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1. Introduction

Consider the initial value problem

(1.1) y'=nχ,y), y(*o) = yo,

where the function /(x, y) is assumed to be sufficiently smooth. Let y(x) be the

solution of (1.1), let

(1.2) xt = x0 + th (t>0,h>0)

and denote by yt an approximation of y(xt), where h is a stepsize.

We consider block one-step methods of the form

(1.3) yt = yo + hΣ?

that provide yi for any values of ί, where

(1.4) fci=/(xo,3Ό),

(1.5) kt = f(xo + ath, yo + h Σj=l bijkj) (i = 2, 3,..., m),

(1.6) at = Σiβ\bij, a^O (i = 2, 3,..., m),

at and btj (7 = 1, 2,..., ί — 1; i = 2, 3,..., m) are constants and pk ί (fc=l, 2,..., m)

are functions of ί. Gear [1] has shown that for m = 3, 4, 6 there exists a method

(1.3) of order 2, 3, 4 respectively and that m must not be less than nine to obtain

a method of order 5.

Let flbea specified value of t. Then in our previous paper [3] we have

shown that for m = 3, 4, 6, 9 there exists a method (1.3) which is of order 2, 3, 4, 5

respectively for tΦa and is of order 3, 4, 5, 6 for t — a respectively.

On the basis of one-step methods of order p

(1.7) yx =3Ό + ΛΣ?=iftifc|,

Horn [2] has proposed scaled one-step methods

(1.8) yt = yo + hΣ
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that provide yt for any values of t (tφ\) with r additional derivative evaluations,

where kt (i= 1, 2,..., q + r) satisfy (1.4), (1.5) and (1.6) with m replaced by q + r.

Using Fehlberg's (4)5 formula with q = β, she has constructed a method (1.8)

of order 4 with r = l and that of order 5 with r = 5. A scaled one-step method

can be considered as a block one-step method (1.3) which is of order p for t=\

at the q-th stage, and it is well known that for p = 2, 3, 4, 5 the minimum of q

is 2, 3, 4, 6 respectively. Hence we require that the methods (1.7) and (1.8) are

of the same order p and raise the question whether there exists or not a scaled

one-step method (1.8) of order p with r — m — q for these values of q.

Let

(1.9) e = hΣUiqιkt.

Then it will be shown that for q = 2, 3, 4, 6 and r = 0, 1, 2, 3 there exist a method

(1.7) and a method (1.8) for which p = 2, 3, 4, 5 respectively, that for s = 0, 0, 1, 1

there exists a formula (1.9) such that yx + e is a method of order p— 1 respectively,

and that the minimum of such r is 0, 1, 2 for (p, g) = (2, 2), (3, 3), (4, 4) respectively.

The quantity e can be used to control the stepsize. Finally numerical examples

are presented.

2. Preliminaries

Let

(2.1) c^ΣΆajbtj, d^Σteafaj, et = Σfe a3jbtJ 0 = 3,4,...),

(2.2) /, = Σj=\ cjbu, mt = Σ}=?3 djbφ gt = ΣTλ ^AJ 0 = 4, 5,...).

Let D be the differential operator defined by

(2.3) D J^ J
d̂y

and put

(2.4) DJf(xo,yo)=TJ, DJfy(x0,y0) = SJ 0 = 1,2,...),

(D/)2(x0, y0) = P, (Dfy)
2(x0, y0) = Q, Dfyy(x0, y0) = R,

Λ(*0, ϊθ) = fy fyy(Xθ, y0) = fyy •

Then yt can be expanded into power series in h as follows:

(2.5) y, = yo + hA1k1 + h*A2T+ (h^2\)(A3T
2 + 2AJyT) + (Λ*/3!)(B,T3

(/i5/4!)(C1T
4+ \2C2TS2
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+ 24CsfyTS) + (

