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Introduction

A class X of Lie algebras is said to be a class of generalized soluble Lie algebras
if every soluble Lie algebra is an X-algebra and every finite-dimensional X-algebra
is soluble. As relatively large classes of generalized soluble Lie algebras we
know the classes £(<2) and £, which are the Lie-theoretic analogues of the
class of SI-groups and the class of SN-groups respectively. In group theory
Mal’cev [6] has proved that the class of SI-groups, the class of SN-groups and
the class of Z-groups are L-closed. The first purpose of this paper is to prove the
Lie-theoretic analogue of this result.

Generalizing the class R of residually central Lie algebras, Amayo [2] has
introduced a relatively large class, denoted by R in this paper, of generalized
soluble Lie algebras. In the recent paper [5] we have introduced the class R,
of residually (w)-central Lie algebras. The second purpose of this paper is to
introduce and investigate various classes of Lie algebras generalizing the class R.
Most of them are classes of generalized soluble Lie algebras.

In Section 2, following [8, §8.2] it can be more generally proved that the
classes £, £(<)A and ﬁ(<1)§[ are L-closed, where 1‘5(<1)§I is the class of Lie
algebras having central series (Theorems 2.2 and 2.6). We shall also show that
every finite-dimensional subalgebra of an 15:(<'1)@[-algebra (resp. a hypocentral
Lie algebra) is serial (resp. descendant) (Theorem-2.9).

In Section 3 we shall develop some results analogous to those of [5, §2] by
using the class Ry, naturally including the class R, of generalized soluble
Lie algebras. Especially, we shall show that R, nM™® =EA (Theorem 3.5),
where M) is a class of Lie algebras generalizing quasi-artinian Lie algebras.

Section 4 is devoted to investigating the classes R*, R™, K1) and R,
naturally including the class RV, of generalized soluble Lie algebras. We shall
show that RM = R* = R = EAWRD = EWR*=EWR™ and R{} =R} =
EWR{L =(EWRE) (Theorem 4.3). We shall also show that R} n Min-<=
E(<)¥U N Min-< (Theorem 4.6).

In Section 5 we shall investigate the classes R, and R, which are between
the classes R and R, In particular, we shall present a sufficient condition for
a Lie algebra to be contained in the class R and consequently show that R,
is a subclass of the class R (Theorem 5.2).
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1.

Throughout this paper we always consider not necessarily finite-dimensional
Lie algebras over a field f of arbitrary characteristic unless otherwise specified,
and mostly follow [3] for the use of notations and terminology.

Let L be a Lie algebra over f and X a class of Lie algebras. X is said to be
a class of generalized soluble (resp. nilpotent) Lie algebras if ¥ nF<eA<X
(resp. XN F<N<X). As a relatively large class of generalized nilpotent Lie
algebras, we know the class R of residually central Lie algebras, where L is re-
sidually central if x € L~{0} implies x ¢ [x, L]¢. In fact, since [2, Theorem 3.5]
(or [9, Corollary to Theorem 3.3]) states that

R n Min-<« < 3 n Y,

R is a class of generalized nilpotent Lie algebras. In this paper we introduce
the classes R, R,y and R,, naturally including the class R, as follows:

LeR® iff xeL~ {0} implies x¢ ([x, L]*)M;
LeR,, iff xeL~ {0} implies x¢ [x, L(W]E;
LeR, iff xeL~ {0} implies x¢ [x, L*]L,

where we denote by L* the intersection of all the terms in the transfinite lower
central series for L. Among them the class R() has been studied in [2, p. 16].

On the other hand, as relatively large classes of generalized soluble Lie
algebras, we know the classes U, E(<)¥U, EU, (<), EA=E<)YU, R, and
R, EX (resp. E(<)X) is the class of Lie algebras L having a family &=
{4,, V,: 6€ X} of subalgebras (resp. ideals) of L for some totally ordered set X
such that

(@ V,<A,and A,/V,eXforalloeZ;

b) A, <V, ifo<rt;

(© L~A{0} = Uses (4,~V).
Then & is called a series (resp. an ideal series) of L (of type X) with X-factors.
When X is well-ordered, & is called an ascending series (resp.ideal series) of L
with X-factors. When X is reversely well-ordered, & is called a descending series
(resp. ideal series) of L with X-factors. LeEX (resp. E(<a)X) if L has an ascending
series (resp. ideal series) with X-factors. LeEX (resp. B(<a)X) if L has a descending
series (resp. ideal series) with X-factors. From the definitions it is clear that £,
B(<)U, EA, B(<)U and EA =E(<a)U are classes of generalized soluble Lie algebras.
The class R, strictly including the class R, is defined in [5] by

LeR ., iff xeL~ {0} implies x¢ [x, L(<7]L.

Then by [5, Theorem 2.3] we have
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Ry N gmin-< = EA,

where qmin-<, strictly including the class Min-<, is the class of quasi-artinian
Lie algebras. In [1] L is said to be quasi-artinian if for any descending chain
I,>1,>--- of ideals of L there exists an integer n>0 such that [I,, L] <Ny I;.
On the other hand, Amayo has indicated in [2, p. 16] that

RD n Min-< < B(<)2.

Therefore R, and R are indeed classes of generalized soluble Lie algebras.

In this paper we introduce the class R, naturally including the class R,
and the classes R*, R®, R and R{}), naturally including the class RD, as
follows:

LeR, iff xeL~ {0} implies x¢ [x, L]E;
LeR* iff xeL~ {0} implies x¢ ([x, L])*;
LeR™ iff xeL~ {0} implies x¢ ([x, LJX)™*;
LeR{i) iff xeL~ {0} implies x¢ ([x, LOW]L)D;
LeR{) iff xeL~{0} implies x ¢ ([x, LOJE)™),

where we denote by L* the intersection of all the terms in the transfinite derived
series for L.

