On scaled one-step methods

Hisayoshi Shintani

(Received April 30, 1987)

1. Introduction

Consider the initial value problem

$$
\begin{equation*}
y^{\prime}=f(x, y), \quad y\left(x_{0}\right)=y_{0}, \tag{1.1}
\end{equation*}
$$

where the function $f(x, y)$ is assumed to be sufficiently smooth. Let $y(x)$ be the solution of (1.1), let

$$
\begin{equation*}
x_{t}=x_{0}+t h \quad(t>0, h>0) \tag{1.2}
\end{equation*}
$$

and denote by y_{t} an approximation of $y\left(x_{t}\right)$, where h is a stepsize.
We consider block one-step methods of the form

$$
\begin{equation*}
y_{t}=y_{0}+h \sum_{i=1}^{m} p_{i t} k_{i} \tag{1.3}
\end{equation*}
$$

that provide y_{l} for any values of t, where

$$
\begin{align*}
& k_{1}=f\left(x_{0}, y_{0}\right), \tag{1.4}\\
& k_{i}=f\left(x_{0}+a_{i} h, y_{0}+h \sum_{j=1}^{i=1} b_{i j} k_{j}\right) \quad(i=2,3, \ldots, m), \tag{1.5}\\
& a_{i}=\sum_{j=1}^{i=1} b_{i j}, \quad a_{i} \neq 0 \quad(i=2,3, \ldots, m), \tag{1.6}
\end{align*}
$$

a_{i} and $b_{i j}(j=1,2, \ldots, i-1 ; i=2,3, \ldots, m)$ are constants and $p_{k t}(k=1,2, \ldots, m)$ are functions of t. Gear [1] has shown that for $m=3,4,6$ there exists a method (1.3) of order $2,3,4$ respectively and that m must not be less than nine to obtain a method of order 5 .

Let a be a specified value of t. Then in our previous paper [3] we have shown that for $m=3,4,6,9$ there exists a method (1.3) which is of order $2,3,4,5$ respectively for $t \neq a$ and is of order $3,4,5,6$ for $t=a$ respectively.

On the basis of one-step methods of order p

$$
\begin{equation*}
y_{1}=y_{0}+h \sum_{i=1}^{q} p_{i 1} k_{i}, \tag{1.7}
\end{equation*}
$$

Horn [2] has proposed scaled one-step methods

$$
\begin{equation*}
y_{t}=y_{0}+h \sum_{i=1}^{q+r} p_{i t} k_{i} \tag{1.8}
\end{equation*}
$$

that provide y_{t} for any values of $t(t \neq 1)$ with r additional derivative evaluations, where $k_{i}(i=1,2, \ldots, q+r)$ satisfy (1.4), (1.5) and (1.6) with m replaced by $q+r$. Using Fehlberg's (4)5 formula with $q=6$, she has constructed a method (1.8) of order 4 with $r=1$ and that of order 5 with $r=5$. A scaled one-step method can be considered as a block one-step method (1.3) which is of order p for $t=1$ at the q-th stage, and it is well known that for $p=2,3,4,5$ the minimum of q is $2,3,4,6$ respectively. Hence we require that the methods (1.7) and (1.8) are of the same order p and raise the question whether there exists or not a scaled one-step method (1.8) of order p with $r=m-q$ for these values of q.

Let

$$
\begin{equation*}
e=h \sum_{i=1}^{q+s} q_{i} k_{i} . \tag{1.9}
\end{equation*}
$$

Then it will be shown that for $q=2,3,4,6$ and $r=0,1,2,3$ there exist a method (1.7) and a method (1.8) for which $p=2,3,4,5$ respectively, that for $s=0,0,1,1$ there exists a formula (1.9) such that $y_{1}+e$ is a method of order $p-1$ respectively, and that the minimum of such r is $0,1,2$ for $(p, q)=(2,2),(3,3),(4,4)$ respectively. The quantity e can be used to control the stepsize. Finally numerical examples are presented.

2. Preliminaries

Let
(2.1) $c_{i}=\sum_{j=2}^{i-1} a_{j} b_{i j}, \quad d_{i}=\sum_{j=2}^{i-1} a_{j}^{2} b_{i j}, \quad e_{i}=\sum_{j=2}^{i-1} a_{j}^{3} b_{i j} \quad(i=3,4, \ldots)$,
(2.2) $l_{i}=\sum_{j=3}^{i=1} c_{j} b_{i j}, \quad m_{i}=\sum_{j=3}^{i-1} d_{j} b_{i j}, \quad g_{i}=\sum_{j=3}^{i-1} a_{j} c_{j} b_{i j} \quad(j=4,5, \ldots)$.

Let D be the differential operator defined by

$$
\begin{equation*}
D=\frac{\partial}{\partial x}+k_{1} \frac{\partial}{\partial y} \tag{2.3}
\end{equation*}
$$

and put

$$
\begin{align*}
& D^{j} f\left(x_{0}, y_{0}\right)=T^{j}, \quad D^{j} f_{y}\left(x_{0}, y_{0}\right)=S^{j} \quad(j=1,2, \ldots), \tag{2.4}\\
& (D f)^{2}\left(x_{0}, y_{0}\right)=P, \quad\left(D f_{y}\right)^{2}\left(x_{0}, y_{0}\right)=Q, \quad D f_{y y}\left(x_{0}, y_{0}\right)=R, \\
& f_{y}\left(x_{0}, y_{0}\right)=f_{y}, \quad f_{y y}\left(x_{0}, y_{0}\right)=f_{y y}
\end{align*}
$$

Then y_{t} can be expanded into power series in h as follows:

$$
\begin{align*}
y_{t}= & y_{0}+h A_{1} k_{1}+h^{2} A_{2} T+\left(h^{3} / 2!\right)\left(A_{3} T^{2}+2 A_{4} f_{y} T\right)+\left(h^{4} / 3!\right)\left(B_{1} T^{3}\right. \tag{2.5}\\
& \left.+6 B_{2} T S+3 B_{3} f_{y} T^{2}+6 B_{4} f_{y}^{2} T\right)+\left(h^{5} / 4!\right)\left(C_{1} T^{4}+12 C_{2} T S^{2}\right. \\
& +12 C_{3} T^{2} S+12 C_{4} f_{y y} P+4 C_{5} f_{y} T^{3}+12 C_{6} f_{y}^{2} T^{2}+24 C_{7} f_{y}^{3} T
\end{align*}
$$