+ 60D5fyyTT2 + 60D6PR + 12ODΊTQ + 60DsfyfyyP + 60D9fyTS2

where

(2.6) Aί = ΣΓ=i Pu, A2 = ΣΓ=2 aiPit,

(2.7) A3 = Σf=2 afpit, Bι = Σ?= 2 a?pft, Ci = Σ?=2

*>i = ΣΓ-2«?Λ»,

(2.8) X4 = ΣΓ=3 c,pft, β 2 = ΣΓ=3«icίpi,, B3 = ΣΓ=3

C 2 = Σr=3 α?c ;p i (, C 3 = ΣΓ=3 βίdίPi,, C 4 = Σ

C 5 = ΣΓ-3 e (p i (, Γ>2 = Σf=3 a\ciPit, D3 = ΣT=3 afdiPu,

ΐ>x = ΣΓ=3 afiiPit, D5 = ΣΓ=3 cAPtt, D6 = Σ™=3 OiC2?,-,

(2.9) β 4 = ΣΓ=4 /(Pit, C 6 = ΣΓ-4 miPit, C 7 = Σf= 5 ( Σ J - i /J

(2.10) D8 = ΣΓ-4 (2c,/,+ ΣJ-3 c5&y)pft, £>9 = Σ Γ=4(flfΊ + ΣJ=3 fl?cΛ;)P«'

Dio = ΣΓ-4 (««"»<+Σ5-3Myftϋ)Pi«»

£>u = ΣT-slΣ'ΓMaih + ajlj + gjWijUPu,

D12 = ΣΓ-3 (Σ}=2 αj&u)Pι,. £>i3 = ΣΓ-4(ΣJ-3 e^y)?*,

DlA = ΣΓ-5 (Σ}=4 WJMPI.. Di5 = Σf=β [ΣJ-i (Σi=i W ϋ l f v

Put

(2.11) AU = A,-U A2t = A2-t2l2, A3t = A3-P/3, A4t = A4 - ί3/6,

(2.12) Bίr = β, - ί4/(4Mi) (i = l ,2 ,3 ,4) , CJt = Cj - tsl(5vj) (; = 1, 2,..., 8),

A* = i>* - ί6/(6wt) (fc=l,2,...,15),

where

(2.13) ut = i (i = l, 2, 3), « 4 = 6, r, = i ( i = l , 2, 3, 4), v5 = 4, o 6 = 12,

»7 = 24, y8 = 24/7.

(2.14) Wi = i (( = 1,2,3,4), w5 = 6, w6 = 4, w7 = 8, w8 = 60/13,

w9 = 15/4, w 1 0 = 20/3, Wn = 10, w1 2 = 5, w1 3 = 20, w1 4 = 60,

w1 5 = 120.
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Then we have

(2.15) y, - y(xt) = hAukt + h2A2tT + (h.η2)(A3,T
2 + 2A4JyT) +•••.

Similarly we have

(2.16) e = hΛtkι + h2A2T+ (h3l2)(A3T
2 + 2AJyT) +•••,

where Aί = Σ P ί €«. A2 = Σf-ί a^i, A3 = ΣUz aUi and so on.
If we impose the condition

(2.17) p2t = 0, ci = α?/2, dt = α?/3 (i = 3, 4,...),

then we have

(2.18) 2A4t = A3t, 2B2, = 3B3t = Blt, 2C2, = 3C 3 ( = 4C 4 t = C l r ,

2Z)2l = 3D3t = 6D5ί = 4D6t = D 1 ( ,

(2.19) 3α2 = 2α3,

(2.20) alba + 3 Σ ί - U / β y - β i ) ^ = aKa,-a3) (i = 4, 5,...).

Put

(2.21) Ly = fl<Πί-2(fli-β*), ^ ^ α j Π ί - s ^ i - β t ) 0 > Λ ,

(2.22) X1 = a2 + a3, Y, = α2α3, Uι = a4 + Xlt V, = α4X, + Yu

W, = a4Yt,

X = a3 + aA, Y=a3a4, U = α5 + X, V=a5X+Y, W= asY,

U2 = ab+U, V2 = a6U+V, W2 = a6V + W, X2 = a6W,

(2.23) Q^t) = 3ί2 - ΛX^t + όYj, Q2(t) = 12ί3 - 151V2 + 20Fjί - 3 0 ^ ,

ρ 3 (0 = 3ί2 -5X1t + 10Y!, ρ 4 (0 = 3ί2 - 4xtt + sγt,

R^t) = 3ί2 - AXt + 6Y, R2(t) = 12ί3 - 15Ut2 + 20Vt - 30W,

R3(t) = 3ί2 - 5Xt + IOY, R4(t) = 10ί4 - 12(72t
3 + 15F2ί

2 - 20W2ί

+ 30X2,

(2.24) Qt = Q{.l), Ri = R,{l) 0 = 1 , 2 , 3 , 4 ) ,

(2.25) 6Vι(t)=t2(2ί-3a2), 12v2(t) = t'Q^t), 24v3(t) = t*(3t-4a3),

(2.26) Pik = Σ}=i
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(2.27) P i 3 = Σr=4M. A

