The Martin boundary of the half disk with rotation free densities

Toshimasa TADA
(Received July 19, 1985)

The purpose of this paper is to determine the Martin compactification $\left(\Omega^{+}\right)_{P}^{*}$ of the upper half unit disk $\Omega^{+}=\{|z|<1, \operatorname{Im} z>0\}$ with respect to the equation $\Delta u=P u$ with a rotation free nonnegative locally Hölder continuous coefficient $P(z)$ on $\{0<|z| \leqq 1\}$.

Before stating our result more precisely we start by fixing terminologies. We denote by Ω the punctured unit disk $\{0<|z|<1\}$. By a density P on Ω we mean a nonnegative locally Hölder continuous function on $\bar{\Omega}-\{0\}(\bar{\Omega}=\{|z| \leqq 1\})$. For a density P on Ω we consider the Martin compactification $\Omega_{P}^{*}\left(\left(\Omega^{+}\right)_{P}^{*}\right.$, resp.) of $\Omega\left(\Omega^{+}\right.$, resp.) with respect to the equation

$$
\begin{equation*}
\Delta u=P u\left(\Delta=\partial^{2} / \partial x^{2}+\partial^{2} / \partial y^{2}\right) \tag{1}
\end{equation*}
$$

on $\Omega\left(\Omega^{+}\right.$, resp.). We also denote by $\Gamma_{P}\left(\Gamma_{P}^{+}\right.$, resp.) the ideal boundary $\Omega_{P}^{*}-\Omega$ $\left(\left(\Omega^{+}\right)_{P}^{*}-\Omega^{+}\right.$, resp. $)$.

We are interested in the ideal boundaries $\Gamma_{P}(0)$ and $\Gamma_{P}^{+}(0)$ over $z=0$, i.e. the set of points ζ^{*} in Γ_{P} and Γ_{P}^{+}, respectively, satisfying that there exists a sequence $\left\{\zeta_{n}\right\}_{1}^{\infty}$ in Ω and Ω^{+}, respectively, with $\lim \left|\zeta_{n}\right|=0$ and $\lim \zeta_{n}=\zeta^{*}$. If $\Gamma_{P}(0)\left(\Gamma_{P}^{+}(0)\right.$, resp.) consists of a single point, we say that the Picard principle on $\Omega\left(\Omega^{+}\right.$, resp.) is valied for P at $z=0$. Sufficient conditions for Picard principle on Ω at $z=0$ are given in [7], [8], [5], [9], [4], [10], [11], [14] and sufficient conditions for Picard principle on Ω^{+}at $z=0$ are given in [3], [16], [1], [2], [13], [15]. We remark (cf. e.g. [1]) that the ideal boundaries $\Gamma_{P}^{+}(\xi)$ over ξ in $\partial \Omega^{+}=\bar{\Omega}^{+}-\Omega^{+}$ $\left(\bar{\Omega}^{+}=\{|z| \leqq 1, \operatorname{Im} z \geqq 0\}\right)$ are pairwise disjoint and $\Gamma_{P}^{+}(\xi)$ consists of a single point for every ξ in $\partial \Omega^{+}-\{0\}$ since P is Hölder continuous on a neighbourhood of ξ. In the case that P is a rotation free density on Ω, i.e. a density P on Ω satisfying $P(z)=P(|z|)(z \in \Omega)$, the ideal boundary $\Gamma_{P}(0)$ over $z=0$ is characterized completely by Nakai [7] in terms of the singularity index $\alpha(P)$ of P at $z=0$ which is a value in $[0,1)$ depending on the singular behavior of P at $z=0$ (cf. $\S 1$):

The author was supported in part by Grant-in-Aid for Scientific Research, No. 59340007, Japanese Ministry of Education, Science and Culture.
$\left\{\begin{array}{l}\text { The homeomorphism } \pi_{P} \text { from } \Omega \text { to }\{\alpha(P)<|z|<1\} \text { defined by } \pi_{P}(z)= \\ (\alpha(P)+(1-\alpha(P))|z|) z /|z|(z \in \Omega) \text { can be extended to a homeomorphism } \\ \text { from } \Omega_{P}^{*} \text { to }\{\alpha(P) \leqq|z| \leqq 1\} \text { and every point in } \Gamma_{P}(0)=\pi_{P}^{-1}(\{|z|=\alpha(P)\}) \\ \text { is minimal. }\end{array}\right.$

The purpose of this paper is to show that a similar characterization is valid for Ω^{+}. Namely we will prove the following:

Theorem. Let P be a rotation free density on Ω. Then the homeomorphism π_{P}^{+}from Ω^{+}to $\{\alpha(P)<|z|<1, \operatorname{Im} z>0\}$ defined by $\pi_{P}^{+}(z)=(\alpha(P)+(1-\alpha(P))|z|) z /|z|$ can be extended to a homeomorphism from $\left(\Omega^{+}\right)_{P}^{*}$ to $\{\alpha(P) \leqq|z| \leqq 1, \operatorname{Im} z \geqq 0\}$ and every point in $\Gamma_{P}^{+}(0)=\left(\pi_{P}^{+}\right)^{-1}(\{|z|=\alpha(P), \operatorname{Im} z \geqq 0\})$ is minimal.

