Classes of generalized soluble Lie algebras

Masanobu Honda (Received August 23, 1985)

Introduction

A class \mathfrak{X} of Lie algebras is said to be a class of generalized soluble Lie algebras if every soluble Lie algebra is an \mathfrak{X} -algebra and every finite-dimensional \mathfrak{X} -algebra is soluble. As relatively large classes of generalized soluble Lie algebras we know the classes $\hat{\mathbb{E}}(\neg)\mathfrak{U}$ and $\hat{\mathbb{E}}\mathfrak{U}$, which are the Lie-theoretic analogues of the class of SI-groups and the class of SN-groups respectively. In group theory Mal'cev [6] has proved that the class of SI-groups, the class of SN-groups and the class of SI-groups are L-closed. The first purpose of this paper is to prove the Lie-theoretic analogue of this result.

Generalizing the class \Re of residually central Lie algebras, Amayo [2] has introduced a relatively large class, denoted by $\Re^{(1)}$ in this paper, of generalized soluble Lie algebras. In the recent paper [5] we have introduced the class $\Re_{(\infty)}$ of residually (ω) -central Lie algebras. The second purpose of this paper is to introduce and investigate various classes of Lie algebras generalizing the class \Re . Most of them are classes of generalized soluble Lie algebras.

In Section 2, following [8, §8.2] it can be more generally proved that the classes $\hat{E}\mathfrak{A}$, $\hat{E}(\lhd)\mathfrak{A}$ and $\hat{E}(\lhd)\mathfrak{A}$ are L-closed, where $\hat{E}(\lhd)\mathfrak{A}$ is the class of Lie algebras having central series (Theorems 2.2 and 2.6). We shall also show that every finite-dimensional subalgebra of an $\hat{E}(\lhd)\mathfrak{A}$ -algebra (resp. a hypocentral Lie algebra) is serial (resp. descendant) (Theorem 2.9).

In Section 3 we shall develop some results analogous to those of [5, §2] by using the class $\mathfrak{R}_{(*)}$, naturally including the class $\mathfrak{R}_{(\infty)}$, of generalized soluble Lie algebras. Especially, we shall show that $\mathfrak{R}_{(*)} \cap \mathfrak{M}^{(*)} = \grave{\epsilon} \mathfrak{A}$ (Theorem 3.5), where $\mathfrak{M}^{(*)}$ is a class of Lie algebras generalizing quasi-artinian Lie algebras.

Section 4 is devoted to investigating the classes \Re^* , $\Re^{(*)}$, $\Re^{(1)}$ and $\Re^{(*)}$, naturally including the class $\Re^{(1)}$, of generalized soluble Lie algebras. We shall show that $\Re^{(1)} = \Re^* = \Re^{(*)} = (\grave{E}\mathfrak{A})\Re^{(1)} = (\grave{E}\mathfrak{A})\Re^{(*)} = (\grave{E}\mathfrak{A})\Re^{(*)}$ and $\Re^{(1)}_{*} = \Re^{(*)}_{*} = (\grave{E}\mathfrak{A})\Re^{(1)}_{*} = (\grave{E}\mathfrak{A$

In Section 5 we shall investigate the classes $\Re_{(1)}$ and \Re_* which are between the classes \Re and $\Re_{(*)}$. In particular, we shall present a sufficient condition for a Lie algebra to be contained in the class $\Re^{(1)}$ and consequently show that $\Re_{(1)}$ is a subclass of the class $\Re^{(1)}$ (Theorem 5.2).

1.

Throughout this paper we always consider not necessarily finite-dimensional Lie algebras over a field f of arbitrary characteristic unless otherwise specified, and mostly follow [3] for the use of notations and terminology.

Let L be a Lie algebra over \mathfrak{f} and \mathfrak{X} a class of Lie algebras. \mathfrak{X} is said to be a class of generalized soluble (resp. nilpotent) Lie algebras if $\mathfrak{X} \cap \mathfrak{F} \leq E\mathfrak{A} \leq \mathfrak{X}$ (resp. $\mathfrak{X} \cap \mathfrak{F} \leq \mathfrak{N} \leq \mathfrak{X}$). As a relatively large class of generalized nilpotent Lie algebras, we know the class \mathfrak{N} of residually central Lie algebras, where L is residually central if $x \in L \setminus \{0\}$ implies $x \notin [x, L]^L$. In fact, since [2, Theorem 3.5] (or [9, Corollary to Theorem 3.3]) states that

$$\Re \cap \text{Min-} \leq 3 \cap \text{EU}$$

 \mathfrak{R} is a class of generalized nilpotent Lie algebras. In this paper we introduce the classes $\mathfrak{R}^{(1)}$, $\mathfrak{R}_{(1)}$ and \mathfrak{R}_* , naturally including the class \mathfrak{R} , as follows:

$$\begin{array}{llll} L \in \Re^{(1)} & \text{iff} & x \in L \searrow \{0\} & \text{implies} & x \notin ([x,L]^L)^{(1)}; \\ L \in \Re_{(1)} & \text{iff} & x \in L \searrow \{0\} & \text{implies} & x \notin [x,L^{(1)}]^L; \\ L \in \Re_* & \text{iff} & x \in L \searrow \{0\} & \text{implies} & x \notin [x,L^*]^L, \end{array}$$

where we denote by L^* the intersection of all the terms in the transfinite lower central series for L. Among them the class $\Re^{(1)}$ has been studied in [2, p. 16].

On the other hand, as relatively large classes of generalized soluble Lie algebras, we know the classes $\hat{\mathbb{P}}\mathfrak{A}$, $\hat{\mathbb{E}}(\neg)\mathfrak{A}$, $\hat{\mathbb{E}}\mathfrak{A}$, $\hat{\mathbb{E}}(\neg)\mathfrak{A}$, $\hat{\mathbb{E}}(\neg)\mathfrak{A}$, $\hat{\mathbb{E}}(\neg)\mathfrak{A}$, $\hat{\mathbb{E}}(\neg)\mathfrak{A}$, $\hat{\mathbb{E}}(\neg)\mathfrak{A}$) is the class of Lie algebras L having a family $\mathscr{S} = \{\Lambda_{\sigma}, V_{\sigma} : \sigma \in \Sigma\}$ of subalgebras (resp. ideals) of L for some totally ordered set Σ such that

- (a) $V_{\sigma} \lhd \Lambda_{\sigma}$ and $\Lambda_{\sigma}/V_{\sigma} \in \mathfrak{X}$ for all $\sigma \in \Sigma$;
- (b) $\Lambda_{\sigma} \leq V_{\tau}$ if $\sigma < \tau$;
- (c) $L \setminus \{0\} = \bigcup_{\sigma \in \Sigma} (\Lambda_{\sigma} \setminus V_{\sigma}).$

Then $\mathcal S$ is called a series (resp. an ideal series) of L (of type Σ) with $\mathfrak X$ -factors. When Σ is well-ordered, $\mathcal S$ is called an ascending series (resp. ideal series) of L with $\mathfrak X$ -factors. When Σ is reversely well-ordered, $\mathcal S$ is called a descending series (resp. ideal series) of L with $\mathfrak X$ -factors. $L \in \dot{\mathbb X}$ (resp. $\dot{\mathbb E}(\neg)\mathfrak X$) if L has an ascending series (resp. ideal series) with $\mathfrak X$ -factors. $L \in \dot{\mathbb X}$ (resp. $\dot{\mathbb E}(\neg)\mathfrak X$) if L has a descending series (resp. ideal series) with $\mathfrak X$ -factors. From the definitions it is clear that $\dot{\mathbb E}\mathfrak V$, $\dot{\mathbb E}(\neg)\mathfrak V$, $\dot{\mathbb E}(\neg)\mathfrak V$ and $\dot{\mathbb E}(\neg)\mathfrak V$ are classes of generalized soluble Lie algebras. The class $\mathfrak R_{(\infty)}$, strictly including the class $\mathfrak R$, is defined in [5] by

$$L \in \mathfrak{R}_{(\infty)}$$
 iff $x \in L \setminus \{0\}$ implies $x \notin [x, L^{(\omega)}]^L$.

Then by [5, Theorem 2.3] we have

$$\mathfrak{R}_{(\infty)} \cap \text{qmin-} = E\mathfrak{A},$$

where qmin- \triangleleft , strictly including the class Min- \triangleleft , is the class of quasi-artinian Lie algebras. In [1] L is said to be quasi-artinian if for any descending chain $I_1 \ge I_2 \ge \cdots$ of ideals of L there exists an integer n > 0 such that $[I_n, L^{(n)}] \le \bigcap_{i \ge 1} I_i$. On the other hand, Amayo has indicated in [2, p. 16] that

$$\Re^{(1)} \cap \text{Min-} < \acute{E}(\triangleleft)\mathfrak{A}.$$

Therefore $\Re_{(\infty)}$ and $\Re^{(1)}$ are indeed classes of generalized soluble Lie algebras.

In this paper we introduce the class $\mathfrak{R}_{(*)}$, naturally including the class $\mathfrak{R}_{(\infty)}$, and the classes \mathfrak{R}^* , $\mathfrak{R}^{(*)}$, $\mathfrak{R}^{(1)}_{(*)}$ and $\mathfrak{R}^{(*)}_{(*)}$, naturally including the class $\mathfrak{R}^{(1)}$, as follows:

where we denote by $L^{(*)}$ the intersection of all the terms in the transfinite derived series for L.

Concerning L^* and $L^{(*)}$ the following lemma is elementary.

LEMMA 1.1. Let $I \triangleleft L$ and $H \leq L$. Then:

- (1) $H^* \leq L^*$ and $H^{(*)} \leq L^{(*)}$.
- (2) $(H^*+I)/I \le ((H+I)/I)^*$ and $(H^{(*)}+I)/I \le ((H+I)/I)^{(*)}$.
- (3) If $H \cap I = \{0\}$ then $(H^* + I)/I = ((H + I)/I)^*$ and $(H^{(*)} + I)/I = ((H + I)/I)^{(*)}$.
 - (4) $(L^{(*)})^{(*)} = L^{(*)} \le L^*$.

2.

In this section, following [8, §8.2] we shall first show that for any $\{Q, R\}$ -closed class \mathfrak{X} of Lie algebras the classes $\hat{E}\mathfrak{X}$ and $\hat{E}(\triangleleft)\mathfrak{X}$ are L-closed. We shall secondly show that in a Lie algebra having a central series (resp. a descending central series) every finite-dimensional subalgebra is serial (resp. descendant).