$$
\begin{aligned}
& \left.+24 C_{8} f_{y} T S\right)+\left(h^{6} / 5!\right)\left(D_{1} T^{5}+20 D_{2} T S^{3}+30 D_{3} T^{2} S^{2}+20 D_{4} T^{3} S\right. \\
& +60 D_{5} f_{y y} T T^{2}+60 D_{6} P R+120 D_{7} T Q+60 D_{8} f_{y} f_{y y} P+60 D_{9} f_{y} T S^{2} \\
& +60 D_{10} f_{y} T^{2} S+120 D_{11} f_{y}^{2} T S+5 D_{12} f_{y} T^{4}+20 D_{13} f_{y}^{2} T^{3}+60 D_{14} f_{y}^{3} T^{2} \\
& \left.+120 D_{15} f_{y}^{4} T\right)+O\left(h^{7}\right),
\end{aligned}
$$

where
(2.6) $A_{1}=\sum_{i=1}^{m} p_{i t}, \quad A_{2}=\sum_{i=2}^{m} a_{i} p_{i t}$,
(2.7) $\quad A_{3}=\sum_{i=2}^{m} a_{i}^{2} p_{i t}, \quad B_{1}=\sum_{i=2}^{m} a_{i}^{3} p_{i t}, \quad C_{1}=\sum_{i=2}^{m} a_{i}^{4} p_{i t}$,
$D_{1}=\sum_{i=2}^{m} a_{i}^{5} p_{i t}$,
$A_{4}=\sum_{i=3}^{m} c_{i} p_{i t}, \quad B_{2}=\sum_{i=3}^{m} a_{i} c_{i} p_{i t}, \quad B_{3}=\sum_{i=3}^{m} d_{i} p_{i t}$,
$C_{2}=\sum_{i=3}^{m} a_{i}^{2} c_{i} p_{i t}, \quad C_{3}=\sum_{i=3}^{m} a_{i} d_{i} p_{i t}, \quad C_{4}=\sum_{i=3}^{m} c_{i}^{2} p_{i t}$,
$C_{5}=\sum_{i=3}^{m} e_{i} p_{i t}, \quad D_{2}=\sum_{i=3}^{m} a_{i}^{3} c_{i} p_{i t}, \quad D_{3}=\sum_{i=3}^{m} a_{i}^{2} d_{i} p_{i t}$,
$D_{4}=\sum_{i=3}^{m} a_{i} e_{i} p_{i t}, \quad D_{5}=\sum_{i=3}^{m} c_{i} d_{i} p_{i t}, \quad D_{6}=\sum_{i=3}^{m} a_{i} c_{i}^{2} p_{i t}$
(2.9) $\quad B_{4}=\sum_{i=4}^{m} l_{i} p_{i t}, \quad C_{6}=\sum_{i=4}^{m} m_{i} p_{i t}, \quad C_{7}=\sum_{i=5}^{m}\left(\sum_{j=4}^{i-1} l_{j} b_{i j}\right) p_{t t}$,
$C_{8}=\sum_{i=4}^{m}\left(a_{\imath} l_{i}+g_{i}\right) p_{i t}, \quad D_{7}=\sum_{i=4}^{m} a_{i} g_{i} p_{i t}$,
(2.10) $D_{8}=\sum_{i=4}^{m}\left(2 c_{i} l_{i}+\sum_{j=3}^{i-1} c_{j}^{2} b_{i j}\right) p_{i t}, \quad D_{9}=\sum_{i=4}^{m}\left(a_{i}^{2} l_{i}+\sum_{j=3}^{i-1} a_{j}^{2} c_{j} b_{i j}\right) p_{i t}$, $D_{10}=\sum_{i=4}^{m}\left(a_{i} m_{i}+\sum_{j=3}^{i-1} a_{j} d_{j} b_{i j}\right) p_{i t}$,
$D_{11}=\sum_{i=5}^{m}\left[\sum_{j=4}^{i=1}\left(a_{i} l_{j}+a_{j} l_{j}+g_{j}\right) b_{i j}\right] p_{i t}$,
$D_{12}=\sum_{i=3}^{m}\left(\sum_{j=2}^{i-1} a_{j}^{4} b_{i j}\right) p_{i t}, \quad D_{13}=\sum_{i=4}^{m}\left(\sum_{j=3}^{i-1} e_{j} b_{i j}\right) p_{i t}$,
$D_{14}=\sum_{i=5}^{m}\left(\sum_{j=4}^{i-1} m_{j} b_{i j}\right) p_{i t}, \quad D_{15}=\sum_{i=6}^{m}\left[\sum_{j=5}^{i-1}\left(\sum_{k=4}^{j-1} l_{k} b_{j k}\right) b_{i j}\right] p_{i t}$.
Put
(2.11) $A_{1 t}=A_{1}-t, \quad A_{2 t}=A_{2}-t^{2} / 2, \quad A_{3 t}=A_{3}-t^{3} / 3, \quad A_{4 t}=A_{4}-t^{3} / 6$,
(2.12) $\quad B_{i t}=B_{i}-t^{4} /\left(4 u_{i}\right) \quad(i=1,2,3,4), \quad C_{j t}=C_{j}-t^{5} /\left(5 v_{j}\right) \quad(j=1,2, \ldots, 8)$, $D_{k t}=D_{k}-t^{6} /\left(6 w_{k}\right) \quad(k=1,2, \ldots, 15)$,
where
(2.13) $\quad u_{i}=i \quad(i=1,2,3), \quad u_{4}=6, \quad v_{i}=i \quad(i=1,2,3,4), \quad v_{5}=4, \quad v_{6}=12$,
$v_{7}=24, \quad v_{8}=24 / 7$.

$$
\begin{align*}
& w_{i}=i \quad(i=1,2,3,4), \quad w_{5}=6, \quad w_{6}=4, \quad w_{7}=8, \quad w_{8}=60 / 13 \tag{2.14}\\
& w_{9}=15 / 4, \quad w_{10}=20 / 3, \quad w_{11}=10, \quad w_{12}=5, \quad w_{13}=20, \quad w_{14}=60 \\
& w_{15}=120
\end{align*}
$$

Then we have

$$
\begin{equation*}
y_{t}-y\left(x_{t}\right)=h A_{1 t} k_{1}+h^{2} A_{2 t} T+\left(h^{3} / 2\right)\left(A_{3 t} T^{2}+2 A_{4 t} f_{y} T\right)+\cdots \tag{2.15}
\end{equation*}
$$

Similarly we have

$$
\begin{equation*}
e=h \widetilde{A}_{1} k_{1}+h^{2} \tilde{A_{2}} T+\left(h^{3} / 2\right)\left(\widetilde{A_{3}} T^{2}+2 \tilde{A_{4}} f_{y} T\right)+\cdots, \tag{2.16}
\end{equation*}
$$

where $\tilde{A_{1}}=\sum_{i=1}^{q+s} q_{i}, \tilde{A_{2}}=\sum_{i=2}^{q+s} a_{i} q_{i}, \tilde{A_{3}}=\sum_{i=2}^{q+s} a_{i}^{2} q_{i}$ and so on.
If we impose the condition

$$
\begin{equation*}
p_{2 t}=0, \quad c_{i}=a_{i}^{2} / 2, \quad d_{i}=a_{i}^{3} / 3 \quad(i=3,4, \ldots), \tag{2.17}
\end{equation*}
$$

then we have

$$
\begin{align*}
& 2 A_{4 t}=A_{3 t}, \quad 2 B_{2 t}=3 B_{3 t}=B_{1 t}, \quad 2 C_{2 t}=3 C_{3 t}=4 C_{4 t}=C_{1 t}, \tag{2.18}\\
& 2 D_{2 t}=3 D_{3 t}=6 D_{5 t}=4 D_{6 t}=D_{1 t},
\end{align*}
$$

(2.19) $3 a_{2}=2 a_{3}$,
(2.20) $a_{3}^{2} b_{i 3}+3 \sum_{j=4}^{i-1} a_{j}\left(a_{j}-a_{2}\right) b_{i j}=a_{i}^{2}\left(a_{i}-a_{3}\right) \quad(i=4,5, \ldots)$.

