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1. Introduction

In this paper we consider the semilinear elliptic equation

(1) Δu + p(\x\)u? = 0, xeR\

where n ̂  3, A is the ^-dimensional Laplace operator, and |x| denotes the Euclidean

length of x e Rn. It is assumed throughout that

(a) y> 1 (namely, (1) is superlinear);

(b) p is continuous on [0, oo), differentiable on (0, oo) and p(i)>0 for

Our main concern is to study the existence and nonexistence of entire solutions

of (1) which are radially symmetric and positive in Rn. Here, by an entire solution

of (1) we mean a function u e C2(Rn) which satisfies (1) at every point of Rn, and

the radial symmetry of a function means that it depends only on |x|.

The principal results of this paper are as follows:

THEOREM 1 (Existence). Suppose that

(2) -~ (ίt"+2-y(«-2)]/2p(ί)) ^ o for t > 0.

Then, for any α>0, equation (1) has a radially symmetric positive entire solution

u such that u(0) = α.

THEOREM 2 (Nonexistence). Suppose that

(3) ~^(fin+2-y^-2^2p(t))^0 for t>0

and

(4)

Then, equation (1) has no radially symmetric positive entire solutions.

Since our attention is restricted to radially symmetric solutions, the problem

for (1) under consideration reduces to the one-dimensional initial value problem

(5) ( r - y y + t'-ipφy = o, t > o,
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(6) XO) = α, /(0) = 0,

where α > 0 is a constant, and the above theorems are proved through an analysis

of the problem (5)-(6) with the aid of Liapunov-like functions which can be con-

structed explicitly. We note here that in certain cases all positive entire solutions

of (1) happen to be radially symmetric; see Gidas, Ni and Nirenberg [2]. The

proofs of Theorems 1 and 2 are given in Section 2. Examples illustrating the main

results and remarks on the asymptotic behavior at infinity of entire solutions of

(1) are presented in Section 3.

The problem of existence and nonexistence of entire solutions for semilinear

elliptic equations of the form Au+f(x, u) = 0 has been the subject of intensive

investigations in recent years; see, for example, Berestycki, Lions and Peletier

[1], Gidas and Spruck [3], Joseph and Lundgren [4], Kawano [5], Kusano and

Oharu [7], Ni [8] and Toland [9]. However, our results cannot be covered by

any of the previous works including these papers.

2. Proofs of main theorems

We observe that Theorems 1 and 2 are equivalent, respectively, to Theorems Γ

and 2' stated below.

THEOREM Γ. Suppose that (2) holds. Then, for any α>0, the problem (5)-

(6) has a unique solution which is positive on the whole interval [0, oo).

THEOREM 2'. Suppose that (3) and (4) hold. Then, for any α>0, the

solution of the problem (5)-(6) has a zero at some finite point of(0, oo).

PROOF OF THEOREM Γ. For a given α>0, we denote by ya(t) the unique

solution of (5)-(6). it i s clear that ya(t) exists and is positive on some small in-

terval [0, δ). Let [0, ta) be the maximal interval on which ya(t) is positive. We

claim that fα=oo for all α>0. Suppose the contrary. Then there is an α>0

for which ta is finite, and we have ya(ta) = O and ya(t)>0 on [0, ία) Define the

function V(t) on [0, ία] by

(7) V(t) = t«-iy'{t)y{t) +
~ -

(n-2)(y + l)

A straightforward computation with the use of (5) yields

for ίe(0, ί j . From (8) and (2) we have V'(t)^0 for fe(0, (α); in particular,



Superlinear elliptic equations 363

£V(0). Since 7(0) = 0 and V(ta) = tn

a[y'a(QYI(n-2), we obtain y'a(Q = 0.

The "initial condition" yα(ία) = >/(ία) = 0 clearly implies ya(t)=O for te[0, ία] by

uniqueness. This, however, is a contradiction, and the proof is complete.

PROOF OF THEOREM 2'. We use the same notation as in the proof of Theorem

Γ. Suppose that the conclusion of Theorem 2' is false. Then, there is an α > 0

for which ία = oo, that is, the solution ya(ή of (5)-(6) exists and is positive on

[0, oo). Note that ya(t) satisfies

(9) (ί3-"(ίn-2yα<0)')' + tP(t) [yΛ(t)γ = o

for t >0, and in particular for t ̂  1. Integrating (9) over [ί, τ], using the fact that

(10) (tn~2yMY ^ 0, * e [ l , o o ) ,

(see e.g. [9]), and letting τ-»oo, we have

(11) (tn-2ya(t)ϊ ^ f-3 5" sp(s) lya(s)lyds, t e [1, oo).