We begin by expressing the concepts of a series and an ideal series in functional forms. Let L be a Lie algebra over \mathfrak{t} . Assume that L has a series (resp. an ideal series) $\{\Lambda_{\sigma}, V_{\sigma} : \sigma \in \Sigma\}$ of some type Σ (with \mathfrak{D} -factors). To each $x \in L \setminus \{0\}$ there corresponds a unique $\sigma(x) \in \Sigma$ such that $x \in \Lambda_{\sigma(x)} \setminus V_{\sigma(x)}$. For any $x \in L \setminus \{0\}$ we clearly see that $x \in \Lambda_{\sigma}$ iff $\sigma \geq \sigma(x)$, and that $x \in V_{\sigma}$ iff $\sigma > \sigma(x)$. We define a binary function $f_L: L \times L \to \{0, 1\}$ as follows; for any $x, y \in L$

$$f_L(x, y) = \begin{cases} 0 & \text{if } x = 0 \text{ or if } x, y \neq 0 \text{ and } \sigma(x) \leq \sigma(y), \\ 1 & \text{otherwise.} \end{cases}$$
 (*)

Then we can easily verify that the function f_L satisfies the following conditions (i)-(iv) and (v) (resp. (v')), where $x, y, z \in L$ and $\alpha, \beta \in \mathfrak{t}$:

- (i) If $f_L(x, y) = f_L(y, z) = 0$ then $f_L(x, z) = 0$.
- (ii) Either $f_L(x, y) = 0$ or $f_L(y, x) = 0$.
- (iii) If $f_L(x, 0) = 0$ then x = 0.
- (iv) If $f_L(x, z) = f_L(y, z) = 0$ then $f_L(\alpha x + \beta y, z) = f_L([x, y], z) = 0$.
- (v) If $f_L(x, y) = 1$ then $f_L(x, [x, y]) = 1$.
- (v') $f_L([x, y], x) = 0.$

Conversely, assume that there exists a binary function $f_L\colon L\times L\to\{0,1\}$ satisfying the conditions (i)-(iv) and (v) (resp. (v')). Let $x\sim y$ mean that $f_L(x,y)=f_L(y,x)=0$. By (i), (ii) and (iii) the relation \sim is an equivalence relation on L and $\{x\in L\colon x\sim 0\}=\{0\}$. Let Σ denote the family of all \sim -equivalence classes except $\{0\}$. For σ , $\tau\in\Sigma$, we write $\sigma<\tau$ if $\sigma\neq\tau$ and $f_L(\sigma,\tau)=\{0\}$. Then by (i) and (ii) the relation < is a total order on Σ . We now define a family $\{\Lambda_\sigma, V_\sigma\colon \sigma\in\Sigma\}$ of subsets of L as follows; for each $\sigma\in\Sigma$

$$\Lambda_{\sigma} = \{x \in L : f_{L}(x, \sigma) = \{0\}\}, \ V_{\sigma} = \left\{ \begin{array}{ll} \bigcup_{\tau < \sigma} \Lambda_{\tau} \ \text{if} \ \{\tau \in \Sigma : \tau < \sigma\} \neq \emptyset, \\ \{0\} & \text{otherwise.} \end{array} \right.$$
 (**)

By (i) and (iv) $\{\Lambda_{\sigma} \colon \sigma \in \Sigma\}$ is a totally ordered chain of subalgebras of L. It follows that $V_{\sigma} \leq \Lambda_{\sigma}$ for any $\sigma \in \Sigma$. If $\tau < \sigma$ then $\Lambda_{\tau} \leq V_{\sigma}$. It is not hard to show that $L \setminus \{0\} = \bigcup_{\sigma \in \Sigma} (\Lambda_{\sigma} \setminus V_{\sigma})$. By using (i) and (v) (resp. (i) and (v')) we can easily see that $V_{\sigma} \lhd \Lambda_{\sigma}$ (resp. V_{σ} , $\Lambda_{\sigma} \lhd L$) for all $\sigma \in \Sigma$. Therefore $\{\Lambda_{\sigma}, V_{\sigma} \colon \sigma \in \Sigma\}$ is a series (resp. an ideal series) of L of type Σ (with \mathfrak{D} -factors).

Let \mathscr{F}_{∞} be the free Lie algebra over f on a countably infinite set $\{t_1, t_2, \cdots\}$. An elements of \mathscr{F}_{∞} is called a word.

LEMMA 2.1. Let L be a Lie algebra, Ω a set of words and \mathfrak{B}_{Ω} the variety determined by Ω . Then $L \in \hat{\mathbb{E}}\mathfrak{B}_{\Omega}$ (resp. $\hat{\mathbb{E}}(\prec)\mathfrak{B}_{\Omega}$) if and only if there exists a binary function $f_L: L \times L \to \{0, 1\}$ satisfying the conditions (i)–(iv), (v) (resp. (v')) and

(vi) If
$$y \neq 0$$
 and $f_L(x_i, y) = 0$ $(1 \leq i \leq n)$, then $f_L(y, w(x_1, ..., x_n)) = 1$, where $w = w(t_1, ..., t_n) \in \Omega$ and $x_i, y \in L$ $(1 \leq i \leq n)$.

PROOF. Assume that $L \in \hat{\mathbb{E}}\mathfrak{B}_{\Omega}$ (resp. $\hat{\mathbb{E}}(\lhd)\mathfrak{B}_{\Omega}$) and let $\{\Lambda_{\sigma}, V_{\sigma} : \sigma \in \Sigma\}$ be a series (resp. an ideal series) of L of type Σ with \mathfrak{B}_{Ω} -factors. Then the binary

function $f_L: L \times L \to \{0, 1\}$ defined by (*) satisfies the conditions (i)–(iv) and (v) (resp. (v')). Let $w = w(t_1, ..., t_n) \in \Omega$ and $x_i, y \in L$ $(1 \le i \le n)$. Suppose that $y \ne 0$ and $f_L(x_i, y) = 0$ $(1 \le i \le n)$. Then $x_i \in \Lambda_{\sigma(y)}$ $(1 \le i \le n)$. Since $\Lambda_{\sigma(y)}/V_{\sigma(y)} \in \mathfrak{B}_{\Omega}$, we have $w(x_1, ..., x_n) \in V_{\sigma(y)}$. Hence $w(x_1, ..., x_n) = 0$ or $\sigma(w(x_1, ..., x_n)) < \sigma(y)$. This implies $f_L(y, w(x_1, ..., x_n)) = 1$. Therefore f_L satisfies the conditions (i)–(iv), (v) (resp. (v')) and (vi).

Conversely, assume that there exists a binary function $f_L: L \times L \to \{0, 1\}$ satisfying the conditions (i)–(iv), (v) (resp. (v')) and (vi). Let $\{\Lambda_\sigma, V_\sigma \colon \sigma \in \Sigma\}$ be the series (resp. the ideal series) of L defined by (**). We show that $\Lambda_\sigma/V_\sigma \in \mathfrak{B}_\Omega$ for all $\sigma \in \Sigma$. Let $\sigma \in \Sigma$, $w = w(t_1, \ldots, t_n) \in \Omega$ and $x_i \in \Lambda_\sigma$ ($1 \le i \le n$). Suppose that $w(x_1, \ldots, x_n) \notin V_\sigma$. Since $f_L(x_i, \sigma) = \{0\}$ ($1 \le i \le n$), by (vi) we have $f_L(\sigma, w(x_1, \ldots, x_n)) = \{1\}$. We can find a $\tau \in \Sigma$ such that $w(x_1, \ldots, x_n) \in \tau$. Then we have $\tau < \sigma$. Hence $w(x_1, \ldots, x_n) \in \Lambda_\tau \le V_\sigma$, a contradiction. Therefore we have $w(x_1 + V_\sigma, \ldots, x_n + V_\sigma) = 0$. It follows that $\Lambda_\sigma/V_\sigma \in \mathfrak{B}_\Omega$. Thus we obtain $L \in \mathfrak{B}_\Omega$ (resp. $\mathfrak{E}(\prec)\mathfrak{B}_\Omega$).

Now we have the first main theorem of this section, which corresponds to [8, Theorem 8.23].

THEOREM 2.2. For any variety $\mathfrak V$ of Lie algebras, the classes $\hat{\mathfrak L}\mathfrak V$ and $\hat{\mathfrak L}({\operatorname{\lhd}})\mathfrak V$ are L-closed. In other words, for any $\{Q,R\}$ -closed class $\mathfrak X$ of Lie algebras, the classes $\hat{\mathfrak L}\mathfrak X$ and $\hat{\mathfrak L}({\operatorname{\lhd}})\mathfrak X$ are L-closed.

PROOF. It is well known (cf. [3, p. 257]) that a class \mathfrak{X} of Lie algebras is a variety if and only if \mathfrak{X} is $\{Q, R\}$ -closed. Hence it suffices to prove the first half of the theorem. Let \mathfrak{B} be a variety of Lie algebras. Then there exists a set Ω of words determining \mathfrak{B} . Let $L \in L \cap \mathfrak{L} \cap \mathfrak{B}$ (resp. $L \cap \mathfrak{L} \cap \mathfrak{D}$). We denote by \mathscr{L} the set of $\mathcal{L} \cap \mathfrak{L}$ -subalgebras (resp. $\mathcal{L} \cap \mathfrak{L} \cap \mathfrak{L} \cap \mathfrak{L}$). We denote by \mathscr{L} the set of $\mathcal{L} \cap \mathfrak{L}$ -subalgebras (resp. $\mathcal{L} \cap \mathfrak{L} \cap \mathfrak{L} \cap \mathfrak{L}$). Then $\mathscr{L} \cap \mathfrak{L}$ is a local system on L in the sense of [8, p. 94]. It follows from Lemma 2.1 that for each $H \in \mathscr{L}$ there exists a binary function $f_H \colon H \times H \to \{0, 1\}$ satisfying the conditions (i)—(iv), (v) (resp. (v')) and (vi) which are obtained by replacing L with H. Owing to $[8, L \cap \mathfrak{L} \cap \mathfrak{L} \cap \mathfrak{L} \cap \mathfrak{L} \cap \mathfrak{L}]$, there exists a binary function $f_L \colon L \times L \to \{0, 1\}$ such that, given any finite subset $\{(x_i, y_i) \colon 1 \le i \le m\}$ of $L \times L$, there exists an $H \in \mathscr{L}$ for which $(x_i, y_i) \in H \times H$ and $f_L(x_i, y_i) = f_H(x_i, y_i)$ $(1 \le i \le m)$. Since each of the conditions (i)—(iv), (v) (resp. (v')) and (vi) involves a finite number of elements of L, the function f_L also satisfies the conditions (i)—(iv), (v) (resp. (v')) and (vi). Using Lemma 2.1 again, we have $L \in \mathfrak{B}$ (resp. $\mathfrak{L} \cap \mathfrak{L} \cap \mathfrak{L}$).