We will recall in $\S 1$ the proof of (2) according to [7], but partly modified suitable for our purpose, which plays an essential role in the proof of the above theorem. The proof of the above theorem will be given in $\$ 2$ and the characterization of the Martin compactification $\left(\Omega_{\theta}\right)_{P}^{*}$ of $\Omega_{\theta}=\{0<|z|<1,0<\arg z<\theta\}$ ($\theta \in(0,2 \pi)$) will be given in $\S 3$ by using the above theorem.

The author is very grateful to Professor M. Nakai for his helpful suggestions and the more to Professor F-Y. Maeda for his advice to simplify reasonings throughout the paper.

§ 1. The Martin compactification Ω_{P}^{*} of Ω

1. We give in this section an outline of the proof of (2) in [7]. Let P be a rotation free density on Ω. The unique bounded solution $e_{P}(z ; \rho)(\rho \in(0,1])$ of (1) on $\Omega(\rho)=\{0<|z|<\rho\}$ with boundary values 1 on $\partial \Omega(\rho)=\{|z|=\rho\}$ is referred to as the P-unit on $\Omega(\rho)$. We consider rotation free densities $P_{n}(n=0,1, \cdots)$ on Ω defined by $P_{n}(z)=P(z)+n^{2}|z|^{-2}(z \in \bar{\Omega}-\{0\})$ and denote by $e_{n}(z ; \rho)$ the P_{n}-unit on $\Omega(\rho)$, where we follow the convention $P_{0}=P$ and $e_{0}(z ; \rho)=e_{P}(z ; \rho)$. We simply denote by $e_{n}(z)$ the P_{n}-unit $e_{n}(z ; 1)$ on $\Omega(1)=\Omega$. Since P_{n} is rotation free, $e_{n}(z ; \rho)$ is also rotation free and the function $e_{n}(r ; \rho)$ of r in $(0, \rho)$ is the unique bounded solution of

$$
\frac{d^{2}}{d r^{2}} \phi(r)+\frac{1}{r} \frac{d}{d r} \phi(r)-P_{n}(r) \phi(r)=0(n=0,1, \cdots)
$$

on $(0, \rho)$ with boundary value 1 at $r=\rho$. Then P_{n}-units have the following fundamental properties ([7]):

$$
\begin{align*}
& 0<e_{n}(r ; \rho)<1 \quad(0<r<\rho \leqq 1 ; n=0,1, \cdots), \\
& e_{n}(r ; \rho)=e_{n}(r) / e_{n}(\rho) \quad(0<r \leqq \rho \leqq 1 ; n=0,1, \cdots), \tag{3}\\
& \left\{e_{n+1}(r ; \rho) / e_{n}(r ; \rho)\right\}^{3} \leqq e_{n+2}(r ; \rho) / e_{n+1}(r ; \rho) \leqq e_{n+1}(r ; \rho) / e_{n}(r ; \rho) \tag{4}
\end{align*}
$$

$$
(0<r \leqq \rho \leqq 1 ; n=0,1, \cdots),
$$

$$
\begin{equation*}
e_{n}(r ; \rho) / e_{0}(r ; \rho)<e_{n}(s ; \rho) / e_{0}(s ; \rho)<1 \quad(0<r<s<\rho \leqq 1 ; n=1,2, \cdots) . \tag{5}
\end{equation*}
$$

In view of (5) the limit

$$
\alpha_{n}(P)=\lim _{r \rightarrow 0} e_{n}(r) / e_{0}(r)(n=1,2, \cdots)
$$

exists and is referred to as the $n^{\text {th }}$ singularity index of P at $z=0$. In particular we denote by $\alpha(P)$ the $1^{\text {st }}$ singularity index $\alpha_{1}(P)$ and call it simply the singularity index of P at $z=0 . \quad$ By (4) singularity indices satisfy

$$
\begin{equation*}
0 \leqq \alpha(P)^{\left(3^{n-1}\right) / 2} \leqq \alpha_{n}(P) \leqq \alpha(P)^{n}<1 \quad(n=1,2, \cdots) \tag{6}
\end{equation*}
$$

2. Let $G(z, \zeta)=G_{P}^{\Omega}(z, \zeta)$ be the P-Green's function on Ω, i.e. the Green's function on Ω with respect to (1). The function $G\left(z, r e^{i \theta}\right)(z \in \Omega, r \in(0,|z|))$ of θ in $[0,2 \pi)$ is expanded into its Fourier series

$$
G\left(z, r e^{i \theta}\right)=c_{0}(z ; r) / 2+\sum_{n=1}^{\infty}\left\{c_{n}(z ; r) \cos n \theta+s_{n}(z ; r) \sin n \theta\right\}
$$

by using its Fourier coefficients

$$
\begin{cases}c_{n}(z ; r)=\frac{1}{\pi} \int_{0}^{2 \pi} G\left(z, r e^{i \theta}\right) \cos n \theta d \theta \quad(n=0,1, \cdots), \\ s_{n}(z ; r)=\frac{1}{\pi} \int_{0}^{2 \pi} G\left(z, r e^{\theta i}\right) \sin n \theta d \theta \quad(n=1,2, \cdots)\end{cases}
$$