3. Construction of the methods

We shall show the following

THEOREM. For q = 2, 3, 4, 6 and r = 0, 1, 2, 3 ί/zere ex/sί α method (1.7)

a method (1.8) for which p = 2, 3, 4, 5 respectively, and for s = 0, 0, 1, 1 ί/zere exists

a formula (1.9) such ί/iaί e = O(/zp) respectively. The minimum of such r is

0, 1, 2/or (p, tf) = (2, 2), (3, 3), (4, 4) respectively.

3.1. Case # = 2

The choice r = s = 0 and Alt = A2t = Λ1=0 yields

(3.1) p u + jp2f = ί, 2α 2 p 2 ί = t2,

(3.2) A3f = - vt(t)9 6A4t = - t\

(3.3) qί = - g2, X, = α2̂ f2, J 3 = a%q2, AA = 0.

3.2. Case q = 3

Choosing r = l and Ait = 0 ( i = l , 2, 3, 4), we have

(3.4) ΣU

(3.5) Σf=3

Put ni = Li2-(2-3a2)ci (i = 3,4).
The choice ί = l and ^41 = 0 yields

(3.6) c 3 ^ 0, n 3 = 0,

so that from (3.4) and (3.5) we have

(3.7) 2nιpM = a2t\t-\).

Hence p^φO for ί # 1, so that r^ 1. If

(3.8) n 4 # 0,

then pit (i = 1, 2, 3, 4) are determined from (3.4) and (3.7) for any t and we have

(3.9) Bu = L43p4t - i?2(ί), 5 2 f = (a4-az)pM - v3(t),

4 f - ί4/24.
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Choosing s = 0 and A1=A2 = 0, we have

(3.10) Σ?=i<7/ = 0, ΣUaiqi = 0,

(3.11) A3 = (2-3α2)w, J 4 = w, 5X = (2-3a2)X1u9

5 3 = a2u, 5 4 = 0,

where u = c3q3φQ.

3.3. Case ^ = 4

The choice r = 2 and Xίf = J5if = 0 (i = l, 2, 3, 4) yields

(3.12) ΣUPit = t, 2ΣU<*tPu = t2, 6Σ

(3.13)

Put

ni = Li2-2(l-2a2)ci (/= 3, 4, 5, 6).

In order that (3.12) and (3.13) have a solution for ί = l and Pji=0 0 = 5, 6),
the following conditions must be satisfied:

(3.14) c3b43Φθ, α4 = l, α3 # 1»

(3.15) L3 2 = 2(l-2α 2)c 3,

(3.16) (α 4 -α 3 )c 4 = (3-4α 3)c 3b 4 3,

(3.17) L4 3 = 2Q1c3fc43.

Since /4 = c364 3 and n4 = 4a2l4, it follows that lAφ0 and n 4 #0.
Put

Z = Xί-2Y1, u^Σμlnjbij (ί = 5,6).

Then (3.13) can be rewritten as follows:

(3.18) 3Σ

(3.19) 6Σ?

(3.20) 6Σf

(3.21) 6Σf=5ί
>

ίP ί ί = α 2 ί 2 ( ί- l)(3-ί),
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where

Mt = atLi2 - 2QJt - 2a3(l-2a2)ci (f = 5, 6),

Ni = (ai-a3)ci-(3-4a3)lh Pi = ni-Aa2li (ί = 5, 6).

The choice

(3.22) a2Mi = 2Zui, a2Nt = a2ut (ί = 5, 6)

reduces (3.18) and (3.19) to constant multiples of (3.20). From (3.22) it follows

that

(3.23) 2aihi\i = a2atLi3 - 2(Zat- Y±)Ui (i = 5, 6),

2 L Λ = (3-4α 3 )α ί L ί 2 - 6(\-2a3)Ui (/ = 5, 6),

where

(3.24) ^ = ^ 4 - 2 ^ 0 = 5,6).