Put
(2.21) $L_{i j}=a_{i} \prod_{k=2}^{j}\left(a_{i}-a_{k}\right), \quad M_{i j}=a_{i} \prod_{k=3}^{j}\left(a_{i}-a_{k}\right) \quad(i>j)$,
(2.22) $\quad X_{1}=a_{2}+a_{3}, \quad Y_{1}=a_{2} a_{3}, \quad U_{1}=a_{4}+X_{1}, \quad V_{1}=a_{4} X_{1}+Y_{1}$, $W_{1}=a_{4} Y_{1}$,

$$
X=a_{3}+a_{4}, \quad Y=a_{3} a_{4}, \quad U=a_{5}+X, \quad V=a_{5} X+Y, \quad W=a_{5} Y
$$

$$
U_{2}=a_{6}+U, \quad V_{2}=a_{6} U+V, \quad W_{2}=a_{6} V+W, \quad X_{2}=a_{6} W
$$

$$
\begin{align*}
Q_{1}(t)= & 3 t^{2}-4 X_{1} t+6 Y_{1}, \quad Q_{2}(t)=12 t^{3}-15 U_{1} t^{2}+20 V_{1} t-30 W_{1}, \tag{2.23}\\
Q_{3}(t)= & 3 t^{2}-5 X_{1} t+10 Y_{1}, \quad Q_{4}(t)=3 t^{2}-4 X_{1} t+8 Y_{1}, \\
R_{1}(t)= & 3 t^{2}-4 X t+6 Y, \quad R_{2}(t)=12 t^{3}-15 U t^{2}+20 V t-30 W, \\
R_{3}(t)= & 3 t^{2}-5 X t+10 Y, \quad R_{4}(t)=10 t^{4}-12 U_{2} t^{3}+15 V_{2} t^{2}-20 W_{2} t \\
& +30 X_{2},
\end{align*}
$$

(2.24) $\quad Q_{i}=Q_{i}(1), \quad R_{i}=R_{i}(1) \quad(i=1,2,3,4)$,
(2.25) $\quad 6 v_{1}(t)=t^{2}\left(2 t-3 a_{2}\right), \quad 12 v_{2}(t)=t^{2} Q_{1}(t), \quad 24 v_{3}(t)=t^{3}\left(3 t-4 a_{3}\right)$,
$12 v_{4}(t)=t^{3}\left(t-2 a_{2}\right)$,
(2.26)

$$
P_{i k}=\sum_{j=k+1}^{i-1} M_{j k} b_{i j} \quad(i \geqq k+2), \quad Q_{i k}=\sum_{j=k+2}^{i-1} P_{j k} b_{i j} \quad(i \geqq k+3),
$$

$$
\begin{array}{lll}
P_{i 3}=\sum_{j=4}^{i-1} M_{i j} E_{j} & (i \geqq 5), \quad P_{i 4}=\sum_{j=5}^{i-1} M_{i j} F_{j} & (i \geqq 6), \tag{2.27}\\
P_{i 5}=\sum_{j=6}^{i=1} M_{i j} G_{j} & (i \geqq 7), \quad P_{i 6}=\sum_{j=7}^{i=1} M_{i j} H_{j} & (i \geqq 8), \\
P_{i 7}=\sum_{j=8}^{i-1} M_{i j} J_{j} & (i \geqq 9) . &
\end{array}
$$

3. Construction of the methods

We shall show the following
Theorem. For $q=2,3,4,6$ and $r=0,1,2,3$ there exist a method (1.7) and a method (1.8) for which $p=2,3,4,5$ respectively, and for $s=0,0,1,1$ there exists a formula (1.9) such that $e=O\left(h^{p}\right)$ respectively. The minimum of such r is $0,1,2$ for $(p, q)=(2,2),(3,3),(4,4)$ respectively.

3.1. Case $\boldsymbol{q}=2$

The choice $r=s=0$ and $A_{1 t}=A_{2 t}=\tilde{A}_{1}=0$ yields

$$
\begin{align*}
& p_{1 t}+p_{2 t}=t, \quad 2 a_{2} p_{2 t}=t^{2}, \tag{3.1}\\
& A_{3 t}=-v_{1}(t), \quad 6 A_{4 t}=-t^{3}, \tag{3.2}\\
& q_{1}=-q_{2}, \quad \tilde{A_{2}}=a_{2} q_{2}, \quad \tilde{A}_{3}=a_{2}^{2} q_{2}, \quad \tilde{A_{4}}=0 . \tag{3.3}
\end{align*}
$$

3.2. Case $\boldsymbol{q}=3$

Choosing $r=1$ and $A_{i t}=0(i=1,2,3,4)$, we have

$$
\begin{align*}
& \sum_{i=1}^{4} p_{i t}=t, \quad 2 \sum_{i=2}^{4} a_{i} p_{i t}=t^{2}, \quad 6 \sum_{i=3}^{4} c_{i} p_{i t}=t^{3} \tag{3.4}\\
& \sum_{i=3}^{4} L_{i 2} p_{i t}=v_{1}(t) \tag{3.5}
\end{align*}
$$

Put $\quad n_{i}=L_{i 2}-\left(2-3 a_{2}\right) c_{i} \quad(i=3,4)$.
The choice $t=1$ and $p_{41}=0$ yields

$$
\begin{equation*}
c_{3} \neq 0, \quad n_{3}=0 \tag{3.6}
\end{equation*}
$$

so that from (3.4) and (3.5) we have

$$
\begin{equation*}
2 n_{4} p_{4 t}=a_{2} t^{2}(t-1) \tag{3.7}
\end{equation*}
$$

