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The Martin boundary of the half disk
with rotation free densities
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The purpose of this paper is to determine the Martin compactification
(Ω+)J of the upper half unit disk Ω+ = {|z|<l, Imz>0} with respect to the
equation Au = Pu with a rotation free nonnegative locally Holder continuous
coefficient P(z) on {0< \z\ <> 1}.

Before stating our result more precisely we start by fixing terminologies.
We denote by Ω the punctured unit disk {0<|z|<l}. By a density P on Ω we
mean a nonnegative locally Holder continuous function on Ω — {0} (Ω={|z|^l}).
For a density P on Ω we consider the Martin compactification Ω% ((Ω+)J, resp.)
of Ω (Ω+, resp.) with respect to the equation

(1) Δu = Pu (A=d2ldx2 + d2/dy2)

on Ω (Ω+, resp.). We also denote by ΓP (ΓJ, resp.) the ideal boundary Ω£ — Ω
((Ω+)?-Ω+,resp.).

We are interested in the ideal boundaries ΓP(0) and Γ£(0) over z = 0, i.e.
the set of points ζ* in ΓP and ΓJ, respectively, satisfying that there exists a sequence
{ζn}f in Ω and Ω+, respectively, with lim \ζn\ = 0 and lim ζn = £*. If ΓP(0) (ΓJ(0),
resp.) consists of a single point, we say that the Picard principle on Ω (Ω+, resp.)
is valied for P at z = 0. Sufficient conditions for Picard principle on Ω at z = 0
are given in [7], [8], [5], [9], [4], [10], [11], [14] and sufficient conditions for
Picard principle on Ω+ at z = 0 are given in [3], [16], [1], [2], [13], [15]. We
remark (cf. e.g. [1]) that the ideal boundaries Γ$(ξ) over ξ in dΩ+=Ω+-Ω+

(Ω+ = {|z| ^ 1, Imz^O}) are pairwise disjoint and Γ$(ξ) consists of a single point
for every ξ in dΩ+ — {0} since P is Holder continuous on a neighbourhood of ξ.
In the case that P is a rotation free density on Ω, i.e. a density P on Ω satisfying
P(z) = P(|z|) (z e Ω), the ideal boundary ΓP(0) over z = 0 is characterized completely
by Nakai [7] in terms of the singularity index α(P) of P at z = 0 which is a value
in [0, 1) depending on the singular behavior of P at z = 0 (cf. §1):
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(2)

The homeomorphism πP from Ω to {α(P)<|z|<l} defined by πP(z) =
(α(P)-h(l—α(P))|z|)z/|z| (zeΩ) can be extended to a homeomorphism
from Ω% to {α(P)^|z|^l} and every point in ΓP(O) = πpί({\z\=oc(P)})
is minimal.

The purpose of this paper is to show that a similar characterization is valid for
Ω+. Namely we will prove the following:

THEOREM. Let P be a rotation free density on Ω. Then the homeomorphism
π+

Pfrom Ω+ to {α(P)<|z|<l, Imz>0} defined by πί(z) = (α(P) + (l-α(P))|z|)z/|z|
can be extended to a homeomorphism from (Ω+)% to {α(P)g|z|^l, Imz^O}
and every point in ΓJ(0) = (πί;)~1({|z|=α(P), Imz^O}) is minimal.

We will recall in §1 the proof of (2) according to [7], but partly modified
suitable for our purpose, which plays an essential role in the proof of the above
theorem. The proof of the above theorem will be given in §2 and the characteri-
zation of the Martin compactification (Ωβ)* of Ωθ = {0<|z |<l, O<argz<0}
(θ e (0, 2π)) will be given in §3 by using the above theorem.

The author is very grateful to Professor M. Nakai for his helpful suggestions
and the more to Professor F-Y. Maeda for his advice to simplify reasonings
throughout the paper.