For $0<r \leqq \rho<|z|<1$, the expansion of $G\left(z, r e^{i \theta}\right)$ is rewritten as

$$
\begin{align*}
G\left(z, r e^{i \theta}\right) & =\frac{1}{2} \frac{c_{0}(z ; \rho)}{e_{0}(\rho)} e_{0}(r) \tag{7}\\
& +\sum_{n=1}^{\infty}\left\{\frac{c_{n}(z ; \rho)}{e_{n}(\rho)} \cos n \theta+\frac{s_{n}(z ; \rho)}{e_{n}(\rho)} \sin n \theta\right\} e_{n}(r) .
\end{align*}
$$

The class $\left\{c_{n}(z ; r), s_{n}(z ; r)\right\}$ of functions of z in $\{r<|z|<1\}$ is linearly independent in the following sense:

Lemma 1 ([7]). If r is an arbitrarily fixed number in $(0,1)$ and $\sum_{0}^{\infty} a_{n}$ and $\sum_{1}^{\infty} b_{n}$ are absolutely convergent series with

$$
\sum_{n=0}^{\infty} a_{n} c_{n}(z ; r)+\sum_{n=1}^{\infty} b_{n} s_{n}(z ; r)=0
$$

on a nonempty open subset of $\{r<|z|<1\}$, then $a_{0}=a_{n}=b_{n}=0(n=1,2, \cdots)$.
3. Consider the function

$$
L(z, \zeta)=G(z, \zeta) / e_{0}(\zeta) \quad(z, \zeta \in \Omega)
$$

By (7), in view of (3), (4), (5) and (6), $L(z, \zeta)$ converges to the positive solution

$$
L(z)=c_{0}(z ; \rho) / 2 e_{0}(\rho) \quad(z \in \Omega, \rho \in(0,|z|))
$$

of (1) on Ω as $\zeta \rightarrow 0$ uniformly on every compact subset of Ω if $\alpha(P)=0$ and $L\left(z, r e^{i \theta}\right)$ converges to the positive solution

$$
\begin{gather*}
L(z ; \sigma)=\frac{1}{2} \frac{c_{0}(z ; \rho)}{e_{0}(\rho)}+\sum_{n=1}^{\infty}\left\{\frac{c_{n}(z ; \rho)}{e_{n}(\rho)} \cos n \sigma+\frac{s_{n}(z ; \rho)}{e_{n}(\rho)} \sin n \sigma\right\} \alpha_{n}(P) \tag{8}\\
(z \in \Omega, \rho \in(0,|z|), \sigma \in[0,2 \pi))
\end{gather*}
$$

of (1) on Ω as $r \rightarrow 0$ and $\theta \rightarrow \sigma$ uniformly on every compact subset of Ω if $\alpha(P)>0$. Now the P-Martin kernel

$$
K(z, \zeta)=K_{P}^{\Omega}(z, \zeta)=G(z, \zeta) / G(i / 2, \zeta) \quad(z, \zeta \in \Omega)
$$

on Ω converges to the positive solution

$$
k(z)=L(z) / L(i / 2) \quad(z \in \Omega)
$$

of (1) on Ω as $\zeta \rightarrow 0$ uniformly on every compact subset of Ω if $\alpha(P)=0$ and converges to the positive solution

$$
k(z ; \sigma)=L(z ; \sigma) / L(i / 2 ; \sigma) \quad(z \in \Omega, \sigma \in[0,2 \pi))
$$

of (1) on Ω as $|\zeta| \rightarrow 0$ and $\arg \zeta \rightarrow \sigma$ uniformly on every compact subset of Ω if $\alpha(P)>0$. By Lemma $1 k(z ; \sigma) \not \equiv k(z ; \tau)(\sigma \neq \tau)$.
4. The homeomorphism

$$
\pi_{P}(z)=(\alpha(P)+(1-\alpha(P))|z|) z /|z| \quad(z \in \Omega)
$$

from Ω to $\{\alpha(P)<|z|<1\}$ can be extended to a homeomorphism from Ω_{P}^{*} to $\{\alpha(P) \leqq|z| \leqq 1\}$ and the functions $k(z)$ and $k(z ; \sigma)(\sigma \in[0,2 \pi))$ are the P-Martin kernels with pole at ideal boundary points $\pi_{P}^{-1}(0)$ and $\pi_{P}^{-1}\left(\alpha(P) e^{i \sigma}\right)$, respectively. The supports of representing measures (cf. e.g. [6], [12], [3]) of $k(z)$ and $k(z ; \sigma)$ are contained in $\Gamma_{P}(0)$. If $\alpha(P)=0$, then $\Gamma_{P}(0)$ consists of a single point so that $k(z)$ is minimal. If $\alpha(P)>0$, then $k(z ; \sigma)(\sigma \in[0,2 \pi))$ are all simultaneously minimal or nonminimal by the equality