We regard the class \mathfrak{A} as the variety determined by the set of the single word $[t_1, t_2]$. Then as an immediate consequence of Theorem 2.2 we have the following

COROLLARY 2.3. (1) $\hat{L} = \hat{L} = \hat{$

(2) $\text{L\'e}\mathfrak{A} \leq \hat{\mathbf{E}}\mathfrak{A}$ and $\text{L\'e}(\triangleleft)\mathfrak{A} \cup \text{L\'e}\mathfrak{A} \leq \hat{\mathbf{E}}(\triangleleft)\mathfrak{A}$.

REMARK. By making use of [3, Corollary 6.5.3] and [2, Theorem 4.6], we see that if \mathfrak{k} has zero characteristic then $\mathsf{L} \in \mathfrak{A} \neq \mathsf{k} \mathfrak{A}$. In his recent paper [4] Ikeda has proved that $\mathsf{L} \in (\mathcal{A}) \mathfrak{A} \neq \mathsf{k} (\mathcal{A}) \mathfrak{A}$ ([4, Corollary 3.4]) and that if every countable dimensional subalgebra of a Lie algebra L belongs to $\mathsf{k} (\mathcal{A}) \mathfrak{A}$ then $L \in \mathsf{k} (\mathcal{A}) \mathfrak{A}$ ([4, Corollary 2.10]). Moreover, we have $\mathsf{L} \in \mathfrak{A} \neq \mathsf{k} \mathfrak{A}$. In fact, we consider the McLain Lie algebra $\mathscr{L}_{\mathsf{t}}(Q)$ over k , where Q is the set of rational numbers with natural ordering (cf. [3, p. 111]). Then it is well known ([10, p. 96]) that $\mathscr{L}_{\mathsf{t}}(Q)$ is perfect and locally nilpotent. Therefore we have $\mathscr{L}_{\mathsf{t}}(Q) \in \mathsf{L} \in \mathfrak{A} \setminus \mathsf{k} \mathfrak{A}$.

Next we introduce the Lie-theoretic analogue of the concept of marginal subgroups of groups (cf. [7, p. 9]). Let I be an ideal of a Lie algebra L. For a word $w = w(t_1, ..., t_n)$, I is said to be w-marginal in L if $w(x_1, ..., x_n) = w(y_1, ..., y_n)$ whenever x_i , $y_i \in L$ and $x_i \equiv y_i \mod I$ $(1 \le i \le n)$. Let Ω be a set of words and \mathfrak{B}_{Ω} the variety determined by Ω . Then I is said to be \mathfrak{B}_{Ω} -marginal in L if I is w-marginal in L for all $w \in \Omega$. Clearly if I is \mathfrak{B}_{Ω} -marginal in L then $I \in \mathfrak{B}_{\Omega}$. Since the variety \mathfrak{A} is determined by $\{[t_1, t_2]\}$, we can easily see that I is \mathfrak{A} -marginal in L if and only if I is central in L (i.e. $I \le \zeta_1(L)$). Let I be an ideal of I contained in I. We say that I/I is a \mathfrak{B}_{Ω} -marginal factor of I if I/I is a factor of some ideal series of I and is \mathfrak{B}_{Ω} -marginal in I. Then we define the classes $\hat{E}(\prec)\hat{\mathfrak{B}}_{\Omega}$, $\hat{E}(\prec)\hat{\mathfrak{B}}_{\Omega}$ and $\hat{E}(\prec)\hat{\mathfrak{B}}_{\Omega}$ of Lie algebras as follows:

 $L \in \hat{\mathbb{E}}(\lhd) \hat{\mathfrak{B}}_{\Omega}$ iff L has an ideal series with \mathfrak{B}_{Ω} -marginal factors; $L \in \dot{\mathbb{E}}(\lhd) \hat{\mathfrak{B}}_{\Omega}$ iff L has an ascending ideal series with \mathfrak{B}_{Ω} -marginal factors; $L \in \dot{\mathbb{E}}(\lhd) \hat{\mathfrak{B}}_{\Omega}$ iff L has a descending ideal series with \mathfrak{B}_{Ω} -marginal factors.

In particular, we have

LEMMA 2.4. (1) $\hat{\mathbb{E}}(\triangleleft)\hat{\mathbb{Q}} = \{L \in \mathfrak{D} : L \text{ has a central series}\}.$

- (2) $\not \in (\triangleleft) \hat{\mathfrak{A}} = \{L \in \mathfrak{D} : L \text{ has an ascending central series}\} = 3.$
- (3) $\dot{\mathbb{E}}(\mathbf{D}) = \{L \in \mathfrak{D} : L \text{ has a descending central series}\} = \{L \in \mathfrak{D} : L^* = \{0\}\}.$

REMARK. It has been indicated in [9, p. 58] that every Lie algebra having a central series is residually central. It follows from Lemma 2.4 (1) that

$$\hat{E}(\triangleleft)\hat{\mathfrak{A}} \leq \mathfrak{R}.$$

In particular, $\hat{\mathbf{e}}(\mathbf{1})\hat{\mathbf{u}}$ is a class of generalized nilpotent Lie algebras.

We are able to express the concept of ideal series with marginal factors of Lie algebras in functional form.

LEMMA 2.5. Let L be a Lie algebra, Ω a set of words and \mathfrak{B}_{Ω} the variety determined by Ω . Then $L \in \hat{\mathbb{E}}(\lhd) \hat{\mathfrak{B}}_{\Omega}$ if and only if there exists a binary function

 $f_L: L \times L \rightarrow \{0, 1\}$ satisfying the conditions (i)-(iv), (v') and

(vii) If
$$z \neq 0$$
 and $f_L(x_i - y_i, z) = 0$ $(1 \le i \le n)$, then $f_L(z, w(x_1, ..., x_n) - w(y_1, ..., y_n)) = 1$,

where $w = w(t_1, ..., t_n) \in \Omega$ and $x_i, y_i, z \in L \ (1 \le i \le n)$.

PROOF. Assume that $L \in \hat{\mathbb{E}}(\neg 1) \hat{\mathbb{B}}_{\Omega}$ and let $\{\Lambda_{\sigma}, V_{\sigma} : \sigma \in \Sigma\}$ be an ideal series of L with \mathfrak{B}_{Ω} -marginal factors. Then the binary function $f_L : L \times L \to \{0, 1\}$ defined by (*) satisfies the conditions (i)–(iv) and (v'). Let $w = w(t_1, \ldots, t_n) \in \Omega$ and $x_i, y_i, z \in L$ $(1 \le i \le n)$. Suppose that $z \ne 0$ and $f_L(x_i - y_i, z) = 0$ $(1 \le i \le n)$. Then $x_i - y_i \in \Lambda_{\sigma(z)}$ $(1 \le i \le n)$. Since $\Lambda_{\sigma(z)}/V_{\sigma(z)}$ is a \mathfrak{B}_{Ω} -marginal factor, we have $w(x_1, \ldots, x_n) - w(y_1, \ldots, y_n) \in V_{\sigma(z)}$. It follows that $w(x_1, \ldots, x_n) - w(y_1, \ldots, y_n) = 0$ or $\sigma(w(x_1, \ldots, x_n) - w(y_1, \ldots, y_n)) < \sigma(z)$. Hence we have $f_L(z, w(x_1, \ldots, x_n) - w(y_1, \ldots, y_n)) = 1$.

Conversely, assume that there exists a binary function $f_L\colon L\times L\to\{0,1\}$ satisfying the conditions (i)–(iv), (v') and (vii). Let $\{\Lambda_\sigma,V_\sigma\colon\sigma\in\Sigma\}$ be the ideal series of L defined by (**). We show that Λ_σ/V_σ is a \mathfrak{B}_Ω -marginal factor of L for any $\sigma\in\Sigma$. Let $\sigma\in\Sigma$, $w=w(t_1,\ldots,t_n)\in\Omega$ and $x_i,y_i\in L$ $(1\leq i\leq n)$. Suppose that $x_i\equiv y_i \bmod \Lambda_\sigma$ $(1\leq i\leq n)$. Then $f_L(x_i-y_i,\sigma)=\{0\}$ $(1\leq i\leq n)$. It follows from (vii) that $f_L(\sigma,w(x_1,\ldots,x_n)-w(y_1,\ldots,y_n))=\{1\}$. Suppose that $0\neq w(x_1,\ldots,x_n)-w(y_1,\ldots,y_n)\in\tau\in\Sigma$. Then we have $\tau<\sigma$. It follows that $w(x_1,\ldots,x_n)-w(y_1,\ldots,y_n)\in\Lambda_\tau\leq V_\sigma$. Therefore Λ_σ/V_σ is w-marginal in L/V_σ . Thus we have $L\in\hat{\mathbb{E}}(\prec)\hat{\mathfrak{B}}_\Omega$.

Now we have the second main theorem of this section, which corresponds to [8, Theorem 8.24].

Theorem 2.6. Let Ω be a set of words and \mathfrak{V}_{Ω} the variety determined by Ω . Then the class $\hat{\mathbf{E}}(\lhd)\hat{\mathfrak{V}}_{\Omega}$ is L-closed.

PROOF. By using Lemma 2.5, we can prove the theorem as in the proof of Theorem 2.2.

By making use of Lemma 2.4 and Theorem 2.6, we have

COROLLARY 2.7. (1)
$$L\hat{\mathbf{e}}(\triangleleft)\hat{\mathbf{U}} = \hat{\mathbf{e}}(\triangleleft)\hat{\mathbf{U}}$$
.
(2) $L\mathbf{M} = L\mathbf{J} = L\hat{\mathbf{e}}(\triangleleft)\hat{\mathbf{U}} \leq L\mathbf{R}\mathbf{M} \leq L\hat{\mathbf{e}}(\triangleleft)\hat{\mathbf{U}} \leq \hat{\mathbf{e}}(\triangleleft)\hat{\mathbf{U}}$.