Hence if

(3.25) L 4 # 0 (i = 5,6),

then cf and /f (/ = 5, 6) are determined from (3.23) for any given ut (i = 5, 6) and

α y ( j = 2,3,...,6).

Suppose p6t = 0 for ί^O, 1, 3. Then from (3.20) and (3.21) we have tP5 =

(3 — t)u5φ0, so that P 5 and u5 cannot be constants. Hence we must have r ^ 2 .

Eliminating p5t from (3.21), we obtain

(3.26) 6Mp6t = t2(t-

where

(3.27) M = u5P6-u6P5.

If

(3.28) M ?έ 0,

then p6t is determined from (3.26) for any t and if

(3.29) b 5 4 * 0,

then p5t is determined from (3.20), because M5 = n4f»54. The coefficients pit

(ί = l, 2, 3, 4) are obtained from (3.12) and we have

(3.30) Cu = ΣULuPu ~ wΛO, C 2 r = ΣU SiPit - w2(t),

c3t = Σf=5(β l -«4)r,p i t - w3(o, ( l-03)04, = Σ?= 5 uiPit -
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c5t = ΣU viPi, - w5(0, c 6 ( = ΣU (Σιί=\ TjbjPi, - w6(t),

c 7 , = Σf-s (Σj =4 hbtJ)Pu - ίs/i20, c 8 ( = ΣU wiVit - w8(o,

where

(3.31) όOwjO) = t2Q2(t), 120w2(ί) = i4(12i2-15Xi + 20y),

120w3(ί) = ί3[8ί2-5(3α2+2α4)ί + 20α2α4], 60w5(ί) = ί3Q3(ί),

120w4(ί) = 2(l-α3)ί2(3ί2-10c3) - 120(c4-c3)r3(0,

120w6(ί) = t\2t-5a2), 120w8(ί) = ^(ΉSX,),

(3.32) S, = M f 3 C ί - aA(3-4a3)lt, V, = Σ ί = i ^ 3 * y ,

l/, = ( l - α 3 ) ( c f - c 3 ) - (fli-α 3)(c 4-c 3),

^ = (βi- β*)/ι + ΣΓ=3 (fly- «3)c^y (' = 4, 5),

Tj=ΣULk2bjk 0 = 4,5,6).

The choice s = 1 and ̂  = 0 ( ( = 1, 2, 3, 4) yields

(3.33) ΣUιQt = O, ΣUia,q, = 0, ΣL3c,q, =

(3.34) 5 , = 2 ( 2 ^ + L53ήf5, β 2 = (3-4α 3)w + (α

β 3 = 2(1 - 2α2)w +T5q5, 5 4 = w + /5g5,

(3.35) Ci = 2O&xw + (a2 + a3 + a5)L53q5,

C2 = (3-4a3)Xw + (a3 + a5)(a5-a3)c5q5,

C3 = (2-02-4^)^ + Σή.2ίa5aj

( 1 - Λ 3 ) C 4 = (3-4a3)(c4-c3)w + (l-a3)(c5-c3)c5qs,

C5 = 2 ( l - 2 β 2 ) X l W + Σ1-3(aj + a2)LJ2b5Jq5,

C6 = a2w + Σ*=3 djb5jq5, CΊ = lAb54q5, C8 = Yw + (a5l5+g5)q5,

where w = c3b^3q4. Hence if

(3.36) n 5 Φ 0,

then ή'47
έ0 and qj (j = ί, 2, 3) are determined from (3.33) for any q5^0.

For instance the choice

(3.37) α 2 = a 3 = l/2, a4 = 1, a5 = 1/4, a6 = 3/4, 6 3 2 = 1/2,

b 5 4 = b 6 4 = 1/32, fc65 = 0, g5 = 1/3

yields

(3.38) 6 2 1 = 1/2, b31 = fe41 = 6 4 2 = 0, bst = 7/32, b52 = - fc53 = 5/32,
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b62 = 11/32, ί>63

(3.39) 6plt = ί(-12f3 + 24ί2-17f + 6), 24p2t = ?2(7/2 + 32ί-31),

3p5, = 8 ί 2 ( ί - l ) ( 2 ί - l ) , 3p6t =

(3.40) p u = p 4 1 = 1/6, p21 = p 3 1 = 1/3, p5i = p6ί = 0,

C n = - C 5 1 = 1/120, C 2 1 = C 6 1 = - C 3 1 = - C 7 1 = 1/240,

C 4 1 = 1/80, C 8 1 = - 1/60,

(3.41) qι=q2 = q3=- 1/8, q4 = 1/24,

β j = -2B2 = 3B3 = 6B4 = 1/64, C t = 2C2 = 7/256, C 4 = 3/1024,

C 3 = 2 ^ 7 = 4C 6 = - 1/192, C5 = 4C8 = 1/128.

