 ). Since

Le 3 K 9 t , we have M ( 1 )

From this proposition both of the classes 9ί ( 1 ) and 9t* are not classes of

generalized nilpotent Lie algebras. Therefore we have

On the other hand, by the following proposition we can see that both of the

classes 9l ( 1 ) and 91* are not necessarily classes of generalized soluble Lie algebras.

PROPOSITION 5.4. Ift has non-zero characteristic, then 9l3 Π δ^SR*.

PROOF. Let I have characteristic p>0 and let A be an abelian Lie algebra

over ϊ with basis {α0, a1,..., θp_i}. Define x, y e D e r ( A ) as follows:

aty = — iat (0<i<p — l).

Set M = <x, y}<Όeΐ(A). From the definitions we have [x,)>] = x. Form

the split extension L = A + M of A by M. Then Le 9l3 Π δ It is e a s Y t o s e e t n a t

L* = L 2 = A + <x>. Therefore we have a0 = \_ao,p x~\ e [α 0 , L * ] L , so that L £ SR*.

By this proposition we see that if ϊ has non-zero characteristic then
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« ( 1 ) < « < 1 ) and «*<9ί ( s ! { ) .

Finally we shall present interesting subclasses of the classes 9t(1) and 9t*.
To do this we denote by E(ch)$ί the class of Lie algebras which have series, con-
sisting of characteristic ideals, with $I-marginal factors. It is clear that Le έ(ch)&
iff L has a central series consisting of characteristic ideals. Then by Lemma 2.4
we have

Moreover, we have

PROPOSITION 5.5. (1) (E(ch)&)2I<9ί(1).

( 2 ) ( E ^

PROOF. We here only prove (2), since (1) is proved similarly. Let Le
(E(ch)$)(E(<0$). Then there exists an ideal / of L such that JeE(ch)& and
L/Je E(<I)21. / has a central series {Λσ, Vσ: σeΣ} consisting of ideals of L.
By Lemmas 1.1 (2) and 2.4 (3) we have L*<L Let xeL\{0} and assume that
xe[x, L*]L. Since xeK{0}, xeΛσ^Vσ for some σeΣ. Then we have
x e [x, L*]L < lΛσ, / ] L < Vσ, a contradiction. Thus we have Le 91*.

By Lemma 2.4 and Proposition 5.5 we see that the class $R(1) contains all
hypercentral-by-abelian and all hypocentral-by-abelian Lie algebras, and that
the class 91* contains all hypercentral-by-hypocentral and all hypocentral-by-
hypocentral Lie algebras. It has been proved in [4, Corollary 3.7] that if I has
zero characteristic then E(O)(2I n 3ί)<3$ί Therefore we obtain

COROLLARY 5.6. // ϊ has zero characteristic, then E(<I)(9I n δ)<9l ( 1 ) .

REMARK. In contrast with Proposition 5.4, it is directly deduced from
Corollary 5.6 that if I has zero characteristic then E2I n

6.

By the lattice diagram of the following figure, we illustrate the known
inclusions between well-known classes and the various classes we have defined
in this paper.
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In this figure, every class including E2I is a class of generalized soluble Lie

algebras, and every class included in 91 or (Sr is a class of generalized nilpotent

Lie algebras.
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