REMARK. Both of the classes $E(\triangleleft)\hat{\mathfrak{U}}=3$ and $E(\triangleleft)\hat{\mathfrak{U}}$ are not L-closed. In fact, the McLain Lie algebra $\mathscr{L}_{\mathfrak{l}}(Q)$ is locally nilpotent and is neither hypercentral nor hypocentral.

It is well known that if $L \in E(\neg) \hat{\mathfrak{A}} = \mathfrak{Z}$ then every subalgebra of L is ascendant in L. On the other hand, it is not known whether every subalgebra of an $\hat{\mathfrak{E}}(\neg) \hat{\mathfrak{A}}$ -

algebra (resp. an $\grave{\mathbf{E}}(\lhd) \hat{\mathfrak{A}}$ -algebra) L is serial (resp. descendant) in L or not. However, we can prove that every finite-dimensional subalgebra of an $\grave{\mathbf{E}}(\lhd) \hat{\mathfrak{A}}$ -algebra (resp. an $\grave{\mathbf{E}}(\lhd) \hat{\mathfrak{A}}$ -algebra) L is serial (resp. descendant) in L. To do this we need the following lemma concerning vector spaces.

LEMMA 2.8. Let V be a vector space over \mathfrak{t} , U a subspace of V and X a finite-dimensional subspace of V. Assume that there exist a totally ordered set Σ and a family $\{\Lambda_{\sigma}, V_{\sigma} : \sigma \in \Sigma\}$ of subspaces of V such that

- (a) $U \subseteq V_{\sigma} \subseteq \Lambda_{\sigma}$ for all $\sigma \in \Sigma$;
- (b) $\Lambda_{\sigma} \subseteq V_{\tau} \text{ if } \sigma < \tau;$
- (c) $V \setminus U = \bigcup_{\sigma \in \Sigma} (\Lambda_{\sigma} \setminus V_{\sigma}).$

Then we have $V \setminus (U+X) = \bigcup_{\sigma \in \Sigma} ((\Lambda_{\sigma} + X) \setminus (V_{\sigma} + X)).$

PROOF. By using induction on $n=\dim(X)$, we show the result. It is clear for n=0. Let n>0 and assume that the result is true for n-1. There are an (n-1)-dimensional subspace X_0 of X and a non-zero element x of X such that $X=X_0+fx$. For each $\sigma\in\Sigma$, set $\Lambda'_\sigma=\Lambda_\sigma+X_0$, $V'_\sigma=V_\sigma+X_0$, $\Lambda''_\sigma=\Lambda_\sigma+X$ and $V''_\sigma=V_\sigma+X$. Then by inductive hypothesis the family $\{\Lambda'_\sigma,\ V'_\sigma\colon\sigma\in\Sigma\}$ satisfies the following conditions:

- (a') $U + X_0 \subseteq V'_{\sigma} \subseteq \Lambda'_{\sigma}$ for all $\sigma \in \Sigma$;
- (b') $\Lambda'_{\sigma} \subseteq V'_{\tau}$ if $\sigma < \tau$;
- (c') $V \setminus (U+X_0) = \bigcup_{\sigma \in \Sigma} (\Lambda'_{\sigma} \setminus V'_{\sigma}).$

It follows from (b') and (c') that for any $v \in V \setminus (U+X_0)$ there exists a unique $\sigma(v) \in \Sigma$ such that $v \in \Lambda'_{\sigma(v)} \setminus V'_{\sigma(v)}$. In the case that $x \in U+X_0$, by (a') and (c') we have

$$V \setminus (U+X) = V \setminus (U+X_0) = \bigcup_{\sigma \in \Sigma} (\Lambda'_{\sigma} \setminus V'_{\sigma}) = \bigcup_{\sigma \in \Sigma} (\Lambda''_{\sigma} \setminus V''_{\sigma}).$$

So we consider the case that $x \notin U + X_0$. Let $v \in V \setminus (U + X)$. For each of the cases

1)
$$\sigma(x) < \sigma(v)$$
, 2) $\sigma(v) < \sigma(x)$, 3) $\sigma(x) = \sigma(v)$,

we show that $v \in \Lambda''_{\sigma} \setminus V''_{\sigma}$ for some $\sigma \in \Sigma$.

Case 1). By (a') and (b') $x \in \Lambda'_{\sigma(x)} \subseteq V'_{\sigma(v)} \subseteq \Lambda'_{\sigma(v)}$. It follows that $\Lambda''_{\sigma(v)} = \Lambda'_{\sigma(v)}$ and $V''_{\sigma(v)} = V'_{\sigma(v)}$. Hence we have $v \in \Lambda''_{\sigma(v)} \setminus V''_{\sigma(v)}$.

Case 2). Suppose that $v \in V''_{\sigma(v)} = V'_{\sigma(v)} + fx$ and write $v = u + \alpha x$ $(u \in V'_{\sigma(v)}, 0 \neq \alpha \in f)$. Then by (a') and (b') we have $x = (v - u)/\alpha \in V'_{\sigma(x)}$, a contradiction. Therefore we have $v \in \Lambda''_{\sigma(v)} \setminus V''_{\sigma(v)}$.

Case 3). We may suppose that $v \in V''_{\sigma(v)} = V'_{\sigma(v)} + fx$. Write $v = w + \beta x$ $(w \in V'_{\sigma(v)}, 0 \neq \beta \in f)$. Then $w \notin U + X_0$. Since $w \in V'_{\sigma(v)} \setminus V'_{\sigma(w)}$, by (a') and (b') we have $V'_{\sigma(w)} \subseteq V'_{\sigma(v)}$. It is clear that $V'_{\sigma(v)} \cap fx = \{0\}$. If $v \in V''_{\sigma(w)} = V'_{\sigma(w)} + fx$, then by modular law

$$w = v - \beta x \in V'_{\sigma(v)} \cap (V'_{\sigma(w)} + fx) = V'_{\sigma(w)} + (V'_{\sigma(v)} \cap fx) = V'_{\sigma(w)},$$

a contradiction. Hence we have $v \notin V''_{\sigma(w)}$. Since $v = w + \beta x \in \Lambda'_{\sigma(w)} + fx = \Lambda''_{\sigma(w)}$, we obtain $v \in \Lambda''_{\sigma(w)} \setminus V''_{\sigma(w)}$.

In every case we have shown that $v \in \bigcup_{\sigma \in \Sigma} (\Lambda''_{\sigma} \setminus V''_{\sigma})$. Thus we have $V \setminus (U+X) \subseteq \bigcup_{\sigma \in \Sigma} (\Lambda''_{\sigma} \setminus V''_{\sigma})$. The converse inclusion is trivial from (a'). This completes the proof.

We can now prove the third main theorem of this section.

THEOREM 2.9. Let L be a Lie algebra over f.

- (1) If $L \in \hat{E}(\lhd) \hat{\mathfrak{A}}$, then every finite-dimensional subalgebra of L is serial in L.
- (2) If $L \in \dot{E}(\lhd) \hat{\mathfrak{A}}$, then every finite-dimensional subalgebra of L is descendant in L.

PROOF. Let F be a finite-dimensional subalgebra of L. If $L \in \hat{\mathbb{E}}(\lhd) \hat{\mathbb{Q}}$, then by Lemma 2.4 (1) L has a central series $\{\Lambda_{\sigma}, V_{\sigma} : \sigma \in \Sigma\}$ of some type Σ . For each $\sigma \in \Sigma$, set $\Lambda'_{\sigma} = \Lambda_{\sigma} + F$ and $V'_{\sigma} = V_{\sigma} + F$. Then by Lemma 2.8 we have $L \setminus F = \bigcup_{\sigma \in \Sigma} (\Lambda'_{\sigma} \setminus V'_{\sigma})$. For any $\sigma \in \Sigma$, since $\Lambda_{\sigma}/V_{\sigma}$ is central, we have $V'_{\sigma} \lhd \Lambda'_{\sigma}$. Hence $\{\Lambda'_{\sigma}, V'_{\sigma} : \sigma \in \Sigma\}$ is a series from F to L and therefore F is serial in L. Especially, if $L \in \hat{\mathbb{E}}(\lhd) \hat{\mathbb{Q}}$ then we may suppose that Σ is a reversely well-ordered set. Thus F is descendant in L.

It has been proved in [2, Theorem 4.6] that $\mathfrak{Gr} \leq L\mathfrak{N}$, where \mathfrak{Gr} is the class of Gruenberg Lie algebras, that is, \mathfrak{Gr} is the class of Lie algebras in which every 1-dimensional subalgebra is ascendant. Here we analogously define the classes \mathfrak{Gr} and \mathfrak{Gr} of Lie algebras as follows:

 $L \in \hat{\mathfrak{G}}r$ iff every 1-dimensional subalgebra of L is serial in L; $L \in \hat{\mathfrak{G}}r$ iff every 1-dimensional subalgebra of L is descendant in L.

Then by Corollary 2.7 (2) and Theorem 2.9 we have

$$\mathsf{L}\mathfrak{N} \leq \hat{\mathsf{E}}(\lhd) \hat{\mathfrak{A}} \leq \hat{\mathfrak{G}} \mathsf{r} \quad \text{and} \quad \mathsf{R}\mathfrak{N} \leq \grave{\mathsf{E}}(\lhd) \hat{\mathfrak{A}} \leq \grave{\mathfrak{G}} \mathsf{r} \leq \hat{\mathfrak{G}} \mathsf{r}.$$

It follows that Gr contains all free Lie algebras. Since every non-abelian free Lie algebra is not locally nilpotent, we have

$$\mathfrak{Gr} \leq L\mathfrak{N} < \hat{\mathfrak{G}}\mathfrak{r}$$
 and $\hat{\mathfrak{G}}\mathfrak{r} \nleq \mathfrak{G}\mathfrak{r}$.

Considering the example described in [4, p. 119], we have $\mathfrak{Gr} \not\leq \mathfrak{Gr}$. On the other hand, the following result shows that \mathfrak{Gr} is a class of generalized nilpotent Lie algebras.

