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1. Introduction

We consider a multivariate inverse regression problem with an aim of esti-

mating an unknown x vector from an observed y vector, where J> = ()Ί,..., yp)'

and JC = (X!,..., xq)' are the vectors of p response variables and q explanatory vari-

ables, respectively. It is assumed that

(1.1) y = a + β'x + e,

where a: p x 1 is the vector of unknown parameters, β: q x p is the matrix of

unknown parameters and e is an error vector having a p-variate normal distribution

with mean zero and unknown covariance matrix Σ. Suppose that the y value in

(1.1) has been observed, but the corresponding JC value is unknown. Further,

suppose that the JV independent observations yu xt (i = l,..., N) with the relation-

ship (1.1) have been given. The data thus consist of the array:

(1.2)

where the dot represents the unknown x value to be estimated. The observations

Y=lyi> , yNJ and X = [xl9...-9 xNJ satisfy

where / N = (l,..., 1)': Nxl, E=[eί9..., eNJ, and et (i = l,..., N) are independently

and identically distributed as Np[0, I1]. Brown [2] has discussed various pro-

blems in a general formulation as well as in this formulation.

In this paper we consider the problem of selecting the "best" subset of

response variables in the situation where we want to estimate x corresponding to

the y value in (1.1). Various methods for selection of variables have been

proposed, especially in the area of regression analysis and discriminant analysis

(for a summary of the methods, see, e.g., Thompson [12], [13], McKay and

Campbell [7], [8]). In the case of multivariate inverse regression Brown [2]

has proposed a procedure, based on a test of the redundancy of a subset of response

variables. This paper presents two methods for selection of the best subset.



270 Yasunori FUJIKOSHI and Ryuei NISHII

One is based on an estimate of the asymptotic mean squared error of the classical
estimate. For a realization of this method, we need to obtain asymptotic bias
and mean squared error of the classical estimate, which are given in Section 2.
The other method is obtained by applying Akaike's information criterion.
Numerical performances of the two methods are examined by applying them
to the wheat quality data analyzed by Brown [2].

2. Asymptotic bias and mean squared error of the classical estimate

If α, β and Σ are known, a natural estimate x would be defined by
minimizing

( y - a - β'xYΣ-^y - a - β'x)

with respect to x. The estimate is uniquely defined as

(2.1) xo

under the assumption of rank (/?) = #< p. This assumption is put on throughout
this paper. So, we treat the case of p>q. For the case when α, β and Σ are
unknown, the estimates of these parameters based on (1.2) are used to construct
estimates of x. The usual estimates of α, β and Σ are defined as follows:

ά = a = y- Bx, β = B = S^Sxy,

£ = $e = jf Σf=i (yt-a-B'xdiyi-a-B'Xi)'

where n = N — q — l, x= -ΊΓV Σf=i χh y= ~YfΈ?=ί Ji and
iV 1\

Here we assume the usual restrictions of rank (X) = q and n > p. Then an estimate
of x based on the natural estimate (2.1) is

(2.2) x = (BS~1Bf)~1BS~1(y — a)

which is called the classical estimate. The estimate in the case of p = q = 1 has
been studied in literature (Ott and Myers [9], Williams [14], Shukla [11], Lwin
and Maritz [6], etc.). It may be noted that the mean and mean squared error
of the estimate are infinite, but the asymptotic expressions of the quantities based
on an asymptotic expansion of the distribution of the estimate are finite and could
be used as measures of performance for the estimate. The asymptotic results can
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be obtained by expanding the estimate by Taylor's series and taking expectations
term by term, which is known as delta method. We shall denote the expectations
of a function g(x) of x in this sense and in ordinary sense by «?[#(*)] and E [#(*)],
respectively.

The conditional distribution of x given B is closely related to the distribution
of an estimate in a growth curve model. Following Gleser and Olkin [5] we use
a nonsingular matrix Tof order q and an orthogonal matrix Γ of order p such that

B = BΣ-1'2 = TUq9 0]Γ' = TΓi,

where Γ = [Γl9 Γ2] and Γί: pxq. Let

W=nΓ'Σ-1'2SβΣ-1ί2Γ= , JV±1: qxq,
\W2lW22)

z = Γ{Σ-U*iy-y)-B'(x-x)} =

Then z and W are independently distributed as a normal distribution
Np[ζ9 (l + iV"1)/^] and a Wishart distribution FΓp(/p, n), respectively, where
β = βΣ-V\

C = Γ(p-B)'(x-x) = (Ci, Ci)', Ci: « x 1.

Further, we have

(2.3) (BS^BT1 = n~x T~\ Wn - W12 W^ W21) Γ"1.

LEMMA 1. Let b = zί-Wί2Wί2-2

ίz2 and ^ ( l + J V - 1 ) - 1 ^ ^ - Then

(2.4) i = JC + r - 1 * ,

and ί/ie conditional distribution of b given & and B is Nq[ζl9 (1 +N~ί)(l + ί)lq\

PROOF. This results is obtained by the same lines as in Gleser and Olkin [5]
or Fujikoshi and Nishii [4].