Hence $p_{4 t} \neq 0$ for $t \neq 1$, so that $r \geqq 1$. If

$$
\begin{equation*}
n_{4} \neq 0 \tag{3.8}
\end{equation*}
$$

then $p_{i t}(i=1,2,3,4)$ are determined from (3.4) and (3.7) for any t and we have

$$
\begin{align*}
& B_{1 t}=L_{43} p_{4 t}-v_{2}(t), \quad B_{2 t}=\left(a_{4}-a_{3}\right) p_{4 t}-v_{3}(t) \tag{3.9}\\
& B_{3 t}=L_{32} b_{43} p_{4 t}-v_{4}(t), \quad B_{4 t}=L_{32} b_{43} p_{4 t}-t^{4} / 24
\end{align*}
$$

Choosing $s=0$ and $\tilde{A_{1}}=\tilde{A_{2}}=0$, we have

$$
\begin{align*}
& \sum_{i=1}^{3} q_{i}=0, \quad \sum_{i=2}^{3} a_{i} q_{i}=0, \tag{3.10}\\
& \tilde{A_{3}}=\left(2-3 a_{2}\right) u, \quad \tilde{A}_{4}=u, \quad \widetilde{B}_{1}=\left(2-3 a_{2}\right) X_{1} u, \quad \tilde{B}_{2}=a_{3} u, \\
& \widetilde{B}_{3}=a_{2} u, \quad \widetilde{B}_{4}=0,
\end{align*}
$$

where $u=c_{3} q_{3} \neq 0$.

3.3. Case $\boldsymbol{q}=4$

The choice $r=2$ and $A_{i t}=B_{i t}=0(i=1,2,3,4)$ yields

$$
\begin{align*}
& \sum_{i=1}^{6} p_{i t}=t, \quad 2 \sum_{i=2}^{6} a_{i} p_{i t}=t^{2}, \quad 6 \sum_{i=3}^{6} c_{i} p_{i t}=t^{3}, \tag{3.12}\\
& 24 \sum_{i=4}^{6} l_{i} p_{i t}=t^{4}
\end{align*}
$$

$$
\begin{align*}
& \sum_{i=3}^{6} L_{i 2} p_{i t}=v_{1}(t), \quad \sum_{i=4}^{6} L_{i 3} p_{i t}=v_{2}(t) \tag{3.13}\\
& \sum_{i=4}^{6}\left(a_{i}-a_{3}\right) c_{i} p_{i t}=v_{3}(t), \quad \sum_{i=4}^{6}\left(\sum_{j=3}^{i-1} L_{j 2} b_{i j}\right) p_{i t}=v_{4}(t)
\end{align*}
$$

Put

$$
n_{i}=L_{i 2}-2\left(1-2 a_{2}\right) c_{i} \quad(i=3,4,5,6)
$$

In order that (3.12) and (3.13) have a solution for $t=1$ and $p_{j 1}=0(j=5,6)$, the following conditions must be satisfied:

$$
\begin{align*}
& c_{3} b_{43} \neq 0, \quad a_{4}=1, \quad a_{3} \neq 1, \tag{3.14}\\
& L_{32}=2\left(1-2 a_{2}\right) c_{3} \\
& \left(a_{4}-a_{3}\right) c_{4}=\left(3-4 a_{3}\right) c_{3} b_{43}, \\
& L_{43}=2 Q_{1} c_{3} b_{43} .
\end{align*}
$$

Since $l_{4}=c_{3} b_{43}$ and $n_{4}=4 a_{2} l_{4}$, it follows that $l_{4} \neq 0$ and $n_{4} \neq 0$.
Put

$$
Z=X_{1}-2 Y_{1}, \quad u_{i}=\sum_{j=4}^{i=1} n_{j} b_{i j} \quad(i=5,6)
$$

Then (3.13) can be rewritten as follows:

$$
\begin{align*}
& 3 \sum_{i=5}^{6} M_{i} p_{i t}=Z t^{3}(t-1) \tag{3.18}\\
& 6 \sum_{i=5}^{6} N_{i} p_{i t}=a_{3} t^{3}(t-1) \tag{3.19}\\
& 6 \sum_{i=5}^{6} u_{i} p_{i t}=a_{2} t^{3}(t-1) \tag{3.20}\\
& 6 \sum_{i=5}^{6} P_{i} p_{i t}=a_{2} t^{2}(t-1)(3-t) \tag{3.21}
\end{align*}
$$

where

$$
\begin{aligned}
& M_{i}=a_{i} L_{i 2}-2 Q_{4} l_{i}-2 a_{3}\left(1-2 a_{2}\right) c_{i} \quad(i=5,6) \\
& N_{i}=\left(a_{i}-a_{3}\right) c_{i}-\left(3-4 a_{3}\right) l_{i}, \quad P_{i}=n_{i}-4 a_{2} l_{i} \quad(i=5,6) .
\end{aligned}
$$

The choice

$$
\begin{equation*}
a_{2} M_{i}=2 Z u_{i}, \quad a_{2} N_{i}=a_{3} u_{i} \quad(i=5,6) \tag{3.22}
\end{equation*}
$$

reduces (3.18) and (3.19) to constant multiples of (3.20). From (3.22) it follows that

$$
\begin{align*}
& 2 a_{i} L_{i} l_{i}=a_{2} a_{i} L_{i 3}-2\left(Z a_{i}-Y_{1}\right) u_{i} \quad(i=5,6) \tag{3.23}\\
& 2 L_{i} c_{i}=\left(3-4 a_{3}\right) a_{i} L_{i 2}-6\left(1-2 a_{3}\right) u_{i} \quad(i=5,6)
\end{align*}
$$

where

$$
\begin{equation*}
L_{i}=a_{i} Q_{4}-2 Y_{1} \quad(i=5,6) \tag{3.24}
\end{equation*}
$$

Hence if

$$
\begin{equation*}
L_{i} \neq 0 \quad(i=5,6) \tag{3.25}
\end{equation*}
$$

then c_{i} and $l_{i}(i=5,6)$ are determined from (3.23) for any given $u_{i}(i=5,6)$ and $a_{j}(j=2,3, \ldots, 6)$.

Suppose $p_{6 t}=0$ for $t \neq 0,1,3$. Then from (3.20) and (3.21) we have $t P_{5}=$ $(3-t) u_{5} \neq 0$, so that P_{5} and u_{5} cannot be constants. Hence we must have $r \geqq 2$.