Proposition 2.10. L $\mathfrak{N} = L\mathfrak{F} \cap \hat{\mathfrak{G}} \mathfrak{r} = L \operatorname{Min} \cap \hat{\mathfrak{G}} \mathfrak{r}$.

PROOF. By using [3, Proposition 13.2.4], we can easily see that every subalgebra of a locally nilpotent Lie algebra is serial. It follows that $L\mathfrak{N} \leq L\mathfrak{F} \cap \hat{\mathfrak{G}} r \leq L \operatorname{Min} \cap \hat{\mathfrak{G}} r$. Let $L \in L \operatorname{Min} \cap \hat{\mathfrak{G}} r$ and let H be a finitely generated subalgebra of L. Then we have $H \in \operatorname{Min}$. Let $x \in H$. Since $L \in \hat{\mathfrak{G}} r$, there exists a series $\{\Lambda_{\sigma}, V_{\sigma} : \sigma \in \Sigma\}$ from $\langle x \rangle$ to H of some type Σ . We may assume that $V_{\sigma} \neq \Lambda_{\sigma}$ for all $\sigma \in \Sigma$. Then $V_{\sigma} < V_{\tau}$ iff $\sigma < \tau$. Since every non-empty subset of $\{V_{\sigma} : \sigma \in \Sigma\}$ has a minimal element, Σ must be a well-ordered set. Thus we have $\langle x \rangle$ asc H, so that $H \in \mathfrak{G} r$. Owing to [2, Theorem 4.6], we have $H \in \mathfrak{G} \cap L\mathfrak{N} = \mathfrak{F} \cap \mathfrak{N}$. Hence $L \in L\mathfrak{N}$ and therefore $L \operatorname{Min} \cap \mathfrak{G} r \leq L\mathfrak{N}$.

3.

From the definitions clearly we have

$$\Re \leq \Re_{(\infty)} \leq \Re_{(*)}$$
.

In this section we shall develop some results analogous to those of [5, §2] by using $\mathfrak{R}_{(*)}$ instead of $\mathfrak{R}_{(\infty)}$.

We begin with the following result corresponding to [5, Lemma 2.1].

Proposition 3.1. (1) $\{s, R\}\Re_{(*)} = \Re_{(*)}$.

 $(2) \quad \dot{\mathbf{E}}\mathfrak{A} < \mathfrak{R}_{(*)}.$

PROOF. (1) By Lemma 1.1 (1) clearly we have $s\Re_{(*)} = \Re_{(*)}$. Using Lemma 1.1 (2), we can easily show as in the proof of [5, Lemma 2.1] that $R\Re_{(*)} = \Re_{(*)}$.

(2) If $L \in \mathbb{N}$ then $L^{(*)} = \{0\}$. It follows that $\mathbb{N} \leq \mathfrak{R}_{(*)}$. We consider the McLain Lie algebra $L = \mathcal{L}_{!}(\mathbf{Q})$ over \mathbb{N} . Then $L \in \mathbb{N} \leq \mathfrak{R} \leq \mathfrak{R}_{(*)}$. Since $L^{(1)} = L$, we have $L \notin \mathbb{N}$.

We here introduce the class $\mathfrak{M}^{(*)}$ of Lie algebras, naturally generalizing that of quasi-artinian Lie algebras, as follows:

 $L\in\mathfrak{M}^{(*)}$ iff for any descending chain $I_1\geq I_2\geq \cdots$ of ideals of L contained in $L^{(*)}$ there exists an integer $n=n(I_1,\,I_2,\ldots)>0$ such that $I_n/\bigcap_{i\geq 1}I_i\leq \zeta_1(L^{(*)}/\bigcap_{i\geq 1}I_i)$.

We present some equivalent conditions for a Lie algebra to be an $\mathfrak{M}^{(*)}$ -algebra in the following

LEMMA 3.2. For a Lie algebra L, the following conditions are equivalent: (1) $L \in \mathfrak{M}^{(*)}$.

- (2) For any descending chain $I_1 \ge I_2 \ge \cdots$ of ideals of L contained in $L^{(*)}$, there are integers n, r > 0 such that $I_n / \bigcap_{i \ge 1} I_i \le \zeta_r (L^{(*)} / \bigcap_{i \ge 1} I_i)$.
- (3) For any descending chain $I_1 \ge I_2 \ge \cdots$ of ideals of L, there is an integer n > 0 such that $[I_n, L^{(*)}] \le \bigcap_{i \ge 1} I_i$.
- (4) For any descending chain $I_1 \ge I_2 \ge \cdots$ of ideals of L, there are integers n, r > 0 such that $[I_{n,r} L^{(*)}] \le \bigcap_{i \ge 1} I_i$.

PROOF. It is sufficient to show that (2) implies (3). Let $I_1 \ge I_2 \ge \cdots$ be a descending chain of ideals of L. Then $[I_1, L^{(*)}] \ge [I_2, L^{(*)}] \ge \cdots$ is a descending chain of ideals of L contained in $L^{(*)}$. By (2) there are integers n, r > 0 such that $[I_n, L^{(*)}] / \cap_{i \ge 1} [I_i, L^{(*)}] \le \zeta_r (L^{(*)} / \cap_{i \ge 1} [I_i, L^{(*)}])$. Since $L^{(*)}$ is perfect, we have

$$[I_n, L^{(*)}] = [I_{n,r+1} L^{(*)}] \le \bigcap_{i \ge 1} [I_i, L^{(*)}] \le \bigcap_{i \ge 1} I_i.$$

Hence (2) implies (3) and therefore the conditions (1)–(4) are equivalent.

It is easy to see that if $L \in \text{qmin} - \square$ then $L^{(*)} = L^{(n)}$ for some $n < \omega$. We now denote by \mathfrak{X}_0 the class of Lie algebras L such that $L^{(*)} = L^{(n)}$ for some $n < \omega$. Then we have the following result characterizing the classes qmin- \square and $\mathfrak{M}^{(*)}$.

Proposition 3.3. (1) $\mathfrak{M}^{(*)} \cap \mathfrak{X}_0 = \text{qmin-} < \infty$.

(2) $\mathfrak{M}^{(*)} \dot{\mathbf{E}} \mathfrak{A} = \mathfrak{M}^{(*)}$.

PROOF. (1) By using Lemma 3.2 we have $\mathfrak{M}^{(*)} \cap \mathfrak{X}_0 \leq \text{qmin-} \triangleleft$. The converse inclusion is evident.

(2) Let $L \in \mathfrak{M}^{(*)} \dot{\mathbb{E}} \mathfrak{A}$. Then there exists an ideal I of L such that $I \in \mathfrak{M}^{(*)}$ and $L/I \in \dot{\mathbb{E}} \mathfrak{A}$. By Lemma 1.1 we have $L^{(*)} = (L^{(*)})^{(*)} = I^{(*)}$. Let $I_1 \geq I_2 \geq \cdots$ be a descending chain of ideals of L contained in $L^{(*)}$. Since $L^{(*)} = I^{(*)}$ and $I \in \mathfrak{M}^{(*)}$, there exists an integer n > 0 such that $[I_n, L^{(*)}] = [I_n, I^{(*)}] \leq \bigcap_{i \geq 1} I_i$. Hence we have $L \in \mathfrak{M}^{(*)}$.

It is clear that qmin- $\triangleleft \cup \grave{E}\mathfrak{A} \leq \mathfrak{M}^{(*)}$. Furthermore, we have

Proposition 3.4. qmin- $\triangleleft \cup \grave{e}\mathfrak{A} < \mathfrak{M}^{(*)}$.

PROOF. Let S be a 3-dimensional simple Lie algebra over f with basis $\{x, y, z\}$ such that

$$\lceil x, y \rceil = z, \quad \lceil y, z \rceil = x, \quad \lceil z, x \rceil = y,$$

and M the McLain Lie algebra $\mathcal{L}_{t}(Z)$ over f, where Z is the set of integers with natural ordering. Then M has basis $\{a_{ij}: i, j \in Z, i < j\}$ such that

$$[a_{ii}, a_{kl}] = \delta_{ik}a_{il} - \delta_{li}a_{ki}.$$

Since $M^n = \langle a_{ij} : i, j \in \mathbb{Z}, j-i \geq n \rangle$ $(1 \leq n < \omega)$, we have $M^{\omega} = \{0\}$, so that $M \in \mathbb{Z}$

 $\mathbb{R}\mathfrak{N} \leq \mathbb{R}\mathbb{M} \leq \mathbb{E}\mathfrak{U}$. Define $L = S \oplus M$. Then by Proposition 3.3 (2) we have $L \in \mathfrak{M}^{(*)}$. Since $L^{(*)} = S \neq S \oplus M^{(n)} = L^{(n)}$ $(n < \omega)$, we have $L \notin \mathfrak{X}_0 \cup \mathbb{E}\mathfrak{U}$, so that $L \notin \text{qmin-} \triangleleft \cup \mathbb{E}\mathfrak{U}$. Therefore we obtain \mathbb{Q} qmin- $\mathbb{Q} \cup \mathbb{E}\mathfrak{U} < \mathfrak{M}^{(*)}$.

The following result, corresponding to [5, Theorem 2.3], is the main theorem of this section.

THEOREM 3.5. $\mathfrak{X} \cap \mathfrak{Y} = \dot{\mathbb{X}}$ for any class \mathfrak{X} of Lie algebras such that $\dot{\mathbb{X}} \leq \mathfrak{X}_{(*)}$ and any class \mathfrak{Y} of Lie algebras such that $\dot{\mathbb{X}} \leq \mathfrak{Y} \leq \mathfrak{M}^{(*)}$.

PROOF. It suffices to prove that $\Re_{(*)} \cap \Re^{(*)} \leq \mathbb{E} \Re$. Let $L \in \Re_{(*)} \cap \Re^{(*)}$ and assume that $L \notin \mathbb{E} \Re$. Set $I = L^{(*)}$. Then $I^{(\alpha)} = I \neq \{0\}$ for all ordinals α . It follows from [3, Lemma 8.1.1] that $\zeta_*(I) < I$. First we show that if $x \in I \setminus \zeta_\alpha(I)$ then $x \notin [x, I]^L + \zeta_\alpha(I)$, by using transfinite induction on α . It is clear for $\alpha = 0$. Let $\alpha > 0$ and suppose that the result is true for all $\beta < \alpha$. Then it is also true for α if α is a limit ordinal. So we consider the case that α is not a limit ordinal. Let $x \in [x, I]^L + \zeta_\alpha(I)$ and write x = y + z ($y \in [x, I]^L$, $z \in \zeta_\alpha(I)$). Then we have $[x, I]^L \leq [y, I]^L + \zeta_{\alpha-1}(I)$. Hence by inductive hypothesis we have $y \in \zeta_{\alpha-1}(I)$, so that $x = y + z \in \zeta_\alpha(I)$. This completes the induction.