LEMMA 2. It holds that

(2.5) E [ ( * - * ) I £]

(2.6) E [(x-x)\S£ ( x -

where g(B) = (BB')-ίBd, d = (β-B)\x-x),

h(B) = (l + N

Ϊ')-1 +
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PROOF. From Lemma 1 it is easily seen that

E[(i-x)|J5] = r - ί d ,

ELW1 = {n-(p-q)-l}-i{p-q + (I+ N-i)-1K'2ζ2}.

These imply Lemma 2.

The asymptotic bias and standardized mean squared error of x are given in
the following.

THEOREM 1. Assume that x = O(l) and Sxx = O(ί). Then it holds that

(pq

= /[(x-x)'Sϊί(x-x)]

+i) »-;;l-i [tr
 ̂ I Θ + i

-(p-q-2)tr(S-χ}Θy}~j

+ jr(x-x)'S-ϊ (x-x)trS-JΘ + o

where Θ=(ββ')~1 and β=βΣ~1'2 .

PROOF. By considering the conditional distribution of x given B we can write

where B = BΣ 1 / 2. The explicit formulas for g(B) and h(B) are given in Lemma 2.
The expectations of g(B) and h(B) with respect to B can be carried out by delta
method as follows. Let

(2.7) B = β •

Then the elements of U: qxp are indepdnently distributed as N[0, 1]. Sub-
stituting (2.7) to g(B) and expanding the resultant expressions, we obtain the first
formula. Similarly we have

(2.8) r = (1+N-i) "-1

n — p -\- q — ip -\- q

jf(x-x)'S2 (x-
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which is equal to the right-hand side of the second formula.

We note that the asymptotic bias and mean squared error in the case of p =

q = l agree with the results obtained by Ott and Myers [9] and Shukla [11].

An asymptotically unbiased estimate of r is obtained as follows. Using

which follows from (2.3), we can write

(2.9) r =

Replacing the x in (2.9) by the estimate x in (2.2) we obtain an asymptotically

unbiased estimate

(2.10) t = (l+N-ι

which satisfies S\_f\ = r + o(n~x).

3. Two methods for selection of variables

We shall derive three criteria for determining the best subset of response

variables yu...9 yp. Let j = {Jι9J29 - >Jku)} ̂ e a SUΓJ)set of {1,..., p} and consider

the subset of response variables

specified by j . We consider only all the subsets such that k(j)>q.

First we derive two criteria, based on estimates of the asymptotic mean

squared error of the classical estimate. The classical estimate of x based on

y{j) is given by

(3.1) £j = {msjίjYWm-iBWSjίjYHyϋΊ-yU)} >

where B(j), Se(j) and y(j) denote the submatrices and subvector of B, Se and

y, respectively. For estimating x9 it is natural to select the subset y(j) mini-

mizing the standardized mean squared error

(3.2) O
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The quantity ry can be interpreted as a risk when the response variable y(j) is

selected. By the same way as the derivation of (2.9) we can write

(3.3) rj = (l + iV-^jc,. + i-(χ-JE)'Sίί(x-i)}Dy]+ φ r 1 ) ,

where

(3.4) cj = n(n

(3.5) Dj = tr S-

The quantity in the square brackets of (3.3) can be regarded as an estimate for r,-.

Of course the x appearing in the terms of order n~ι is unknown and must be

estimated. Replacing the x by the estimate x in (2.2), i.e., the classical estimate

based on the full set of response variables, we obtain a criterion

(3.6) tj = {cj +±(x-xySH(x-x)}Dj.

Using this criterion, we select the subset y(j) minimizing tj with respect to j such

that k(j)>q. If x lies very near to x, then we may use

(3.7) rj = CJDJ

instead of tj. We can expand Cj as

So, the quantity Cj can be regarded as a correction term when we estimate r,- by Dj.

It is easy to see that if ί=>j, then Di<Dj and if k(ί)>k(j), then cf>Cy.

Next we derive an alternative criterion based on a natural family of models

H(j) relating to selection of variables, and a model selection criterion in a predictive

approach. We shall introduce a natural family of H(j) in terms of the natural

estimate x0 in (2.1). For simplicity, we consider the case of j = R = {l,..., k}.

The natural estimate x0 in (2.1) can be expressed as

(3.8) x0 = Ξ(y-a) = Si(^i-«i) + ^2(^2-^2),

w h e r e y = { y ' u y ' 2 ) \ a = ( a ' ί 9 a ' 2 ) \ a t : k x l 9 y t : k x l , Ξ = (β Σ~* β T ' β Σ-' =

[ S 1 ? £ 2 ] , Ξx: qxk. If Ξ2 = 0, we can say that y2 has no additional information

in estimating x9 in the presense of ylm We define H(k) by the restriction "Ξ2 = 0".