Concerning L* and L™ the following lemma is elementary.

LEMMA 1.1. Let I<aL and HLL. Then:

(1) H* < L*and H® < L™,

2 H*+D/I < (H+D/D* and (H®+1)/I < (H+1)]H)™.

(3) If HnI={0} then (H*+D/I=(H+D/DH* and (HM+I)/I=
((H+D/D™®.

(4) (L™ = L) < L*,

2.

In this section, following [8, §8.2] we shall first show that for any {Q, R}-
closed class X of Lie algebras the classes £X and £(<1)X are L-closed. We shall
secondly show that in a Lie algebra having a central series (resp.a descending
central series) every finite-dimensional subalgebra is serial (resp.descendant).

We begin by expressing the concepts of a series and an ideal series in functional
forms. Let L be a Lie algebra over f. Assume that L has a series (resp. an ideal
series) {A,, V,: 6€X} of some type X (with O-factors). To each xe L~{0}
there corresponds a unique o(x) € 2 such that x € A,,)~V,). Forany xe L~{0}
we clearly see that x e A, iff 6>o0(x), and that x e V, iff 6>0(x). We define a
binary function f;: L x L—{0, 1} as follows; for any x, ye L
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0 ifx=0o0rif x,y # 0 and o(x) < 6(p),
Jux, y) = (*)

1  otherwise.

Then we can easily verify that the function f, satisfies the following conditions
(i)—(iv) and (v) (resp. (v')), where x, y, ze L and a, fef:

(i) Iffu(x, y) = fu(y, 2) = 0 then fi(x, z) = 0.

(ii) Either f,(x, y) = 0 or fi(y, x) = 0.

(iii) If fi(x, 0) = 0 then x = 0.

(iv) If fu(x, 2)=fu(y, 2)=0 then fy(ax+ By, z)=f.([x, y], 2)=0.
(v) If fi(x, y) = 1 then f(x, [x, y]) = L.

) fulx, yl, x)=0.

Conversely, assume that there exists a binary function f;: Lx L—{0, 1}
satisfying the conditions (i)-(iv) and (v) (resp. (v')). Let x ~y mean that f;(x, y)=
fi(y, x)=0. By (i), (ii) and (iii) the relation ~ is an equivalence relation on L and
{xeL: x~0}={0}. Let X denote the family of all ~-equivalence classes except
{0}. For g, 7€2, we write 6<7 if 6%#7 and f; (o, 1)={0}. Then by (i) and (ii)
the relation < is a total order on ¥. We now define a family {4,, V,: 6 €2}
of subsets of L as follows; for each o € 2

Ue<o 4, if {t€2:1<0} # 0,
A, ={xeL: fi(x, 0)={0}}, V, = (+9)
{0} otherwise.

By (i) and (iv) {4,: 0€ZX} is a totally ordered chain of subalgebras of L. It
follows that V,< A, for any 6eX2. If t<o then A, <V,. Itis not hard to show
that L~{0}=\U,s(4,~V,). By using (i) and (v) (resp.(i) and (v')) we can
easily see that V, <A, (resp. V,, A,<iL) for all 6e€X. Therefore {A,, V,: 6€Z}
is a series (resp. an ideal series) of L of type X (with O-factors).

Let &, be the free Lie algebra over f on a countably infinite set {t,, ,,--}.
An elements of &, is called a word.

LemMMA 2.1. Let L be a Lie algebra, Q a set of words and B, the variety
determined by Q. Then LeEB, (resp. E(<)By) if and only if there exists a
binary function f;: Lx L—{0, 1} satisfying the conditions (1)—(iv), (v) (resp.
(v')) and

(VI) Ify # 0 ande(xi’ y) = O(ISISH), thenfL(ya W(xla'“, xn)) = 19
where w=w(t,..., t,)eQ and x;, ye L (1<i<n).

PrROOF. Assume that Le 8B, (resp. £(<1)B,) and let {A4,, V,: €} be a
series (resp. an ideal series) of L of type X with B,-factors. Then the binary
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function fi: L x L—-{0, 1} defined by (*) satisfies the conditions (i)-(iv) and (v)
(resp.(v')). Let w=w(t,...,t)eQ and x;, yeL (1<i<n). Suppose that
y#0andfi(x; y)=0(1<i<n). Thenx;e A, (1<i<n). Since A,,/Vo,) € Bo,
we have w(xy,...,x,) €V, Hence w(xi,...,x,)=0 or a(w(xy,..., x,)<a(y).
This implies f,(y, w(xy,..., x,))=1. Therefore f, satisfies the conditions (i)-(iv),
(v) (resp. (v")) and (vi).

Conversely, assume that there exists a binary function f; : L x L— {0, 1} satisfy-
ing the conditions (i)~(iv), (v) (resp. (v')) and (vi). Let {A4,, V,: 0€Z} be the series
(resp. the ideal series) of L defined by (¥*). We show that A,/V, € B, foralloe X.
Let oeX, w=w(ty,..., t,) e Q and x;e A, (1<i<n). Suppose that w(xy,..., x,) &
V,. Since fi(x;, 0)={0} (1<i<n), by (vi) we have fi(c, w(xy,..., x,))={1}.
We can find a 7eX such that w(xy,...,x,)et. Then we have 7<o.
Hence w(xy,..., x,)€ A, <V,, a contradiction. Therefore we have w(x;+V,,...,
x,+V,)=0. It follows that 4,/V,e B,. Thus we obtain Le EB,, (resp. £(<)By).