Rewriting the function sp(s)[ya(s)~]y as

and using (3) and (10), we deduce from (11) that

where λ = 1 - y(n - 2) - [n + 2 - y(n - 2)]/2, or

(12) (t*-2ya(t))' ^ (n_2*(y + ι ) t^piθίyMV, ίe[l, oo).

We multiply (12) by \tn~2ya(t)~\~y and integrate over [ί, τ] . Letting τ-^-oo and

taking (3) into account, we obtain

where μ = n — 1 — y(n — 2) — [n H- 2 — y(n — 2)]/2, which reduces to

(13) tt-Wyx(t) Z ( ( w 2 ) 2 ( y + 1 ) t^-y«-w*p(t) ) 1 / ( 1 " y ) , t e [1, oo).

From (13) and (4) it follows that

(14) l h r w ί<"-2>/2j;α(0 = 0.
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We now consider the function V(t) defined by (7). In view of (12),

V(t) ύ tn-V«(t)y«(t) + -^j f"Dtf OP + tya(tKtn-2ya(t)Y

— * n(tn-2yMΎi ί e [ l , O θ ) .
n-2 L* v*

On the other hand, (8) holds for t>0, and (3) and (4) imply that V'(t)^0 and

F'(0#0 for ί>0. Choose a T ^ l such that V(i)^V(T)>V(0) = 0 for t^T.

Combining this inequality with (15) and noting (10), we obtain

(16) (tn-2yMΪ ^ cί<-/2>-2, t E χτ9 oo),

where c = [(n-2)K(Γ)P / 2 >0. Integrating (16) yields

t*-*yΛ{t) ^ T*~2ya( T) + - ^ _ t^-W - - ^ Γ(- 2)/ 2, t e [ Γ, oo),

which implies

(17) lim sup ί(M-2)/2yα(0 > ^ > 0.

Clearly (14) and (17) are contradictory. This completes the proof.

3. Remarks and examples

An important problem is to study the asymptotic behavior at infinity of

positive entire solutions of (1) whose existence is guaranteed by Theorem 1.

Let u(x) be an entire solution of (1) which is positive and radially symmetric.

Then, u(x) is decreasing in |x| and has a nonnegative limit u^ as |x|->oo:

lim^i^oo u(x) = uoo^0. It is easily seen that if uoo>0 then

(18) Ftp(t)dt <ao,
Jo

so that the condition

(19)

implies that uao = 0 (see [6, Theorem 8]). This observation combined with

Theorem 1 yields the following result.

THEOREM 3. Suppose that (2) and (19) hold. Then, for every α>0, there

exists a radially symmetric positive entire solution u(x) of (1) which satisfies

u(0) = α and
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(20) u(x)->0 as \x\ -» oo.

A question arises as to what will happen in case (2) and (18) hold. In this

case, as shown by Kawano [5], equation (1) possesses (infinitely many) radially

symmetric positive entire solutions which tend to positive constants as |x|->oo.

However, it is not known whether (2) and (18) ensure the existence of a positive

entire solution u(x) satisfying (20), nor is there any result characterizing the

coexistence of entire solutions decaying to zero at infinity and those tending to

nonzero constants as |x|->oo.

We conclude with two examples illustrating our main results.

EXAMPLE 1. Consider the equation

(21) Δu + \x\t>uy = 0 in Rn,

where β^O and γ>l are constants.

(i) If γ ^ (n + 2 + 2β)j{n - 2), then p(t) = t* satisfies both (2) and (19), and so

from Theorem 3 it follows that (21) has (infinitely many) radially symmetric

positive entire solutions, all of which decay to zero as |x|->oo. The case β = 0

is relevant to some results in [1, Proposition III.l] and [8, Theorem 4.5].

(ii) If l<y<(n + 2 + 2β)l(n-2), then applying Theorem 2, we see that (21)

has no radially symmetric positive entire solutions. This result has recently been

obtained in [9, Corollary]. Note that the case β = 0 was discussed in [4] and

[3, Theorem 1.1].

EXAMPLE 2. Consider the equation

(22) Δu + (l + |x|)%? = 0 in Rn,

where γ > 1 and β is a constant which is allowed to be negative.

(i) Suppose that 7 ^ max {(n + 2)/(n - 2), (n + 2 + 2jδ)/(n-2)}. Then, con-

dition (2) is satisfied, so that by Theorem 1 equation (22) has (infinitely many)

radially symmetric positive entire solutions. If in addition jS^— 2, then all of

these solutions tend to zero as |x|->oo (Theorem 3), while if β< — 2, then some

(or all) of them have positive limits as |x|-»oo.

(ii) Suppose that l < y < m i n {(n + 2)/(n-2), (n + 2 + 2β)/(n-2)}. Then,

Theorem 2 is applicable, and there are no positive entire solutions of (22) which

are radially symmetric.
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