3.4. Case? = 6

We impose the condition (2.17) and assume that αf (i = 2, 3,..., 9) are all

distinct. Choosing r = 3, Ait = Bit = 0 ( i = l , 2 , 3, 4) and CJt = 0 ( j = l, 2,..., 8),

we have

(3.42) p l t + Σ ? = 3 Λ . = *, 2 Σ ? = 3 « i P , , = ί2, Σ?=4M i 3 p ί ( = r 1 (ί),

(3.43) Σ?=s M i 4 p i ( = r2(t), Σ?=β M ί 5 p i ( = r 3 (ί),

(3-44) Σ?=

where

(3.45) 12rx(i) = ί 3 (3ί-4α 3 ), 12r2(ί) = t'R^t), 60r3(ί) = t2R2(t),

12r4(ί) = ί 3 ( ί-2α 3 ) , 60r5(ί) = ^ 3 ( ί ) , 20r6(ί) = t\2t-5a3),

120r7(ί) =

Making use of (2.26), (2.27) and (3.43) and eliminating p5t and p6t from (3.44),

we have

(3-46) Σ?=7 ( Σ j ΐ β MijFβpi, = r5(t) - F5r3(t),

(3.47) Σ?=7 ( Σ j - l £,Pu)P i t = rβ(t) - E4r5(t),

(3.48) Σ?= 7 ( Σ j=έ ZyWw)Pι. = r7(0 - Z5r3(t),

(3.49) Σ?=7 (Σj-έ AfyEj)]!,, = r4(ί) - £ 4 r 2 ( ί ) - £ 5 r 3 ( ί ) ,

where
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(3.50) Z, = £,_, + (aJ+ι-a5)Ej 0 = 5, 6,..., 9).

The choice /= 1 and pJ1 = 0 0 = 7, 8, 9) yields

(3.51) 5(l-2a3) = 5R1E4 + R2E5,

(3.52) R3 = R2F5,

(3.53) 2 - 5 α 3 = 2/?3£4,

(3.54) 8 - 15a3 + 10α6(2α3-l) = 2(12-15Λ: + 20y-5α 6Λ 1)£ 4.

Elimination of £ 4 from (3.53) and (3.54) leads to

( f l 6 -l)[2α 4 (5αi-4α 3 + l ) - α 3 ] = 0 .

Hence we choose

(3.55) a6 = 1,

so that (3.54) coincides with (3.53). If

(3.56) R2ΦO, R3Φ0,

then E4, E5 and F5 are determined from (3.53), (3.51) and (3.52) for any given

aj (7 = 3, 4, 5, 6); pn (i = 1, 2, 3,..., 6) are determined from (3.42) and (3.43);

feiy (7 = 4, 5,..., ϊ - 1 ; ί = 5, 6) are obtained from (3.26) and (3.27); bi3 (i = 4, 5, 6)

are determined from (2.20); bj2 (7 = 3, 4,..., 6) are obtained from (2.17); b f l

(i = 2, 3,..., 6) are determined from (1.6).

We impose the condition

(3.57) W l Σ j=έ ^yM iy + w2 Σ j=3 ^ Λ + w3 Σ j=έ 2 y M ί y

+ w 4 Σ j = έ ^ Mo. = 0 (ί = 7,8,9)

so that (3.47) can be expressed as a linear combination of (3.46), (3.48) and (3.49)

for any t. Then by (3.46)-(3.49) we have

(3.58) 3(l-4F5)w1 + (l-3£ 4)w 2 + 4(l-3Z5)w3 - 12E5w4 = 0,

2(3UF5-X)wί + (2XE4-a3)w2 + (6UZ5-3a3-2a5)w3

! - 7£4w2 + (a3a5-2VZ5)w3 - (a3-2XE4 + 2VE5)w4r = 0,

WF5wί + PFZ5w3 + (WF5- 7£4)w4 = 0.