§ 1. The Martin compactification Ω% of Ω

1. We give in this section an outline of the proof of (2) in [7]. Let P be a
rotation free density on Ω. The unique bounded solution eP(z; p) (pe(0, 1])
of (1) on Ω(ρ) = {0< \z\ <p} with boundary values 1 on dΩ(p) = {|z| = p} is referred
to as the P-unit on Ω(p). We consider rotation free densities PΠ (n = 0, 1, )
on Ω defined by PΠ(z) = P(z) + n2 |z |-2 (zeΩ-{0}) and denote by en(z; p) the
PΠ-unit on Ω(p), where we follow the convention P0 = P and eo(z; p) = eP(z; p).
We simply denote by en(z) the PΠ-unit en(z; 1) on Ω(1) = Ω. Since PH is rotation
free, en(z; p) is also rotation free and the function en(r; p) of r in (0, p) is the
unique bounded solution of

-£τΦ(r) +T-aVΦ{r) " P»

on ( 0, p) with boundary value 1 at r=p. Then PΠ-units have the following
fundamental properties ([7]):

0 < en(r; p) < 1 ( 0 < r < p ^ l ; n = 0, 1, ),

(3) en(r; p) = en(r)/en(p) ( 0 < r ^ p ^ l ; n = 0, 1, ),

(4) {<?„ + i(r p)/βπ(r p)}3 ^ eπ + 2(r p)\en+ί(r; p) g en+ί(r; p)jen{r p)
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(5) en(r; p)/eo(r; p) < en(s; p)/eo(s; p)<l ( 0 < r < s < p £ l ; n = l, 2, ).

In view of (5) the limit

ocn(P) = lim r_0 eJir)leo(r) (n = 1, 2,».)

exists and is referred to as the nth singularity index of P at z = 0. In particular
we denote by α(P) the l s ί singularity index α^P) and call it simply the singularity
index of P at z = 0. By (4) singularity indices satisfy

(6) 0 S <*(Py3n-1)/2 g αM(P) ̂  α(P)w < 1 (n = 1, 2, ).

2. Let G(z, 0 = Gg(z, 0 be the P-Green's function on Ω, i.e. the Green's
function on Ω with respect to (1). The function G(z, reiθ) (zeΩ, re(0, |z|))
of 0 in [0, 2π) is expanded into its Fourier series

G(z, reiθ) = co(z; r)/2 + Σ?=i {Φ; r)cosnθ + 5Π(z; r)sinn0}

by using its Fourier coefficients

φ; r) = ±^G(z, reiθ)cosnθdθ (n = 0, I,-),

; r) = i J π G(z, r^Osin nθdθ (n = 1, 2,. ).

For 0 < r ^ p < | z | < l , the expansion of G(z5 reiβ) is rewritten as

(7) G(z9re^)=^^£-e0(r)

{ ^ ^ cos nθ + ^ ; ( 2

(

;

P ) } sin *

The class {cΠ(z; r), sΠ(z; r)} of functions of z in {r< |z| < 1} is linearly independent
in the following sense:

LEMMA 1 ([7]). // r is an arbitrarily fixed number in (0, 1) and Σcfan
and Σ ? bn are absolutely convergent series with

Σ"=o anφ; r) + Σϊ-t KΦ\ r) = 0

on a nonempty open subset of {r<\z\<ί}, then αo = αn=fen=0 (n = l, 2, )

3. Consider the function

Uz, 0 = G(z,
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By (7), in view of (3), (4), (5) and (6), L(z, ζ) converges to the positive solution

L(z) = co(z; p)/2eo(p) (zeΩ,pe(0, |z|))

of (1) on Ω as ζ-+0 uniformly on every compact subset of Ω if α(P) = 0 and L(z, reiθ)
converges to the positive solution

(zeΩ, pe(0, |z|), σe[0, 2π))

of (1) on Ω as r-*0 and θ->σ uniformly on every compact subset of Ω if α(P)>0.
Now the P-Martin kernel

K(z, 0 = K?(z, 0 = G(z, ζ)IG(i/2, 0 (z, C 6 Ω)

on Ω converges to the positive solution

k(z) = L(z)IL(i/2) (ZEΩ)

of (1) on Ω as ζ-+0 uniformly on every compact subset of Ω if α(P) = 0 and con-
verges to the positive solution

k(z σ) = L(z σ)/L(i/2 σ) (z e β, σ e [0, 2π))

of (1) on Ω as |C|->0 and argC-^σ uniformly on every compact subset of Ω if
α(P) > 0. By Lemma 1 k(z σ) φ k(z τ) (σ # τ).