Now we have the first main theorem of this section, which corresponds to
[8, Theorem 8.23].

THEOREM 2.2. For any variety B of Lie algebras, the classes £B and £(<)B
are L-closed. In other words, for any {Q, R}-closed class X of Lie algebras, the
classes £X and £(<)X are L-closed.

Proor. It is well known (cf. [3, p. 257]) that a class X of Lie algebras is a
variety if and only if X is {Q, R}-closed. Hence it suffices to prove the first half
of the theorem. Let B be a variety of Lie algebras. Then there exists a set
Q of words determining B. Let Le LEDB (resp. LE(<)B). We denote by £ the
set of EB-subalgebras (resp. £(<1)B-subalgebras) of L. Then .Z is a local system
on L in the sense of [8, p. 94]. It follows from Lemma 2.1 that for each He %
there exists a binary function fg: H x H—{0, 1} satisfying the conditions (i)—(iv),
(v) (resp. (v")) and (vi) which are obtained by replacing L with H. Owing to
[8, Lemma 8.22], there exists a binary function f;: L xL—{0, 1} such that,
given any finite subset {(x;, y;): 1<i<m} of LxL, there exists an He % for
which (x;, y)e HxH and fi(x;, y)=fu(x:, y)) (1<i<m). Since each of the
conditions (i)—(iv), (v) (resp.(v’)) and (vi) involves a finite number of elements
of L, the function f, also satisfies the conditions (i)—(iv), (v) (resp. (v’)) and (vi).
Using Lemma 2.1 again, we have Le EB (resp. £(<)B).

We regard the class U as the variety determined by the set of the single word
[t:, t,]. Then asanimmediate consequence of Theorem 2.2 we have the following

COROLLARY 2.3. (1) LEU=EA and LE(<)A=E(<)U.
() LEA<EN and LE(<)A U LEA < B(<) .
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REMARK. By making use of [3, Corollary 6.5.3] and [2, Theorem 4.6],
we see that if ¥ has zero characteristic then LEQ#E2. In his recent paper [4]
Ikeda has proved that LE(<)UA#E(<)W ([4, Corollary 3.4]) and that if every
countable dimensional subalgebra of a Lie algebra L belongs to E(<)? then
Le#(<)W ([4, Corollary 2.10]). Moreover, we have LEA#EU. In fact, we
consider the McLain Lie algebra #,(Q) over f, where Q is the set of rational
numbers with natural ordering (cf. [3, p. 111]). Then it is well known ([10, p. 96])
that #,(Q) is perfect and locally nilpotent. Therefore we have Z(Q)e
LEA~EA.

Next we introduce the Lie-theoretic analogue of the concept of marginal
subgroups of groups (cf. [7, p. 9]). Let I be an ideal of a Lie algebra L. For a
word w=w(t,..., t,), I is said to be w-marginal in L if w(xy,..., X,)=w(¥ ;... V»)
whenever x;, y;e L and x;=y;,mod I (1<i<n). Let Q be a set of words and B,
the variety determined by Q. Then [ is said to be B,-marginal in L if I is w-
marginal in L for all we Q. Clearly if I is B,-marginal in L then I € B,. Since
the variety U is determined by {[t,, t,]}, we can easily see that I is W-marginal in
L if and only if I is central in L (i.e. I <{,(L)). Let J be an ideal of L contained
in I. We say that I/J is a B,-marginal factor of L if I/J is a factor of some ideal
series of L and is B,-marginal in L/J. Then we define the classes fz(<l)i?§9,
E’(<1)f§Q and i~:(<1)5?3Q of Lie algebras as follows:

Le 1‘3(<n)§§9 iff L has an ideal series with B,-marginal factors;
Le 15:(<1)5f39 iff L has an ascending ideal series with B,-marginal factors;
Le ia(<1)‘f39 iff L has a descending ideal series with B,-marginal factors.

In particular, we have

Lemma 2.4. (1) I%(<|)§I={L€D: L has a central series}.
(2) B(<)U={LeO: L has an ascending central series}=3.
3 1‘3(<»)§I={LGD: L has a descending central series}={Le O: L*={0}}.

ReMARK. It has been indicated in [9, p. 58] that every Lie algebra having a
central series is residually central. It follows from Lemma 2.4 (1) that

B8(<)U < R.
In particular, é(<1)@[ is a class of generalized nilpotent Lie algebras.

We are able to express the concept of ideal series with marginal factors of
Lie algebras in functional form.

LeMMA 2.5. Let L be a Lie algebra, Q a set of words and B, the variety
determined by Q. Then Le £(<)B,, if and only if there exists a binary function
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fi: Lx L—{0, 1} satisfying the conditions (i)~(iv), (v') and

(vil) If z#0 and fi (x;—y; z2)=0 (1<i<n), then fi(z, W(X{se.., Xp)—
Wy Y =1,

where w=w(ty,..., t,)€Q and x;, y;, ze L (1<i<n).

PROOF. Assume that Le £(<1)B,, and let {4,, V,: o€ 2} be an ideal series of L
with B,-marginal factors. Then the binary function f;: L x L—{0, 1} defined by
(*) satisfies the conditions (i)-(iv) and (v’). Let w=w(t,,...,t,)eQand x;, y;,, ze L
(I<i<mn). Suppose that z#0 and fi(x;—y;, z2)=0(1<i<n). Thenx;—y;€ A,
(I<i<n). Since A,/Vy) is a By-marginal factor, we have w(x,,..., x,) —
W15 V) € Vo). It follows that w(xy,..., x,)—w(yy,..., y,)=0 or o(w(x,,...,
X)) —W(Y15-.-5 Vo)) <0(z). Hence we have f,(z, w(xy,..., X,) =W 15--.5 Vo)) =1.