Using (3.51), (3.52) and (3.53) and setting

(3.59) w4 = α3α5(tf5 - α 4 ) ,
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we have from (3.58)

(3.60) wί = - (fl3α5 + ί 1 £ 4 + 2ί2£J), w2 = - (α 3 α 5 + 2 ί 2 £ 4 ) ,

w3 = a3a5 + 2 α 4 ( α 4 - 2 α 3 ) £ 4 ,

where

(3.61) rx = 2aAr{a3 + a5) - 5α 3α 5, ί2 = α 4 (4α 4 -5α 3 ) - 3 α 5 ( α 4 - α 3 ) .

Expressing P 7 fc (k = 5, 6,...J — 2; j = 7, 8, 9) in terms of M o (j = 6, 7,...,/ — 1 ;

i = 7, 8, 9), substituting them into (3.37) and equating the coefficients of Mu to

zero, we have

(3.62) wίF6 + w2E5G6 + w 3Z 6 + w4E6 = 0,

3ZΊ + w 4 £ 7 = 0,

, 8 2 ( 5 8 6 8 7 8 ) + w3Z8 + w 4 £ 8 = 0.

Hence if

(3.63) wίw2E5E6 Φ 0,

then F 6 , G7 and H8 are determined for any given as ( j = 3, 4, 5, 6), G6, H 7 , F 7 ,

F 8 , G8, J 8 , £, and Z 4 (i = 6, 7, 8).

Put

(3.64) £ i + 4 = / ^ + 5 , Fi+5 = htEi+5 (i = l , 2 , 3 ) ,

(3.65) *i =/2 - / I + <*8 - «7» Z2 =/a ~ Λ + ̂ 9 - «8 •

Then the system of linear equations (3.46), (3.48) and (3.49) has a solution p f ί

(i = 7, 8, 9) if and only if

(3.66) Λ / a ^ β t i ί Λ a - ^ - z ^ - Λ O ] # 0.

The coefficients /?fί (ί = l, 3, 4, 5, 6) are determined from (3.42) and (3.43); btj

0 = 1, 2,..., ϊ - 1 ; i = 7, 8, 9) are obtained from (2.26), (2.27), (2.20), (2.17) and

(1.6).

The choice s = l, ̂  = 2̂  = 0 (ί = l, 2, 3, 4) and q2 = 0 yields

(3.67) q i + Σ/=3 Qt = 0, Σ/=3 aΛi = 0, ZUMi3qt = 0,

Σ7=5 Λf ̂ ί = 0, Σ/=6 (Σ}=5 ^ y ^ ) ί i = 0,

(3.68) C^ΣUMtsqi, C5 = 3C6 = ΣUP*<lt,

CΊ = C5/2 - ΣJ=6 β. a^p 2C8 = C, + C5 - 2 ΣUi^
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For instance, setting