4. The homeomorphism

πP(z) = (α(P) + (1 -α(P))|z|)z/|z| (z e Ω)

from Ω to {α(P)<|z|<l} can be extended to a homeomorphism from Ω% to
{α(P)^|z|^l} and the functions k(z) and A:(z; σ) (σe[0, 2π)) are the P-Martin
kernels with pole at ideal boundary points π]>ι(0) and πp1(α(P)βiσ), respectively.
The supports of representing measures (cf. e.g. [6], [12], [3]) of k(z) and k(z; σ)
are contained in ΓP(0). If α(P) = 0, then ΓP(0) consists of a single point so that
k(z) is minimal. If α(P)>0, then k(z; σ) (σe[0, 2π)) are all simultaneously
minimal or nonminimal by the equality

fe(z; σ) = k(ze~iσ; 0)jk{ie-iaj2\ 0)

so that k(z; σ) are minimal.
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§ 2. The Martin compactification (Ω+)£ of Ω+

5. We give in this section the proof of Theorem. Since the P-Green's

function G+(z, £) = Gg+(z, ζ) on Ω+, i.e. the Green's function on Ω+ with respect

to (1), is given by

G+(z, 0 = G(z, 0 - G(z, 0 (z,{eΩ+),

the function G+(z, reίθ) of θ in [0, π] has by (7) the following Fourier series

expansion:

G+(z, reiθ) = 2 Σ J " ( z ; f> en(r)sinnθ (zeΩ+,
n=l en\P)

6. We consider the function

which is expanded into the series

= 2

 s^z; P) +2 s i n

en(ρ) sin θ

(zeΩ+,pe (0, |z|), r e (0, p], 0 e (0, π)).

Each term of the above series satisfies by (3) and (4) that

(9)
sn(z; p) sinnθ en(r) ^ cn(z; p) \ ex(r\ p) ^"" 1

en(p) sinθ e^r) - e^p) \eo(r; p)

Therefore in view of (5) L+(z, ζ) converges to the nonnegative solution

L+(z) = 2Sl(z; p)lei{p) (zeΩ\ pe(0, |z|))

of (1) on Ω+ as £-•() uniformly on every compact subset of Ω+ if α(P) = 0. The

function L+(z) is positive on Ω+ by Lemma 1. Then the P-Martin kernel

K+(z9 0 = KΠz, 0 = G+(z, 0IG+(i/2, 0 (z, ζ e Ω+)

o n Ω + converges to the positive solution

fc+(z) = L+(z)/L+072) (zeΩ+)

of (1) on Ω+ as ζ-»0 uniformly on every compact subset of Ω+ if α(P) = 0. In the

case that α(P)>0 the function L+(z, re ίθ) converges to the nonnegative solution
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em(p) «(

(10) L+(z;σ) =

( z e Ω \ p e ( 0 , |z|))

of (1) on Ω+ as r-»0 and θ-+σ uniformly on every compact subset of Ω+. The
functions L+(z; σ) (σe[0, π]) are positive on Ω+ by Lemma 1. Then the P-
Martin kernel K+(z, ζ) converges to the positive solution

(11) k+(z; σ) = L+(z; σ)/L+(i/2; σ) (zeΩ + , σe[0, π])

of (1) on Ω+ as |£|->0 and arg ζ-+σ uniformly on every compact subset of Ω+ if
α(P)>0. Again by Lemma 1 we have fc+(z; σ)φk+(z; τ) (σφτ).

7. Positive solutions fe+(z) and k+(z; σ) (σe [0, π]) of (1) on Ω+ vanish on
dΩ+ —{0} by the boundary Harnack principle (cf. e.g. [1]). On the other hand
the P-Martin kernel K+(z, ζ) converges to a minimal solution of (1) with vanishing
boundary values on dΩ+ — {ξ} (ξ e dΩ+ — {0}) as ζ-+ξ uniformly on every compact
subset of Ω+ again by the boundary Harnack principle. Therefore, the arguments
in the previous no. show that (cf. [7, 4.2 and 4.3]) the homeomorphism

π+(z) = (α(P) + (1 -α(P))|z|)z/|z| (z e Ω+)

from Ω+ to D+(α(P)) = {α(P)<|z|<l, Imz>0} can be extended to a homeomor-
phism from the Martin compactification (Ω+)$ of Ω+ to /5+(α(P)) = {α(P)<Ξ
|z |g l , Imz^O}, and

ΓJ(O) = (πϊ)-K{\z\=a{F), Imz^O}).