Next we construct a sequence $(x_i)_{i=1}^{\infty}$ of elements of $I \setminus \zeta_*(I)$ such that for any $i \ge 1$

$$x_i \notin [x_i, I]^L + \zeta_*(I)$$
 and $x_{i+1} \in [x_i, I]^L + \zeta_*(I)$.

There is an $x_1 \in I \setminus \zeta_*(I)$. Then $x_1 \notin [x_1, I]^L + \zeta_*(I)$. Let $i \ge 1$ and suppose that it has been constructed up to x_i . Since $x_i \notin \zeta_*(I)$, there exists an $x_{i+1} \in [x_i, I]^L + \zeta_*(I)$ such that $x_{i+1} \notin \zeta_*(I)$. Then we have $x_{i+1} \notin [x_{i+1}, I]^L + \zeta_*(I)$. Therefore we can inductively show that such a sequence exists actually.

Set $I_i = [x_i, I]^L + \zeta_*(I)$ $(i \ge 1)$. Then $I_1 > I_2 > \cdots$ is a strictly descending chain of ideals of L contained in $L^{(*)}$. Since $L \in \mathfrak{M}^{(*)}$, there exists an integer n > 0 such that $[I_n, I] \le \bigcap_{i \ge 1} I_i$. Since I is perfect, we have

$$[x_n, I]^L \le [[x_n, I], I]^L \le [[x_n, I]^L, I] \le [I_n, I] \le I_{n+1}.$$

It follows that $I_n \leq I_{n+1}$, a contradiction. Therefore we have $\Re_{(*)} \cap \Re^{(*)} \leq \grave{\epsilon} \mathfrak{A}$.

By making use of Proposition 3.3 (1) and Theorem 3.5, we have

COROLLARY 3.6.
$$\Re_{(*)} \cap \text{qmin-} = \mathbb{E} \mathfrak{A}$$
.

It is immediately deduced from Corollary 3.6 that $\Re_{(*)}$ is a class of generalized soluble Lie algebras.

4.

In this section we shall first characterize the classes $\mathfrak{R}^{(1)}$ and $\mathfrak{R}^{(*)}_{(*)}$, and secondly prove that Amayo's result ([2, p. 16]), described in §1, is also true for $\mathfrak{R}^{(*)}_{(*)}$ instead of $\mathfrak{R}^{(1)}$.

We begin with the following

Proposition 4.1. (1) $\{s, R\} \Re_{(*)}^{(*)} = \Re_{(*)}^{(*)}$.

(2) $\hat{E}(\triangleleft)\mathfrak{A} \leq \mathfrak{R}^{(1)} \leq \mathfrak{R}^* \leq \mathfrak{R}^{(*)} \leq \mathfrak{R}^{(*)} \text{ and } \mathfrak{R}_{(*)} \leq \mathfrak{R}^{(1)} \leq \mathfrak{R}^{(*)}$

PROOF. (1) is easily proved from Lemma 1.1.

(2) Let $L \in \hat{\mathbb{E}}(\neg)\mathfrak{A}$ and $x \in L \setminus \{0\}$. L has an ideal series $\{\Lambda_{\sigma}, V_{\sigma} : \sigma \in \Sigma\}$ with \mathfrak{A} -factors. Then $x \in \Lambda_{\sigma} \setminus V_{\sigma}$ for some $\sigma \in \Sigma$. Since $[x, L]^L \leq \Lambda_{\sigma}$, we have $([x, L]^L)^{(1)} \leq V_{\sigma}$, so that $x \notin ([x, L]^L)^{(1)}$. Hence $L \in \mathfrak{R}^{(1)}$ and therefore $\hat{\mathbb{E}}(\neg)\mathfrak{A} \leq \mathfrak{R}^{(1)}$. It is clear that $\mathfrak{R}^{(1)} \leq \mathfrak{R}^*$ and $\mathfrak{R}_{(*)} \leq \mathfrak{R}^{(*)} \leq \mathfrak{R}^{(*)}$. Using Lemma 1.1, we have $\mathfrak{R}^* \leq \mathfrak{R}^{(*)} \leq \mathfrak{R}^{(*)}_*$.

REMARK. We shall prove in Theorem 4.3 below that $\Re^{(1)} = \Re^* = \Re^{(*)}$ and $\Re^{(1)}_{*} = \Re^*_{*}$. On the other hand, it has been indicated in [2, p. 16] that the class $\Re^{(1)}$ is $\{s, R, L\}$ -closed. It follows that the classes \Re^* and $\Re^{(*)}$ are $\{s, R, L\}$ -closed.

Before showing the first main theorem of this section, we need

LEMMA 4.2. Let $x \in L$ and $X \subseteq L$. Then the following conditions are equivalent:

- (1) $x \notin ([x, X]^L)^{(1)}$.
- (2) $x \notin ([x, X]^L)^*$.
- (3) $x \notin ([x, X]^L)^{(*)}$.

PROOF. $(1) \Rightarrow (2) \Rightarrow (3)$ is clear from Lemma 1.1 (4). So we show that (3) implies (1). Set $I = [x, X]^L$ and assume that $x \in I^{(1)}$. Since $I^{(1)} \lhd L$, we have $\langle x \rangle^L \leq I^{(1)}$. Obviously $I = [x, X]^L \leq [\langle x \rangle^L, X]^L \leq \langle x \rangle^L$. It follows that $\langle x \rangle^L = I = I^{(1)}$. Hence we have $x \in I^{(*)}$. Therefore (3) implies (1).

We now have the first main theorem of this section, which characterizes the classes $\Re^{(1)}$ and $\Re^{(*)}_{*}$.

THEOREM 4.3. (1) The following classes coincide with each other:

$$\mathfrak{R}^{(1)}$$
, \mathfrak{R}^* , $\mathfrak{R}^{(*)}$, $(\grave{\epsilon}\mathfrak{A})\mathfrak{R}^{(1)}$, $(\grave{\epsilon}\mathfrak{A})\mathfrak{R}^*$, $(\grave{\epsilon}\mathfrak{A})\mathfrak{R}^{(*)}$.

(2) The following classes coincide with each other:

$$\Re^{(1)}_{(*)}, \Re^{(*)}_{(*)}, (\grave{e}\mathfrak{A})\Re^{(1)}_{(*)}, (\grave{e}\mathfrak{A})\Re^{(*)}_{(*)}.$$

PROOF. We here only prove (1), since (2) is proved similarly. By using Lemma 4.2, we can easily see that $\Re^{(1)} = \Re^* = \Re^{(*)}$. Let $L \in (\grave{\mathbb{E}}\mathfrak{U})\Re^{(*)}$ and $x \in L \setminus \{0\}$. There exists an ideal I of L such that $I \in \grave{\mathbb{E}}\mathfrak{U}$ and $L/I \in \Re^{(*)}$. If $x \notin I$ then by Lemma 1.1 (2) $x + I \notin (([x, L]^L)^{(*)} + I)/I$ and so $x \notin ([x, L]^L)^{(*)}$. If $x \in I$ then by Lemma 1.1 (1) $([x, L]^L)^{(*)} \leq I^{(*)} = \{0\}$ and so $x \notin ([x, L]^L)^{(*)}$. Hence $L \in \Re^{(*)}$ and therefore $(\grave{\mathbb{E}}\mathfrak{U})\Re^{(*)} = \Re^{(*)}$. This completes the proof.

In [2, p. 16] Amayo has indicated without proof that if M is a minimal ideal of an $\Re^{(1)}$ -algebra L then $M \in \mathfrak{A}$ and $L/M \in \Re^{(1)}$, and that $\Re^{(1)} \cap \operatorname{Min} - \triangleleft \leq \pounds(\triangleleft)\mathfrak{A}$. We shall next show that these results also hold for $\Re^{(*)}_{(*)}$ instead of $\Re^{(1)}$. To do this we need

LEMMA 4.4. If M is a minimal ideal of a Lie algebra L, then $(L/M)^{(*)} = (L^{(*)} + M)/M$.

PROOF. We can find a sufficiently large ordinal σ such that $(L/M)^{(*)} = (L/M)^{(\sigma)}$ and $M^{(*)} = M^{(\sigma)}$. First we consider the case that $M \le L^{(\alpha)}$ for all $\alpha \le \sigma$. By transfinite induction on α we can easily see that $(L/M)^{(\alpha)} = L^{(\alpha)}/M$ for all $\alpha \le \sigma$. It follows that $(L/M)^{(*)} = L^{(*)}/M$. Next we consider the case that $M \nleq L^{(\alpha)}$ for some $\alpha \le \sigma$. Then there exists the least ordinal $\mu \le \sigma$ with respect to $M \nleq L^{(\mu)}$. Clearly μ is non-zero and is not a limit ordinal. Since $M \le L^{(\alpha)}$ for all $\alpha \le \mu - 1$, we have $(L/M)^{(\mu-1)} = L^{(\mu-1)}/M$, so that $(L/M)^{(\mu)} = (L^{(\mu)} + M)/M$. By the minimality of M we have $L^{(\mu)} \cap M = \{0\}$. Using Lemma 1.1, we have

$$(L/M)^{(*)} = ((L/M)^{(\mu)})^{(*)} = ((L^{(\mu)} + M)/M)^{(*)} = ((L^{(\mu)})^{(*)} + M)/M = (L^{(*)} + M)/M.$$

PROPOSITION 4.5. Let $L \in \mathfrak{R}^{(*)}_{(*)}$. If M is a minimal ideal of L, then $M \in \mathfrak{A}$ and $L/M \in \mathfrak{R}^{(*)}_{(*)}$.