$$
k(z ; \sigma)=k\left(z e^{-i \sigma} ; 0\right) / k\left(i e^{-i \sigma} / 2 ; 0\right)
$$

so that $k(z ; \sigma)$ are minimal.
§ 2. The Martin compactification $\left(\Omega^{+}\right)_{P}^{*}$ of Ω^{+}
5. We give in this section the proof of Theorem. Since the P-Green's function $G^{+}(z, \zeta)=G_{P}^{\Omega^{+}}(z, \zeta)$ on Ω^{+}, i.e. the Green's function on Ω^{+}with respect to (1), is given by

$$
G^{+}(z, \zeta)=G(z, \zeta)-G(z, \bar{\zeta}) \quad\left(z, \zeta \in \Omega^{+}\right),
$$

the function $G^{+}\left(z, r e^{i \theta}\right)$ of θ in $[0, \pi]$ has by (7) the following Fourier series expansion:

$$
G^{+}\left(z, r e^{i \theta}\right)=2 \sum_{n=1}^{\infty} \frac{s_{n}(z ; \rho)}{e_{n}(\rho)} e_{n}(r) \sin n \theta \quad\left(z \in \Omega^{+}, 0<r \leqq \rho<|z|\right) .
$$

6. We consider the function

$$
L^{+}(z, \zeta)=\frac{G^{+}(z, \zeta)}{e_{1}(\zeta) \sin \arg \zeta}\left(z, \zeta \in \Omega^{+}\right)
$$

which is expanded into the series

$$
\begin{gathered}
L^{+}\left(z, r e^{i \theta}\right)=2 \frac{s_{1}(z ; \rho)}{e_{1}(\rho)}+2 \sum_{n=2}^{\infty} \frac{s_{n}(z ; \rho)}{e_{n}(\rho)} \frac{\sin n \theta}{\sin \theta} \frac{e_{n}(r)}{e_{1}(r)} \\
\left(z \in \Omega^{+}, \rho \in(0,|z|), r \in(0, \rho], \theta \in(0, \pi)\right) .
\end{gathered}
$$

Each term of the above series satisfies by (3) and (4) that

$$
\begin{equation*}
\left|\frac{s_{n}(z ; \rho)}{e_{n}(\rho)} \frac{\sin n \theta}{\sin \theta} \frac{e_{n}(r)}{e_{1}(r)}\right| \leqq n \frac{c_{n}(z ; \rho)}{e_{1}(\rho)}\left\{\frac{e_{1}(r ; \rho)}{e_{0}(r ; \rho)}\right\}^{n-1} \tag{9}
\end{equation*}
$$

Therefore in view of (5) $L^{+}(z, \zeta)$ converges to the nonnegative solution

$$
L^{+}(z)=2 s_{1}(z ; \rho) / e_{1}(\rho) \quad\left(z \in \Omega^{+}, \rho \in(0,|z|)\right)
$$

of (1) on Ω^{+}as $\zeta \rightarrow 0$ uniformly on every compact subset of Ω^{+}if $\alpha(P)=0$. The function $L^{+}(z)$ is positive on Ω^{+}by Lemma 1. Then the P-Martin kernel

$$
K^{+}(z, \zeta)=K_{P}^{\Omega^{+}}(z, \zeta)=G^{+}(z, \zeta) / G^{+}(i / 2, \zeta) \quad\left(z, \zeta \in \Omega^{+}\right)
$$

on Ω^{+}converges to the positive solution

$$
k^{+}(z)=L^{+}(z) / L^{+}(i / 2) \quad\left(z \in \Omega^{+}\right)
$$

of (1) on Ω^{+}as $\zeta \rightarrow 0$ uniformly on every compact subset of Ω^{+}if $\alpha(P)=0$. In the case that $\alpha(P)>0$ the function $L^{+}\left(z, r e^{i \theta}\right)$ converges to the nonnegative solution

$$
L^{+}(z ; \sigma)= \begin{cases}2 \sum_{n=1}^{\infty} n \frac{s_{n}(z ; \rho)}{e_{n}(\rho)} \frac{\alpha_{n}(P)}{\alpha(P)} & (\sigma=0), \tag{10}\\ 2 \sum_{n=1}^{\infty} \frac{s_{n}(z ; \rho)}{e_{n}(\rho)} \frac{\sin n \sigma}{\sin \sigma} \frac{\alpha_{n}(P)}{\alpha(P)} & (0<\sigma<\pi), \\ 2 \sum_{n=1}^{\infty}(-1)^{n+1} n \frac{s_{n}(z ; \rho)}{e_{n}(\rho)} \frac{\alpha_{n}(P)}{\alpha(P)} & (\sigma=\pi) \\ \quad\left(z \in \Omega^{+}, \rho \in(0,|z|)\right) & \end{cases}
$$

of (1) on Ω^{+}as $r \rightarrow 0$ and $\theta \rightarrow \sigma$ uniformly on every compact subset of Ω^{+}. The functions $L^{+}(z ; \sigma)(\sigma \in[0, \pi])$ are positive on Ω^{+}by Lemma 1. Then the P Martin kernel $K^{+}(z, \zeta)$ converges to the positive solution