Conversely, assume that there exists a binary function f;: Lx L—{0, 1}
satisfying the conditions (i)—(iv), (v') and (vii). Let {A4,, V,: 6 € X} be the ideal
series of L defined by (*+). We show that A,/V, is a B,-marginal factor of L for
anyoeX. LetoeXZ, w=w(ty,....,t,)eQ and x;, y;e L (1<i<n). Suppose that
x;=y;mod A4, (1<i<n). Then fi(x;—y; 0)={0} (1<i<n). It follows from
(vii) that fi(g, w(xq,..., X)) —W(Vqs.., Y))={1}. Suppose that 0#w(x,..., X,)—
W(Yise-., y)€TEZ. Then we have t<o. It follows that w(xy,...,x,)—
W(Y1se-er Vo) €A, ZV,. Therefore A4,/V, is w-marginal in L/V,. Thus we have
Le &(<)B,.

Now we have the second main theorem of this section, which corresponds
to [8, Theorem 8.24].

THEOREM 2.6. Let Q be a set of words and B, the variety determined by Q.
Then the class £(<)By, is L-closed.

Proor. By using Lemma 2.5, we can prove the theorem as in the proof
of Theorem 2.2.

By making use of Lemma 2.4 and Theorem 2.6, we have

COROLLARY 2.7. (1) LE(<)qA=£(<)dl.
(2) LR=L3=LE(<)A<LRR<LE(<)A<E(<).

ReEMARK. Both of the classes 11:(<1)QAI=3 and ia(<1)§I are not L-closed.
In fact, the McLain Lie algebra .#,(Q) is locally nilpotent and is neither hyper-
central nor hypocentral.

It is well known that if Le 15:(<1)§I=3 then every subalgebra of L is ascendant
in L. On the other hand, it is not known whether. every subalgebra of an £(<1)2-
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algebra (resp.an i(<a)W-algebra) L is serial (resp. descendant) in L or not.
However, we can prove that every finite-dimensional subalgebra of an ﬁ(<x)f[-
algebra (resp. an 1‘3(<n)i[-algebra) L is serial (resp. descendant) in L. To do this
we need the following lemma concerning vector spaces.

LEMMA 2.8. Let V be a vector space over ¥, U a subspace of V and X a
finite-dimensional subspace of V. Assume that there exist a totally ordered set
X and a family {A,, V,: 6 € X} of subspaces of V such that

(@ UcV,cA,foralloeX;

(b) A, sV, ifo<r7;

(C) V~U-= Uaei (Ao-\ Va) .

Then we have V~(U+X)=\U s (4, + X)~(V,+ X)).

ProOF. By using induction on n=dim (X), we show the result. It is clear
for n=0. Let n>0 and assume that the result is true for n—1. There are an
(n—1)-dimensional subspace X, of X and a non-zero element x of X such that
X=Xy,+Ix. For each ceZ, set A,=A,+X,, V,=V,+X,, Al=A4,4+X and
V?=V,+X. Then by inductive hypothesis the family {4, V.: o€ X} satisfies
the following conditions:

@) U+XpcV,cA, foralloeX;

®) A, cV.ifo<rt;

(€) V~U+Xo) = Upes (45V5).

It follows from (b’) and (c’) that for any ve V~(U + X,) there exists a unique
o(v) € 2 such that ve 4;,,~V ). In the case that xe U+X,, by (a’) and (¢')
we have

V(U+X) = V(U4 Xo) = Uyes (Ay~V2) = Uy (A1V2).

So we consider the case that x¢ U+ X,. Let ve V~(U+X). For each of the
cases

1) o(x) < o(v), 2) o(v) < o(x), 3) o(x) =0o(v),

we show that v e A,~V"” for some o€ X.

Case 1). By (a') and (b') x€ A5y SV 5o) EA5sy. 1t follows that A7, =
Agwy and Vg =V, ). Hence we have ve A7, ~V5,,.

Case 2). Suppose that ve Vy,,=V,,)+Ix and write v=u+ax (ueV,y,,
O#aef). Then by (a’) and (b’) we have x=(v—u)/ae V), a contradiction.
Therefore we have ve A~V .

Case 3). We may suppose that veVy, =V, +Ix. Write v=w+px
WweVi,), 0#B€). Then w¢ U+ X,. Since we Vi~V by (a’) and (b")
we have Vi, S V(). Itis clear that Vi, nIx={0}. If veVy,,=V ., +Ix,
then by modular law
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WwW=10v— ﬂxe V:r(v) n (V:,(w)+fx) = V:,(w) + (V;(v) n fx) = V;(w)’

a contradiction. Hence we have v V(). Since v=w+px € A, +Ix=A47,,
we obtain ve A7)~V )

In every case we have shown that ve \U,;(4;~V;). Thus we have V'~
(U+X)S Uy (A2~V7). The converse inclusion is trivial from (a’). This
completes the proof.

We can now prove the third main theorem of this section.

THEOREM 2.9. Let L be a Lie algebra over .

(1) If Le }‘3(<|)QA[, then every finite-dimensional subalgebra of L is serial
in L.

2 If Leii(<1)§[, then every finite-dimensional subalgebra of L is de-
scendant in L.

PrROOF. Let F be a finite-dimensional subalgebra of L. If Le fs(<1)§I, then
by Lemma 2.4 (1) L has a central series {A,, V,: 6€ZXZ} of some type X. For
eachoeX, set A,=A,+F and V,=V,+F. Then by Lemma 2.8 we have L~F =
Ugez (AL~V"). For any g €Z, since A,/V, is central, we have V,<1A,. Hence
{A,, V.. 0€X} is a series from F to L and therefore F is serial in L. Especially,
if Le iz(<n)QAI then we may suppose that 2 is a reversely well-ordered set. Thus
F is descendant in L.