PROOF. By Theorem 4.3 (2) we may prove the proposition for $\mathfrak{R}^{(1)}_{(*)}$ instead of $\mathfrak{R}^{(*)}_{(*)}$. Assume that $M \notin \mathfrak{A}$. Then there exists an $a \in M \setminus \zeta_1(M)$. Since $L \in \mathfrak{R}^{(1)}_{(*)}$, we have $a \notin ([a, L^{(*)}]^L)^{(1)}$. By the minimality of M we see that $[a, L^{(*)}]^L = \{0\}$ or $[a, L^{(*)}]^L = M$, and that M is perfect. By Lemma 1.1 (1) $M = M^{(*)} \le L^{(*)}$. If $[a, L^{(*)}]^L = \{0\}$, then $[a, M] \subseteq [a, L^{(*)}] = \{0\}$ and so $a \in \zeta_1(M)$, a contradiction. If $[a, L^{(*)}]^L = M$, then $a \notin M^{(1)} = M$, a contradiction. Therefore we have $M \in \mathfrak{A}$.

Now we show that $L/M \in \mathfrak{R}^{(1)}_{(*)}$. Let $x \in L \setminus M$ and set $I = [x, L^{(*)}]^L$. By using Lemma 4.4 we have

$$([x+M, (L/M)^{(*)}]^{L/M})^{(1)} = (I^{(1)}+M)/M.$$

Assume that $x \in I^{(1)} + M$ and write x = y + z ($y \in I^{(1)}$, $z \in M$). By the minimality of M we have $[I^{(1)}, M] = \{0\}$ or $[I^{(1)}, M] = M$. First we consider the case that $[I^{(1)}, M] = \{0\}$. Set $Y = [y, L^{(*)}]^L$ and $Z = [z, L^{(*)}]^L$. Then $I \le Y + Z$, $Y \le I^{(1)}$ and $Z \le M$. Since $[I^{(1)}, M] = \{0\}$ and $M \in \mathfrak{A}$, we have $I^{(1)} \le (Y + Z)^{(1)} = Y^{(1)}$,

so that $y \in Y^{(1)} = ([y, L^{(*)}]^L)^{(1)}$. Hence y = 0 and therefore $x = z \in M$, a contradiction. Next we consider the case that $[I^{(1)}, M] = M$. Since $M \le I^{(1)}$, we have $x \in I^{(1)} = ([x, L^{(*)}]^L)^{(1)}$. Hence $x = 0 \in M$, a contradiction. Therefore we have $x \notin I^{(1)} + M$, so that $x + M \notin ([x + M, (L/M)^{(*)}]^{L/M})^{(1)}$. Thus we obtain $L/M \in \Re^{\{1\}}_{*}$.

We now set about showing the second main theorem of this section.

THEOREM 4.6. $\Re^{(*)}_{*} \cap \text{Min-} = \acute{\mathbf{E}}(\triangleleft) \mathfrak{A} \cap \text{Min-} \triangleleft$.

PROOF. By Proposition 4.1 (2) and Theorem 4.3 (2) it suffices to prove that $\Re^{(1)}_{(*)} \cap \text{Min-} \preceq \acute{E}(\preceq) \mathfrak{A}$. Let $L \in \Re^{(1)}_{(*)} \cap \text{Min-} \preceq$. We shall construct a strictly ascending series $\{L_{\alpha}: \alpha \geq 0\}$ of ideals of L such that $L_{\alpha+1}/L_{\alpha} \in \mathfrak{A}$ and $L/L_{\alpha} \in \mathfrak{R}_{(*)}^{(1)}$ for all $\alpha \ge 0$. Define $L_0 = \{0\}$. Let $\alpha > 0$ and assume that $\{L_\beta : \beta < \alpha\}$ has been constructed. First we consider the case that α is not a limit ordinal. If $L_{\alpha-1} = L$ then $L \in \acute{E}(\triangleleft)\mathfrak{A}$. If $L_{\alpha-1} \neq L$, then $\{0\} \neq L/L_{\alpha-1} \in \mathfrak{R}^{(1)}_{(*)} \cap \text{Min-} \triangleleft$. Let $L_{\alpha}/L_{\alpha-1}$ be a minimal ideal of $L/L_{\alpha-1}$. Then by Theorem 4.3 (2) and Proposition 4.5 we have $L_{\alpha}/L_{\alpha-1} \in \mathfrak{A}$ and $L/L_{\alpha} \in \mathfrak{R}^{(1)}_{(*)}$. Next we consider the case that α is a limit ordinal. Define $L_{\alpha} = \bigcup_{\beta < \alpha} L_{\beta}$. Let $x \in L$ and suppose that $x + L_{\alpha} \in L$ $([x+L_{\alpha},(L/L_{\alpha})^{(*)}]^{L/L_{\alpha}})^{(1)}$. Since $L \in \text{Min-} \triangleleft$, it is not hard to see that $(L/I)^{(*)} =$ $(L^{(*)}+I)/I$ for any $I \triangleleft L$. Hence we have $x \in ([x, L^{(*)}]^L)^{(1)} + L_\alpha$. It follows that $x \in ([x, L^{(*)}]^L)^{(1)} + L_{\beta}$ for some $\beta < \alpha$. Then we have $x + L_{\beta} \in ([x + L_{\beta}, L_{\beta}]^L)^{(1)}$ $(L/L_{\beta})^{(*)}]^{L/L_{\beta}}$ (1). Since $L/L_{\beta} \in \mathfrak{R}_{(*)}^{(1)}$, we have $x \in L_{\beta} \leq L_{\alpha}$. Therefore $L/L_{\alpha} \in L_{\alpha}$ $\Re(\frac{1}{*})$. Thus we can inductively construct such a series. By set-theoretic consideration we see that $L=L_{\sigma}$ for some ordinal σ . Therefore we have $L\in \acute{E}(\lhd)\mathfrak{A}$. This completes the proof.

COROLLARY 4.7. (1) $\Re\binom{*}{*} \cap \text{Min-} \subset \cap \text{Max-} \subseteq \in \mathfrak{A}$. In particular, $\Re\binom{*}{*}$ is a class of generalized soluble Lie algebras.

(2) If \mathfrak{k} has non-zero characteristic, then $\mathfrak{R}^{(*)}_{(*)} \cap \operatorname{Min} - \triangleleft \cap \operatorname{Max} - \triangleleft = \mathfrak{E}\mathfrak{A} \cap \mathfrak{F}$.

PROOF. (1) is directly deduced from Theorem 4.6.

(2) Since f has non-zero characteristic, owing to [3, Corollary 11.2.3] we have $\not\in(\lhd)\mathfrak{A}\cap Min-\lhd\cap Max-\lhd=\mathfrak{E}\mathfrak{A}\cap\mathfrak{F}$. Therefore the result follows from Theorem 4.6.

REMARK. If \mathfrak{F} has zero characteristic, then $\mathfrak{R}^{(*)}_{(*)} \cap \operatorname{Min} - \triangleleft \cap \operatorname{Max} - \triangleleft >$ EU $\cap \mathfrak{F}$. In fact, let L be the Hartley algebra (cf. [3, Example 6.3.6]) over \mathfrak{F} . Then it is well known that $L \in \mathfrak{EU} \cap \operatorname{Min} - \triangleleft \cap \operatorname{Max} - \triangleleft$ and $L \notin \mathfrak{F}$.

5.

In this section we shall investigate the classes $\Re_{(1)}$ and \Re_* . Concerning

them the following proposition is elementary.

PROPOSITION 5.1. (1) {s, R, L}
$$\Re_{(1)} = \Re_{(1)}$$
 and {s, R} $\Re_* = \Re_*$. (2) $\Re \leq \Re_{(1)} \leq \Re_* \leq \Re_{(*)}$.

PROOF. (1) Obviously $\{s, R\}\Re_{(1)} = \Re_{(1)}$. Let $L \in L\Re_{(1)}$ and assume that $L \notin \Re_{(1)}$. Then there exists an $x \in L \setminus \{0\}$ such that $x \in [x, L^{(1)}]^L$. We can find a finite subset X of L such that $x \in [x, \langle X \rangle^{(1)}]^{\langle X \rangle}$. Set $H = \langle x, X \rangle$. Then $H \in \Re_{(1)}$ and $x \in [x, H^{(1)}]^H$. Hence x = 0, a contradiction. Therefore we have $L\Re_{(1)} = \Re_{(1)}$. By using Lemma 1.1, easily we have $\{s, R\}\Re_* = \Re_*$.

(2)
$$\Re \leq \Re_{(1)} \leq \Re_*$$
 is trivial. It follows from Lemma 1.1 (4) that $\Re_* \leq \Re_{(*)}$.

Next we prove that $\mathfrak{R}_{(1)}$ is a subclass of the class $\mathfrak{R}^{(1)}$. To do this we present a sufficient condition for a Lie algebra to be contained in the class $\mathfrak{R}^{(1)}$ in the following

THEOREM 5.2. Let L be a Lie algebra over \mathfrak{k} . If $x \in L \setminus \{0\}$ implies $x \notin \bigcap_{n < \omega} [x, L^{n+1}]^L$, then $L \in \mathfrak{R}^{(1)}$. In particular, $\mathfrak{R}_{(1)} \leq \mathfrak{R}^{(1)}$.

PROOF. It suffices to prove the first half of the theorem, since the latter half is immediately deduced from the first half. Let $x \in L \setminus \{0\}$. By using induction on n we first show that for any $n < \omega$

$$([x, L]^L)^{(n)} \subseteq [x, L^{n+1}]^L.$$

It is clear for n=0. Let n>0 and assume that the result is true for n-1. Then

$$([x, L]^L)^{(n)} \subseteq ([x, L^n]^L)^{(1)} \subseteq \sum_{k < \omega} [[x, L^n, {}_k L], L^{n+1}].$$

Set $I_k = [[x, L^n, {}_k L], L^{n+1}]$ $(k < \omega)$. Clearly $I_0 \subseteq [x, L^{n+1}]^L$. If $I_k \subseteq [x, L^{n+1}]^L$, then by the Jacobi identity

$$I_{k+1} \subseteq [I_k, L] + [[x, L^n, L], L^{n+1}] \subseteq [x, L^{n+1}]^L.$$

Hence by the second induction on k we have $I_k \subseteq [x, L^{n+1}]^L$ $(k < \omega)$. Thus

$$([x, L]^L)^{(n)} \subseteq \sum_{k < \omega} I_k \subseteq [x, L^{n+1}]^L.$$

This completes the first induction. Since $x \notin \bigcap_{n < \omega} [x, L^{n+1}]^L$, there exists an $n = n(x) < \omega$ such that $x \notin [x, L^{n+1}]^L$. Then we have $x \notin ([x, L]^L)^{(n)}$, so that $x \notin ([x, L]^L)^{(*)}$. It follows from Lemma 4.2 that $x \notin ([x, L]^L)^{(1)}$. Therefore we have $L \in \Re^{(1)}$.