$$
\begin{equation*}
k^{+}(z ; \sigma)=L^{+}(z ; \sigma) / L^{+}(i / 2 ; \sigma) \quad\left(z \in \Omega^{+}, \sigma \in[0, \pi]\right) \tag{11}
\end{equation*}
$$

of (1) on Ω^{+}as $|\zeta| \rightarrow 0$ and $\arg \zeta \rightarrow \sigma$ uniformly on every compact subset of Ω^{+}if $\alpha(P)>0$. Again by Lemma 1 we have $k^{+}(z ; \sigma) \not \equiv k^{+}(z ; \tau)(\sigma \neq \tau)$.
7. Positive solutions $k^{+}(z)$ and $k^{+}(z ; \sigma)(\sigma \in[0, \pi])$ of (1) on Ω^{+}vanish on $\partial \Omega^{+}-\{0\}$ by the boundary Harnack principle (cf. e.g. [1]). On the other hand the P-Martin kernel $K^{+}(z, \zeta)$ converges to a minimal solution of (1) with vanishing boundary values on $\partial \Omega^{+}-\{\xi\}\left(\xi \in \partial \Omega^{+}-\{0\}\right)$ as $\zeta \rightarrow \xi$ uniformly on every compact subset of Ω^{+}again by the boundary Harnack principle. Therefore, the arguments in the previous no. show that (cf. [7, 4.2 and 4.3]) the homeomorphism

$$
\pi_{P}^{+}(z)=(\alpha(P)+(1-\alpha(P))|z|) z /|z| \quad\left(z \in \Omega^{+}\right)
$$

from Ω^{+}to $D^{+}(\alpha(P))=\{\alpha(P)<|z|<1, \operatorname{Im} z>0\}$ can be extended to a homeomorphism from the Martin compactification $\left(\Omega^{+}\right)_{P}^{*}$ of Ω^{+}to $\bar{D}^{+}(\alpha(P))=\{\alpha(P) \leqq$ $|z| \leqq 1, \operatorname{Im} z \geqq 0\}$, and

$$
\Gamma_{P}^{+}(0)=\left(\pi_{P}^{+}\right)^{-1}(\{|z|=\alpha(P), \operatorname{Im} z \geqq 0\}) .
$$

8. Now $k^{+}(z)$ and $k^{+}(z ; \sigma)(\sigma \in[0, \pi])$ are P-Martin kernels on Ω^{+}with poles at ideal boundary points $\left(\pi_{P}^{+}\right)^{-1}(0)$ and $\left(\pi_{P}^{+}\right)^{-1}\left(\alpha(P) e^{i \sigma}\right)$, respectively:

$$
k^{+}(z)=K^{+}\left(z,\left(\pi_{P}^{+}\right)^{-1}(0)\right), \quad k^{+}(z ; \sigma)=K^{+}\left(z,\left(\pi_{P}^{+}\right)^{-1}\left(\alpha(P) e^{i \sigma}\right)\right)
$$

By the boundary Harnack principle, these functions vanish on $\partial \Omega^{+}-\{0\}$. We show in nos. 8-10 that these P-Martin kernels are all minimal. Since $K^{+}\left(z, \zeta^{*}\right)$ vanishes at $z=0$ for $\zeta^{*} \in \Gamma_{P}^{+}-\Gamma_{P}^{+}(0)$, again by the boundary Harnack principle, we easily see that the support of the representing measure of $k^{+}(z)$ consists of a single point $\left(\pi_{P}^{+}\right)^{-1}(0)$, and hence $k^{+}(z)$ is minimal.
9. The minimality of $k^{+}(z ; \sigma)(\sigma \in(0, \pi))$ are derived from the minimality
of $k(z ; \sigma)$. Let $u^{+}(z)$ be a positive solution of (1) on Ω^{+}with

$$
u^{+}(z) \leqq k^{+}(z ; \sigma) \quad\left(z \in \Omega^{+}\right)
$$

Since $u^{+}(z)$ vanishes on $\partial \Omega^{+}-\{0\}$, the function

$$
u(z)=\left\{\begin{array}{rc}
u^{+}(z) & \left(z \in \Omega^{+}\right), \\
-u^{+}(\bar{z}) & \left(z \in \Omega-\Omega^{+}\right)
\end{array}\right.
$$

is a solution of (1) on Ω. By the expansions (8) of $L(z ; \sigma), L(z ; 2 \pi-\sigma)$ and (10) of $L^{+}(z ; \sigma)$ we have

$$
L^{+}(z ; \sigma)=\frac{1}{\alpha(P) \sin \sigma}(L(z ; \sigma)-L(z ; 2 \pi-\sigma))
$$

and hence

$$
k^{+}(z ; \sigma)=C_{1} k(z ; \sigma)-C_{2} k(z ; 2 \pi-\sigma) \quad\left(z \in \Omega^{+}\right)
$$

for positive constants $C_{1}=C_{1}(P, \sigma)$ and $C_{2}=C_{2}(P, \sigma)$. Then the solution