It has been proved in [2, Theorem 4.6] that Gr <L, where Gr is the class
of Gruenberg Lie algebras, that is, Gr is the class of Lie algebras in which every
1-dimensional subalgebra is ascendant. Here we analogously define the classes
®r and Gr of Lie algebras as follows:

Le G iff every 1-dimensional subalgebra of L is serial in L;
Le Gr iff every 1-dimensional subalgebra of L is descendant in L.

Then by Corollary 2.7 (2) and Theorem 2.9 we have
LN < fz(<n)ﬁ <Gr and RM < B(<)A < Gr < Gr.

It follows that Gr contains all free Lie algebras. Since every non-abelian free
Lie algebra is not locally nilpotent, we have

Gr<iN < Gr and Gr £ Gr.

Considering the example described in [4, p. 119], we have ®r$(‘5r. On the
other hand, the following result shows that Gr is a class of generalized nilpotent
Lie algebras.
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PROPOSITION 2.10. L9t=L{ N Gr=LMin n Gr.

ProOOF. By using [3, Proposition 13.2.4], we can easily see that every sub-
algebra of a locally nilpotent Lie algebra is serial. It follows that LR<LF n Gr<
LMin nGr. Let LeLMin nGr and let H be a finitely generated subalgebra
of L. Then we have HeMin. Let xeH. Since Le @')r, there exists a series
{4,, V,: 6€Z} from {(x) to H of some type X. We may assume that V,# A4,
foralloeXZ. ThenV,<V. iffo<z. Since every non-empty subset of {V,: g€ X}
has a minimal element, 2 must be a well-ordered set. Thus we have {x) asc H,
so that He ®r. Owing to [2, Theorem 4.6], we have He®G NLR=F nN.
Hence Le L and therefore L Min n Gr<LN.

3.

From the definitions clearly we have

In this section we shall develop some results analogous to those of [S5, §2] by using
R ) instead of R,
We begin with the following result corresponding to [5, Lemma 2.1].

PrOPOSITION 3.1. (1) {8, R}R(4)=R4).
(2) EUAU<R ).

ProoF. (1) By Lemma 1.1 (1) clearly we have SR =R, Using
Lemma 1.1 (2), we can easily show as in the proof of [5, Lemma 2.1] that RR 4, =
R x)-

(2) If LekU then L ={0}. It follows that EX <R, We consider the
McLain Lie algebra L=_%,(Q) over f. Then LeLM<R<R(,,. Since LV =L,
we have L ¢ E.

We here introduce the class IMM™*) of Lie algebras, naturally generalizing
that of quasi-artinian Lie algebras, as follows:

Le M™® iff for any descending chain I,>1,>--- of ideals of L contained
in L™ there exists an integer n=n(l,, I,,...)>0 such that I,/N\;,I; <
LL™ Nz 1)

We present some equivalent conditions for a Lie algebra to be an I (*)-algebra
in the following

LeEMMA 3.2. For a Lie algebra L, the following conditions are equivalent:
(1) LeMm™®,
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(2) For any descending chain I,>1,>--- of ideals of L contained in L™,
there are integers n, r>0 such that I,/ N> [; <L N sy ).

(3) For any descending chain 1,>1,>--- of ideals of L, there is an integer
n>0 such that [I,, L™]< N5y I

(4) For any descending chain I1,>1,>--- of ideals of L, there are integers
n, r>0 such that [I,, L®O1< Ny I

Proor. It is sufficient to show that (2) implies (3). Let I, >I,>:-: be a
descending chain of ideals of L. Then [I;, L®)]>[I,, L*)]> .- is a descending
chain of ideals of L contained in L(*). By (2) there are integers n, r >0 such that
[I,, L®]/N\sq U, LO]L(L®) N =g [1; L™®]).  Since L™ is perfect, we have

[L,, L®] = [Iy, 1 L®] < Nizy i L] < Ny I
Hence (2) implies (3) and therefore the conditions (1)~(4) are equivalent.

It is easy to see that if Le gmin-<a then L) =L® for some n<w. We
now denote by X, the class of Lie algebras L such that L®*)= L for some n<w.
Then we have the following result characterizing the classes qmin-<a and IR,

ProposITION 3.3. (1) MM n Xy=qmin-<.
(2) MEEA =P,

Proor. (1) By using Lemma 3.2 we have IMM™ nX,<qmin-<. The
converse inclusion is evident. _

(2) Let LeM™®EA. Then there exists an ideal I of L such that Ie I
and L/I eEA. By Lemma 1.1 we have L&) =(L* )™ =] LetI,>I,>--- be
a descending chain of ideals of L contained in L™. Since L =I™ and I e
IN*), there exists an integer n> 0 such that [I,, L] =[I,, I™]< N\, I, Hence
we have Le ™).

It is clear that qmin-<t U EA <IN,  Furthermore, we have
PROPOSITION 3.4. gmin-<a U EQ < M),

ProOOF. Let S be a 3-dimensional simple Lie algebra over f with basis {x, y, z}
such that

[x,yl=12z [y,z]1=x, [z,x]=y,

and M the McLain Lie algebra %,(Z) over f, where Z is the set of integers with
natural ordering. Then M has basis {a;;: i, j € Z, i<j} such that

[“ij: ayl = 5jkait - 5uakj-

Since M"={a;;:i,je Z, j—i>=n) (1<n<w), we have M® ={0}, so that M e
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RN < REUA < EWA. Define L=S®M. Then by Proposition 3.3 (2) we have
LeM™®. Since LMN=S£SAM®=L™ (n<w), we have L¢ X, UEU, so that
L ¢ gmin-<s UEA. Therefore we obtain gmin-<a U EA <IN,

The following result, corresponding to [5, Theorem 2.3], is the main theorem
of this section.