(3.69) a3 = 1/4, aA = 1/2, as = 3/4, a6 = 1, α7 = 3/8, a8 = 5/8,

α 9 = 7/8, G6 = 0, £ 6 = - 16/7, tf7 = 0 , E7 = FΊ = 32/7,

F8 = Ga=Js = 0, q2 = 0 , qη = 2/9,

we have

(3.70) α2 = f>21 = 1/6, b3l = 1/16, ί>32 = 3/16, b4ι = 1/4, b 4 2 = - 3/4,

b 4 3 = 1, b5l = 3/16, ί>52 = b53 = 0, fe54 = 9/16, b6l = - 4/7,

ί>62 = 3/7, ί>63 = - fc64 = 12/7, ί>65 = 8/7, ft71 = 111/1792,

b 7 2 = - 729/3584, b13 = 621/896, b14. = - 909/3584, bΊ5 = 69/896,

i>76 = 0, b8ι = 279/896, b 8 2 = - 615/896, b83 = 327/448,

b84 = 249/896, 6 8 5 = 1/64, fc86 = - 3/128, b8Ί = 0,

fc91 = - 31/1536, b92 = 381/512, b93 = - 53/64, b94 = 151/512,

6 9 5 = 1/192, b 9 6 = 49/512, b97 = 7/12, b 9 8 = 0,

(3.71) 945p9, = 128ί 2(ί-l)(1084ί 2-1449ί + 468),

45/>8( = 256ί2(ί—l)(88ί2 —119/ + 39),

ί2l5p7t = 128ί 2(ί-l)(1724ί 2-2457ί + 828),

9 () = 64ί2(192ί3-360ί2 + 220ί-45),

gt) = 32f 2 (2ί-l) 2 ,

9 () = 8f 2(8ί-3),

6 f + 3pΊt + 5p 8 t + 7p 9 t = 4ί2,

=3 P = t

(3.72) P l l = p 6 1 = 7/90, p2l = 0, p 3 1 = p5l = 16/45, p 4 1 = 2/15,

DίΛ = ϋ 1 2 , i = 0, DAΛ = 2Ό1Λ = Dluι = - ί>1 3 > 1 = - 1/960,

D8Λ = ϋ 9 , i = - 015.1 = - 1/5760, D 1 0 > 1 = - D 1 4 > 1 = 1/2880,

(3.73) q i = 11/576, q3 = - 7/48, ί 4 = - 3/32, ί s = - 1/144,

q6 = 1/192,

(3.74) Cj = 1/1024, ^ 5 = 3 £ 6 = 31/14336, C 7 = - 31/57344,

£ 8 = 121/114688,

Dt = 35/16384, Z54 = 757/516096, DΊ = 87/32768,

Pit + Σ?= 3 Pu = t,
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D8 = 921/458752, D9 = 1665/917504, D 1 0 = 533/49152,

Dlt = 1/4096, Dί2 = 93/28672, D 1 3 = 31/28672,

5 1 4 = 31/172032, D15 = 93/229376.

4. Numerical examples

The following six problems are solved by the method (3.37)-(3.39) and the

method (3.69)-(3.71) with ft = 0.5.

Problem 1. y' = y, y(0) = 1.

Problem 2. y' = 2xy, y(0) = 1.

Problem 3. / = - y2, y(0) = 1.

Problem 4. / = l-y2

9 y(p) = o.

Problem 5. y'=-5y, y(0)=ί.

Problem 6. y' = y-2x/y, y(0) = 1.

The errors et = y(xt)-yt ( ί=l/2, 1) are listed in Table 1.

For ft = 0.5 and ί = 0.2 (0.2) 0.8 the same problems are solved by Horn's

method of order 4 and the method (3.37)-(3.39) ,which are denoted as H and S

respectively. The errors are listed in Table 2.

In the forthcoming paper [4] it will be shown that there exist methods with

(P» <?) = (4, 4) and (5, 6) that can provide yt for any t>0 with one additional

evaluation of /. For such methods it is not preferable to use the formulas

proposed in this paper if the number of interpolation points is less than r.

Table 1.

\ . Err

1

2

3

4

5

6

order

Ί / 2

8.99£-5

1.01 E-A

8.18£-4

1.68£-4

-2.75£-l

-5.18/M

4

2.84E-4

1.71£-4

-9.97£"-6

2.96£"-4

-5.66£"-l

-1.29^-3

order

-1.2ΊE-6

3ΛOE-5

-X.11E-5

S.60E-Ί

-IΛ1E-1

-2.00£"-5

5

-1.06£-6

-4.88E-5

-1.70E-5

1.52^-5

-1.34£"-1

-2.05£-5
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Table 2.

1

2

3

4

5

6

t

H

3.35E-5

7.36£-5

-3.22E-4

3.43£-5

-4.75E-1

1.13E-4

0.2

S

-8.42£-6

7.07E-5

-3.35E-4

-5.71£"-5

2.63^-2

6.24£*-5

H

8.86£-6

9.14E-5

-4.72^-4

4.78£"-5

— 8.37^-1

1.79£-4

0.4

S

-5.28£'-5

1Λ2E-4

-Ί.30E-4

-1Λ7E-4

1.63£-l

2.60£"-4

0.6

H

1.41 £"-5

2.37E-5

-4.07^-5

2.19£-5

-3.83E-1

1.19E-4

5

-1.34E-4

8.20£-5

-8.21E-4

— 1.67^-4

4.02E-1

6.64E-4

0.8

H

\3\E-5

3Λ1E-5

6.84E-4

-6.34£-6

4.04E-1

5.53E-5

S

-225E-A

4.Ί5E-5

-5.SIE-4

-1.40^-4

6.15£ -1

1.16E-3
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