8. Now k+(z) and k+(z; σ) (σe[0, π]) are P-Martin kernels on Ω+ with
poles at ideal boundary points (π$)~1(0) and (π^)~1(oc(P)eiσ), respectively:

k+(z) = K+(z, (πΐ)-HO)), fc+(z; σ) = K+(z, {π+

P)-\a{P)e^)).

By the boundary Harnack principle, these functions vanish on dΩ+-{0}. We
show in nos. 8-10 that these P-Martin kernels are all minimal. Since K+(z, £*)
vanishes at z = 0 for ζ*eΓ$ — ΓJ(0), again by the boundary Harnack principle,
we easily see that the support of the representing measure of fe+(z) consists of a
single point (π£)~ *(()), and hence fc+(z) is minimal.

9. The minimality of k+(z; σ) (σe(0, π)) are derived from the minimality
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of fc(z; σ). Let u+(z) be a positive solution of (1) o n Ω + with

u+(z) ^ k+(z; σ) (zeΩ + ).

Since u+(z) vanishes on dΩ+ — {0}, the function

ί u+(z) (zeΩ + ) ,
ιι(z) =

( -« + (z) ( z e Ω - β + )

is a solution of (1) on Ω. By the expansions (8) of L(z; σ), L(z; 2π — σ) and (10)

of L+(z; σ) we have

\ σ> - ^ 2 π ~ σ »<x(r) sin σ

and hence

k+(z; σ) = C^iz; σ) - C2k(z; 2π-σ) (zeΩ+)

for positive constants Cι = Cι{P, σ) and C2 = C2(P9 σ). Then the solution

v(z) = Cγk{z\ σ) — u(z)

of (1) on Ω satisfies that

f Cγk(z\ σ) - M+(Z) ^ k+(z; σ) - u+(z) ̂  0 (zeΩ + ) ,
v(z) =

[ Cγk{z\ σ) + w+(z) ^ 0 (zeΩ-Ω+)

and

C.kiz σ) ( z e Ω + ) ,

Cikίz; σ) + Cx/c(z; σ) ( z e Ω - Ω + ) .

By the equality G(z, reiσ) = G(z, rβi(2π~σ>) we have L(z; σ) = L(z; 2π —σ) and

hence

fc(z; σ) = C3fc(z; 2π-σ) (zeΩ)

for a positive constant C3 = C3(P, σ). Therefore

0 ^ i (z) ^ C^z; σ) + Ci^/cίz; 2π-σ)

on Ω so that the minimality of fc(z; σ) and k(z; 2π — σ) yiedls the following re-

presentation of v(z):

v(z) = C4k(z; σ) + C5fc(z; 2π-σ)

for nonnegative constants C4 and C5. Then M+(Z) has a form
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u+(z) = (Cx - C4)k(z σ) - C5k(z ;2π-σ) (ze

We remark that Ct - C4 > 0 since C5 ̂  0 and u+(z) > 0. Further we have C2/Cί =
C5l(Cί-C4) since A:(x; σ)>0, k(x; 2π-σ)>0, and A:+(x; σ) = u+(x) = 0 for any
x in the subset (—1, 1) —{0} of the real axis. Hence u+(z) is proportional to
k+(z; σ).

10. The minimality of k+(z; 0) and k+(z; π) are derived from Lemma 1.
Let μ% be the representing measure of k+(z; 0). Since k+(z; 0) vanishes on
dΩ+-{0} and K+(z, ζ*) vanishes at z = 0 for C*eΓί-Γ£(0), the support of
μ% is contained in (πί)~1({|z| =α(P), Imz^O}) as in no. 8. Assume that fe+(z; 0)
is nonminimal. Then there exists a measure VQ on (0, π) such that

k+(z;0)={ k+(z;σ)dvϊ(σ)

and hence by (10) and (11)

2 Y s"(z; p>} s i n n σ a^P>} dv+(σλ
en{p) sin a oc(P) dv°{σ>'

The function L+(ί/2; σ) of σ is positive continuous on [0, π] since the series in

(10) is uniformly convergent for σ e [0, π] by (9) and (5). Therefore
suP[o,π] L+(i/2; σ)"1 < oo. In view of this and (9) again k+(z; 0) has the following

expansion:

Λ > (ff ί * ήnnσ dv% (σ)
n=i en(p) oc(P) J ( 0,π ) L+(ι/2;σ) sinσ

(zeΩ+,pe(0, |z | )) .