THEOREM 3.5. XN Y=©kU for any class X of Lie algebras such that EA<
X <R and any class Y of Lie algebras such that EA<PIM,

ProoF. It suffices to prove that R, N M <EWA. Let Le Ry N M™® and
assume that L& EW. Set I=L™. Then I®=I+#{0} for all ordinals a. It
follows from [3, Lemma 8.1.1] that {,(I)<I. First we show that if x e I~{,(I)
then x ¢ [x, I]1X+¢{,(I), by using transfinite induction on «. It is clear for a=0.
Let a>0 and suppose that the result is true for all f<a. Then it is also true for
o if & is a limit ordinal. So we consider the case that « is not a limit ordinal. Let
xel[x, I1*+{,(I) and write x=y+z (yel[x, I1t, ze{(I)). Then we have
[x, IT*<[y, I1*+{,-4(I). Hence by inductive hypothesis we have ye{,_,(I),
so that x=y+ze{,(I). This completes the induction.

Next we construct a sequence (x;)i2, of elements of I~{,(I) such that for any
i>1

X; ¢ [x;, ITF + (W) and x4 € [x;, I1F + (D).

There is an x; € I~{4(I). Then x, ¢ [x,, I1t4+{(I). Let i>1 and suppose
that it has been constructed up to x; Since x;¢ (4(I), there exists an
X;41 € [xi 11X+ {(I) such that x;,, ¢ {,(I). Then we have x;,, ¢ [x;4,, I1F+
{«(I). Therefore we can inductively show that such a sequence exists actually.

Set I;=[x;, I1*+{«(I) (i=1). Then I,>I,>--- is a strictly descending
chain of ideals of L contained in L™. Since Le MMM, there exists an integer
n>0 such that [1,, I1<N\;>; I;. Since I is perfect, we have

[xn 117 < [[xy, 11, 11 < [Dx 115, 1] < [, 1T < Ly
It follows that I,<1I,, ,, a contradiction. Therefore we have R ,, n M <EA.
By making use of Proposition 3.3 (1) and Theorem 3.5, we have
COROLLARY 3.6. R4y N qmin-<1=gA.

It is immediately deduced from Corollary 3.6 that R4, is a class of generalized
soluble Lie algebras.
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4.

In this section we shall first characterize the classes R and int}, and
secondly prove that Amayo’s result ([2, p. 16]), described in §1, is also true for
R(¥} instead of R,

We begin with the following

PropPosITION 4.1. (1) {s, R}R{E) =R,
(2) E(Q)UASROIR*<R® <RE) and Ry, <RE <RE.

Proor. (1) is easily proved from Lemma 1.1.

(2) Let Le&(<)W and xe L~{0}. L has an ideal series {A4,, V,:0.€ %3}
with U-factors. Then xe A,~V, for some e X. Since [x, L]*<A4,, we have
- ([x, LMW <V, so that x ¢ ([x, L]1X). Hence Le R and therefore £(<)UA<
RO, It is clear that RO<R* and R, <R{E) < R{E. Using Lemma 1.1,
we have R* <R < R{E).

REMARK. We shall prove in Theorem 4.3 below that RV =R*=R™ and

R =R{E. On the other hand, it has been indicated in [2, p. 16] that the class

R is {s, R, L}-closed. It follows that the classes R* and R™ are {s, R, L}-
closed.

Before showing the first main theorem of this, section, we need

LemMMA 4.2. Let xeL and X<L. Then the following conditions are
equivalent:

(1) x&(x, X]HW.

@ x&(x, X1H*.

(3 x¢([x, X]H™.

Proor. (1)=(2)=>(3) is clear from Lemma 1.1 (4). So we show that (3)
implies (1). Set I=[x, X1~ and assume that xeI"). Since I(V<1L, we have
{HLLIM, Obviously I =[x, X]E<[{xDE, X]E<(x)L. Itfollows that {x>L=
I=IM, Hence we have x e I*), Therefore (3) implies (1).

We now have the first main theorem of this section, which characterizes the
classes R and R{¥)

THEOREM 4.3. (1) The following classes coincide with each other:
RO, R*, R (EWRD, (BA)R*, (BA)R™).
(2) The following classes coincide with each other:

R, R, GWRE, EOR
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Proor. We here only prove (1), since (2) is proved similarly. By using
Lemma 4.2, we can easily see that RU=R*=R®_ Let Le(EBAYR™® and
x € L~{0}. There exists an ideal I of L such that €W and L/[IeR™. If
x¢1 then by Lemma 1.1(2) x+1¢(([x, L]*)*+1)/I and so x¢ ([x, L]X)™.
If xel then by Lemma 1.1 (1) ([x, L]H)® <I™={0} and so x¢ ([x, L]L)™.
Hence Le R™ and therefore (EQ)R™) =R™),  This completes the proof.

In [2, p. 16] Amayo has indicated without proof that if M is a minimal ideal
of an MM-algebra L then MeW and L/MeRD, and that RM nMin-< <
B(<). We shall next show that these results also hold for R{}) instead of RD,
To do this we need

LemMA 4.4. If M is a minimal ideal of a Lie algebra L, then (L/M)™) =
(L™ +M)/M.