Eliminating $p_{5 t}$ from (3.21), we obtain

$$
\begin{equation*}
6 M p_{6 t}=t^{2}(t-1) a_{2}\left[(3-t) u_{5}-t P_{5}\right] \tag{3.26}
\end{equation*}
$$

where

$$
\begin{equation*}
M=u_{5} P_{6}-u_{6} P_{5} . \tag{3.27}
\end{equation*}
$$

If

$$
\begin{equation*}
M \neq 0 \tag{3.28}
\end{equation*}
$$

then $p_{6 t}$ is determined from (3.26) for any t and if

$$
\begin{equation*}
b_{54} \neq 0 \tag{3.29}
\end{equation*}
$$

then $p_{5 t}$ is determined from (3.20), because $u_{5}=n_{4} b_{54}$. The coefficients $p_{i t}$ ($i=1,2,3,4$) are obtained from (3.12) and we have

$$
\begin{align*}
& C_{1 t}=\sum_{i=5}^{6} L_{i 4} p_{i t}-w_{1}(t), \quad C_{2 t}=\sum_{i=5}^{6} S_{i} p_{i t}-w_{2}(t), \tag{3.30}\\
& C_{3 t}=\sum_{i=5}^{6}\left(a_{i}-a_{4}\right) T_{i} p_{i t}-w_{3}(t), \quad\left(1-a_{3}\right) C_{4 t}=\sum_{i=5}^{6} U_{i} p_{i t}-w_{4}(t),
\end{align*}
$$

$$
\begin{aligned}
& C_{5 t}=\sum_{i=5}^{6} V_{i} p_{i t}-w_{5}(t), \quad C_{6 t}=\sum_{i=5}^{6}\left(\sum_{j=4}^{i=1} T_{j} b_{i j}\right) p_{i t}-w_{6}(t), \\
& C_{7 t}=\sum_{i=5}^{6}\left(\sum_{j=4}^{i=1} l_{j} b_{i j}\right) p_{i t}-t^{5} / 120, \quad C_{8 t}=\sum_{i=5}^{6} W_{i} p_{i t}-w_{8}(t),
\end{aligned}
$$

where
(3.31) $\quad 60 w_{1}(t)=t^{2} Q_{2}(t), \quad 120 w_{2}(t)=t^{4}\left(12 t^{2}-15 X t+20 Y\right)$,

$$
120 w_{3}(t)=t^{3}\left[8 t^{2}-5\left(3 a_{2}+2 a_{4}\right) t+20 a_{2} a_{4}\right], \quad 60 w_{5}(t)=t^{3} Q_{3}(t)
$$

$$
120 w_{4}(t)=2\left(1-a_{3}\right) t^{2}\left(3 t^{2}-10 c_{3}\right)-120\left(c_{4}-c_{3}\right) v_{3}(t)
$$

$$
120 w_{6}(t)=t^{4}\left(2 t-5 a_{2}\right), \quad 120 w_{8}(t)=t^{4}\left(7 t-5 X_{1}\right),
$$

$$
\begin{align*}
S_{i} & =M_{i 3} c_{i}-a_{4}\left(3-4 a_{3}\right) l_{i}, \quad V_{i}=\sum_{j=4}^{i-1} L_{j 3} b_{i j}, \tag{3.32}\\
U_{i} & =\left(1-a_{3}\right)\left(c_{i}-c_{3}\right)-\left(a_{i}-a_{3}\right)\left(c_{4}-c_{3}\right), \\
W_{i} & =\left(a_{i}-a_{4}\right) l_{i}+\sum_{j=3}^{i-1}\left(a_{j}-a_{3}\right) c_{j} b_{i j} \quad(i=4,5), \\
T_{j} & =\sum_{k=3}^{j-1} L_{k 2} b_{j k} \quad(j=4,5,6)
\end{align*}
$$

The choice $s=1$ and $\widetilde{A_{i}}=0(i=1,2,3,4)$ yields

$$
\begin{align*}
& \sum_{i=1}^{5} q_{i}=0, \quad \sum_{i=2}^{5} a_{i} q_{i}=0, \quad \sum_{i=3}^{5} c_{i} q_{i}=0, \quad \sum_{i=4}^{5} n_{i} q_{i}=0, \tag{3.33}\\
& \tilde{B}_{1}=2 Q_{1} w+L_{53} q_{5}, \quad \tilde{B}_{2}=\left(3-4 a_{3}\right) w+\left(a_{5}-a_{3}\right) c_{5} q_{5}, \\
& \widetilde{B}_{3}=2\left(1-2 a_{2}\right) w+T_{5} q_{5}, \quad \widetilde{B}_{4}=w+l_{5} q_{5}, \\
& \widetilde{C}_{1}=2 U_{1} Q_{1} w+\left(a_{2}+a_{3}+a_{5}\right) L_{53} q_{5}, \tag{3.35}\\
& \widetilde{C}_{2}=\left(3-4 a_{3}\right) X w+\left(a_{3}+a_{5}\right)\left(a_{5}-a_{3}\right) c_{5} q_{5}, \\
& \tilde{C}_{3}=\left(2-a_{2}-4 Y_{1}\right) w+\sum_{j=2}^{4}\left(a_{5} a_{j}-a_{2} a_{3}\right) a_{j} b_{5 j} q_{5}, \\
& \left(1-a_{3}\right) \widetilde{C}_{4}=\left(3-4 a_{3}\right)\left(c_{4}-c_{3}\right) w+\left(1-a_{3}\right)\left(c_{5}-c_{3}\right) c_{5} q_{5}, \\
& \widetilde{C}_{5}=2\left(1-2 a_{2}\right) X_{1} w+\sum_{j=3}^{4}\left(a_{j}+a_{2}\right) L_{j 2} b_{5 j} q_{5}, \\
& \tilde{C}_{6}=a_{2} w+\sum_{j=3}^{4} d_{j} b_{5 j} q_{5}, \quad \tilde{C}_{7}=l_{4} b_{54} q_{5}, \quad \tilde{C}_{8}=Y w+\left(a_{5} l_{5}+g_{5}\right) q_{5},
\end{align*}
$$

where $w=c_{3} b_{43} q_{4}$. Hence if

$$
\begin{equation*}
n_{5} \neq 0 \tag{3.36}
\end{equation*}
$$

then $q_{4} \neq 0$ and $q_{j}(j=1,2,3)$ are determined from (3.33) for any $q_{5} \neq 0$.
For instance the choice

$$
\begin{align*}
& a_{2}=a_{3}=1 / 2, \quad a_{4}=1, \quad a_{5}=1 / 4, \quad a_{6}=3 / 4, \quad b_{32}=1 / 2, \tag{3.37}\\
& b_{54}=b_{64}=1 / 32, \quad b_{65}=0, \quad q_{5}=1 / 3
\end{align*}
$$

yields

$$
\begin{equation*}
b_{21}=1 / 2, \quad b_{31}=b_{41}=b_{42}=0, \quad b_{51}=7 / 32, \quad b_{52}=-b_{53}=5 / 32 \tag{3.38}
\end{equation*}
$$

$$
\begin{equation*}
b_{61}=7 / 32, \quad b_{62}=11 / 32, \quad b_{63}=5 / 32 \tag{3.39}
\end{equation*}
$$