$$
v(z)=C_{1} k(z ; \sigma)-u(z)
$$

of (1) on Ω satisfies that

$$
v(z)= \begin{cases}C_{1} k(z ; \sigma)-u^{+}(z) \geqq k^{+}(z ; \sigma)-u^{+}(z) \geqq 0 & \left(z \in \Omega^{+}\right), \\ C_{1} k(z ; \sigma)+u^{+}(\bar{z}) \geqq 0 & \left(z \in \Omega-\Omega^{+}\right)\end{cases}
$$

and

$$
v(z) \leqq \begin{cases}C_{1} k(z ; \sigma) & \left(z \in \Omega^{+}\right) \\ C_{1} k(z ; \sigma)+C_{1} k(\bar{z} ; \sigma) & \left(z \in \Omega-\Omega^{+}\right)\end{cases}
$$

By the equality $G\left(\bar{z}, r e^{i \sigma}\right)=G\left(z, r e^{i(2 \pi-\sigma)}\right)$ we have $L(\bar{z} ; \sigma)=L(z ; 2 \pi-\sigma)$ and hence

$$
k(\bar{z} ; \sigma)=C_{3} k(z ; 2 \pi-\sigma) \quad(z \in \Omega)
$$

for a positive constant $C_{3}=C_{3}(P, \sigma)$. Therefore

$$
0 \leqq v(z) \leqq C_{1} k(z ; \sigma)+C_{1} C_{3} k(z ; 2 \pi-\sigma)
$$

on Ω so that the minimality of $k(z ; \sigma)$ and $k(z ; 2 \pi-\sigma)$ yiedls the following representation of $v(z)$:

$$
v(z)=C_{4} k(z ; \sigma)+C_{5} k(z ; 2 \pi-\sigma)
$$

for nonnegative constants C_{4} and C_{5}. Then $u^{+}(z)$ has a form

$$
u^{+}(z)=\left(C_{1}-C_{4}\right) k(z ; \sigma)-C_{5} k(z ; 2 \pi-\sigma) \quad\left(z \in \Omega^{+}\right) .
$$

We remark that $C_{1}-C_{4}>0$ since $C_{5} \geqq 0$ and $u^{+}(z)>0$. Further we have $C_{2} / C_{1}=$ $C_{5} /\left(C_{1}-C_{4}\right)$ since $k(x ; \sigma)>0, k(x ; 2 \pi-\sigma)>0$, and $k^{+}(x ; \sigma)=u^{+}(x)=0$ for any x in the subset $(-1,1)-\{0\}$ of the real axis. Hence $u^{+}(z)$ is proportional to $k^{+}(z ; \sigma)$.
10. The minimality of $k^{+}(z ; 0)$ and $k^{+}(z ; \pi)$ are derived from Lemma 1. Let μ_{0}^{+}be the representing measure of $k^{+}(z ; 0)$. Since $k^{+}(z ; 0)$ vanishes on $\partial \Omega^{+}-\{0\}$ and $K^{+}\left(z, \zeta^{*}\right)$ vanishes at $z=0$ for $\zeta^{*} \in \Gamma_{P}^{+}-\Gamma_{P}^{+}(0)$, the support of μ_{0}^{+}is contained in $\left(\pi_{P}^{+}\right)^{-1}(\{|z|=\alpha(P), \operatorname{Im} z \geqq 0\})$ as in no. 8. Assume that $k^{+}(z ; 0)$ is nonminimal. Then there exists a measure v_{0}^{+}on $(0, \pi)$ such that

$$
k^{+}(z ; 0)=\int_{(0, \pi)} k^{+}(z ; \sigma) d v_{0}^{+}(\sigma)
$$

and hence by (10) and (11)

$$
k^{+}(z ; 0)=\int_{(0, \pi)} \frac{2}{L^{+}(i / 2 ; \sigma)} \sum_{n=1}^{\infty} \frac{s_{n}(z ; \rho)}{e_{n}(\rho)} \frac{\sin n \sigma}{\sin \sigma} \frac{\alpha_{n}(P)}{\alpha(P)} d \nu_{0}^{+}(\sigma) .
$$

The function $L^{+}(i / 2 ; \sigma)$ of σ is positive continuous on $[0, \pi]$ since the series in (10) is uniformly convergent for $\sigma \in[0, \pi]$ by (9) and (5). Therefore $\sup _{[0, \pi]} L^{+}(i / 2 ; \sigma)^{-1}<\infty$. In view of this and (9) again $k^{+}(z ; 0)$ has the following expansion:

$$
\begin{gathered}
k^{+}(z ; 0)=2 \sum_{n=1}^{\infty} \frac{s_{n}(z ; \rho)}{e_{n}(\rho)} \frac{\alpha_{n}(P)}{\alpha(P)} \int_{(0, n)} \frac{1}{L^{+}(i / 2 ; \sigma)} \frac{\sin n \sigma}{\sin \sigma} d v_{0}^{+}(\sigma) \\
\left(z \in \Omega^{+}, \rho \in(0,|z|)\right) .
\end{gathered}
$$