Proor. We can find a sufficiently large ordinal ¢ such that (L/M)™) =
(L/M)©® and M™ =M. First we consider the case that M <L® for all
a<o. By transfinite induction on a« we can easily see that (L/M)*)=L® /M
for all a<o. It follows that (L/M)*)=L™ /M. Next we consider the case that
M £ L® for some a<o. Then there exists the least ordinal u<¢ with respect to
M<«£L®. Clearly p is non-zero and is not a limit ordinal. Since M <L® for
all a<p—1, we have (L/M)*D=L®"D/M, so that (L/M)® =(L® + M)/M.
By the minimality of M we have L®” n M ={0}. Using Lemma 1.1, we have

(LIM)® = (L/M)W)® = (L™ +M)[M)™® = (LW)™® +M)/M = (L™ +M)/M.

PROPOSITION 4.5. Let Le mg:} If M is a minimal ideal of L, then M e
and L|M e R{E).

Proor. By Theorem 4.3 (2) we may prove the proposition for ‘.Rﬁ;{ instead of
R(E). Assumethat M ¢ A.  Then there exists an a e M~(,(M). Since Le R{})},
we have a ¢ ([a, L®]L)(D), By the minimality of M we see that [a, L]l ={0}
or [a, L®M]L=M, and that M is perfect. By Lemma 1.1 (1) M=M® < L),
If [a, L)L ={0}, then [a, M]<[a, L] ={0} and so a € {;(M), a contradiction.
If [a, L®]L=M, then a ¢ M =M, a contradiction. Therefore we have M e 2.

Now we show that L/M e R{4}. Let xe L~M and set I=[x, L®]L. By
using Lemma 4.4 we have

(Dx+M, (L/M)OJEMD® = (I + M)/M.

Assume that xe I+ M and write x=y+2z (ye IV, ze M). By the minimality
of M we have [/, M]={0} or [JV, M]=M. First we consider the case that
[IM, M]={0}. Set Y=[y, L*]L and Z=[z, L)L, Then IKY+Z, YLID
and Z<M. Since [/, M]= {0} and M e A, we have D (Y+Z)D =YD,
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so that ye YQO=([y, L®]L)1), Hence y=0 and therefore x=ze M, a con-
tradiction. Next we consider the case that [I‘V), M]=M. Since M<IM,
we have x e IV =([x, L®W]L)D, Hence x=0€ M, a contradiction. Therefore
we have x¢IW+M, so that x+M ¢ ([x+M, (L/M)®]L/M)D),  Thus we
obtain L/M € R{L).

We now set about showing the second main theorem of this section.
THEOREM 4.6. R{%) N Min-<=£(<)¥U n Min-<.

ProOF. By Proposition 4.1 (2) and Theorem 4.3 (2) it suffices to prove that
R nMin-< <f(<)U. Let Le R{i}nMin-<a. We shall construct a strictly
ascending series {L,: o >0} of ideals of L such that L,,/L,e % and L/L,e R{})
for all ®>0. Define Ly={0}. Let a>0 and assume that {L;: f<a} has been
constructed. First we consider the case that a is not a limit ordinal. If L, ;=L
then Le&(<)W. If L,_,#L, then {0}#L/L,_, e R} nMin-<. Let L,/L,_,
be a minimal ideal of L/L,_,. Then by Theorem 4.3 (2) and Proposition 4.5 we
have L,/L, ;€U and L/L, e mg;; Next we consider the case that o is a
limit ordinal. Define L,=\Ugy.,Ls. Let xeL and suppose that x+L,e
([x+L,, (L/L)™]L/L)(1,  Since Le Min-<, it is not hard to see that (L/)* =
(L™ +1)/I for any I<L. Hence we have xe([x, LW]H)M+ L . It follows
that xe([x, L®]L)D + L, for some f<a. Then we have x+Lge([x+L,,
(L/Lg)]L/Ls) D, Since L/LyeR{i]), we have xeLy<L, Therefore L/L,€
R{i}. Thus we can inductively construct such a series. By set-theoretic con-
sideration we see that L= L, for some ordinal 6. Therefore we have Le &(<a).
This completes the proof.

COROLLARY 4.7. (1) R} nMin-< nMax-< <eW. In particular, R} is
a class of generalized soluble Lie algebras.
(2) Ift has non-zero characteristic, then R{¥} n Min-< n Max-<=gA N §.

Proor. (1) is directly deduced from Theorem 4.6.

(2) Since T has non-zero characteristic, owing to [3, Corollary 11.2.3] we
have E(<)U N Min-<a N Max-<a=gWUNg. Therefore the result follows from
Theorem 4.6.

ReMARK. If f has zero characteristic, then R{})n Min-< nMax-<>
EANG. In fact, let L be the Hartley algebra (cf. 3, Example 6.3.6]) over .
Then it is well known that Le e N Min-<a N Max-<a1 and L ¢ §.

5.

In this section we shall investigate the classes R(;, and R,. Concerning
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them the following proposition is elementary.

ProPOSITION 5.1. (1) {s, R, L}R;, =Ry, and {s, R}R,=R,.
(2 R<RGH SR <Ry

ProoF. (1) Obviously {s, R}R,=R,. Let LeLR, and assume that
L¢ R, Then there exists an x € L~~{0} such that x e [x, L(V]E. We can find
a finite subset X of L such that xe[x, (X)X, Set H=<{x, X>. Then
HeR, and xe[x, HV]®, Hence x=0, a contradiction. Therefore we have
LR ;)=R(;). By using Lemma 1.1, easily we have {s, R} R, =R,.

2) R<R;)<R, is trivial. It follows from Lemma 1.1 (4) that R, <Ry,

Next we prove that R, is a subclass of the class R(). To do this we present
a sufficient condition for a Lie algebra to be contained in the class () in the
following

THEOREM 5.2. Let L be a Lie algebra over §. If xe L~{0} implies x ¢
Nn<olX, L"*1]E, then Le RM.  In particular, R, < RD.