The model H(j) for general subset j is similarly defined. Let β and Σ be

partitioned as

fΣn Σ12

β = lβi,βA, βi qxK Σ = [
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Then it is easy to see that

(3.9) Ξ2 =

The latter statement is called Rao's additional information hypothesis (Rao [10])

in the multivariate linear model (1.1) and is interpreted as the hypothesis that y2

supplies no additional information about departures from nullity of the hypothesis

" β = 0", independently of y1. The equivalence (3.9) shows that the family of

the models H(j) based on Rao's additional information hypothesis in the multi-

variate linear model is also useful for our problem. For the selection of models

H(j), we apply Akaike's information criterion (Akaike [1])

(3.10) AIC (j) = - 2 log Lφ{j)) + 2p(j)

where L(Θ) is the likelihood function of observations yί9...9 yN, Θ(j) is the maxi-

mum likelihood estimate of Θ = {α, β, Σ} under H(j), and p(j) is the dimensionality

of Θ under H(j). The Akaike's information criterion for Rao's additional

information hypothesis in the multivariate linear model has been obtained by

Fujikoshi [3]. Therefore, we obtain

(3.11) A;

We select the subset of response variables y(j) minimizing A7 . Here the subsets

j selected are restricted to the subsets j such that k(j)>q.

We note that the criteria Ϋj and fj depend on the value of y in (1.1), but the

criterion A7 does not depend on its value. Brown [2] has given a procedure,

based on a test of additional information for the hypothesis βjco = 0, where x0

is a fixed vector.

4. A numerical example

In this section we shall examine the numerical performances of the three

criteria Pj9 fj and Ay, by applying them to the wheat quality data analyzed by

Brown [2]. The data consist of 21 samples of the four response variables y =

(ji» » y*)' a n d the two explanatory variables x = (xί, x 2)'. Here yi,.. ,)>4

denote the four infrared reflectance measurements, and x x and x2 denote the

percentages of water and protein, respectively. To examine the performances of

criteria, we assume that the /i-th sample is used for prediction purposes, and

the other 20 samples are used to estimate the relationship between y and x. So,

we assume that the y value of the /x-th sample is known, but the corresponding x

value is unknown. Our problem is to find the best subset of {ji,..., y4} in the
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situation where we want to estimate the x value of the h-ih sample. The subsets

selected by the three criteria ϊj9 fj and Aj are given in Table 1.

TABLE 1

The subsets selected by the criteria r;, rs and A3 for A=l,..., 21

fj

fj

Ay

Λ = l , 3
10,.

ί l,
ίl,
ί l,

2,
2,

2,

, ..,8,
..,21

3,4}
3,4}
3,4}

{1
{1
{1

Λ=2

,2,4}
,2,4}
,2,4}

ί l,
U.
ί l,

Λ=9

2, 3, 4}
2, 3, 4}
2,4}

The criteria ^ and r,- choose the same subsets for all h, and the three criteria

select the full model {1, 2, 3, 4} except for h = 2 and 9. In the case of h = 2,

all criteria select the model {1, 2, 4}. However, the difference between ^{i>2,4}

and {̂1,2,3,4} is very small, and this is also true for ry and A7 . In the case of h = 9,

?j(rj) and A7 select the full model and {1, 2, 4} respectively. But the difference

between A{12,4} and A{12,3,4} i s a l s o negligible. To see the behaviours of the

three criteria for different subsets, the values of the three criteria for h = 1 and

h = 2 are given in Table 2.

TABLE 2

The values of r h r j and A for h=1 and 2

J

ί l , 2, 3, 4}
ί l , 2, 3}
ί l , 2, 4}
{1,3,4}
{2, 3, 4}
{1,2}
{1,3}
{1,4}
{2,3}
{2,4}
{3,4}

n
0.0237*
0.0278
0.0246
0.0562
0.0345

51.82
0.3503
0.3338
0.0583
0.0547
0.6825

A = l

0.0236*
0.0276
0.0245
0.0560
0.0344

51.56
0.3485
0.3321
0.0580
0.0544
0.6791

A,

0.00*
9.55
0.80

28.40
17.46
87.90
68.20
64.30
29.14
31.06
57.49

n
0.0248
0.0285
0.0247*
0.0477
0.0324

38.58
0.3622
0.3404
0.0578
0.0538
0.7333

h=2

0.0247
0.0284
0.0246*
0.0474
0.0322

38.36
0.3602
0.3385
0.0575
0.0535
0.7291

Ay

0.00
8.20

-0.56*
23.70
14.27
85.88
66.30
63.35
27.14
29.78
55.23

(* denotes the minimum value of each of the criteria)

The behaviours of each of the criteria for other h are similar to the one for h = 1.

It may be noted that the criteria Ϋp fj and Ay have similar performances.
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