Then by (10), (11), and Lemma 1 we have

$$
\frac{n}{L^{+}(i / 2 ; 0)}=\int_{(0, \pi)} \frac{1}{L^{+}(i / 2 ; \sigma)} \frac{\sin n \sigma}{\sin \sigma} d \nu_{0}^{+}(\sigma) \quad(n=1,2, \cdots)
$$

so that the Lebesgue theorem yields a contradiction that

$$
\begin{aligned}
\frac{1}{L^{+}(i / 2 ; 0)} & =\lim _{n \rightarrow \infty} \int_{(0, \pi)} \frac{1}{L^{+}(i / 2 ; \sigma)} \frac{\sin n \sigma}{n \sin \sigma} d v_{0}^{+}(\sigma) \\
& =\int_{(0, \pi)} \frac{1}{L^{+}(i / 2 ; \sigma)} \lim _{n \rightarrow \infty} \frac{\sin n \sigma}{n \sin \sigma} d v_{0}^{+}(\sigma)=0 .
\end{aligned}
$$

Thus $k^{+}(z ; 0)$ is minimal. By symmetry, $k^{+}(z ; \pi)$ is also minimal. Hence we have shown that any point in the ideal boundary $\Gamma_{P}^{+}(0)$ over $z=0$ is minimal.

§3. The Martin compactification $\left(\Omega_{\theta}\right)_{P}^{*}$ of Ω_{θ}

11. We characterize in this section the Martin compactification $\left(\Omega_{\theta}\right)_{P}^{*}$ $(\theta \in(0,2 \pi))$ of the region $\Omega_{\theta}=\{0<|z|<1,0<\arg z<\theta\}$ with respect to (1) with a rotation free density P on Ω. Consider the conformal mapping

$$
\phi(z)=\phi_{\theta}(z)=z^{\theta / \pi} \quad\left(z \in \Omega^{+}\right)
$$

from Ω^{+}to Ω_{θ}. If we set $v(z)=u(\phi(z))\left(z \in \Omega^{+}\right)$for a C^{2} function u on Ω_{θ}, then v satisfies

$$
\Delta v(z)=\left|\frac{d}{d z} \phi(z)\right|^{2}(\Delta u)(\phi(z))
$$

Let Q be the rotation free density on Ω defined by

$$
Q(z)=\left|\frac{d}{d z} \phi(z)\right|^{2} P(\phi(z))=\frac{\theta^{2}}{\pi^{2}}|z|^{2 \theta / \pi-2} P\left(z^{\theta / \pi}\right)
$$

on $\bar{\Omega}^{+}-\{0\}$ and $Q(z)=Q(|z| i)$ on $\bar{\Omega}-\bar{\Omega}^{+}$. Then a C^{2} function u on Ω_{θ} is a solution of (1) on Ω_{θ} if and only if $v=u \circ \phi$ is a solution of $\Delta v=Q v$ on Ω^{+}so that ϕ is extended to a homeomorphism from $\left(\Omega^{+}\right)_{Q}^{*}$ to $\left(\Omega_{\theta}\right)_{P}^{*}$.
12. For a positive real number λ, consider the rotation free density $P_{\lambda}(z)=$ $P(z)+\lambda^{2}|z|^{-2}$ and denote by $e_{\lambda}(z)$ the P_{λ}-unit on Ω. In this no., we show

Lemma 2. If $0<\lambda \leqq \nu$, then

$$
\left\{e_{\lambda}(r) / e_{0}(r)\right\}^{(v / \lambda)^{2}} \leqq e_{\nu}(r) / e_{0}(r) \leqq e_{\lambda}(r) / e_{0}(r), \quad 0<r<1 .
$$

Proof. By the usual maximum principle (cf. e.g. [7, 1.1]), we see that $e_{\nu}(r) \leqq e_{\lambda}(r)$, which implies the second inequality.

In order to prove the first inequality, let $\kappa=(v / \lambda)^{2} \geqq 1$ and put $F(r)=e_{\lambda}(r)^{\kappa}$. $e_{0}(r)^{1-\kappa}$. Then F is a C^{2} function on $(0,1)$ with $0<F(r) \leqq 1$ and $F(1)=1$. Further, we have

$$
\begin{gathered}
\frac{F^{\prime}(r)}{F(r)}=\kappa \frac{e_{\lambda}^{\prime}(r)}{e_{\lambda}(r)}-(\kappa-1) \frac{e_{0}^{\prime}(r)}{e_{0}(r)}, \\
\frac{F^{\prime \prime}(r)}{F(r)}=\left\{\frac{F^{\prime}(r)}{F(r)}\right\}^{2}+\left\{\frac{F^{\prime}(r)}{F(r)}\right\}^{\prime} \\
= \\
\kappa \frac{e_{\lambda}^{\prime \prime}(r)}{e_{\lambda}(r)}-(\kappa-1) \frac{e_{0}^{\prime \prime}(r)}{e_{0}(r)}-\kappa \frac{e_{\lambda}^{\prime}(r)^{2}}{e_{\lambda}(r)^{2}}+(\kappa-1) \frac{e_{0}^{\prime}(r)^{2}}{e_{0}(r)^{2}} \\
+\left\{\kappa \frac{e_{\lambda}^{\prime}(r)}{e_{\lambda}(r)}-(\kappa-1) \frac{e_{0}^{\prime}(r)}{e_{0}(r)}\right\}^{2},
\end{gathered}
$$