Proor. It suffices to prove the first half of the theorem, since the latter
half is immediately deduced from the first half. Let xeL~{0}. By using
induction on n we first show that for any n<w

([x, L19)™ < [x, L*+1]E,
It is clear for n=0. Let n>0 and assume that the result is true for n—1. Then
([x, L1M™ < ([x, L] < 34, [[x, L™, L], L"*1].

Set I,=[[x, L*, , L], L"*'] (k<w). Clearly I,<[x, L**1]L. If I, =[x, L**']L,
then by the Jacobi identity

Iivy € [, L] + [[x, L, L], L"*'] < [x, L+1]E.
Hence by the second induction on k we have I, =[x, L"*1]L (k<w). Thus
([x, LI)™ < ¥y<o Ik < [x, L"1]E.

This completes the first induction. Since x ¢ N, [x, L"*1]L, there exists an
n=n(x)<w such that x¢ [x, L"*']t. Then we have x¢ ([x, L]¥)(", so that
x ¢ ([x, L]X)™. It follows from Lemma 4.2 that x¢ ([x, L]*)(V. Therefore
we have Le R,

In Proposition 5.1(2) we have given relationships among four classes.
Among them R and R, are respectively a class of generalized nilpotent Lie
algebras and a class of generalized soluble Lie algebras. Concerning R,y and R,
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among them we next consider whether a similar fact will be shown or not. In
[2, Theorem 3.5] (or [9, Corollary to Theorem 3.3]) it has been proved that

R N Min-<s<3 nEe.

If this holds for the class R, instead of the class R, then R, will be a class of
generalized nilpotent Lie algebras. By Corollary 3.6 and Proposition 5.1(2)
we have

Ry N Min-< <R, N Min-< <e.
However, the following proposition shows that
Ry N Min-< £3.
PROPOSITION 5.3. R, nF£LN.

ProOF. Let L be a 2-dimensional non-abelian Lie algebra over f. Then it is
well known that L has basis {x, y} such that [x, y]=x. We claim that Le R .
Assume, to the contrary, that there exists a ze L~{0} such that z e[z, L(D]L.
Clearly {I: I<L}={{0}, LW={x>, L}. Hence ze[z, LM]L={x) and there-
fore ze[{x), {(x)>]*={0}, a contradiction. Thus we obtain LeR,. Since
Le F~N, we have R, N FLN.

From this proposition both of the classes R, and R, are not classes of
generalized nilpotent Lie algebras. Therefore we have

R < Ry

On the other hand, by the following proposition we can see that both of the
classes Ry and R, are not necessarily classes of generalized soluble Lie algebras.

PROPOSITION 5.4. If f has non-zero characteristic, then W3 n F £ Ry

ProOF. Let f have characteristic p>0 and let A be an abelian Lie algebra
over T with basis {ay, a;,...,a,_;}. Define x, y € Der (4) as follows:

apX =dap-y, ax =a;-; (I1<i<p-—1);
a;y = —ia; (0<i<p-1).

Set M=<{x, y><Der(4). From the definitions we have [x, y]=x. Form
the split extension L=A4+M of A by M. Then LeU3n §. Itis easy to see that
L*=L2=A+{x). Therefore we have a,=[a,,, x]€[a,, L*]%, so that L¢ R,.

By this proposition we see that if ¥ has non-zero characteristic then
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Ry < RO and R, < Ry

Finally we shall present interesting subclasses of the classes R;, and R,.
To do this we denote by é(ch)QA[ the class of Lie algebras which have series, con-
sisting of characteristic ideals, with A-marginal factors. It is clear that Le fs(ch)i[
iff L has a central series consisting of characteristic ideals. Then by Lemma 2.4
we have

E(<)U U B(<)U < E(ch)A < (<),
Moreover, we have

PROPOSITION 5.5. (1) (ﬁ(ch)ﬁ[)?lsi}l(l).
() (ECch)AE(<)A) < R,.

PrOOF. We here only prove (2), since (1) is proved similarly. Let Le
(fs(ch)ﬁ)(iz(<1)§l). Then there exists an ideal I of L such that I efz(ch)ifl and
L/I eia(<n)§[. I has a central series {4,, V,: 6 €X} consisting of ideals of L.
By Lemmas 1.1 (2) and 2.4 (3) we have L*<I. Let x e L~{0} and assume that
xe[x, L¥]E. Since xelI~{0}, xeA,~V, for some oceZX. Then we have
x € [x, L¥]E<[A4,, I1*<V,, a contradiction. Thus we have Le R,.

By Lemma 2.4 and Proposition 5.5 we see that the class R, contains all
hypercentral-by-abelian and all hypocentral-by-abelian Lie algebras, and that
the class R, contains all hypercentral-by-hypocentral and all hypocentral-by-
hypocentral Lie algebras. It has been proved in [4, Corollary 3.7] that if f has
zero characteristic then B(<)(U N F) < JA. Therefore we obtain

COROLLARY 5.6. If T has zero characteristic, then E(<)(U N F) < Ry).

REMARK. In contrast with Proposition 5.4, it is directly deduced from
Corollary 5.6 that if f has zero characteristic then EA N F<R,).

6.

By the lattice diagram of the following figure, we illustrate the known
inclusions between well-known classes and the various classes we have defined
in this paper.
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R =R* =R

P

1)

Gr R B(<)U
/
Gr \<1 LEY
/
LE(<)UA LREY EA=E(<)UA
\
t(<|)QI/ LRN / REU
< - >

N

In this figure, every class including E2 is a class of generalized soluble Lie

algebras, and every class included in R or Gr is a class of generalized nilpotent
Lie algebras.
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