$6 p_{1 t}=t\left(-12 t^{3}+24 t^{2}-17 t+6\right), \quad 24 p_{2 t}=t^{2}\left(7 t^{2}+32 t-31\right)$,
$p_{3 t}=p_{2 t}, \quad 6 p_{4 t}=t^{2}\left(4 t^{2}-8 t+5\right)$,
$3 p_{5 t}=8 t^{2}(t-1)(2 t-1), \quad 3 p_{6 t}=8 t^{2}(t-1)$,
$p_{11}=p_{41}=1 / 6, \quad p_{21}=p_{31}=1 / 3, \quad p_{51}=p_{61}=0$,
$C_{11}=-C_{51}=1 / 120, \quad C_{21}=C_{61}=-C_{31}=-C_{71}=1 / 240$,
$C_{41}=1 / 80, \quad C_{81}=-1 / 60$,

$$
\begin{align*}
& q_{1}=q_{2}=q_{3}=-1 / 8, \quad q_{4}=1 / 24 \tag{3.41}\\
& \widetilde{B}_{1}=-2 \widetilde{B}_{2}=3 \widetilde{B}_{3}=6 \widetilde{B}_{4}=1 / 64, \quad \widetilde{C}_{1}=2 \widetilde{C}_{2}=7 / 256, \quad \widetilde{C}_{4}=3 / 1024 \\
& \widetilde{C}_{3}=2 \widetilde{C}_{7}=4 \widetilde{C}_{6}=-1 / 192, \quad \widetilde{C}_{5}=4 \widetilde{C}_{8}=1 / 128
\end{align*}
$$

3.4. Case $q=6$

We impose the condition (2.17) and assume that $a_{i}(i=2,3, \ldots, 9)$ are all distinct. Choosing $r=3, A_{i t}=B_{i t}=0(i=1,2,3,4)$ and $C_{j t}=0(j=1,2, \ldots, 8)$, we have
(3.42) $p_{1 t}+\sum_{i=3}^{9} p_{i t}=t, \quad 2 \sum_{i=3}^{9} a_{i} p_{i t}=t^{2}, \quad \sum_{i=4}^{9} M_{i 3} p_{i t}=r_{1}(t)$,
(3.43) $\quad \sum_{i=5}^{9} M_{i 4} p_{i t}=r_{2}(t), \quad \sum_{i=6}^{9} M_{i 5} p_{i t}=r_{3}(t)$,

$$
\begin{align*}
& \sum_{i=5}^{9} P_{i 3} p_{i t}=r_{4}(t), \quad \sum_{i=6}^{9} P_{i 4} p_{i t}=r_{5}(t), \quad \sum_{i=6}^{9} Q_{i 3} p_{i t}=r_{6}(t), \tag{3.44}\\
& \sum_{i=6}^{9}\left(a_{i}-a_{5}\right) P_{i 3} p_{i t}=r_{7}(t),
\end{align*}
$$

where

$$
\begin{align*}
& 12 r_{1}(t)=t^{3}\left(3 t-4 a_{3}\right), \quad 12 r_{2}(t)=t^{2} R_{1}(t), \quad 60 r_{3}(t)=t^{2} R_{2}(t), \tag{3.45}\\
& 12 r_{4}(t)=t^{3}\left(t-2 a_{3}\right), \quad 60 r_{5}(t)=t^{3} R_{3}(t), \quad 20 r_{6}(t)=t^{4}\left(2 t-5 a_{3}\right), \\
& 120 r_{7}(t)=t^{3}\left[8 t^{2}-5\left(3 a_{3}+2 a_{5}\right) t+20 a_{3} a_{5}\right] .
\end{align*}
$$

Making use of (2.26), (2.27) and (3.43) and eliminating $p_{5 t}$ and $p_{6 t}$ from (3.44), we have

$$
\begin{align*}
& \sum_{i=7}^{9}\left(\sum_{j=6}^{i-1} M_{i j} F_{j}\right) p_{i t}=r_{5}(t)-F_{5} r_{3}(t) \tag{3.46}\\
& \sum_{i=7}^{9}\left(\sum_{j=5}^{i=2} E_{j} P_{i j}\right) p_{i t}=r_{6}(t)-E_{4} r_{5}(t) \tag{3.47}\\
& \sum_{i=7}^{9}\left(\sum_{j=6}^{i=1} Z_{j} M_{i j}\right) p_{i t}=r_{7}(t)-Z_{5} r_{3}(t) \tag{3.48}\\
& \sum_{i=7}^{9}\left(\sum_{j=6}^{i=1} M_{i j} E_{j}\right) p_{i t}=r_{4}(t)-E_{4} r_{2}(t)-E_{5} r_{3}(t) \tag{3.49}
\end{align*}
$$

where

$$
\begin{equation*}
Z_{j}=E_{j-1}+\left(a_{j+1}-a_{5}\right) E_{j} \quad(j=5,6, \ldots, 9) . \tag{3.50}
\end{equation*}
$$

The choice $t=1$ and $p_{j 1}=0(j=7,8,9)$ yields

$$
\begin{align*}
& 5\left(1-2 a_{3}\right)=5 R_{1} E_{4}+R_{2} E_{5}, \tag{3.51}\\
& R_{3}=R_{2} F_{5} \\
& 2-5 a_{3}=2 R_{3} E_{4} \tag{3.53}\\
& 8-15 a_{3}+10 a_{6}\left(2 a_{3}-1\right)=2\left(12-15 X+20 Y-5 a_{6} R_{1}\right) E_{4} . \tag{3.54}
\end{align*}
$$

Elimination of E_{4} from (3.53) and (3.54) leads to

$$
\left(a_{6}-1\right)\left[2 a_{4}\left(5 a_{3}^{2}-4 a_{3}+1\right)-a_{3}\right]=0 .
$$

Hence we choose

$$
\begin{equation*}
a_{6}=1, \tag{3.55}
\end{equation*}
$$

so that (3.54) coincides with (3.53). If

$$
\begin{equation*}
R_{2} \neq 0, \quad R_{3} \neq 0 \tag{3.56}
\end{equation*}
$$

then E_{4}, E_{5} and F_{5} are determined from (3.53), (3.51) and (3.52) for any given $a_{j}(j=3,4,5,6) ; p_{i 1}(i=1,2,3, \ldots, 6)$ are determined from (3.42) and (3.43); $b_{i j}(j=4,5, \ldots, i-1 ; i=5,6)$ are obtained from (3.26) and (3.27); $b_{i 3}(i=4,5,6)$ are determined from (2.20); $b_{j 2}(j=3,4, \ldots, 6)$ are obtained from (2.17); $b_{i 1}$ ($i=2,3, \ldots, 6$) are determined from (1.6).