and hence

$$
\begin{aligned}
\frac{F^{\prime \prime}(r)+r^{-1} F^{\prime}(r)}{F(r)} & =\kappa\left(P(r)+\frac{\lambda^{2}}{r^{2}}\right)-(\kappa-1) P(r) \\
+ & \kappa(\kappa-1)\left\{\frac{e_{\lambda}^{\prime}(r)}{e_{\lambda}(r)}-\frac{e_{0}^{\prime}(r)}{e_{0}(r)}\right\}^{2} \geqq P_{v}(r) .
\end{aligned}
$$

Therefore $F(r) \leqq e_{\nu}(r)$, which means that $\left\{e_{\lambda}(r) / e_{0}(r)\right\}^{\kappa} \leqq e_{\nu}(r) / e_{0}(r)$.
13. If we denote by $f_{n}(z)$ the Q_{n}-unit on Ω, then the observation in no. 11 shows that $f_{0}(r)=e_{0}\left(r^{\theta / \pi}\right)$ and $f_{1}(r)=e_{\pi / \theta}\left(r^{\theta / \pi}\right)$. Hence

$$
\alpha(Q)=\lim _{r \rightarrow 0} \frac{f_{1}(r)}{f_{0}(r)}=\lim _{r \rightarrow 0} \frac{e_{\pi / \theta}(r)}{e_{0}(r)} .
$$

Therefore, in view of Lemma 2, we see that $\alpha(Q)=0$ if and only if $\alpha(P)=0$. Thus, we have shown

Corollary. Let P be a rotation free density on Ω. Then the homeomorphism $\pi_{\theta P}(\theta \in(0,2 \pi))$ from Ω_{θ} to $\{\alpha(P)<|z|<1,0<\arg z<\theta\}$ defined by $\pi_{\theta P}(z)=(\alpha(P)+(1-\alpha(P))|z|) z /|z|$ can be extended to a homeomorphism from $\left(\Omega_{\theta}\right)_{P}^{*}$ to $\{\alpha(P) \leqq|z| \leqq 1,0 \leqq \arg z \leqq \theta\}$ and every point in the ideal boundary $\Gamma_{\theta P}(0)=\left(\pi_{\theta P}\right)^{-1}(\{|z|=\alpha(P), 0 \leqq \arg z \leqq \theta\})$ over $z=0$ is minimal.

References

[1] A. Ancona: Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine lipschitzien, Ann. Inst. Fourier, 28 (1978), 169-213.
[2] A. Ancona: Théorème' de Fatou et frontière de Martin pour une classe d'opérateurs elliptiques dans un demiespace, C. R. Acad. Sc. Paris, 290 (1980), 401-404.
[3] S. Ito: Martin boundary for linear elliptic differential operators of second order in a manifold, J. Math. Soc. Japan, 16 (1964), 307-334.
[4] M. Kawamura: On a conjecture of Nakai on Picard principle, J. Math. Soc. Japan, 31 (1979), 359-371.
[5] M. Kawamura and M. Nakai: A test of Picard principle for rotation free densities, II, J. Math. Soc. Japan, 28 (1976), 323-342.
[6] M. Nakai: The space of non-negative solutions of the equation $\Delta u=P u$ on a Riemann surface, Kôdai Math. Sem. Rep., 12 (1960), 151-178.
[7] M. Nakai: Martin boundary over an isolated singularity of rotation free density, J. Math. Soc. Japan, 26 (1974), 483-507.
[8] M. Nakai: A test of Picard principle for rotation free densities, J. Math. Soc. Japan, 27 (1975), 412-431.
[9] M. Nakai: Picard principle for finite desnsities, Nagoya Math. J., 70 (1978), 7-24.
[10] M. Nakai: Strong Picard principle, J. Math. Soc. Japan, 32 (1980), 631-638.
[11] M. Nakai and T. Tada: Dirichlet integral and Picard principle, Nagaoya Math. J., 86 (1982), 85-99.
[12] M. Sǔr: The Martin boundary for a linear elliptic second order opertor, Izv. Akad. Nauk SSSR, 27 (1963), 45-60 (Russian).
[13] N. Suzuki: Martin boundary for $\Delta-P$, Hiroshima Math. J., 14 (1984), 67-74.
[14] T. Tada: The role of boundary Harnack principle in the study of Picard principle, J. Math. Soc. Japan, 34 (1982), 445-453.
[15] T. Tada: Picard principle for densities at a singularity in a nondegenerate boundary component, (preprint).
[16] J. -C. Taylor: On the Martin compactification of a bounded Lipschitz domain in a Riemann manifold, Ann. Inst. Fourier, 28 (1977), 25-52.

Department of Mathematics,
Daido Institute of Technology