In Proposition 5.1(2) we have given relationships among four classes. Among them \Re and $\Re_{(*)}$ are respectively a class of generalized nilpotent Lie algebras and a class of generalized soluble Lie algebras. Concerning $\Re_{(1)}$ and \Re_*

among them we next consider whether a similar fact will be shown or not. In [2, Theorem 3.5] (or [9, Corollary to Theorem 3.3]) it has been proved that

$$\mathfrak{R} \cap \text{Min-} \preceq 3 \cap E\mathfrak{A}$$
.

If this holds for the class $\mathfrak{R}_{(1)}$ instead of the class \mathfrak{R} , then $\mathfrak{R}_{(1)}$ will be a class of generalized nilpotent Lie algebras. By Corollary 3.6 and Proposition 5.1 (2) we have

$$\mathfrak{R}_{(1)} \cap \text{Min-} \leq \mathfrak{R}_* \cap \text{Min-} \leq E\mathfrak{A}.$$

However, the following proposition shows that

$$\mathfrak{R}_{(1)} \cap \text{Min-} \triangleleft \not \leq 3.$$

Proposition 5.3. $\Re_{(1)} \cap \Im \nleq \Re$.

PROOF. Let L be a 2-dimensional non-abelian Lie algebra over \mathfrak{k} . Then it is well known that L has basis $\{x, y\}$ such that [x, y] = x. We claim that $L \in \mathfrak{R}_{(1)}$. Assume, to the contrary, that there exists a $z \in L \setminus \{0\}$ such that $z \in [z, L^{(1)}]^L$. Clearly $\{I: I \triangleleft L\} = \{\{0\}, L^{(1)} = \langle x \rangle, L\}$. Hence $z \in [z, L^{(1)}]^L = \langle x \rangle$ and therefore $z \in [\langle x \rangle, \langle x \rangle]^L = \{0\}$, a contradiction. Thus we obtain $L \in \mathfrak{R}_{(1)}$. Since $L \in \mathfrak{F} \setminus \mathfrak{R}$, we have $\mathfrak{R}_{(1)} \cap \mathfrak{F} \nleq \mathfrak{R}$.

From this proposition both of the classes $\mathfrak{R}_{(1)}$ and \mathfrak{R}_* are not classes of generalized nilpotent Lie algebras. Therefore we have

$$\Re < \Re_{(1)}$$
.

On the other hand, by the following proposition we can see that both of the classes $\Re_{(1)}$ and \Re_* are not necessarily classes of generalized soluble Lie algebras.

Proposition 5.4. If \mathfrak{k} has non-zero characteristic, then $\mathfrak{A}^3 \cap \mathfrak{F} \nleq \mathfrak{R}_*$.

PROOF. Let f have characteristic p>0 and let A be an abelian Lie algebra over f with basis $\{a_0, a_1, ..., a_{p-1}\}$. Define $x, y \in Der(A)$ as follows:

$$a_0 x = a_{p-1}, \quad a_i x = a_{i-1} \quad (1 \le i \le p-1);$$

 $a_i y = -ia_i \quad (0 \le i \le p-1).$

Set $M = \langle x, y \rangle \leq \text{Der}(A)$. From the definitions we have [x, y] = x. Form the split extension L = A + M of A by M. Then $L \in \mathfrak{A}^3 \cap \mathfrak{F}$. It is easy to see that $L^* = L^2 = A + \langle x \rangle$. Therefore we have $a_0 = [a_0, p] \times [a_0, L^*]^L$, so that $L \notin \mathfrak{R}_*$.

By this proposition we see that if t has non-zero characteristic then

$$\Re_{(1)} < \Re^{(1)}$$
 and $\Re_* < \Re_{(*)}$.

Finally we shall present interesting subclasses of the classes $\mathfrak{R}_{(1)}$ and \mathfrak{R}_* . To do this we denote by $\hat{\mathbf{E}}(\mathbf{ch})\hat{\mathfrak{A}}$ the class of Lie algebras which have series, consisting of characteristic ideals, with \mathfrak{A} -marginal factors. It is clear that $L \in \hat{\mathbf{E}}(\mathbf{ch})\hat{\mathfrak{A}}$ iff L has a central series consisting of characteristic ideals. Then by Lemma 2.4 we have

$$\acute{\mathbf{E}}(\boldsymbol{\triangleleft})\hat{\mathfrak{A}} \cup \grave{\mathbf{E}}(\boldsymbol{\triangleleft})\hat{\mathfrak{A}} \leq \hat{\mathbf{E}}(\mathbf{ch})\hat{\mathfrak{A}} \leq \hat{\mathbf{E}}(\boldsymbol{\triangleleft})\hat{\mathfrak{A}}.$$

Moreover, we have

Proposition 5.5. (1) $(\hat{\mathbf{E}}(\mathbf{ch})\hat{\mathbf{U}})\mathbf{U} \leq \mathbf{\mathfrak{R}}_{(1)}$.

(2)
$$(\hat{\mathbf{e}}(\mathbf{ch})\hat{\mathbf{U}})(\hat{\mathbf{e}}(\boldsymbol{\triangleleft})\hat{\mathbf{U}}) \leq \mathbf{R}_{\star}$$
.

PROOF. We here only prove (2), since (1) is proved similarly. Let $L \in (\hat{\mathbb{E}}(\mathsf{ch})\hat{\mathfrak{U}})(\hat{\mathbb{E}}(\multimap)\hat{\mathfrak{U}})$. Then there exists an ideal I of L such that $I \in \hat{\mathbb{E}}(\mathsf{ch})\hat{\mathfrak{U}}$ and $L/I \in \hat{\mathbb{E}}(\multimap)\hat{\mathfrak{U}}$. I has a central series $\{\Lambda_{\sigma}, V_{\sigma} : \sigma \in \Sigma\}$ consisting of ideals of L. By Lemmas 1.1 (2) and 2.4 (3) we have $L^* \leq I$. Let $x \in L \setminus \{0\}$ and assume that $x \in [x, L^*]^L$. Since $x \in I \setminus \{0\}$, $x \in \Lambda_{\sigma} \setminus V_{\sigma}$ for some $\sigma \in \Sigma$. Then we have $x \in [x, L^*]^L \leq [\Lambda_{\sigma}, I]^L \leq V_{\sigma}$, a contradiction. Thus we have $L \in \mathfrak{R}_*$.

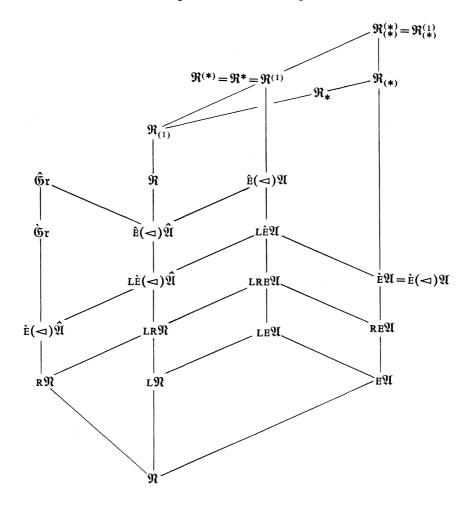
By Lemma 2.4 and Proposition 5.5 we see that the class $\mathfrak{R}_{(1)}$ contains all hypercentral-by-abelian Lie algebras, and that the class \mathfrak{R}_* contains all hypercentral-by-hypocentral and all hypocentral-by-hypocentral Lie algebras. It has been proved in [4, Corollary 3.7] that if \mathfrak{t} has zero characteristic then $\mathfrak{t}(\prec)(\mathfrak{A}\cap\mathfrak{F})\leq \mathfrak{J}\mathfrak{A}$. Therefore we obtain

COROLLARY 5.6. If
$$\mathfrak{k}$$
 has zero characteristic, then $\mathfrak{k}(\triangleleft)(\mathfrak{A} \cap \mathfrak{F}) \leq \mathfrak{R}_{(1)}$.

REMARK. In contrast with Proposition 5.4, it is directly deduced from Corollary 5.6 that if f has zero characteristic then $\mathfrak{E}\mathfrak{A} \cap \mathfrak{F} \leq \mathfrak{R}_{(1)}$.

6.

By the lattice diagram of the following figure, we illustrate the known inclusions between well-known classes and the various classes we have defined in this paper.



In this figure, every class including $\mathfrak M$ is a class of generalized soluble Lie algebras, and every class included in $\mathfrak R$ or $\hat{\mathfrak G}r$ is a class of generalized nilpotent Lie algebras.

References

- [1] F. A. M. Aldosray: On Lie algebras with finiteness conditions, Hiroshima Math. J. 13 (1983), 665-674.
- [2] R. K. Amayo: Ascendant subalgebras of Lie algebras, preprint, Universität Bonn, 1975.
- [3] R. K. Amayo and I. Stewart: Infinite-dimensional Lie Algebras, Noordhoff, Leyden, 1974.
- [4] T. Ikeda: Hyperabelian Lie algebras, Hiroshima Math. J. 15 (1985), 601-617.
- [5] F. Kubo and M. Honda: Quasi-artinian Lie algebras, Hiroshima Math. J. 14 (1984), 563-570.

- [6] A. I. Mal'cev: On a general method for obtaining local theorems in group theory, Ivanov. Gos. Ped. Inst. Učen. Zap. 1 (1941), 3-9.
- [7] D. J. S. Robinson: Finiteness Conditions and Generalized Soluble Groups I, Springer, Berlin, 1972.
- [8] D. J. S. Robinson: Finiteness Conditions and Generalized Soluble Groups II, Springer, Berlin, 1972.
- [9] G. E. Stevens: Topics in the theory of infinite dimensional Lie algebras, Ph. D. thesis, Univ. of Michigan, 1974.
- [10] I. Stewart: Structure theorems for a class of locally finite Lie algebras, Proc. London Math. Soc. (3) 24 (1972), 79-100.

Niigata College of Pharmacy