We impose the condition

$$
\begin{align*}
& w_{1} \sum_{j=6}^{i=1} F_{j} M_{i j}+w_{2} \sum_{j=5}^{i-2} E_{j} P_{i j}+w_{3} \sum_{j=6}^{i-1} Z_{j} M_{i j} \tag{3.57}\\
& \quad+w_{4} \sum_{j=6}^{i=1} E_{j} M_{i j}=0 \quad(i=7,8,9)
\end{align*}
$$

so that (3.47) can be expressed as a linear combination of (3.46), (3.48) and (3.49) for any t. Then by (3.46)-(3.49) we have
(3.58) $3\left(1-4 F_{5}\right) w_{1}+\left(1-3 E_{4}\right) w_{2}+4\left(1-3 Z_{5}\right) w_{3}-12 E_{5} w_{4}=0$, $2\left(3 U F_{5}-X\right) w_{1}+\left(2 X E_{4}-a_{3}\right) w_{2}+\left(6 U Z_{5}-3 a_{3}-2 a_{5}\right) w_{3}$

$$
+2\left(1-3 E_{4}+3 U E_{5}\right) w_{4}=0
$$

$$
\left(Y-2 V F_{5}\right) w_{1}-Y E_{4} w_{2}+\left(a_{3} a_{5}-2 V Z_{5}\right) w_{3}-\left(a_{3}-2 X E_{4}+2 V E_{5}\right) w_{4}=0
$$

$$
W F_{5} w_{1}+W Z_{5} w_{3}+\left(W F_{5}-Y E_{4}\right) w_{4}=0
$$

Using (3.51), (3.52) and (3.53) and setting

$$
\begin{equation*}
w_{4}=a_{3} a_{5}\left(a_{5}-a_{4}\right), \tag{3.59}
\end{equation*}
$$

we have from (3.58)

$$
\begin{align*}
& w_{1}=-\left(a_{3} a_{5}+t_{1} E_{4}+2 t_{2} E_{4}^{2}\right), \quad w_{2}=-\left(a_{3} a_{5}+2 t_{2} E_{4}\right), \tag{3.60}\\
& w_{3}=a_{3} a_{5}+2 a_{4}\left(a_{4}-2 a_{3}\right) E_{4},
\end{align*}
$$

where

$$
\begin{equation*}
t_{1}=2 a_{4}\left(a_{3}+a_{5}\right)-5 a_{3} a_{5}, \quad t_{2}=a_{4}\left(4 a_{4}-5 a_{3}\right)-3 a_{5}\left(a_{4}-a_{3}\right) \tag{3.61}
\end{equation*}
$$

Expressing $P_{j k}(k=5,6, \ldots, j-2 ; j=7,8,9)$ in terms of $M_{i j}(j=6,7, \ldots, i-1$; $i=7,8,9$), substituting them into (3.37) and equating the coefficients of $M_{i j}$ to zero, we have

$$
\begin{align*}
& w_{1} F_{6}+w_{2} E_{5} G_{6}+w_{3} Z_{6}+w_{4} E_{6}=0 \tag{3.62}\\
& w_{1} F_{7}+w_{2}\left(E_{5} G_{7}+E_{6} H_{7}\right)+w_{3} Z_{7}+w_{4} E_{7}=0 \\
& w_{1} F_{8}+w_{2}\left(E_{5} G_{8}+E_{6} H_{8}+E_{7} J_{8}\right)+w_{3} Z_{8}+w_{4} E_{8}=0
\end{align*}
$$

Hence if

$$
\begin{equation*}
w_{1} w_{2} E_{5} E_{6} \neq 0 \tag{3.63}
\end{equation*}
$$

then F_{6}, G_{7} and H_{8} are determined for any given $a_{j}(j=3,4,5,6), G_{6}, H_{7}, F_{7}$, $F_{8}, G_{8}, J_{8}, E_{i}$ and $Z_{i}(i=6,7,8)$.

Put

$$
\begin{align*}
& E_{i+4}=f_{i} E_{i+5}, \quad F_{i+5}=h_{i} E_{i+5} \quad(i=1,2,3), \tag{3.64}\\
& z_{1}=f_{2}-f_{1}+a_{8}-a_{7}, \quad z_{2}=f_{3}-f_{2}+a_{9}-a_{8} \tag{3.65}
\end{align*}
$$

Then the system of linear equations (3.46), (3.48) and (3.49) has a solution $p_{i t}$ $(i=7,8,9)$ if and only if

$$
\begin{equation*}
f_{2} f_{3} E_{8}\left[z_{1}\left(h_{3}-h_{2}\right)-z_{2}\left(h_{2}-h_{1}\right)\right] \neq 0 . \tag{3.66}
\end{equation*}
$$

The coefficients $p_{i t}(i=1,3,4,5,6)$ are determined from (3.42) and (3.43); $b_{i j}$ ($j=1,2, \ldots, i-1 ; i=7,8,9$) are obtained from (2.26), (2.27), (2.20), (2.17) and (1.6).

The choice $s=1, \tilde{A}_{i}=\widetilde{B}_{i}=0(i=1,2,3,4)$ and $q_{2}=0$ yields

$$
\begin{align*}
& q_{1}+\sum_{i=3}^{7} q_{i}=0, \quad \sum_{i=3}^{7} a_{i} q_{i}=0, \quad \sum_{i=4}^{7} M_{i 3} q_{i}=0, \tag{3.67}\\
& \sum_{i=5}^{7} M_{i 4} q_{i}=0, \quad \sum_{i=6}^{7}\left(\sum_{j=5}^{i=1} M_{i j} E_{j}\right) q_{i}=0, \\
\tilde{C}_{1}= & \sum_{i=6}^{8} M_{i 5} q_{i}, \quad \widetilde{C}_{5}=3 \widetilde{C}_{6}=\sum_{i=6}^{7} P_{i 4} q_{i}, \tag{3.68}\\
\tilde{C}_{7}= & \widetilde{C}_{5} / 2-\sum_{i=6}^{7} Q_{i 3} q_{i}, \quad 2 \widetilde{C}_{8}=\widetilde{C}_{1}+\widetilde{C}_{5}-2 \sum_{i=6}^{7}\left(a_{i}-a_{5}\right) P_{i 3} q_{i}
\end{align*}
$$