Then by (10), (11), and Lemma 1 we have

1 sin nσ , + / λ /

g ) L - 0 /2;σ) sin a d ^

so that the Lebesgue theorem yields a contradiction that

1 _ i Γ 1 s i n nσ

L^(ι/2;σ) nsmσ

(o,,) L + ( ί / 2 ; σ ) ^ * sin σ " ' < " " ' " '

Thus fc+(z; 0) is minimal. By symmetry, k+(z; π) is also minimal. Hence we
have shown that any point in the ideal boundary Γ£(0) over z = 0 is minimal.
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§ 3. The Martin compactification (Ωθ)$ of Ωθ

11. We characterize in this section the Martin compactification (Ωθ)%
(0e(O, 2π)) of the region β β ={0< |z |< l , O<argz<0} with respect to (1) with a
rotation free density P on Ω. Consider the conformal mapping

φ(z) = φe{z) = z°i« ( z e Ω + )

from Ω+ to Ωθ. If we set v(z) = u{φ(z)) (z e Ω+) for a C2 function u on Ωβ, then
v satisfies

Let Q be the rotation free density on Ω defined by

Q(z) = -j—Φ(z) 2 P(Φ(z)) = -^-M 2 θ / π~ 2P(z θ / π)

on Ω+-{0} and Q(z) = Q(\z\ij on Ω-Ω+. Then a C2 function u on Ωθ is a
solution of (1) on Ωθ if and only if v = uoφ is a solution oί Av = Qv on Ω+ so that
0 is extended to a homeomorphism from (Ω+)X to

12. For a positive real number A, consider the rotation free density Pλ(z) =
P(z)H-/L2|z|~2 and denote by eλ(z) the PA-unit on Ω. In this no., we show

LEMMA 2. / / 0 < λ ^ v,

{eλ(r)le0(r)}^2 ί ex{r)je0{r) < ek{r)je0{r\ 0 < r < 1.

PROOF. By the usual maximum principle (cf. e.g. [7, 1.1]), we see that
ev(r) ̂  eλ(r), which implies the second inequality.

In order to prove the first inequality, let κ = (v/λ)2^l and put F(r) = eλ(r)κ

eo(ry-κ. Then F is a C2 function on (0, 1) with 0<F(r)<a and F(l) = l.
Further, we have

F'{r) _..e\{r) _ ( , . _ n e'0(r)

F"(r) _ I F'(r) \* { F'(r) \'
F(r) \ F(r) ί + \ F{r) 1

_ κ e 'I(r) _(κ_ι)el(r) e'λ(r)2 . (
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and hence

UfL- < u m 2 > P Λ r ) m
eλ(r) eo(r) J

Therefore F(r)<Zev(r), which means that {eλ(r)/e0(r)}κ^ev(r)le0(r).

13. If we denote by fn(z) the QΛ-unit on Ω, then the observation in no. 11
shows that fo(r) = eo(r9'*) and Λ(r) = eπ/θ(r*/*). Hence

α ( 0 = lim

Therefore, in view of Lemma 2, we see that α(Q) = 0 if and only if α(P) = 0. Thus,
we have shown

COROLLARY. Let P be a rotation free density on Ω. Then the
homeomorphism πΘP (θe(0, 2π)) from Ωθ to {α(P)<|z|<l, O<argz<0} defined
by πβp(z) = (α(P) + (l —α(P))|z|)z/|z| can be extended to a homeomorphism from
(Ωθ)$ to {α(P)^|z |^l, O^argz^β} and every point in the ideal boundary

= (πβP)-1({k|=α(P), O^argz^fl}) over z = 0 is minimal
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