For instance, setting

$$
\begin{align*}
& a_{3}=1 / 4, \quad a_{4}=1 / 2, \quad a_{5}=3 / 4, \quad a_{6}=1, \quad a_{7}=3 / 8, \quad a_{8}=5 / 8, \tag{3.69}\\
& a_{9}=7 / 8, \quad G_{6}=0, \quad E_{6}=-16 / 7, \quad H_{7}=0, \quad E_{7}=F_{7}=32 / 7, \\
& F_{8}=G_{8}=J_{8}=0, \quad q_{2}=0, \quad q_{7}=2 / 9,
\end{align*}
$$

we have
$a_{2}=b_{21}=1 / 6, \quad b_{31}=1 / 16, \quad b_{32}=3 / 16, \quad b_{41}=1 / 4, \quad b_{42}=-3 / 4$,
$b_{43}=1, \quad b_{51}=3 / 16, \quad b_{52}=b_{53}=0, \quad b_{54}=9 / 16, \quad b_{61}=-4 / 7$,
$b_{62}=3 / 7, \quad b_{63}=-b_{64}=12 / 7, \quad b_{65}=8 / 7, \quad b_{71}=111 / 1792$,
$b_{72}=-729 / 3584, \quad b_{73}=621 / 896, \quad b_{74}=-909 / 3584, \quad b_{75}=69 / 896$,
$b_{76}=0, \quad b_{81}=279 / 896, \quad b_{82}=-615 / 896, \quad b_{83}=327 / 448$,
$b_{84}=249 / 896, \quad b_{85}=1 / 64, \quad b_{86}=-3 / 128, \quad b_{87}=0$,
$b_{91}=-31 / 1536, \quad b_{92}=381 / 512, \quad b_{93}=-53 / 64, \quad b_{94}=151 / 512$,
$b_{95}=1 / 192, \quad b_{96}=49 / 512, \quad b_{97}=7 / 12, \quad b_{98}=0$,
(3.71) $945 p_{9 t}=128 t^{2}(t-1)\left(1084 t^{2}-1449 t+468\right)$,
$45 p_{8 t}=256 t^{2}(t-1)\left(88 t^{2}-119 t+39\right)$,
$1215 p_{7 t}=128 t^{2}(t-1)\left(1724 t^{2}-2457 t+828\right)$,
$45\left(128 p_{6 t}+3 p_{7 t}-5 p_{8 t}+35 p_{9 t}\right)=64 t^{2}\left(192 t^{3}-360 t^{2}+220 t-45\right)$,
$3\left(16 p_{5 t}+64 p_{6 t}-p_{7 t}+5 p_{8 t}+35 p_{9 t}\right)=32 t^{2}(2 t-1)^{2}$,
$3\left(8 p_{4 t}+24 p_{5 t}+48 p_{6 t}+3 p_{7 t}+15 p_{8 t}+35 p_{9 t}\right)=8 t^{2}(8 t-3)$,
$2 p_{3 t}+4 p_{4 t}+6 p_{5 t}+8 p_{6 t}+3 p_{7 t}+5 p_{8 t}+7 p_{9 t}=4 t^{2}$,
$p_{1 t}+\sum_{i=3}^{9} p_{i t}=t$,
(3.72) $\quad p_{11}=p_{61}=7 / 90, \quad p_{21}=0, \quad p_{31}=p_{51}=16 / 45, \quad p_{41}=2 / 15$,
$D_{1,1}=D_{12,1}=0, \quad D_{4,1}=2 D_{7,1}=D_{11,1}=-D_{13,1}=-1 / 960$,
$D_{8,1}=D_{9,1}=-D_{15,1}=-1 / 5760, \quad D_{10,1}=-D_{14,1}=1 / 2880$,
(3.73) $\quad q_{1}=11 / 576, \quad q_{3}=-7 / 48, \quad q_{4}=-3 / 32, \quad q_{5}=-1 / 144$,
$q_{6}=1 / 192$,
(3.74) $\quad \tilde{C}_{1}=1 / 1024, \quad \tilde{C}_{5}=3 \tilde{C}_{6}=31 / 14336, \quad \tilde{C}_{7}=-31 / 57344$,
$\widetilde{C}_{8}=121 / 114688$,
$\tilde{D}_{1}=35 / 16384, \quad \tilde{D}_{4}=757 / 516096, \quad \tilde{D}_{7}=87 / 32768$,

$$
\begin{aligned}
& \tilde{D}_{8}=921 / 458752, \quad \tilde{D}_{9}=1665 / 917504, \quad \tilde{D}_{10}=533 / 49152, \\
& \tilde{D}_{11}=1 / 4096, \quad \tilde{D}_{12}=93 / 28672, \quad \tilde{D}_{13}=31 / 28672, \\
& \tilde{D}_{14}=31 / 172032, \quad \tilde{D}_{15}=93 / 229376 .
\end{aligned}
$$

4. Numerical examples

The following six problems are solved by the method (3.37)-(3.39) and the method (3.69)-(3.71) with $h=0.5$.

Problem 1. $y^{\prime}=y, y(0)=1$.
Problem 2. $\quad y^{\prime}=2 x y, \quad y(0)=1$.
Problem 3. $y^{\prime}=-y^{2}, y(0)=1$.
Problem 4. $y^{\prime}=1-y^{2}, \quad y(0)=0$.
Problem 5. $\quad y^{\prime}=-5 y, y(0)=1$.
Problem 6. $\quad y^{\prime}=y-2 x / y, y(0)=1$.
The errors $e_{t}=y\left(x_{t}\right)-y_{t}(t=1 / 2,1)$ are listed in Table 1.
For $h=0.5$ and $t=0.2$ (0.2) 0.8 the same problems are solved by Horn's method of order 4 and the method (3.37)-(3.39), which are denoted as H and S respectively. The errors are listed in Table 2.

In the forthcoming paper [4] it will be shown that there exist methods with $(p, q)=(4,4)$ and $(5,6)$ that can provide y_{t} for any $t>0$ with one additional evaluation of f. For such methods it is not preferable to use the formulas proposed in this paper if the number of interpolation points is less than r.

Table 1.

Prob	order 4		order 5	
	$e_{1 / 2}$	e_{1}	$e_{1 / 2}$	e_{1}
1	$8.99 E-5$	$2.84 E-4$	$-1.27 E-6$	$-1.06 E-6$
2	$1.01 E-4$	$1.71 E-4$	$3.10 E-5$	$-4.88 E-5$
3	$8.18 E-4$	$-9.97 E-6$	$-1.77 E-5$	$-1.70 E-5$
4	$1.68 E-4$	$2.96 E-4$	$8.60 E-7$	$1.52 E-5$
5	$-2.75 E-1$	$-5.66 E-1$	$-1.41 E-1$	$-1.34 E-1$
6	$-5.18 E-1$	$-1.29 E-3$	$-2.00 E-5$	$-2.05 E-5$

Table 2.

References

[1] C. W. Gear, Runge-Kutta starters for multistep methods, ACM Trans. Math. Software 6 (1980), 263-279.
[2] M. K. Horn, Fourth- and fifth-order, scaled Runge-Kutta algorithms for treating dense output, SIAM J. Numer. Anal., 20 (1983), 558-568.
[3] H. Shintani, Block one-step methods for starting multistep methods, Hiroshima Math. J., 17 (1987), 1-11.
[4] H. Shintani, Scaled one-step methods with one interpolation point, submitted to Hiroshima Math. J.

Department of Mathematics,
Faculty of School Education, Hiroshima University

